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Abstract—The underground scenarios are one of the most
challenging environments for accurate and precise 3D mapping
where hostile conditions like absence of Global Positioning
Systems, extreme lighting variations and geometrically smooth
surfaces may be expected. So far, the state-of-the-art methods
in underground modelling remain restricted to environments
in which pronounced geometric features are abundant. This
limitation is a consequence of the scan matching algorithms used
to solve the localization and registration problems.

This paper contributes to the expansion of the modelling
capabilities to structures characterized by uniform geometry and
smooth surfaces, as is the case of road and train tunnels. To
achieve that, we combine some state of the art techniques from
mobile robotics, and propose a method for 6DOF platform posi-
tioning in such scenarios, that is latter used for the environment
modelling.

A visual monocular Simultaneous Localization and Mapping
(MonoSLAM) approach based on the Extended Kalman Filter
(EKF), complemented by the introduction of inertial measure-
ments in the prediction step, allows our system to localize himself
over long distances, using exclusively sensors carried on board a
mobile platform. By feeding the Extended Kalman Filter with
inertial data we were able to overcome the major problem
related with MonoSLAM implementations, known as scale factor
ambiguity. Despite extreme lighting variations, reliable visual
features were extracted through the SIFT algorithm, and in-
serted directly in the EKF mechanism according to the Inverse
Depth Parametrization. Through the 1-Point RANSAC (Random
Sample Consensus) wrong frame-to-frame feature matches were
rejected.

The developed method was tested based on a dataset acquired
inside a road tunnel and the navigation results compared with a
ground truth obtained by post-processing a high grade Inertial
Navigation System and L1/L2 RTK-GPS outside the tunnel.
Results from the localization strategy and the modelling process
are presented.

I. INTRODUCTION

Over the last few years some successful underground mo-
bile modelling implementations were documented [1] [2] [3].
These approaches, designed specifically to operate in mines,
are characterized by one common aspect: they all use laser
range finder sensors as the main (and in some cases the
only) source of information. The model is built by placing
laser range finder scans in a virtual three-dimensional world –
process called registration. For this purpose, relative position
and orientation between scans have to be determined. In
previous approaches, this task is accomplished via a scan
matching algorithm [7], which restricts the systems to non-
uniform structures, since this technique requires that notorious

and well-differentiated geometric features stand out along
overlapping scans.

Our work extends the underground mobile modelling sys-
tems to galleries characterized by uniform and smooth sur-
faces. In this type of scenario the scan matching approaches are
condemned to failure, so the previous state-of-the-art systems
become ineffective. Without artificial landmarks and no access
to Global Positioning Systems, self-localization becomes an
hard problem. In inertial based localization the errors accu-
mulated over time cause a monotonic growth in localization
uncertainty. On the other hand, a vision based approach
may be affected by the lighting conditions, additionally, the
parametrization of landmarks far from the cameras raises extra
difficulties due to the depth uncertainty.

Similarly to [3], our solution uses 2D laser range finders to
gather a sequence of vertical scans along the gallery. Absolute
position and orientation of each scan is computed by an
independent localization process, that estimates the systems’
trajectory based on inertial measurements and a sequence of
images.

We employ an alternative localization solution to overcome
both the structural monotony and the lack of Global Position-
ing Systems, adopting the SLAM (Simultaneous Localization
and Mapping) concept [8] [9] to estimate the platforms local-
ization in 6DoF (Six Degrees of Freedom). Following the tra-
ditional approach, the probabilistic SLAM algorithm is based
on the EKF (Extended Kalman Filter). Since for landmarks
far from the cameras, stereoscopic systems do not provide
satisfactory depth measurements, a visual monocular algorithm
was implemented instead, ensuring tracking of landmarks at
any depth.

In order to identify visual landmarks to be used in the
SLAM algorithm, highly distinctive visual features, invariant
to scale, rotation and linear illumination variations, are ex-
tracted from the images using the SIFT algorithm [11]. To
each feature is assigned at least one descriptor, that embod-
ies the image properties in the features’ neighborhood. The
descriptors are used to establish the frame-to-frame feature
matches.

