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Abstract. Demand response (DR) programs and local markets (LM)
are two suitable technologies to mitigate the high penetration of dis-
tributed energy resources (DER) that is vastly increasing even during
the current pandemic in the world. It is intended to improve operation
by incorporating such mechanisms in the energy resource management
problem while mitigating the present issues with Smart Grid (SG) tech-
nologies and optimization techniques. This paper presents an efficient
intraday energy resource management starting from the day-ahead time
horizon, which considers load uncertainty and implements both DR pro-
grams and LM trading to reduce the operating costs of three load ag-
gregator in an SG. A random perturbation was used to generate the
intraday scenarios from the day-ahead time horizon. A recent evolution-
ary algorithm HyDE-DF, is used to achieve optimization. Results show
that the aggregators can manage consumption and generation resources,
including DR and power balance compensation, through an implemented
LM.
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1 Introduction

Smart grid (SG) technologies, in contrast to today’s traditional electricity grid,
encourage the high integration of distributed energy resources (DER). These re-
sources bring uncertainty to the conventional grid, which can cause problems in
voltage levels and frequency stability. The SG can incorporate this uncertainty
by implementing energy resource management (ERM) mechanisms [1]. In this
context, computational intelligence (CI) algorithms emerge, leading to better op-
timization of the variables that control the resources involved in the SG context
[2]. Within CI, evolutionary computation (EC) stands out. It has been the target
of study within power systems due to its effectiveness in solving problems with
a high number of variables and constraints. As such several artificial intelligence
(AI) algorithms have been applied to the ERM problem such as Particle Swarm
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Optimization (PSO) and its variants [3], Differential Evolution (DE) [4], Genetic
Algorithm (GA) [5], Estimation of Distribution Algorithm (EDA) [6], and many
others. The literature presents multiple works on day-ahead DER scheduling [7,
8], with few that go further and do this scheduling for intraday time horizon.
The work in [9] presents an optimal hour-ahead energy resource scheduling in
a real university distribution network (DN). This scheduling is done by an ag-
gregator that tries to maximize its profits. In [10], an hour-ahead home energy
management system through peer-to-peer energy trading is proposed to reduce
day-ahead forecast uncertainty. To improve the proposed model, the authors im-
plement demand response (DR) mechanisms for residents to deal with household
appliances and energy storage systems (ESSs). An optimal ERM of three differ-
ent load aggregators is proposed in this paper. The aggregators schedule their
resources for the intraday time horizon, starting from the day ahead’s expected
scheduling. A state-of-the-art metaheuristic is used for this optimization prob-
lem, more precisely, an evolutionary algorithm (EA) named Hybrid-Adaptive
Differential Evolution with Decay Function (HyDE-DF) [11]. This algorithm was
considered for this work because it has proven excellent results compared to oth-
ers regarding energy management problems [12]. All the considered aggregators
are located in a smart city (SC) with a 13 bus DN with an extensive penetration
of electric vehicles (EVs) and renewables. The considered aggregators optimize
this scheduling of resources to minimize costs. A comparison between the ob-
jective function obtained in the two considered time horizons is made in the
result section. The scheduling plots are also presented for the hour (15 minute
time periods) where the results obtained were the best in the total 24 hours
for each aggregator. This model intends to simulate the future of distribution
networks where various aggregators and/or electricity suppliers will coexist in a
competitive environment. Each aggregator will seek to establish contracts with
apartments, residential buildings, industry, and others for their consumption or
production (prosumers), seeking to provide the best service to these customers
to maximize their profits.

2 Proposed Methodology

According to the mathematical formulation, optimization model considering
multiple metaheuristics, and uncertainty management, this section outlines the
methodology implemented in this paper.

2.1 Intraday Model

The diagram of resource scheduling planning in the hour-ahead sense is presented
in Fig. 1. The hour-ahead ERM model requires the technical data and the hour-
ahead forecast data. The forecasts are made with a 15-minute time slot resolution
for the following four-time slots. Also required are the results from the day-ahead.
In this case, the market and dispatchable generation solutions are the day-ahead
solutions that come in intraday and are fixed through the limits. Also required
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are solutions of the last time slot of the previous hour. For the problem at hand,
the initial state of the ESSs at time h for the first time slot is equal to the
solution obtained at h− 1 in the last time slot. Therefore, a decision is made in
period h for the energy resource scheduling of hour h+ 1 due to the model.

