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Abstract— Energy community markets have emerged to 

promote prosumers' active participation and empowerment in 

the electrical power system. These initiatives allow prosumers to 

transact electricity locally without an intermediary such as an 

aggregator. However, it is necessary to implement optimization 

methods that determine the best transactions within the energy 

community, obtaining the best solution under these models. 

Particle Swarm Optimization (PSO) fits this type of problem well 

because it allows reaching results in short optimization times. 

Furthermore, applying this metaheuristic to the problem is easy 

compared to other available optimization tools. In this work, we 

provide a sensitivity analysis of the impact of different 

parameters of PSO in solving an energy community market 

problem. As a result, the combination of parameters that lead to 

the best results is obtained, demonstrating the effectiveness of 

PSO solving different case studies.  

Index Terms— Local electricity markets, Particle Swarm 

Optimization, Peer-to-Peer transactions, Sensitivity analysis, 

Swarm intelligence. 

I. INTRODUCTION 

Local electricity markets (LEM) have appeared as a solution 
to promote the interactions between the end-users (consumers, 
prosumers, and small producers) at the local level of the energy 
chain [1]. Different structures for negotiation and organization 
have been proposed in the literature [2], although those are 
essentially targeting two types: the community market and the 
P2P market. Consumers benefit from P2P electricity trading 
since it allows them to engage in direct trading as buyers and 
sellers [3]. Typically, these approaches are characterized by 
resource sharing among its peers to accomplish certain goals. 
Examples of such objectives include the maximization of 
energy usage, electricity cost reduction, peak load shaving, 
network operation, and investment cost minimization [4]. Each 
member can be a producer, a consumer, or both (the so called 
prosumer) and can directly communicate with the rest of the 
network's peers without any intervention of a third-party 
controller [5]. 

Due to the complexity of the problem, metaheuristic 
optimization became an alternative tool to find feasible 
solutions to the problem [6]. Some studies had proposed the use 
of metaheuristics for solving P2P scheduling in LEM. For 
instance, [7] proposes the use of evolutionary computation for 

obtaining optimal bidding in a local market by using the 
differential evolution algorithm and its variants. 

In this work, we propose the use of particle swarm 
optimization (PSO), one of the most effective swarm 
intelligence algorithms proposed to date [8]. This metaheuristic 
has been used for other power system optimization problems 
since it shows a good performance when compared with other 
solving methods for economic dispatch (ED) problems [9]. The 
PSO algorithm was proposed by Kennedy and Eberhart, in 
1995, and it was inspired by the study of group behaviors such 
as predation of birds [10]. The velocity function of PSO is 
characterized by three different parameters, which influence the 
next position of each particle. The first is the inertia term. This 
decides the importance given to the previous velocity. The 
second is the local coefficient. In this case, it is a weight applied 
to the best solution of the particle, the third is the global 
coefficient that is applied to the best global position [11]. 

According to [12], the control parameters of the original 
PSO have an impact on the overall search capabilities of the 
algorithm. As also stated in [12], PSO suffers from a condition, 
known as premature convergence, which causes it to fail in 
obtaining the global minimum and thus converge to a local 
solution. This issue has been previously studied, for instance in 
[12], where different mechanisms and methods are introduced 
to alleviate this effect. In fact, sensitivity analysis methods 
allow the study of relationships between the uncertainty in the 
output and output of a model [13]. Other studies regarding the 
tunning of PSO parameters have been proposed, like the one in 
[14], where the parameters of the PSO algorithm had been 
investigated through the use of the design of experiments 
(DOE) techniques. The DOE techniques can be applied to 
optimization algorithms, considering the run of an algorithm as 
an experiment, gaining insightful conclusions into the behavior 
of the algorithm and the interaction and significance of its 
parameters. 

In this work, the PSO algorithm is used to optimize the P2P 
electricity market problem. We provide a sensitivity analysis in 
the PSO parameters, showing how the selection of these 
parameters contribute to the algorithm performance. The 
sensitive analyses are performed to obtain the best combination 
between the number of iterations, number of particles, inertia 
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term, local coefficient, and global coefficient. The sensitivity 
analysis is made by changing the value of a single parameter 
and seeing the effect produced in the output. 

