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Abstract—The growing number of electric vehicles (EVs) on
the road and renewable energy production to meet carbon
reduction targets has posed numerous electrical grid problems.
The increasing use of distributed energy resources (DER) in the
grid poses severe operational issues, such as grid congestion
and overloading. Active management of distribution networks
using the smart grid (SG) technologies and artificial intelligence
(AI) techniques by multiple entities. In this case, aggregators
can support the grid’s operation, providing a better product for
the end-user. This study proposes an effective intraday energy
resource management starting with a day-ahead time frame,
considering the uncertainty associated with high DER pene-
tration. The optimization is achieved considering five different
metaheuristics (DE, HyDE-DF, DEEDA, CUMDANCauchy++,
and HC2RCEDUMDA). Results show that the proposed model
is effective for the multiple aggregators with variations from the
day-ahead around the 6% mark, except for the final aggregator.
A Wilcoxon test is also applied to compare the performance of the
CUMDANCauchy++ algorithm with the remaining. CUMDAN-
Cauchy++ shows competitive results beating all algorithms in all
aggregators except for DEEDA, which presents similar results.

Index Terms—aggregator, energy resource management, local
electricity market, metaheuristics, optimization

I. INTRODUCTION

Computational intelligence (CI), an artificial intelligence
(AI) field, is increasingly gaining notoriety in electric power
systems in contrast to more deterministic methods [1], [2].

With the steady increase in distributed energy resources
(DER), especially renewable generation and electric vehicles
(EVs), managing energy resources becomes more and more
complex with the increasing scale of the problem. CI fits better
for solving this problem because electrical energy systems
are large systems with many variables and constraints, and
they allow obtaining reasonable solutions in useful time with
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low computational effort and are generally easier to imple-
ment than deterministic algorithms [3]. However, deterministic
methods can obtain an optimal solution, which guarantees
greater certainty in the results. One of the issues that may
lead to the application of CI models to the detriment of
more deterministic models is the uncertainty associated with
DER (solar radiation, wind, the behavior of EV users, among
others). This uncertainty can lead to low effectiveness of the
more traditional methods [4].

Within CI comes evolutionary computation (EC), becoming
one of the fields most integrated into solving energy problems.
According to the literature the most popular algorithms already
implemented in power system problems are the genetic algo-
rithm (GA) [5], [6], particle swarm optimization (PSO) [7],
[8], differential evolution (DE) [9], [10]. With the increase in
applying this type of algorithm to solve optimization problems
in the energy field, more precisely in resource management,
variants of these more efficient algorithms with easier imple-
mentation are emerging, as seen in the literature. In [11] a new
hybrid-adaptive DE algorithm is proposed to solve an energy
resource management problem in the smart grid (SG) context
under uncertainty. The authors applied multiple DE mutation
strategies, and a new ”DE/target-to-perturbed best/1” mu-
tation strategy with an adaptive mechanism that autotunes
the crossover probability and mutation factor was proposed.
This new algorithm presented the best overall results when
compared to the DE. The research in [12] a cellular estimation
distribution algorithm is proposed where the crossover and
mutation factors are replaced by estimating and sampling the
probability distribution learned from the chosen individuals.
The algorithm showed excellent results compared to multiple
variants of the PSO when solving the energy resource schedul-
ing problem in an uncertain environment with high penetration
of renewables and EVs. In [13] multiple variants of the PSO
algorithm and other metaheuristics were implemented by the
authors for a multi-objective management problem involving
profit maximization and C02 minimization. A weighted PSO
which uses Pareto set scheme obtained the best results for both
objective functions.



This paper proposes an optimal intraday energy resource
scheduling for five different aggregators of different technolo-
gies treating it as mixed-inter linear programming (MILP)
because network constraints are not considered. Each of the
five aggregators manages their resources for the hour-ahead
with 15 minute time intervals. A local electricity market
(LEM) is considered so the multiple aggregators can meet the
power balance constraint. Standard DE algorithm and four new
metaheuristics are also used to solve the optimization problem.
These four state-of-the-art algorithm are the Hybrid-Adaptive
DE with Decay function (HyDE-DF) [14], a cellular estimation
distribution algorithm named CUMDANCauchy++ [15], a DE
with Estimation of Distribution Algorithm (DEEDA) [16], and
a brand new algorithm named Hill Climbing to Ring Cellular
Encode-Decode Univariate Marginal Distribution Algorithm
(HC2RCEDUMDA) [17] that placed highly in the ”2021
Competition on Evolutionary Computation in the Energy Do-
main: Smart Grid Applications” [18]. The results of these
algorithms are then compared in the intraday context, and the
Wilcoxon statistical test is performed to see the rankings of
the algorithms and analyze which performs better.

