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Abstract—As the use of renewable energy sources grows, the
energy aggregator company plays an increasingly significant role
in ensuring extremely flexible supply and demand, as requested
by the smart grid architecture. This study presents a model for
the problem of intraday energy resource scheduling (hour-ahead).
The model is solved using the CPLEX solver and is developed as
mixed integer linear programming. A distribution network with
180 buses located in Portugal considering high distributed energy
resources penetration is used to demonstrate the application of
the proposed model. The findings indicate how forecast errors
and contractual restrictions with energy storage systems and
electric car charging stations affect hour-ahead scheduling costs.

Index Terms—aggregator, distribution network, electric vehi-
cles, energy resources management, energy storage systems, hour-
ahead, smart grid

I. INTRODUCTION

Recent investment in distribution-level renewable gener-
ation has been motivating decentralization, decarbonization
and emergence new business models [1], [2]. Sophisticated
technology, namely smart grid communications and smart
meter data, needs to be in place to fully realize the potential
of distributed energy resources [3]. End-users will thus be
encouraged to play a significant role in the energy community
and facilitate the transition to a sustainable energy system [1],
[4].

In this paper we deal with energy resources management
(ERM). This problem is considered to be one of the most
challenging optimization in energy systems, since it is con-
sidered to be a problem of high dimensionality and with high
number of restrictions [5]–[7]. In this way, platforms have been
developed to study this crucial problem in intelligent network
operations [8], [9].

To address some of the complexity in optimization of smart
grids, computational intelligence (CI) [10] has emerged. CI
studies adaptive mechanisms to determine intelligent conduct
in complex systems [11]. It consists of numerous branches,
such as neural networks [12], [13], evolutionary computing
[14], [15], fuzzy systems [16], [17], among others. In fact,
in this context CI aims to optimize the variables that con-
trol the resources under the new paradigm of smart grids
[3]. On the other hand, evolutionary computing (EC) has
been widely applied in the energy field [18], because of the
problem’s complexity, where it was suggested because of

its great efficiency and scalability. It can be expressed that
evolutionary computing is inspired by the different evolu-
tionary mechanisms of the nature, where several evolutionary
algorithms have been used in the solution of some optimization
problems, for example, electricity markets [19], [20], demand
prediction [21], [22], intervention planning [23], [24], energy
resources management [5]–[7]. Despite the wide use of EC
and CI techniques applied to address the challenging day-
ahead problem, due to high number of variables such as
distributed energy resources and electric vehicles, we adopt
a mathematical deterministic approach. In fact, in this paper
we attempt to model the energy resource management problem
in intraday operation based on previous works in day-ahead
modeling [9], [25]. The intraday problem is modeled with
15-minute resolution in a hour-ahead horizon configuration
following the day-ahead results. We adopt a deterministic
approach since first we attempt to obtain a reference solution
for this problem, before approaching CI and EC methods.
Moreover, the problem considered is modelled as MILP and
the dimensionality is substantially less than the day-ahead
ERM problem. Hence, given that efficient solvers for MILP
are available in the market we take this approach. Uncertainty
in forecasts is not considered but can be a opportunity for
justifying the CI/EC approaches.

The article is organized as follows: after the introduction
in Section I, in Section II, the proposed methodology is
described, including the method diagram and the hour-ahead
formulation. The case study for a 180-bus distribution network
is provided in Section III; while the respective results are
presented and discussed in IV; and finally, the conclusions
of this research are fully drawn in Section V.

II. PROPOSED METHODOLOGY

A full description of the proposed methodology is offered
in this section. The established model for hour-ahead energy
resource management (H-ERM) is described in Subsection
II-A, while Subsection II-B presents the used mathematical
model.

A. Hour-Ahead Model

Fig. 1provides a graphical representation of energy resource
management scheduling in an hour-head perspective. The



H-ERM model requires that an aggregator can control and
operate different DERs in the network or in a specific area of
the grid. The model also needs a database with all the DERs
characteristics and the necessary forecasts for the next hours
with a 15 minutes time slots resolution, this is, for the next
four 15 minutes slots. The results from the day-ahead and the
last time slot of the previous hour are also needed. Thus, as
a result from the model, we have a decision in hour h for the
energy resource scheduling of the hour h+1 with a 15 minutes
time slots resolution.

When the aggregator does not need to consider network
constraints in energy resource management scheduling because
the distribution system operator (DSO) is responsible for
power network analyses and communicates the feasible set-
point to the aggregator, the problem can be formulated as a
mixed-integer linear programming (MILP) [26].