Fig. 1. Hour-ahead energy resource scheduling model.

2.2 Problem Formulaion

Within an intraday market, aggregators face an optimization problem that can
be described as:

minimize Z = OC − In (1)

Where OC represents the operational costs, and In is the income from market
trading. The aggregator’s operational costs and income can be presented as:

OC =
∑
iεΩd

DG
PDG(i,t) · CDG(i,t)

+
∑T
t=1

∑Nk

k=1 Pext(k,t) · Cext(k,t)
+
∑Ns

s=1

∑T
t=1(

∑Ne

e=1 PESS−(e,t,s) · CESS−(e,t)

+
∑NL

l=1 Pcurt(l,t,s) · Ccurt(l,t)
+
∑NL

l=1 Pimb−(l,t,s) · Cimb−(l,t)) ·∆t · π(s)

(2)

In =

Ns∑
s=1

T∑
t=1

(

Nm∑
m=1

(Pbuy(m,t) − Psell(m,t)) ·MP(m,t,s)) ·∆t · π(s) (3)

Where T is the number of periods (four 15-minute periods), ΩdDG is the
set of dispatchable generation, Nk the number of external suppliers, Ns that is
the total number of scenarios, Ne the number of ESSs, and Nm the number of
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markets. PDG is the active power generation (MW), Pext is the external power
supplied (MW), PESS− is the ESS power discharge (MW), Pcurt represents the
power reduction of load (MW) Pimb− is the non-supplied power, Pbuy represents
the power bought from the market (MW), and Psell is the power sold to the
market (MW). CDG is the cost of distributed generation (DG), Cext is the cost of
external supplier (m.u./MWh), CESS− the discharging cost of ESS (m.u./MWh),
Ccurt is the load curtailment cost (m.u./MWh), Cimb− is the non-supplied energy
cost (m.u./MWh), and MP is the electricity market price (m.u./MWh). Finally,
π(s) is the scenario probability for each scenario.

The proposed objective function is constrained by the following:

Power balance The problem’s active power balance constraint in each time t
is as follows: ∑

iεΩd
DG

PDG(i,t) +
∑Nk

k=1 Pext(k,t)

+
∑NL

l=1(Pimb−(l,t,s) + Pcurt(l,t,s)
−Pload(l,t,s)) +

∑Ne

e=1(PESS−(e,t,s) − PESS+(e,t,s))

−
∑Nm

m=1(Pbuy(m,t) − Psell(m,t)) = 0 ∀t, s

(4)

Dispatchable generation and external suppliers In each cycle t, the maxi-
mum and minimum limits for the external supplier and DG units can be written
as follows:

PDGmin(i,t) · xDG(i,t) ≤ PDG(i,t) ∀t, iεΩdDG (5)

PDG(i,t) ≤ PDGmax(i,t) · xDG(i,t) ∀t, iεΩdDG (6)

Pminlimit(k,t) · xsupplier(k,t) ≤ Pext(k,t) ∀t, k (7)

Pext(k,t) ≤ Pmaxlimit(k,t) · xsupplier(k,t) ∀t, k (8)

Where PDGmin(i,t) is the minimum power generation of controllable DG unit
i in period t (MW); PDGmax(i,t) is the maximum active power generation of con-
trollable DG unit i in period t (MW) Pminlimit(k,t) is the minimum active power
of external supplier k in period t (MW); Pmaxlimit(k,t) is the maximum active
power of external supplier k in period t (MW), and xDG(i,t), and xsupplier(k,t) are
the binary variables corresponding to the status of the DG units, and external
suppliers (connected/not connected).

Eenergy storage systems Each ESS’s battery balance constraint is defined
as follows:

Estored(e,t,s) = Estored(e,t−1,s) + ηc(e) · PESS+(e,t,s) ·∆t
− 1
ηd(e)

· PESS−(e,t,s) ·∆t ∀e, t, s (9)
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Where Estored(e,t,s) is the energy stored in ESS e in period t for scenario s
(MWh), ηc(e) is the charge efficiency of ESS e (%), ηd(e) is the discharge efficiency
of ESS e (%).