This paper is organized as follows. Following this, Sec-
tion II offers the problem formulation as well as the proposed
optimization procedure, including the objective function and
restrictions. The case study employed in this work is presented
in Section III. The outcomes and analysis of these results are
shown in Section IV. Finally, the last section discusses the
paper’s primary conclusions as well as future research.

II. PROPOSED FORMULATION

This section presents the proposed problem formulation in
terms of mathematical formulation, algorithm optimization,
and uncertainty generation.

Fig. 1. Proposed intraday energy resource scheduling model.

Fig. 1 shows a diagram of resource schedule planning in
the hour-ahead meaning. The technical data including the
distributed generation needed for the renewable generation
aggregator, load and demand response (DR) contracts for the

load aggregators, EV data for the EV aggregator, and other
shared resources. Hour-ahead forecasted the hour-ahead ERM
model requires data, and the contracts closed in the day-ahead
time horizon are also injected in the intraday model. For the
next four time slots, projections are prepared using a 15-minute
time slot resolution, where the EV and energy storage systems
(ESSs) state of charge (SoC) of the hour h− 1 is given in as
the initial SoC of the hour h.

A. Mathematical model

Each aggregator seeks to keep its costs as low as possible
while increasing its earnings. Here a minimization problem
is proposed as minimize OC where OC are the operational
costs that each aggregator has and is given by:

OC =
T∑

t=1


∑

i∈Ωd
DG

PDG(i,t) · CDG(i,t)+

Nk∑
k=1

Pext(k,t) · Cext(k,t)

 ·∆t+
Ns∑
s=1

T∑
t=1

·



∑
i∈Ωnd

DG

PDG(i,t,s) · CDG(i,t)+

Ne∑
e=1

PDisch(e,t,s) · CDisch(e,t)+

Nv∑
v=1

EVDisch(v,t,s) · EV CDisch(v,t)+

Nl∑
l=1

PCurt(l,t,s) · CCurt(l,t)+

Nr∑
r=1

PENS(r,t,s) · CENS(r,t)+

Ni∑
i=1

PGCP (i,t,s) · CGCP (i,t)+

Nm∑
m=1

(
PBuy(m,t) − PSell(m,t)

)
·MP(m,t,s)+

Nle∑
l=1

(
MBuy(le,t) −MSell(le,t)

)
· LM(le,t,s)



·∆t · π(s)

(1)
where the number of periods is represented by the symbol T
(four 15-minute periods), the set of dispatchable generation is
referred to as Ωd

DG. The number of external suppliers is given
as Nk, and the total number of scenarios is Ns. Ne represents
the number of ESSs. The number of EVs is called Nv , and the
number of loads is Nl. Nr represents the number of resources
where energy is not supplied (ENS), and Ni is the number of
distributed generators. The symbol Nm denotes the number
of wholesale (WS) markets, and the number of LEM is Nle.
The active power generation is given by PDG (MW), Pext

is the external power supplied (MW). PDisch represents the
ESS power discharge (MW), EVDisch is the EV discharge
power (MW). The power reduction of load l is given by Pcurt

(MW), PENS represents the non-supplied demand, in periods
t of resource r (MW), and the excess of DG units’ i generation
is PGCP (MW). PBuy represents power purchased from the
market (MW), PSell represents power sold to the market
(MW), and MBuy and MSell reflect power purchased and sold
in the LEM (MW), respectively. CDG represents the cost of



distributed generation (m.u./MWh), Cext represents the cost
of an external supplier (m.u./MWh), and CDisch represents
the cost of ESS discharging (m.u./MWh). The cost of EV
discharge is EV CDisch (m.u./MWh), and the load curtailment
cost is CCurt (m.u./MWh). The cost of energy not supplied
is represented by CENS (m.u./MWh), whereas the penalty for
excess energy is represented by CGCP (m.u./MWh). The WS
electricity market price is MP (m.u./MWh), while the LEM
price is LM (m.u./MWh). Finally, for each scenario, pi(s) is
the scenario probability.

It’s worth noting that each aggregator is in charge of a
specific service in the DN; as a result, certain parameters of
(1) become zero and disappear depending on the aggregator’s
special purpose. For example, for the load aggregators, the EV
term and renewable energy term disappear.