Our system combines another advanced state-of-the-art
methods such as Inverse Depth Parametrization [5], and the
1-Point RANSAC algorithm [6], for outlier rejection.

Through the Inverse Depth Parametrization, undelayed
initialization of landmarks within the EKF framework be-



Fig. 1: High level system architecture

comes possible. However another major problem of monocular
SLAM applications still needs to be solved: a single camera
moving through the scene does not provide metric measure-
ments, leading to scale ambiguity in the estimated map and
motion. As suggested in [4] inertial measurements, provided
by a low-cost IMU, feed the filter with metric data in order
to prevent the scale factor degeneration. This strategy keeps
the map and motion estimates constrained to the meaningful
metric system, in our case for distances over more than one
hundred meters.

To build the model, all vertical cross sections are placed
on a common reference frame according to the localization
estimates, resulting in a point cloud model, which is finally
converted into a triangular mesh through the Ball Pivoting
Algorithm [10], to reach a more explicit representation without
information losses. Texture captured by the cameras is also
added to the model to enhance the visual realism.

This document is organized as follows: Section II presents a
brief architecture description with emphasis on the localization
and modelling algorithms. Section III is devoted to the dataset
acquisition that takes places inside a road tunnel. We then
present and discuss our implementation results (Section IV)
and finally, Section V, provides a conclusion and sets some
future goals.

II. SYSTEM ARCHITECTURE

Our system is divided in three main blocks, executed by
the following order: data acquisition, localization and three-
dimensional modelling (see Fig. 1).

In the first step, a sensor platform mounted on board a car
is used to collect a wide range of synchronized measurements
inside the underground galleries, including images captured
by two CCD cameras, 2D scans from two laser range finders
and inertial measurements provided by a low cost inertial
measurement unit. The platform carries also a INS/GPS system
that gives accurate ground truth information, used to measure
the performance of our localization strategy.

The localization estimation and modelling tasks are pre-
formed offline based on this data, according to the methods
described next.

Fig. 2: Localization algorithm overview

A. Localization Algorithm

In underground galleries it is expected to find reliable visual
features that can be used as reference points to build the SLAM
map. The process starts with a feature pre-selection stage (see
Fig. 2) to fulfill the following objectives:

• Reduce the computational complexity of the SLAM
cycle, by performing feature extraction and frame-to-
frame matching in advance. The feature extraction is
accomplished by the SIFT algorithm [11], that produces
descriptors invariant to scale, orientation, and linear il-
lumination changes, used to compute the frame-to-frame
feature matches;

• Identify features with large number of observations and
use only those to build the map. By doing so, we pretend
to minimize the computational demands, ensuring that all
landmarks in the map persist over an acceptable frame
interval.

1) State Vector: The SLAM cycle is implemented accord-
ing to the EKF method. The state vector stores the localization
and map states. Since the system does not have prior infor-
mation about the environment, the initial state vector includes
only 9 states related to the platforms’ localization: position
xn, orientation Θn (expressed in terms of Euler angles) and
velocity vn, all defined in the local level reference frame.

x(k) = (xb)n(k) =

 xn(k)
Θn(k)
vn(k)

 (1)

As new landmarks are observed, the state vector is expanded
to accommodate the respective states (equation 2).

x(k) =


(xb)n(k)
L1(k)
L2(k)

...
Ln(k)

 (2)



Fig. 3: Representation of the Inverse Depth parameters

Initially, each landmark Li is coded in the SLAM map
using the Inverse Depth Parametrization [5], which requires
six parameters (Fig. 3): position of the cameras’ optical center
at the moment of first observation [xn

i y
n
i zn

i ], azimuth θi and
elevation φi angles of the projection ray that passes through
the optical center and the landmark, and finally the inverse of
the distance ρi between the optical center and the landmark
in the world (inverse depth).