The following are the overall discharge and charge limits for each ESS:

PESS−(e,t,s) ≤ Pdischargelimit(e,t) ∀e, t (10)

PESS+(e,t,s) ≤ Pchargelimit(e,t) ∀e, t (11)

Where Pdischargelimit(e,t) is the maximum discharge rate of ESS e in period
t (MW), and Pchargelimit(e,t) is the maximum charge rate of ESS e in period t
(MW).

Every ESS has a maximum battery capacity limit as well as a minimum
energy stored requirement at the end of each cycle t, which can be written as:

Estored(e,t,s) ≤ EBatCap(e) ∀e, t, s (12)

Estored(e,t,s) ≥ EMinChr(e,t) ∀e, t, s (13)

Where EBatCap(e) is maximum of energy that each battery e can take (MWh),
and EMinChr(e,t) is the minimum energy stored required by e in period t (MWh).

Demand response The DR model incorporated in this problem was a direct
load control method given by:

Pcurt(l,t,s) ≤ PDRmaxlimit(l,t) ∀l, t, s (14)

Where PDRmaxlimit(l,t) is the maximum amount reduction of load l in period
t (MW).

Electricity market The following equations can be used to express market
offers (sell) and bidding (buy) in both wholesale (WS), and LM constraints:

Psell(m,t) ≤ Poffermax(m,t) · xoffer(m,t) ∀m, t (15)

Psell(m,t) ≥ Poffermin(m,t) · xoffer(m,t) ∀m, t (16)

Pbuy(m,t) ≥ Pbuymin(m,t) · xbuy(m,t) ∀m, t (17)

Pbuy(m,t) ≥ Pbuymin(m,t) · xbuy(m,t) ∀m, t (18)

The market cannot simultaneously sell and buy energy, so xoffer(m,t), and
xbuy(m,t) are two binary variables where:

xoffer(m,t) + xbuy(m,t) ≤ 1 ∀m, t (19)

Some decision variables are not considered in the intraday context because
their value was already decided in the day-ahead time horizon as explained in
Section 2.
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3 Case Study

The proposed hour-ahead intraday case study starts from the day-ahead. The
methodology presented is then applied to a medium voltage 13 bus DN located at
the University of Salamanca, Spain, more precisely at the BISISTE laboratory.

Different types of loads (in total 25) compose this DN, such as multiple resi-
dential buildings, offices, hospitals, fire stations, and shopping malls. A 30MVA
substation is also present in the DN located at bus 1. A total of three aggre-
gators were modeled for this case study, each with separate aggregate clients
such as: Aggregator 1: Hospital, fire station and shopping mall; Aggregator 2:
15 Residential buildings; Aggregator 3: 7 Office buildings.

Through GAMS/SCENRED 4 5000 scenarios were created for the uncer-
tainty and later reduced to 150 scenarios for the day-ahead scheduling. Using
these generated scenarios, the procedure described in Section 2, in the scenario
generation part, was applied to create 150 new intraday scenarios from the sce-
nario with the highest probability in the day-ahead to inject into the presented
hour-ahead model.

Fig. 2. Total demand forecasted for each aggregator in the intraday time horizon.

The DN data filtering according to the resources associated with each was
performed for the described aggregators, considering these new 150 scenarios.
Figure 2 shows the total demand predicted for each of the three aggregators
resulting from the observed methodology. It can be seen that aggregator 3 is
the one with the highest predicted load in comparison. Figure 3 it is possible to
observe the prices that are considered in the intraday markets for the resource
optimization of these aggregators. The external supplier and WS market prices
are fixed and do not vary compared to the LM that changes its prices in the
range shown in Figure 3. Since the LM is usually more expensive than the WS
market due to being closer to retail, a percentage of 50% was considered for the
price difference between these two markets. The capacity considered for the LM
is 50% that of the WS market.

4 https://www.gams.com/latest/docs/T SCENRED.html
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Fig. 3. External supplier, and market prices in the intraday time horizon.