The rest of the paper is organized as follows: the PSO main 
equations are explained in Section II. An overall model of a P2P 
market has been described the Section III. The case study and 
sensitive analysis simulation is explained in Section IV. The 
main results for each parameter analyzed are described in 
Section V. Section VI presents the conclusion of the study. 

II. PARTICLE SWARM OPTIMIZATION  

Equation (1) represents the velocity function of the PSO 
algorithm, and equation (2) is the position update function.  

𝑣𝑘+1
𝑗

= 𝑤𝑘𝑣𝑘
𝑗
+ 𝑐𝑘

𝑗
× 𝑟1 × 𝑃𝑏𝑒𝑠𝑡

𝑗
+ 𝑐𝑘

2 × 𝑟2 × 𝑃𝑔𝑙𝑜𝑏𝑎𝑙 (1) 

𝑥𝑘+1
𝑗

= 𝑥𝑘
𝑗
+ 𝑣𝑘+1

𝑗
 (2) 

where, 𝑣𝑘+1
𝑗

 corresponds to the velocity, 𝑤𝑘 is the inertia term, 

𝑐𝑘
𝑗
 is the personal coefficient term, 𝑟1 is a random term for the 

personal component, 𝑃𝑏𝑒𝑠𝑡
𝑗

 is the personal best position, 𝑐𝑘
2 is 

the global coefficient term, 𝑟2 is a random term for the global 
component, 𝑃𝑔𝑙𝑜𝑏𝑎𝑙  is the best global position of the swarm and 

𝑥𝑘+1
𝑗

 corresponds to the particle position. Equation (3) presents 

the inertia term function updating.  

𝑤𝑘 = 𝑤
𝑚𝑎𝑥 −

𝑤𝑚𝑎𝑥 −𝑤𝑚𝑖𝑛

𝑁𝑘
× 𝑘 (3) 

where, 𝑤𝑚𝑎𝑥 is the maximum value for the inertia terms, 𝑤𝑚𝑖𝑛  
is the minimum value for the inertia term, 𝑘 is the current 
iteration, and 𝑁𝑘 is the total number of iterations. Equation (4) 
presents the personal coefficient updating function.  

𝑐𝑘
1 = 𝑐1,𝑚𝑎𝑥 −

𝑐1,𝑚𝑎𝑥 − 𝑐1,𝑚𝑖𝑛

𝑁𝑘
× 𝑘 (4) 

where, 𝑐1,𝑚𝑎𝑥 corresponds to the maximum value for the 

personal coefficient and 𝑐1,𝑚𝑖𝑛  presents the minimum value for 
the personal coefficient. Equation (5) presents the global 
coefficient updating function. 

𝑐𝑘
2 = 𝑐2,𝑚𝑖𝑛 +

𝑐2,𝑚𝑎𝑥 − 𝑐2,𝑚𝑖𝑛

𝑁𝑘
× 𝑘 (5) 

where, 𝑐2,𝑚𝑖𝑛 corresponds to the minimum value for the global 
coefficient and 𝑐2,𝑚𝑎𝑥  corresponds to the maximum value for 
the global coefficient.  

Equations to obtain the inertia, personal, and global coefficient 
values are considered linear according to the iteration number. 
For equations (3) and (4), the equations are linear decreasing, 
and equation (5) is linear increasing.  

III. METHODOLOGY  

As mentioned before, a sensitive analysis to select the best 
combinations of parameters is considered in this paper. The 
parameters in the study are: the total number of iterations 𝑁𝑘, 

the total number of particles 𝑁𝑗, values for 𝑤𝑚𝑎𝑥  and 𝑤𝑚𝑖𝑛 , 

values for 𝑐1,𝑚𝑎𝑥 and 𝑐1,𝑚𝑖𝑛 , and values for 𝑐2,𝑚𝑎𝑥  and 𝑐2,𝑚𝑖𝑛.  