B. Mathematical Problem Formulation

This subsection presents the optimization model used in this
research work. The optimization model presents the following
outputs variables: 1) Active power supplied by the external
supplier 1; 2) Active power supplied by the dispatchable dis-
tributed generators; 3) Energy bought and sale to the wholesale
energy market; 4) Demand response power value; 5) Active
Power not supplied; 6) Active generation curtailment power;
7) Active power charge and discharge of the energy storage
systems; 8) Active power charge and discharge of the electric
vehicle charging stations (CS).

The objective function OC (1) is minimized over the
scheduling horizon T, and represents the estimated hour-
ahead operation costs in monetary units (m.u.). The day’s
four 15-minute segments (i.e. one hour) are covered by the
scheduling time horizon.

where:
Ωd

DG is the subset of dispatchable DG units; Ωnd
DG is the

subset of non-dispatchable DG units; i is the DG units; s
is the external suppliers index; pSupplier(s,t) is the active
power scheduled for external supplier s in period t (MW);
CSupplier(s,t) is the costs associated to the energy supplier s in
period t (m.u./MWh); Ns is the number of external suppliers;
pDG(i,t) is the forecasted active power of non-dispatchable
DG unit i in period t (MW); CDG(i,t) is the generation cost of
DG unit i in period t (m.u./MWh); pLoadFlex(l,t) is the active
power reduction of load l in period t (MW); CLoadFlex(l,t) is
the demand flexibility cost of load l in period t (m.u./MWh);
Nl is the number of loads;

1External suppliers are producers connected outside the distribution net-
work.

Minimize OC =

T∑
t=1



∑
i∈Ωd

DG

pDG(i,t) × CDG(i,t)+

Ns∑
s=1

pSupplier(s,t) × CSupplier(s,t)+∑
i∈Ωnd

DG

pDG(i,t) × CDG(i,t)+

Nl∑
l=1

(
pLoadFlexDown(l,t) + pLoadFlexUp(l,t)

)
×

CLoadFlex(l,t)+
Ne∑
e=1

pDischarge(e,t) × CDischarge(e,t)+

Nv∑
v=1

EVDischarge(v,t) × EV CDischarge(v,t)+

Nl∑
l=1

pNSD(l,t) × CNSD(l,t)+

Ni∑
i=1

pGCP (i,t) × CGCP (i,t)+

Nm∑
m=1

(
pBuy(m,t) − pSell(m,t)

)
·MP(m,t)



×∆t

(1)
pDischarge(e,t) is the active power discharge of energy

storage system (ESS) e in period t (MW); CDischarge(e,t)
is the discharging cost of ESS e in period t (m.u./MWh);
Ne is the number of ESS units; EVDischarge(v,t) is the EV
charging station v active discharging power in period t (MW);
EV CDischarge(v,t) is the EV charging station v discharging
cost in period t (m.u./MWh); Nv is the number of EV charging
stations; pNSD(l,t) is the active power of non-supplied demand
of load l in period t (MW); CNSD(l,t) is the non-supplied
demand cost of load l in period t (m.u./MWh); pGCP (i,t) is
the generation curtailment power of DG unit i in period t
(MW); CGCP (i,t) is the DG unit i curtailment cost in period t
(m.u./MWh); Ni is the number of generation units; pBuy(m,t)

is the active power bought in market m in period t (MW);
pSell(m,t) is the active power sold in market m in period t
(MW); MP(m,t) is the market energy price (m.u./MWh); Nm

is the total number of markets.
The objective function (1) is subject to the power balance

(which defines that the amount of generated power should be
equal to the amount of consumed power at every instant t);
Limits on power generation and external supply in each period
t; Maximum battery balance for each ESS, maximum and min-
imum discharge limit for each ESS, ESS charge and discharge
cannot be simultaneous (two binary variables guarantee this
condition for each ESS), maximum and minimum charge limit
for each ESS, maximum battery capacity limit for each ESS,
and minimum stored energy to be guaranteed at the end of
period t; Electric Vehicles Charging Stations constraints (in
this research work the EVs are dealt as virtual batteries where
represent an EV parking lot or charging station located in a
given network point (bus).), namely, the charge and discharge
cannot happen at the same time (for each EV parking lot or
charging station v, two binary variables ensure this), the battery



Fig. 1: Proposed model diagram.

power balance for each charging station, the charging station
charge and discharge limit varies according to the number of
EVs in each bus (charging station) on a given period t, the
discharge limits for each charging station v, the charge limits
for each virtual battery v, the maximum capacity limit for each
charging station; Demand Power Flexibility (by using direct
load control, in which the consumer receives an incentive if
their load is reduced or incremented), namely, the maximum
amount that each load l can be reduced or incremented in
each period t; Market offers and bids for electricity are
based on values agreed in the day-ahead wholesale market
for each hour. In other words, each 15 minutes time slot of
an hour, assume the same value negotiated the day-ahead);
Non-Supplied Demand constraints (the non-supplied demand
power cannot be higher than the load forecasted demand l in
each period t); Power of generation curtailment (the generation
curtailment power of non-dispatchable DG units cannot be
higher than the forecasted amount of generation).