The problem constraints are similar to [19] including the
LEM contraints and can be summarized as: the power bal-
ancing constraint specifies that the quantity of created power
must match the amount of consumed power at any given time
t; limits on dispatchable generation and power generation from
external suppliers in each time t; DR constraint gievn by
the maximum amount reduction of load l in period t; the
non-dispatchable generation constraint; constraints on energy
storage systems include the battery balance of each ESS,
the maximum charge and discharge limitations for each ESS,
the maximum battery capacity limit for each ESS, and the
minimum amount of stored energy that must be guaranteed
at the conclusion of the period t, and each ESS cannot
charge/discharge in the same period t; constraints related to
the EV battery that are similar to the ESS constraints such as
EV power balance, charge and discharge limits for each EV
over a given time t, battery capacity limits for each EV, and the
minimum energy stored necessary at the conclusion of instant
t equal to the ESSs, and each EV cannot charge/discharge at
the same period t; offer and bidding limits in the WS and
LEM markets, where values are bargained in the day-ahead
time horizon for each hour in the WS market (four 15 minutes
time slots).

B. Metaheuristics

Multiple algorithms were used to solve the intraday opti-
mization problem, including the DE algorithm and four new
evolutionary algorithms (EAs).

1) DE: For this problem, the DE algorithm with a mutation
strategy ”DE/rand/1/bin” was used. Only one difference vec-
tor (random solutions) is required for mutation, and binomial
crossover is used. The mutation operator of the used strategy
can be given by:

~mi,G = ~xr1,G + F (~xr2,G − ~xr3,G) (2)

where ~xr1,G, ~xr2,G, and ~xr3,G are three random individuals
from the population that differ from each other, and F is the
scaling factor.

2) HyDE-DF: The HyDE-DF algorithm [14] uses the mu-
tation strategy ”DE/target-to-perturbed best/1”, the same as
the normal hybrid-adaptive DE paired with a decay factor
δG. This factor is initially one and gradually decreases as
the number of iterations increases as given in δG = e(1− 1

a2 )

with a = (GEN −G)/GEN where GEN are the maximum
number of iterations, and G is the latest iteration being
run. The mutation operator of the HyDE-DF algorithm is as
follows:

~mi,G = ~xi,G + δG · [F 1
i (ε ·~xbest−~xi,G)] +F 2

i (~xr1,G−~xr2,G)
(3)

where ~xr1,G, ~xr2,G are different from ~xi,G, which is the
current target vector, and ~xbest is the best solution found.
F 1
i , and F 2

i are two scaling factors within the range [0,1]
independent for each individual i. ε = N (F 3

i , 1) represents
a random perturbation factor, with normal distribution with
mean value of F 3

i , and standard deviation 1. F 1
i , F 2

i , and
F 3
i are updated each generation following a self-adaptive

mechanism. δG is necessary to decrease the influence of the
term F 1

i (ε · ~xbest − ~xi,G) responsible for the fast convergence
to the best individual in the population.

3) DEEDA: The DEEDA algorithm [16] in an initial phase
uses the standard DE algorithm to obtain a partial solution.
After an Estimation of Distribution Algorithm (EDA), normal
and Cauchy distributions are used to find the global solution.
Combining these two different algorithms helps the optimum
solution to be guided on a correct global scale.

4) CUMDANCauchy++: CUMDANCauchy [15] is a cel-
lular EA that uses the Normal and Cauchy distributions to
develop a new solution. To handle the uncertainty associated
with DN resources, CUMDANCauchy++ is an upgrade to
the prior technique. This algorithm uses a mechanism of
comparison of sbest and globalbest, that is, if the fitness of
x individuals is less than the fitness of this globalbest, this
parameter is then updated with the best value found in the
fitness of these individuals.

5) HC2RCEDUMDA: HC2RCEDUMDA is a brand new
algorithm that combines hill climbing and a ring cellular
encode-decode UMDA (RCEDUMDA) [17]. This algorithm
uses a cellular estimation of distribution algorithm similar
to CUMDANCauchy. The search space is reduced by trans-
forming continuous variables to categorical variables and then
inverting the process, basically using an encoding-decoding
method. This algorithm also estimates an univariate marginal
distribution p(x) =

∏l
i=1 p(xi) from the neighborhoods’ best

individuals. A scaling method is used for the p(xi) to generate
new individuals according to the probability of distribution
used.