A. P2P Electricity Market Problem 

The P2P electricity market problem consists of determining 
the best P2P combination to transact electricity. Equation (6) 
presents the fitness function and guides the PSO search.  

𝑓𝑖𝑡(𝑥) = 𝑓𝑜𝑏 +∑∑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑗
1

𝑁𝑡

𝑡=1

𝑁𝑖

𝑖=1

+∑𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡
2

𝑁𝑡

𝑡=1

 (6) 

where, 𝑓𝑖𝑡(𝑥) corresponds to the value of fitness function, 𝑓𝑜𝑏 

represents the objective function value, 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑗
1  is the 

energy balance of each agent, 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡
2 corresponds to the 

P2P market balance, 𝑁𝑖 is the number of agents and 𝑁𝑡 is the 
number of periods.  

The fitness function contains three different terms, the 
objective value obtained by equation (7) the energy balance 
equation (8) and the P2P balance obtained by equation (9). Both 
balances values are added to the fitness in order to guide the 
PSO search for the solution with minimal balances that 
originates valid solutions.  

𝑓𝑜𝑏 =∑∑(𝑃𝑖,𝑡
𝑏𝑔
× 𝑐𝑖,𝑡

𝑏𝑔
− 𝑃𝑖,𝑡

𝑠𝑔
× 𝑐𝑖,𝑡

𝑏𝑔
)

𝑁𝑡

𝑡=1

𝑁𝑖

𝑖=1

 (7) 

where, 𝑃𝑖,𝑡
𝑏𝑔

 corresponds to the electricity bought from the grid, 

𝑐𝑖,𝑡
𝑏𝑔

 is the price of buy electricity from the grid,  𝑃𝑖,𝑡
𝑠𝑔

 is the 

electricity sold to the grid and 𝑐𝑖,𝑡
𝑏𝑔

 is the price of sold electricity 

to the grid. Equation (8) represents each agent's energy balance 
for each period. 

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑗
1 =

|(𝑃𝑖,𝑡
𝑏𝑔
+ 𝑃𝑖,𝑡

𝑔𝑒𝑛
+∑𝑃𝑙,𝑖,𝑡

𝑏𝑃2𝑃

𝑁𝑙

𝑙=1

)−(𝑃𝑖,𝑡
𝑠𝑔
+ 𝑃𝑖,𝑡

𝑙𝑜𝑎𝑑 −∑𝑃𝑙,𝑖,𝑡
𝑠𝑃2𝑃

𝑁𝑙

𝑙=1

)|

∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡

 (8) 

where, 𝑃𝑖,𝑡
𝑔𝑒𝑛

 corresponds to the electricity generated, 𝑃𝑙,𝑖,𝑡
𝑏𝑃2𝑃  

correspond to the electricity buy of player 𝑙 from player 𝑖, 𝑃𝑖,𝑡
𝑙𝑜𝑎𝑑  

corresponds to the load and 𝑃𝑙,𝑖,𝑡
𝑠𝑃2𝑃represents the electricity sold 

of player 𝑙 to player 𝑖. Equation (9) represents the P2P 
electricity balance.  

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡
2 =

|(∑∑𝑃𝑙,𝑖,𝑡
𝑏𝑃2𝑃

𝑁𝑙

𝑙=1

𝑁𝑖

𝑖=1

) − (∑∑𝑃𝑙,𝑖,𝑡
𝑠𝑃2𝑃

𝑁𝑙

𝑙=1

𝑁𝑖

𝑖=1

)| , ∀𝑡 ∈ 𝑁𝑡
 (9) 

This balance is executed for all periods and ensures that the 
value of total electricity bought in the P2P market equals the 
electricity sold in the P2P market. Therefore, equations (10) - 
(12) limit the buy and sell quantity in the P2P market. 