Li = [xn
i , y

n
i , z

n
i , θi, φi, ρi]T (3)

The state uncertainty of this overparameterized represen-
tation can be modelled by Gaussian distributions, regardless
to the distance between the landmark and the camera, there-
fore this is an efficient and accurate solution for undelayed
initialization of new landmarks within the EKF. The EKF
computational complexity grows quadratically with respect to
the state vector dimension, so when the uncertainty in the
landmark’s location reveals a Gaussian behavior, indicated by
the linearity index introduced in [12], the conversion to the
standard Cartesian representation is accomplished applying the
formula below: Lxi

Lyi

Lzi

 =

 xn
i

yn
i

zn
i

+
1
ρi
m(θi, φi) (4)

being [Lxi, Lyi, Lzi] the Cartesian coordinates of the land-
mark and m(θi, φi) a unitary vector (see Fig. 3), calculated
from the azimuth and elevation angles:

m(θi, φi) =

 −cos(φi)sin(θi)
sin(φi)

cos(φi)cos(θi)

 (5)

2) Landmark Initialization: From the six parameters that
define an Inverse Depth landmark, only the azimuth and ele-
vation angles need to be computed, since the camera position

is already defined in the state vector, and the initial inverse
depth consists on a fixed value defined in advance. To compute
the angles, the feature is first projected from the image to the
camera reference frame, using the pinhole camera model. A
distortion model is applied next to compensate for the lens
distortion. From this operation results a three-dimensional non-
unitary vector hc with the same orientation as the projection
ray. The vector expressed in the navigation frame is given by:

hn = Cn
b C

b
ch

c (6)

where Cn
b and Cb

c are the rotations matrices from the body
frame to the navigation frame and from the camera frame to
the body frame, respectively (see Fig. 4).

From hn, the orientation angles can be finally computed as
follows:[

θi

φi

]
=
[

arctan(−hn
x , h

n
z )

arctan
(
hn

y ,
√

(hn
x)2 + (hn

z )2
) ] (7)

3) Landmark Prediction and Outliers Rejection: At the
update step of the Extended Kalman Filter the position of the
features observed in the image is compared to the expected
projection of the map landmarks in the image. The projection
of a landmark in the map to the image starts with the
transformation from the navigation frame to the camera frame:

hc = Cc
bC

b
n

ρi

 xn
i

yn
i

zn
i

− (xb)n − Cn
b (xc)b

+m(θi, φi)


(8)

The distortion model is then applied to hc, followed by the
pinhole model, to determine the projection in the image.

Finally, wrong feature matches are rejected through the 1-
Point RANSAC algorithm [6], that takes into account the
prior probabilistic distributions maintained by the EKF to
reduced the minimal sample size to only one feature match,
significantly reducing the computational complexity associated
with the standard RANSAC algorithm.

Fig. 4: Reference frames used in the localization and mod-
elling algorithms. Local level frame (N), body frame (B),
camera frame (C) and laser range finder frame (L).



4) Inertial Based State Prediction: To avoid the scale factor
ambiguity, the main limitation of monocular SLAM caused by
the absence of metric information, inertial measurements from
a low cost IMU are injected in the EKF prediction step. Since
the map landmarks are static, only the platform localization
states are subjected to the motion model, that consists on
the inertial mechanization in the local level reference frame,
respecting the following equations: xn(k)

Θn(k)
vn(k)

 =

 xn(k − 1) + vn(k)∆t
Θn(k − 1) + En

b w
b(k)∆t

vn(k − 1) +
(
Cn

b a
b(k) + gn

)
∆t

 (9)

where the IMU inputs are identified by ab and wb, respectively
the linear accelerations and angular velocities, measured in
the body reference frame. Cn

b is the direction cosine matrix
obtained from the platform orientation and En

b is a 3 by 3
matrix that converts the angular velocities into the Euler angles
rate of change:

En
b =

 1 sin(φ)tan(θ) cos(φ)tan(θ)
0 cos(φ) −sin(φ)
0 sin(φ)sec(θ) cos(φ)sec(θ)

 (10)

B. Modelling Algorithm

The three-dimensional model is constructed by placing all
gallery cross-sections, taken by the vertical laser range finder,
into a common coordinate system.