C. Solution encoding

The initial solution generated by the metaheuristic is ini-
tialized randomly between the maximum and minimum limits
specified for each variable. Fig. 2 shows the vector represen-
tation of the developed solutions for the hour-ahead.



Fig. 2. Solution encoding.

Each solution per individual is represented by sequentially
repeating a group of variables for all periods of the optimiza-
tion hour, in this case, four periods (15 minutes each). All
variables in this group are of the continuous type except for
the binary variables associated with the state of the generators.
This state is 0 if it is not connected to the grid and 1 if it is.
For the intraday case, the dispatchable DG and WS market do
not vary, and their bounds are equal to the values obtained in
day-ahead.

In the group of variables belonging to the non-dispatchable
generation that includes PV and wind generation, it is essential
to note that this generation cannot be controlled; hence even
if it is included in the vector solution, the variables relating to
renewable generation will have a specific, and thus unchange-
able, the value depending on the scenario.

III. CASE STUDY

The proposed methodology previously shown is applied to
the case study that this section describes.

Five different aggregators are proposed in this case study.
Each aggregator has to manage various types of resources,
resources that are integrated into a 13-bus distribution network
(DN) inserted in a smart city with varying types of loads, high
penetration of EVs, and renewables like Fig. 3 shows [20]. The
considered aggregators are divided as follows:
• Aggregator 1: Service loads (hospital, fire station, and

shopping mall);
• Aggregator 2: Residential loads;
• Aggregator 3: Office loads;
• Aggregator 4: Renewable production;
• Aggregator 5: EVs.
Aggregator 1 consists of 3 loads, aggregator 2 has 15

loads of residential buildings, and aggregator 3 has seven
office buildings, making 25 types of loads present in the
network. In terms of renewable production, aggregator 4 has
two wind generation farms and 13 photovoltaic parks. For the
last aggregator, a total of 2000 EVs are considered for the
simulations performed. The data for each EV was obtained
from an EV trip simulator tool present in [21] used to simulate
the uncertainty associated with EV trips.

For the uncertainty, 5000 scenarios were produced, which
were then reduced to 150 scenarios for day-ahead scheduling

Fig. 3. Smart city schematic [20].

using a technique present in [22]. In the intraday, 150 new
scenarios were produced from the scenario with the highest
probability in the day-ahead. A normal distribution function
was applied to the uncertain resources from this scenario
with a 5% variation to inject into the provided hour-ahead
model using these generated scenarios. This circumstance is
not ideal, and it may cause a minor change in the obtained
results when using the same technique used for the day-ahead.
The overall demand and renewable generation forecasted by
the proposed method for four aggregators is shown in Fig. 4.
From aggregator 1 to 3, the range for the total demand is given,
and full renewable power is demonstrated in aggregator 4.

Fig. 4. Total demand and renewable generation forecast for each aggregator
in the intraday time horizon.

Fig. 5 shows the prices used in intraday marketplaces for
these aggregators’ resource optimization. Compared to the
LEM, which changes the prices in the range depicted in
Fig. 5, the external supplier and wholesale (WS) market prices
are fixed and do not alter. Because the LEM is often more
expensive than the WS market due to its proximity to the retail
market, the price gap between the two markets was calculated
at 25% with a 5% variation like previously mentioned. The
considered percentage was small because it turned out that
the higher this percentage is, the more the algorithm will try



to sell the excess in the market to earn a higher profit which
often caused a decrease in costs from day-ahead to intraday,
which is not supposed to happen. The LEM is regarded to
have 20% the capacity of the WS market.

Fig. 5. External supplier, WS market, and LEM prices for the intraday time
horizon.

Each aggregator has to manage their respective re-
sources, power bought from the external supplier, and energy
bought/sold in the marketplaces. Two energy storage systems
(ESSs) were also considered and are attributed to all aggrega-
tors. Also are integrated into the DN four capacitors but are
not considered in this problem, so they are set to zero. Table I
presents the data of the energy resources associated with each
aggregator, where a distinction is made from the aggregators,
prices of the resources, capacity, forecasted values from the
renewables and loads, and the number of units corresponding
to each resource.

TABLE I
ENERGY RESOURCES INFORMATION OF EACH AGGREGATOR.