It was also considered 2 ESSs with charging and discharging costs of 110
m.u./MWh and 90 m.u./MWh, respectively, with the maximum charging and
discharging limits of 0.25MW. The DR model, based on direct load control, has
a load reduction limit that corresponds to 30% of the load forecast and a fixed
associated cost of 100 m.u./MWh.

HyDE-DF was used for this optimization problem. The first parameter that
is set is population size (NP) with ten individuals. The preceding parameter is
the number of iterations with 500 iterations. The following parameters are the
probability of crossover (Cr) and the scaling factor (F), respectively set to 0.5
and 0.3. In MATLAB 2018a, all the simulations performed were implemented
on a device with a 4 core AMD Ryzen 5 3600 processor with 3.6GHz running
Windows 10 with 16 GB of RAM.

4 Results and Discussion

This section presents the obtained results obtained when applying the proposed
mathematical formulation to each aggregators case study shown in Section 3.

Table 1 presents the results obtained in terms of the average and standard
deviation objective function values for resource scheduling for each aggregator
considered, for both day-ahead and intraday, time horizons in the total of 5
runs simulated. Increase in costs from the day ahead to the intraday in the first
aggregator occurs and decreases for the remaining. Here the goal is to minimize
this increase or decrease. The aggregator that best achieved this goal through
the variation seen in the table was aggregator 2, with the lowest variation of
about -0.13%.

Figure 4 shows the resource scheduling for aggregator 1 when it got the best
value in the objective function. This value was about 10.81 m.u. in hour two of
the simulation. Through the figure, it is understood that both consumption and
generation values are shallow where the energy bought in the day-ahead market
is the majority of the total generation which is more than enough to satisfy
the demand. In this case, this aggregator’s surplus energy is sold in the LM, as
Figure 4b shows.
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Table 1. Day-ahead and intraday average objective function values obtained and de-
viation percentage.

Aggregators Day-ahead Intraday Increase (%)
Avg. Cost (m.u.) Std. Cost (m.u.) Avg. Cost (m.u.) Std. Cost (m.u.)

1 1492.34 21.90 1516.14 1.48 1.57
2 935.20 8.05 933.96 1.64 -0.13
3 7648.08 77.57 7461.27 6.40 -2.50

Fig. 4. Hour-ahead scheduling results for aggregator 1 regarding a) power generation;
b) power consumption.

Figure 5 presents the scheduling of resources for aggregator 2, following the
same reasoning used for aggregator 1. The best cost value obtained for this
aggregator was about 24.40 m.u. and was observed at hour four. It can be seen
in Figure 5a that the energy bought in the day-ahead market together with DR
was not enough to satisfy the load in periods 1 and 3, so this aggregator had to
purchase power in the LM. For periods 2, and 3 this aggregator has to sell the
energy excess in the LM (Figure 5b).

Fig. 5. Hour-ahead scheduling results for aggregator 2 regarding a) power generation;
b) power consumption.

Following the same analysis as the previous two aggregators, it can be said
that aggregator 3 presented a cost of 172.03 m.u. obtained in hour six of the
simulation. Analyzing Figure 6a, one can observe that the production is almost
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entirely from the external supplier origin closed in the day-ahead time-horizon,
with some DR and ESS discharge which creates an excess of energy in all periods.
Because the market sales and load are not enough to assure the power balance
equation, the aggregator needs to sell this surplus, so the constraints are met.

Fig. 6. Hour-ahead scheduling results for aggregator 3 regarding a) power generation;
b) power consumption.

5 Conclusions

This paper presented an optimal model for the intraday resource management in
a DN for three different load aggregators considering a direct load control model
for the DR and LM transactions to compensate the power balance.

Each aggregator can run the developed tool, starting from the solution ob-
tained in the day ahead. By running this tool, the aggregator is left with the
hour-by-hour scheduling results in 15-minute periods for the total 24 hours, tak-
ing into account the uncertainty associated with hour-ahead scheduling resources
and the decision process. The second and third aggregators showed a decrease
in costs in the intraday, which is not expected in this situation. Still, it should
be noted that a heuristic was used for this optimization, which does not guar-
antee an optimal solution, as well as LM prices, can influence these values. One
can conclude that the results presented are promising given that the variations
in scaling from day-ahead to intraday were minor, especially aggregator 2 with
almost 0 variation.
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