0 ≤ 𝑃𝑙,𝑖,𝑡
𝑏𝑃2𝑃 ≤ �̅�𝑙,𝑖,𝑡

𝑏𝑃2𝑃 × 𝑋𝑙,𝑖,𝑡
𝑏𝑃2𝑃 , ∀𝑙 ∈ 𝑁𝑙 , ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (10) 

0 ≤ 𝑃𝑙,𝑖,𝑡
𝑠𝑃2𝑃 ≤ �̅�𝑙,𝑖,𝑡

𝑠𝑃2𝑃 × 𝑋𝑙,𝑖,𝑡
𝑠𝑃2𝑃, ∀𝑙 ∈ 𝑁𝑙 , ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (11) 

𝑋𝑙,𝑖,𝑡
𝑏𝑃2𝑃+𝑋𝑙,𝑖,𝑡

𝑠𝑃2𝑃 ≤ 1,∀𝑙 ∈ 𝑁𝑙 , ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (12) 



 

 

where, �̅�𝑙,𝑖,𝑡
𝑏𝑃2𝑃 is the maximum limit for buy electricity in P2P 

mode, 𝑋𝑙,𝑖,𝑡
𝑏𝑃2𝑃 is a binary variable associated to the to buy action 

in P2P market, �̅�𝑙,𝑖,𝑡
𝑠𝑃2𝑃is the maximum limit to sell electricity in 

P2P mode and 𝑋𝑙,𝑖,𝑡
𝑠𝑃2𝑃 is a binary variable associated to the sell 

action in the P2P market.  Equation (12) limits the buy and sell 
simultaneously in the P2P mode.  Equation (13) - (15) limits the 
quantity of buy and sell with the grid transactions. 

0 ≤ 𝑃𝑖,𝑡
𝑏𝑔
≤ �̅�𝑖,𝑡

𝑏𝑔
× 𝑋𝑖,𝑡

𝑏𝑔
, ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (13) 

0 ≤ 𝑃𝑖,𝑡
𝑠𝑔
≤ �̅�𝑖,𝑡

𝑠𝑔
× 𝑋𝑖,𝑡

𝑠𝑔
, ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (14) 

𝑋𝑖,𝑡
𝑏𝑔
+ 𝑋𝑖,𝑡

𝑠𝑔
≤ 1, ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (15) 

where, �̅�𝑖,𝑡
𝑏𝑔

 represents the maximum limit for buy electricity 

from the grid, 𝑋𝑖,𝑡
𝑏𝑔

 is a binary variable associated with buy 

electricity action from the grid, �̅�𝑖,𝑡
𝑠𝑔

 represent the maximum 

limit for sell electricity to the grid, and 𝑋𝑖,𝑡
𝑠𝑔

 is a binary variable 

associated to the sell electricity action to the grid. Equations 
(16) and (17) limit the simultaneous action of buy in the grid 
and sell in P2P mode and sell in the grid and buy in P2P mode.    

𝑋𝑖,𝑡
𝑏𝑔
+∑𝑋𝑙,𝑖,𝑡

𝑠𝑃2𝑃

𝑁𝑙

𝑙=1

≤ 1, ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (16) 

𝑋𝑖,𝑡
𝑠𝑔
+∑𝑋𝑙,𝑖,𝑡

𝑏𝑃2𝑃

𝑁𝑙

𝑙=1

≤ 1, ∀𝑖 ∈ 𝑁𝑖 , ∀𝑡 ∈ 𝑁𝑡 (17) 

B. Encoding Process 

In this study, to solve the P2P electricity market problem, 
the PSO will search for the best combinations of transactions 
between peers. The algorithm will select only transactions 
between two different peers. The combination theory equation 
(18) is applied to define the number of possible transactions(18).   

𝐶𝑁𝑖,2 =
𝑛!

𝑁𝑖! (𝑛 − 𝑁𝑖)!
 (18) 

Regarding the dimension of the problem, for instance, in 
this study is used 9 agents; then, according to equation (18) for 
𝑁𝑖 = 9, the number of combinations is 36. In this way, in each 
period, the number of variables is 36 (equal to the number of 
combinations). For the number of periods equal to 𝑁𝑡 the total 
number of variables is 36 × 𝑁𝑡.  The solution vector contains 
only binary variables that are active or not depending on the 
possible transaction.  