Energy resources Aggregators
Prices Capacity Forecast

Units(m.u./MWh) (MW) (MW)
min–max min–max min-max

Capacitors 1-5 0–0 0.00–0.00 4
Photovoltaic 4 150–150 0.00–0.94 13
Wind 4 130–130 0.60–2.80 2
External Supplier 1-5 50–90 0.00–30.00 1

Storage Charge 1-5 110–110 0.00–1.25 2
Discharge 90–90 0.00–1.25

Electric Vehicles Charge 5 0–0 0.01–0.13 2000
Discharge 90–90 0.01–0.09

Demand Response
Reduce program 1 1 100–100 0.01–1.21 3
Reduce program 2 2 100–100 0.01–0.08 15
Reduce program 3 3 100–100 0.28–0.1.11 7

Load type 1 1 0–0 0.01–2.23 3
Load type 2 2 0-0 0.01-0.13 15
Load type 3 3 0-0 0.31-1.88 7
Market buy and sell 1-5 39.66–56.08 0.00–10.00 1
Local Market buy and sell 1-5 42.97–82.61 0.00–2.50 1

Multiple metaheuristics were used to solve the proposed
energy management model, and Table II shows the parameters
chosen for each algorithm. For all metaheuristics, the popula-
tion size (NP) and the maximum number of iterations was 20,
and 250 respectively, taking into consideration the number of
objective function evaluations [19]. The crossover probability
(Cr) and scaling factor (F) are the following parameters, which
are necessary for the first three displayed algorithms. The
subpopulation size is given by p, and the number of selected

individuals is provided by s. α represents the additional oc-
currence used in the scaling method of the HC2RCEDUMDA
algorithm. The number of elitist individuals is represented by l.
The neighborhood ratio is given by r. Finally, k is the number
of codes used in the HC2RCEDUMDA metaheuristic.

TABLE II
PARAMETERS OF THE EAS.

Parameter DE HyDE-DF DEEDA CUMDANCauchy++ HC2RCEDUMDA
NP 20 20 20 20 20

Max iterations 250 250 250 250 250
Cr 0.50 0.50 0.50 - -
F 0.30 0.30 0.30 - -
p - - 16 16 -
s - - 2 2 3
α - - - - 0.009
l - - - - 3
r - - - - 3
k - - - - 7

The experiments were run on a machine with an AMD
Ryzen 5 3600 processor with 3.6 GHz and 16GB of RAM
running Windows 10 and MATLAB 2018a.

IV. RESULTS

The findings of applying the proposed methodology to the
case study reported in Section III are shown in this section.

A total of 456 variables compose aggregator 1 in the
day-ahead problem compared to 80 variables in the hour-
ahead model. For aggregator 2, the number of variables was
744 in the day-ahead and 128 in the intraday time horizon.
Aggregators 3 and 4 presented a total of 552 and 1,128
variables, respectively, in the day-ahead context. A total of
96 variables and 192 variables are in the intraday problem
for aggregators 3 and 4. The aggregator 5 presented 48,384
variables in the day-ahead problem and 8,068 in the hour-
ahead problem.

Table III shows the best-obtained results using CI for the
day-ahead problem for one trial showing the time it took the
metaheuristic to run the simulation. In [19] with CUMDAN
obtained the best scheduling results for the day-ahead but
for this case with different external supplier costs, and EV
charging/discharging costs HyDE-DF presented better results
in comparison to this algorithm as shown in Table III. It
shows each proposed aggregator’s cost when scheduling their
resources for the next 24 hours.

The overall objective function results from the 20 trials
for the 150 scenarios are shown in Table IV. Due to the
scale of the numbers acquired in the various aggregators
for the objective function, the table provides the minimum
and maximum cost values, the average costs, and standard
deviation in monetary units and percentages, and the increased
percentage when comparing the intraday results with the day-
ahead.

The average costs presented in Table IV are calculated by
adding up the average prices of the optimization done for each
hour for a total of 24 hours. Regarding the increase percentage
it can be seen that for the first, thrid and fourth aggregators, the
latest algorithm presents the best variation results despite being
the slowest of all the metaheuristics tested. For aggregator 2,



the DE is the one that gives the slightest variation compared
to the day-ahead results. It can be concluded that for the
last aggregator, the tested EAs did not obtain good results
with HyDE-DF having the less variation value with 19.78%
which is still not ideal. DE and HC2RCEDUMDA present a
significant amount of penalties in the solution; that is, they
could not find a solution that satisfied the power balance
constraint.