First, laser range finder scans, initially expressed in polar
coordinates, are converted to the Cartesian coordinate system
with origin matching the center of the laser range finder.
Next, specific position and orientation of each scan is derived
from the two closest localization points in time. Given the
calibration parameters that describe the spatial relationship
between sensors, and using the calculated scan localization,
all vertical cross-sections are transformed to the local level
frame according to the formula below:

Pn = Cn
b

(
Cb

c

(
Cc

l

(
P l − (xl)c

)
− (xc)b

)
− (xb)n

)
(11)

where Pn is the final point in the local level frame, whereas P l

refers to the original point in the sensor Cartesian system. The
rotation matrices Cb

c and Cc
l establish the rotation from camera

to body and laser to body reference frames, respectively (see
Fig. 4). Whereas (xc)b define the camera position in the
body frame and (xl)c the laser position with respect to the
camera frame. Finally Cn

b and (xb)n enclose the rigid body
transformation from the body to the local level reference
frame.

After applying formula (11) to all points of all scans, a point
cloud model is achieved (see Fig. 5). Usually, the interpretation
of point clouds is not easy due to lack of surfaces. To improve
the scene’s perception, original surfaces are reconstructed by
converting the point cloud into a triangular mesh, using the
Ball Pivoting Algorithm (BPA) [10]. The models realism is
also enhanced by introducing texture information captured by
the cameras.

Fig. 5: Point cloud model of a road tunnel.

To reduce the noise and produce smoother surfaces, a Lapla-
cian filter is applied to the whole triangular mesh, computing
a new position for each vertex according to local information
given by adjacent points.

Both the point cloud model and the triangular mesh are
coded in the VRML format to be displayed in a virtual reality
application.

III. DATASET ACQUISITION

Solving the localization and modelling problems demands
previous acquisition of a variety of measurements. To this
purpose different types of sensors where assembled in a rigid
platform (see Fig. 6), which in turn is mounted on top of a
car.

The vertical cross-sections are taken by the vertical laser
range finder (SICK LMS-200) at 75Hz with an angular res-
olution of 1◦. There are two pointing-forward cameras (JAI
CB-080GE), arranged in a stereoscopic configuration, with a
resolution of 1032(h)x778(v) and controlled by an external
trigger at a frame rate of 7 fps. Only the images from the left
camera are used in our SLAM system.

The low cost IMU (MicroStrain 3DM-GX1), placed above
the left camera, gives the linear acceleration and angular
velocity measurements used in the EKF prediction step, at
a frequency of 100Hz.

Fig. 6: Sensor platform used for data acquisition



Fig. 7: Preparation for the data acquisition experiment in the
tunnel area

Fig. 8: Image instability as consequence of the illumination
variations along the tunnel.

Ground truth with a 400 Hz rate is obtained by the INS/GPS
system (iMAR iNAV-FMS-E) placed in the center of the
platform. This system provides raw inertial data and GPS
measurements acquired outside the gallery. The GPS measure-
ments impose trajectory constraints at both ends of the tunnel.
The inertial and the GPS measurements are post-processed
by a commercial software (Waypoint Inertial Explorer) to
produce an accurate trajectory estimation. The post-processed
trajectory is only used as ground truth to evaluate the SLAM
performance.

All system reference clocks are synchronized with respect
to GPS clock, to assure a consistent time base.

The data acquisition experiment took place on a road tunnel
with approximately 140 meters located at Vilar de Luz – Porto
(see Fig. 7). All data were correctly logged. However the
images reflect the huge lighting variations between the interior
and exterior of the tunnel (see Fig. 8).