𝑥 = [𝑋1,1
𝑃2𝑃 , 𝑋1,2

𝑃2𝑃, 𝑋1,3
𝑃2𝑃 , … , 𝑋𝑁𝑡,𝑁𝑐

𝑃2𝑃 ] (19) 

where, 𝑋𝑡,𝑐
𝑃2𝑃 represents the binary variable for the transaction 

combination 𝑐  of period 𝑡, for 𝑋𝑡,𝑐
𝑃2𝑃 = 1 the transaction is 

active and 𝑋𝑡,𝑐
𝑃2𝑃 = 0 the transaction is inactive. 

Figure 1 presents the encoding process for 1st period with 9 
agents. As can see the combination between the same peers 
(e.g., (1,1)) and repeated combination (e.g., (1,2) and (2,1)) are 
automatically excluded from the search. 

 
Figure 1 – Encoding Process for 1st period and 9 agents 

The process should be repeated for all other periods. After 
each iteration, the solution of PSO should be repaired to avoid 
constrains violations. Equation (20) is used to obtain the value 
for import 𝑃𝑖=𝑐(1),𝑡 > 0 or export 𝑃𝑖=𝑐(1),𝑡 < 0 electricity in each 

agent, equation (21) is applied if 𝑋𝑡,𝑐
𝑃2𝑃 = 1, the value of 𝑋𝑡,𝑐

𝑃2𝑃 

is repaired according to the value of 𝑃𝑖=𝑐(1),𝑡 and 𝑃𝑖=𝑐(2),𝑡. 

𝑃𝑖=𝑐(1),𝑡 = 𝑃𝑖=𝑐(1),𝑡
𝑙𝑜𝑎𝑑 − 𝑃𝑖=𝑐(1),𝑡

𝑔𝑒𝑛

𝑃𝑖=𝑐(2),𝑡 = 𝑃𝑖=𝑐(2),𝑡
𝑙𝑜𝑎𝑑 − 𝑃𝑖=𝑐(2),𝑡

𝑔𝑒𝑛  (20) 

𝑋𝑡,𝑐
𝑃2𝑃 =

{
  
 

  
 
0 𝑖𝑓 {

(𝑃𝑖=𝑐(1),𝑡 < 0 ∩ 𝑃𝑖=𝑐(2),𝑡 < 0)
∪

(𝑃𝑖=𝑐(1),𝑡 > 0 ∩ 𝑃𝑖=𝑐(2),𝑡 > 0)

1 𝑖𝑓 {
(𝑃𝑖=𝑐(1),𝑡 < 0 ∩ 𝑃𝑖=𝑐(2),𝑡 > 0)

∪
(𝑃𝑖=𝑐(1),𝑡 > 0 ∩ 𝑃𝑖=𝑐(2),𝑡 < 0)

 (21) 

After applying equation (21) and the value of 𝑋𝑡,𝑐
𝑃2𝑃 still 1 

the value of 𝑃𝑙,𝑖,𝑡
𝑏𝑃2𝑃 , 𝑃𝑙,𝑖,𝑡

𝑠𝑃2𝑃, 𝑃𝑖,𝑡
𝑏𝑔

and 𝑃𝑖,𝑡
𝑠𝑔

can be obtained.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 1
∩

𝑃𝑖=𝑐(1),𝑡 > 𝑃𝑖=𝑐(2),𝑡
∩

|𝑃𝑖=𝑐(1),𝑡| > |𝑃𝑖=𝑐(2),𝑡|)

 
 
→

{
 
 
 
 
 

 
 
 
 
 

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(1),𝑡| − |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= 0

 (22) 

To apply equation (22) the initial condition should be met, 
meaning that a P2P transaction is proposed, where 𝑃𝑖=𝑐(1),𝑡 is 
the buyer, 𝑃𝑖=𝑐(2),𝑡 is the seller and the quantity of seller is 

fulfilled.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 1
∩

𝑃𝑖=𝑐(1),𝑡 > 𝑃𝑖=𝑐(2),𝑡
∩

|𝑃𝑖=𝑐(1),𝑡| < |𝑃𝑖=𝑐(2),𝑡|)