When it comes to the optimization time for the first four ag-
gregators the metaheuristics present similar values but for the
last aggregator which is the aggregator with the most variables
CUMDANCauchy is the fastest. From the standard deviation
results DEEDA and CUMDAN present great percentages with
values varying slightly between runs.

TABLE III
DAY-AHEAD OBJECTIVE FUNCTION RESULTS AND OPTIMIZATION TIME.

Aggregators Costs (m.u.) Penalties (m.u.) Time (s)
1 1508.84 0.00 13.31
2 985.62 0.00 14.08
3 7793.99 0.00 15.12
4 8641.38 0.00 13.78
5 906.80 0.00 397.09

Fig. 6 shows the total costs of all aggregators obtained by
each metaheuristic for the hour-ahead problem. For compar-
ison between all intraday optimizations, a constant value of
19,836.63 m.u. is also shown for the overall price of the
day ahead optimization. The HyDE-DF algorithm produced
the slightest variation compared to the day-ahead, with a total
value of 19,053.97 m.u., a minor drop of 782.66 m.u (3.95%).
The overall costs of the DEEDA and CUMDANCauchy++
algorithms were similar, with DEEDA’s total cost of 18,962.99
m.u. and CUMDANCauchy’s total cost of 18,963.34 m.u. In
this case, DEEDA showed the lowest prices in the entire
system, presenting the best value in terms of operational costs
with a 4.40% reduction. The worst overall expenses were
HC2RCEDUMDA and DE, with the former having a 17.89%
increase over the previous day and the latter having a total
value of 21,865.94 m.u (10.23%). DE and HC2RCEDUMDA
gave these prices due to the last aggregator when the expenses
escalated enormously due to the imposed penalties.

A small example of the convergence of each algorithm for a
population size of 20 is shown in Fig. 7. The first aggregator
is tested in the 24th hour of the optimization. CUMDAN-
Cauchy++ offers the best conversion compared to the other
algorithms, but it is possible to observe that the solution in both
CUMDAN and HC2RCEDUMDA can still be improved. This
circumstance could indicate that the parameters employed;
notably, the number of iterations and the objective function
evaluation limit, were not the most optimal. In contrast, the
fitness of DE, HyDE-DF, and DEEDA seem to stabilize. This
last algorithm shows an increase in fitness around generation
50. This peak shows the transaction in the algorithm from the
DE to the EDA.

A Wilcoxon test was also applied to the intraday results
considering a sample of 20 trials with 24 hours each. The base

Fig. 6. A comparison of the day-ahead total costs with the overall intraday
costs generated by each EA.

Fig. 7. Convergence of the considered EAs using NP= 20 for the last hour
of the intraday problem of the first aggregator.

algorithm for comparison with the others was the CUMDAN-
Cauchy++ algorithm represented in Table V. The Wilcoxon
test was applied to each set of results of the five aggregators.
Table V shows the signal ranking of the statistical test. For all
aggregators, it can be determined that CUMDANCauchy++
outperforms HC2RCEDUMDA and HyDE-DF. CUMDAN-
Cauchy also outperforms DE in all aggregators, with the
exception of the fourth, where they have identical results.
DEEDA is only outperformed in the first aggregator; in the
remaining aggregators, both algorithms perform similarly.

V. CONCLUSIONS

This work proposes an optimal intraday energy resource
scheduling for multiple aggregators considering the high pen-
etration of distributed energy resources in a DN. The intraday
problem considers an hour-ahead model with four 15 minute
periods and transactions on a LEM to meet the energy balance
equation.

The optimization problem was solved using a variety of
metaheuristics to schedule their available resources. Each of
the five aggregators must consider the constraints in the day-
ahead management and the previous optimization hour, and



TABLE IV
OVERALL INTRADAY OBJECTIVE FUNCTION RESULTS AND OPTIMIZATION TIME BY THE TESTED METAHEURISTICS.