III. CASE STUDY

This study will consider the results from the day-ahead
obtained from work proposed by Soares, et al. [25]. Thus,
to demonstrate the application of the proposed methodology
it is used a real distribution network with 180 buses, 30kV
and one substation [25], [27] was used to demonstrate the
application of the proposed methodology. The original data
was modified to include a high penetration of distributed
generators units, corresponding to around 70% of the total
installed capacity power. From those, 70%, around 40% are
from PV, 35% from wind and 15% from biomass. Also, it
is considered an aggregator capable of managing 116 DG

units, the energy purchased from external supplier/market,
energy sold to the market, 7 energy storage systems units, 90
loads points aggregated by bus, and 5 EV charging stations
(parking lots) located in buses 3, 69, 96, 107 and 161.
Furthermore, the loads are with demand flexibility programs
(DFP), namely with a direct load control (DLC). The external
supplier, corresponding to the substation location, is located
in bus 1. The costs associated with DLC contracts are 0.02
m.u./kWh, where m.u. represents the monetary unit. The prices
for EV charging stations and ESSs are 0.18 m.u./kWh and 0.01
m.u./kWh, respectively. The data and prices of the considered
network’s energy resources are depicted in Table I. Since the
work [25] gives the results as a set of 150 scenarios (the work
use a stochastic model with two stages) a weighted average of
the results of those scenarios were used as input in the H-ERM
proposed model. However, the weighted average scenario is
not optimal and can lead to a small difference in the objective
function value of day-ahead compared with the one where the
150 scenarios are used.

Table II presents the considered case studies used to show
how the energy resources scheduling in the intra-day (hour-
ahead) time horizon can affect the aggregator costs. The ”X”,
represents that the corresponding option is considered in the
executed study. Six levels of disturbance in load demand
forecast (”Demand disturbance”) varying between -15% and
+15% and Six levels of disturbance in non-dispatchable RES
forecast (”Non-dispatchable RES disturbance”) also varying
between -15% and +15% are considered. These disturbances
are applied to the data (demand and Non-dispatchable RES
forecast) obtained in day-ahead to represent a possible vari-



TABLE I: Energy resources information of 180 bus distribu-
tion network.

Energy resources
Prices Capacity Forecast

Units(m.u./MWh) (MW) (MW)
min–max min–max min-max

Biomass 130–130 0.02–6.23 17
Photovoltaic 150–150 0.00–0.36 44
Wind 90–90 0.00–0.69 55
External Supplier 100–160 0.05–5.00 1

Energy storage systems Charge 0–0 0.00–1.20 7
Discharge 10–10 0.00–1.20

EV parking lots Charge 130–130 0.31–1.01 5
Discharge 180–180 0.31–1.00

Demand Response Reduce program 20–20 0.00–5.64 90
Load 160–160 0.56–14.09 90
Market buy and sell 45–84 0.00–2.00 1

ation of that data in the intra-day time horizon. Moreover,
for both cases are considered two additional constraints for
ESS and EV Charging Stations, meaning that the aggregator
cannot change more than 10% and 5% of the day-ahead
forecast data in the intra-day on those components. These
constraints represent, for instance, a contract between the
resources owners and the aggregator. The possibility of free
change in the intra-day horizon of the ESS and EV Charging
Stations is tested (ignoring the day-ahead forecast data for ESS
and EV Charging Stations).

TABLE II: Case studies identification.

Case Constrained Non-Constrained
Demand uncertainty
(%)

Non-dispatchable RES
uncertainty (%)

ESS=10% and
CS=5%

0, 5, 10, 15
-5, -10, -15

0, 5, 10, 15
-5, -10, -15

1 X X
2 X X
3 X X
4 X X

The day-ahead forecast for power demand and non-
dispatchable RES, namely wind power and PV, can be found
in Fig. 2. In what concerns the wholesale market electricity
price forecast and external supplier electricity price, the values
are presented in Fig. 3. Fig. 4 shows the capacity day-ahead
forecast for the 5 charging stations considered in the present
study.

Fig. 2: Power demand and non-dispatchable renewable energy
sources day-ahead forecast.

Fig. 3: External supplier price and wholesale market price
forecast.

Fig. 4: Day-ahead forecast for charging stations capacity.