 
 
→

{
 
 
 
 
 

 
 
 
 
 

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(2),𝑡| − |𝑃𝑖=𝑐(1),𝑡|

 (23) 



 

 

In the case of equation (23) the buyer is 𝑃𝑖=𝑐(1),𝑡, the seller 

is  𝑃𝑖=𝑐(2),𝑡 and the quantity of buyer is fulfilled.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 1
∩

𝑃𝑖=𝑐(1),𝑡 < 𝑃𝑖=𝑐(2),𝑡
∩

|𝑃𝑖=𝑐(1),𝑡| > |𝑃𝑖=𝑐(2),𝑡|)

 
 
→

{
 
 
 
 
 

 
 
 
 
 

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = |𝑃𝑖=𝑐(2),𝑡|

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(1),𝑡| − |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= 0

 (24) 

In equation (24),  𝑃𝑖=𝑐(1),𝑡 is the seller, 𝑃𝑖=𝑐(2),𝑡 is the buyer 

and the quantity of seller is fulfilled.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 1
∩

𝑃𝑖=𝑐(1),𝑡 < 𝑃𝑖=𝑐(2),𝑡
∩

|𝑃𝑖=𝑐(1),𝑡| < |𝑃𝑖=𝑐(2),𝑡|)

 
 
→

{
 
 
 
 
 

 
 
 
 
 

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = |𝑃𝑖=𝑐(1),𝑡|

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(2),𝑡| − |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= 0

 (25) 

In the case of equation (25) the seller is 𝑃𝑖=𝑐(1),𝑡, the buyer 

is  𝑃𝑖=𝑐(2),𝑡 and the quantity of seller is fulfilled. When the 

𝑋𝑡,𝑐
𝑃2𝑃 = 0 four different conditions should be tested.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 0
∩

𝑃𝑖=𝑐(1),𝑡 > 0
∩

𝑃𝑖=𝑐(2),𝑡 > 0)

 
 
→

{
 
 
 
 
 

 
 
 
 
 
𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= 0

 (26) 

Equation (26) represents the condition when no P2P 
transactions exist and both players are consumers, so they need 
to buy energy from the grid.  

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 0
∩

𝑃𝑖=𝑐(1),𝑡 < 0
∩

𝑃𝑖=𝑐(2),𝑡 < 0)

 
 
→

{
 
 
 
 
 

 
 
 
 
 
𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(2),𝑡|

 (27) 

In the case of equation (27) both players are sellers, and the 
variable of P2P transactions is disabled. 

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 0
∩

𝑃𝑖=𝑐(1),𝑡 > 0
∩

𝑃𝑖=𝑐(2),𝑡 < 0)

 
 
→

{
 
 
 
 
 

 
 
 
 
 
𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(2),𝑡|

 (28) 

In equation (28) the 𝑃𝑖=𝑐(1),𝑡 is buyer and 𝑃𝑖=𝑐(2),𝑡 is seller, 

but as there is no P2P transaction active, both players transact 
electricity with the grid. 

(

 
 

𝑋𝑡,𝑐
𝑃2𝑃 = 0
∩

𝑃𝑖=𝑐(1),𝑡 < 0
∩

𝑃𝑖=𝑐(2),𝑡 > 0)

 
 
→

{
 
 
 
 
 

 
 
 
 
 
𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(1),𝑖=𝑐(2),𝑡
𝑠𝑃2𝑃 = 0

 𝑃𝑖=𝑐(1),𝑡
𝑏𝑔

= 0

𝑃𝑖=𝑐(1),𝑡
𝑠𝑔

= |𝑃𝑖=𝑐(1),𝑡|

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑏𝑃2𝑃 = 0

𝑃𝑙=𝑐(2),𝑖=𝑐(1),𝑡
𝑠𝑃2𝑃 = 0

𝑃𝑖=𝑐(2),𝑡
𝑏𝑔

= |𝑃𝑖=𝑐(2),𝑡|

𝑃𝑖=𝑐(2),𝑡
𝑠𝑔

= 0

 (29) 

By the equation (29), 𝑃𝑖=𝑐(1),𝑡 is seller and 𝑃𝑖=𝑐(2),𝑡 is buyer, 

and both transact electricity with the grid. Thus, the variable of 
P2P transactions is disabled. 