Metaheuristic Aggregators Avg. costs (m.u.) Std. costs (m.u.) Min. costs (m.u.) Max. costs (m.u.) Avg. penalties (m.u.) Avg. Time (s) Increase (%)

DE

1 1481.98 4.98 (0.34%) 1476.32 1495.86 0.00 2.05 -1.78
2 978.19 9.25 (0.95%) 963.07 997.97 0.00 2.46 -0.75
3 7473.07 51.52 (0.69%) 7387.53 7591.33 0.00 1.98 -4.12
4 8525.54 0.94 (0.01%) 8525.30 8529.41 0.00 2.16 -1.34
5 3478.17 49.20 (1.41%) 3386.13 3576.12 100.00 61.44 283.57

HyDE-DF

1 1479.70 3.33 (0.23%) 1474.88 1487.31 0.00 2.05 -1.93
2 945.11 4.08 (0.43%) 938.80 953.85 0.00 2.03 -4.11
3 7371.48 23.60 (0.32%) 7336.56 7423.03 0.17 2.03 -5.42
4 8527.98 6.27 (0.07%) 8526.27 8542.75 0.00 2.20 -1.31
5 727.42 4.74 (0.65%) 720.35 737.78 0.00 64.73 -19.78

DEEDA

1 1472.92 0.00 (0.00%) 1472.92 1472.93 0.00 1.97 -2.38
2 934.22 0.00 (0.00%) 934.22 934.23 0.00 2.20 -5.22
3 7317.24 0.18 (0.00%) 7316.98 7317.59 0.67 2.20 -6.12
4 8525.32 0.09 (0.00%) 8525.30 8525.70 0.00 2.36 -1.34
5 713.26 0.00 (0.00%) 713.26 713.26 0.00 46.01 -21.34

CUMDANCauchy++

1 1472.92 0.01 (0.00%) 1472.92 1472.95 0.00 2.27 -2.38
2 934.22 0.00 (0.00%) 934.22 934.22 0.00 2.07 -5.22
3 7317.35 0.27 (0.00%) 7317.13 7318.29 0.67 2.12 -6.12
4 8525.31 0.06 (0.00%) 8525.30 8525.57 0.00 2.17 -1.34
5 713.26 0.00 (0.00%) 713.26 713.27 0.00 41.69 -21.34

HC2RCEDUMDA

1 1516.88 25.30 (1.67%) 1479.81 1575.26 0.00 24.07 0.53
2 1052.76 18.49 (1.76%) 1019.28 1088.99 0.00 22.89 6.81
3 7984.65 157.49 (1.97%) 7713.67 8320.24 0.50 23.78 2.45
4 8532.67 14.32 (0.17%) 8525.99 8579.71 0.00 22.19 -1.26
5 4349.15 66.70 (1.53%) 4234.71 4469.32 235.00 89.39 379.61

TABLE V
RESULTS FROM THE WILCOXON SIGNED-RANK TEST.

DE HyDE-DF DEEDA HC2RCEDUMDA
Agg 1

CUMDAN

’+’ ’+’ ’+’ ’+’
Agg 2 ’+’ ’+’ ’=’ ’+’
Agg 3 ’+’ ’+’ ’=’ ’+’
Agg 4 ’=’ ’+’ ’=’ ’+’
Agg 5 ’+’ ’+’ ’=’ ’+’

the uncertainty associated with the intraday time horizon. The
critical aspect is that there is no significant variation from
what has already been scheduled in day-ahead into whats is
sequentially scheduled in the intraday. Still, there is usually a
slight increase/decrease in costs. HC2RCEDUMDA presented
the best solution for the first aggregator (0.53% increase) and
the third and fourth aggregators, with DE having the slightest
variation when it comes to the second aggregator with only a
0.75% decrease. It can be concluded that, especially for the
EV aggregator (aggregator 5), the adopted mechanism is weak
because there are huge variations up to almost 400% when the
comparison is made with the day-ahead. In some cases, there
are associated penalties of 235.00 m.u. for HC2RCEDUMDA
and 100 m.u. DE. A deterministic method could be a better
alternative mainly due to the low number of variables present
in the hour-ahead model.

CUMDANCauchy++ has been compared to the other algo-
rithms through a statistical test, i.e., DE, HyDE-DF, DEEDA,
HC2RCEDUMDA. We can conclude through this paper that
the CUMDANCauchy++ algorithm is very competitive in
this problem, having a better statistical performance than all
other algorithms for all aggregators, except DEEDA, which
has similar performance. This algorithm and the DEEDA
algorithm present a similar performance on most simulations
due to the learning processes used to generate a new solution
by estimating Normal and Cauchy distributions.
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Mayedo, A. Moya, and O. M. Santiago, “Applying some EDAs and
hybrid variants to the ERM problem under uncertainty,” in Proceedings
of the 2020 Genetic and Evolutionary Computation Conference Compan-
ion, Cancún Mexico, Jul. 2020, pp. 1–2. doi: 10.1145/3377929.3398393.
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