IV. RESULTS AND DISCUSSION

The case study described in the previous section was used to
test the proposed methodology presented in II. This research
was carried out using a machine with a single Intel Xeon E5-
2620 v2 processor with 16 GB of RAM running Windows
10 Pro using the MATLAB R2016a and TOMLAB 2 8.1
64 bits with CPLEX 3 solver. The model comprised 193
constraints and 2821 variables, with 96 being integer variables,
for each hour period (four 15-minute time slots). For each
hour period, the average execution time is 0.041 seconds,
which is consistent with the time-frame for hour-ahead energy
resource management scheduling. The MATLAB memory pro-
filer tool was used to examine the computer system resource
impact analysis with a memory test. Peak memory reached a
maximum of 1420kB, which is entirely suitable with today’s
systems.

As the main analysis, it is made a comparison between
objective function, taking into account the identified studies
in Table II. Moreover, a comparison with the day-ahead
objective function result from [25] is also made. Ideally, when
there are no forecast disturbances (0% bars in Fig. 5), i.e.,
differences between the day-ahead and hour-ahead forecast
values, the H-ERM model results should be the same as the
ones obtained from the day-ahead model. However, as can be

2https://tomopt.com/tomlab/
3https://tomopt.com/tomlab/products/cplex/



seen in Fig. 5, exists a small difference of 0.47% (day-ahead
objective function value is 28.38 m.u.) which can be explained
by the data of the day-ahead model used in the H-ERM model
(as it said in section II it was used a weighted average of the
day-ahead results as input in the H-ERM, which is not optimal
and can lead to a small difference). Such differences also exist
in the other three cases (see Fig. 6, Fig. 7, and Fig. 8). As
shown in Fig. 5 and Fig. 6, the differences between H-ERM
and day-ahead objective function results tend, as expected, to
increase with the error forecast increasing. It is also verified
that the differences are higher with positive load demand
forecast errors, namely because the aggregator needs to apply
more demand response actions and use more energy stored in
the ESSs.

Fig. 5: Objective functions results (differences between the
day-ahead and hour-ahead forecast values) for Case 1.

Fig. 6: Objective functions results (differences between the
day-ahead and hour-ahead forecast values) for Case 2.

Fig. 7 and Fig. 8 present the objective function values
for day-ahead and hour-ahead as well as the differences
between them when it is considered disturbances in the non-
dispatchable renewable generation. It is possible to see through
these figures that there were no significant impacts on the hour-
ahead objective function values when compared with day-
ahead. This happens, because the ESSs and demand flexibility
mitigates the disturbances impacts.

Another important aspect to note is present in case 3, and 4
(Fig. 7 and Fig. 7) when occurs 5% positive of forecast error.

As can be seen in these cases, the difference between the day-
ahead and hour-ahead objective function values is lower than
the one where is not considered disturbance (0%). This means
that the solution of H-ERM considering 5% positive error for
non-dispatchable renewable generation is much closer to the
optimal solution obtained in the day-ahead with 150 scenarios.
This is a better scenario (in terms of the objective function)
compared to the weighted average scenario.

Fig. 7: Objective functions results (differences between the
day-ahead and hour-ahead forecast values) for Case 3.

Fig. 8: Objective functions results (differences between the
day-ahead and hour-ahead forecast values) for Case 4.

Fig. 9 show the differences between the constrained ESS
and EVs from day-ahead results and not constrained (see Table
II). The objective function differences are more evident when
the demand forecast error is verified, namely in the negative
forecast error. This means that the demand flexibility (increase
demand) are more used to compensate the power surplus of
the non-dispatchable renewable generation which are no stored
in the ESS (since the ESSs variation are limited to 10% of the
day-ahead value).

V. CONCLUSIONS

This work proposed a model to solve the challenging prob-
lem of aggregators’ large-scale energy resource scheduling
problem in a smart grid considering the hour-ahead time
horizon. With the obtained results, it was possible to verify
the forecast errors’ influence and the contractual constraints



Fig. 9: ESS and CS constrained to day-ahead values vs ESS
and CS not constrained to day-ahead values.

with ESSs and EV charging stations can cause in the hour-
ahead scheduling costs. Seeing the Case 1 and case 2, namely
with a forecast error of 15%, the results present strong differ-
ences between the day-ahead and hour-ahead horizon. These
differences achieve more than 15% (negative error forecast)
in case 1 and around 14% (positive error forecast) in case
2. The results suggest the need for adequate tools for energy
resource scheduling problems to deal with the uncertainties.
As future work, a two-stage stochastic optimization is being
implemented within a competitive environment by consider-
ing several aggregators and a model for distribution system
operator and aggregators coordination.
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