After applying all equations, 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑖,𝑗
1  and 𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑡

2 can 

be obtained, and the 𝑓𝑜𝑏 and the value of 𝑓𝑖𝑡(𝑥) can be 
calculated. 

IV. CASE STUDY 

To perform the simulation, 9 agents were used, namely, 3 
consumers, 3 prosumers and 3 producers. Figure 2 presents the 
profiles of load and generation for all players.  

 
Figure 2 – Load and generation profiles 

We assume that consumers can buy electricity from the grid 
or in P2P mode, the prosumers can buy or sell electricity from 
the grid or from P2P mode, and the producers can only sell 
electricity to the grid or in P2P mode. The price of buying 



 

 

electricity from the grid is set to 0.158 €/kWh and for selling to 
the grid is 0.045 €/kwh. 

The sensitive analysis is performed for the total number of 
particles, the total number of iterations, the minimum and 
maximum value for inertia, minimum and maximum value for 
personal coefficient and minimum and maximum value for 
global coefficient. Table 1 presents the range of values 
analyzed.  

Table 1 – Range of tunned values 

Description Symbol Range of values 

Number of iterations 𝑁𝑘 [100,200,500,1000,2000] 

Number of particles 𝑁𝑗 [10,20,50,100] 

Inertia 
Minimum 𝑤𝑚𝑖𝑛 [0: 2]in steps of 0.2 

Maximum 𝑤𝑚𝑎𝑥 [0: 2] in steps of 0.2 

Personal 

coefficient 

Minimum 𝑐1,𝑚𝑖𝑛 [0: 2] in steps of 0.2 

Maximum 𝑐1,𝑚𝑎𝑥 [0: 2] in steps of 0.2 

Global 

coefficient 

Minimum 𝑐2,𝑚𝑖𝑛 [0: 2] in steps of 0.2 

Maximum 𝑐2,𝑚𝑎𝑥  [0: 2] in steps of 0.2 

As can be seen in Table 1, the analysis is done for five 
different number of iterations, four different number of 
particles, and for eleven different values of maximum and 
minimum inertia, personal coefficient, and global coefficient 
values (i.e., in the range of 0 to 2 in steps of 0.2). It should be 
noted that the maximum value must be equal or higher than the 
minimum value in each of the parameters in analyses.  

V. RESULTS 

 The simulation for the analyses of the results is 
implemented in Python language using the Pyticle Swarm1 
library to run the PSO. Other libraries are also used: NumPy to 
deal with vector and matrix; pandas to import data from excel; 
itertools to create the combination of possible P2P transactions; 
and matplotlib to create all plots presented in the paper. 30 trials 
are performed for each experiment, and the minimum values 
are stored.  

First, the influence of iterations numbers was analyzed. 
Figure 3 presents the analysis of iteration number parameter.   

  

Figure 3 – Iteration number analyses 

As can by Figure 3 the result of the fitness function for the 
different number of iterations changes. As expected, the fitness 
function value has a great number of iterations. Therefore, the 

 
1Available at https://pyswarms.readthedocs.io/. 

value of 1000 iterations is a good option for this application. A 
reduction of 0.3 € was obtained when the number of iteration 
increased from 100 to 1000. However, a reduction of only 0.02 
€ was obtained when increasing the value from 1000 to 2000. 
In this sense, the fitness value of 2000 iteration does not bring 
a significant improvement that justify the large increment in 
execution time.  

Figure 4 presents the analyses for the number of particles. 
In this case, by the analyses of Figure 4, 50 particles are 
considered as the best option. This is because, from 20 to 50 
particles number, the fitness value decreases by an acceptable 
degree, whereas from 50 to 100 there is not a significant 
improvement.  