IV. RESULTS

An accurate localization estimate is crucial to obtain a
reliable model reproducing the real gallery characteristics.
Using the ground truth trajectory the error associated with the
estimated localization is determined. Furthermore, to realize
the benefits of fusing inertial and visual measurements, both
inertial navigation and MonoSLAM approaches were imple-
mented, and the results are compared with the ones achieved
by our approach.

The trajectories computed by these methods are outlined
in Fig. 9. Although the path calculated by MonoSLAM ap-
parently overlaps the ground truth, this approach shows the
worst results due to the scale ambiguity, accumulating an
error of 11.7 meters. As expected, inertial navigation drifts

Fig. 9: Three-dimensional representation of the trajectories
computed by the following methods: SLAM fusing inertial
and visual data (red line), inertial mechanization (black line),
monocular SLAM (light blue line) and ground truth (dark blue
line)

with time due to error integration, resulting in a total drift
of 8.7 meters. Our approach produces the smallest error,
showing the advantage of inertial and visual data fusion,
with a maximum value of 1.29 meters and an error of 0.95
meters at the final position, equivalent to 0.7% of the total
displacement. The insertion of inertial measurements in the
MonoSLAM mechanism successfully prevents the scale factor
ambiguity, whereas visual data contributes to the inertial drift
compensation, particularly to the orientation states correction.

It can be seen in Fig. 10 that, at some instants, the iner-
tial MonoSLAM position errors momentarily increase. This
behavior coincides with a considerable number of landmarks
being converted from the inverse depth to the Cartesian
representation. As documented in [12], the conversion induces
errors in landmark states, that are propagated to the localiza-
tion states. Nevertheless, in the moments after, is visible a
considerable error attenuation which indicates the ability of
the SLAM mechanism to filter this perturbation. The aleatory
oscillations exhibited in the inertial MonoSLAM position error

Fig. 10: Position errors produced by each localization strategy:
SLAM fusing inertial and visual data (blue line), inertial
mechanization (green line) and monocular SLAM (red line)



Fig. 11: Triangular mesh produced by the Ball Pivoting
Algorithm with texture retrieved from the images.

are characteristic of a random walk situation.
The point cloud model in Fig. 5 was built using the local-

ization estimates. As previously mentioned, the point cloud
models can become really hard to understand, depending on
the view point and scale. In order to reach a more explicit and
realistic representation, a triangular mesh is constructed from
the point cloud without data losses, through the Ball Pivoting
Algorithm. Additionally, texture acquired by the cameras is
added to the model (see Fig 11). In the final step the surfaces
are filtered by a Laplacian smoother (Fig. 12).

V. CONCLUSION

The development of a mobile modelling system for large
scale underground environments raises some difficult chal-
lenges, especially when dealing with monotonous geometry.
Based on inertial and visual data we have implemented a
localization method that does not depend on the geometric
properties of the environment, thus it is specifically suited to
operate inside smooth shape galleries like traffic tunnels.

Through localization results the benefit of fusing inertial
data within the MonoSLAM strategy became evident. In
the most aggressive configuration, with a pointing forward
camera, forward motion and large illumination variance, our
localization estimate reached an error of 0.95% of the total
displacement, which constitutes a quite impressive accom-
plishment given the low cost sensors used.

Despite the poor image quality, reliable visual features and
descriptors where extracted by the SIFT algorithm, exploiting

Fig. 12: Triangular mesh model after Laplacian filtering.

the algorithm’s immunity to rotation scale and linear illu-
mination variations, enabling robust frame-to-frame feature
matching.

In the future, localization accuracy could be improved by
adding other types of information, for instance, laser range
finder measurements to provide a better approximation of the
landmarks initial depth. A stereo vision system will also be
implemented to enable instant computation of close landmark
coordinates. The use of cameras with larger field of view
will also be beneficial, enabling the observation of landmarks
with high parallax and hence low depth uncertainty. In future
experiments the system will be tested inside longer tunnels.
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