 

Figure 4 – Particles number analyses 

Figure 5 presents the heatmap for the inertia sensitivity 
analyses. By the analyses of Figure 5, it is possible to verify that 
the fitness function value varies with respect to the different 
number of inertia values. For the value of inertia minimum 

(𝑤𝑚𝑖𝑛) the number of 0.2 is selected, and the value of 0.4 is 
selected for the maximum value of inertia (𝑤𝑚𝑎𝑥). The heatmap 
shows the best values in the selected range of values for inertia. 

 

Figure 5 – Maximum and minimum inertia analyses 

Figure 6 presents the heatmap for the maximum and 
minimum value of personal coefficient analyses. By the 

https://pyswarms.readthedocs.io/


 

 

analyses of results presented in Figure 6, the values for 
minimum and maximum of the personal coefficient can be 
selected. The value selected for minimum personal coefficient 

(𝑐1,𝑚𝑖𝑛) is 0.4 and for the maximum (𝑐1,𝑚𝑎𝑥) is 1.6. 

 

Figure 6 – Maximum and minimum personal coefficient analyses 

 
Figure 7 presents the heatmap for the maximum and 

minimum value of the global coefficient. Considering the 
results of Figure 7 the values selected for minimum global 

coefficient (𝑐2,𝑚𝑖𝑛) is 0 and for the maximum values (𝑐2,𝑚𝑎𝑥) 
is 1.2.  

 

Figure 7 – Maximum and minimum global coefficient analyses 

Table 2 presents the summary of the selected parameters to 
perform the optimization of the P2P electricity market problem.  

Table 2 – Parameters values 

Description Symbol Values 

Number of iterations 𝑁𝑘 1000 

Number of particles 𝑁𝑗 50 

Inertia 
Minimum 𝑤𝑚𝑖𝑛 0.2 

Maximum 𝑤𝑚𝑎𝑥 0.4 

Personal coefficient 
Minimum 𝑐1,𝑚𝑖𝑛 0.4 

Maximum 𝑐1,𝑚𝑎𝑥 1.6 

Global coefficient 
Minimum 𝑐2,𝑚𝑖𝑛 0 

Maximum 𝑐2,𝑚𝑎𝑥  1.2 

Now, regarding convergency of the tested algorithm, Figure 
8 presents the convergence performance of the PSO algorithm 
with the parameters selected. The solution without P2P 
transaction is also presented with green color as the baseline of 
the experiment. The blue line presents the mean value obtained 
in each iteration for the 30 trails used, and with the orange line, 
the minimum solution obtained by the PSO is presented. With 
the blue line is possible to see the performance convergence of 
the algorithm. In the initial phase, the algorithm starts with a 
solution of 10.29 €, achiving a final value of 9.29 €, a reduction 
of around 1 €. Comparing the minimum value (9.036 €) with 
the value without P2P transactions (10.294 €), the algorithm 
achieved a reduction of  1.258 €, a reduction that might be 
significan considering larger time horizons.  

 

Figure 8 – PSO convergence performance 

VI. CONCLUSION  

Premature convergence and sensitivity to initial control 
parameters are problems that might arise when using the PSO 
algorithm. Therefore, in this work, we performed a 
comprehensive sensitivity analysis to investigate the impact of 
the control parameters and determine the best set of those to 
solve a P2P market problem. The parameter analysis is done in 
a constrained optimization problem, and the findings revealed 
that the inertia weight and acceleration coefficients were the 
most sensitive parameters of PSO. The best set of parameters 
was found under different scenarios in the P2P electricity 
market problem. The verification study demonstrated that PSO 
achieves acceptable performance after the parameter tuning. It 
also ensures an extensive sensitivity analysis by studying most 
of the parameters in the PSO algorithm.  Although the present 
sensitive analyzes fulfils the main goals of the study, it could be 
improved extending the case study with more agents (e.g., more 
than 30 agents) and the inclusion of combined heat and power 
generators to increase the liquidity of the P2P market. The 
analyses could also be improved by decreasing the value of the 
steps (e.g., 0.1) thus increasing the resolution of the achieved 
results. 
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