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Abstract 

Background:  DNA methylation profiling of circulating cell-free DNA (cfDNA) has rapidly become a promising strat‑
egy for biomarker identification and development. The cell-type-specific nature of DNA methylation patterns and the 
direct relationship between cfDNA and apoptosis can potentially be used non-invasively to predict local alterations. In 
addition, direct detection of altered DNA methylation patterns performs well as a biomarker. In a previous study, we 
demonstrated marked DNA methylation alterations in brain tissue from patients with mesial temporal lobe epilepsy 
with hippocampal sclerosis (MTLE–HS).

Results:  We performed DNA methylation profiling in cfDNA isolated from the serum of MTLE patients and healthy 
controls using BeadChip arrays followed by systematic bioinformatic analysis including deconvolution analysis and 
integration with DNase accessibility data sets. Differential cfDNA methylation analysis showed an overrepresentation 
of gene ontology terms and transcription factors related to central nervous system function and regulation. Decon‑
volution analysis of the DNA methylation data sets ruled out the possibility that the observed differences were due 
to changes in the proportional contribution of cortical neurons in cfDNA. Moreover, we found no overrepresenta‑
tion of neuron- or glia-specific patterns in the described cfDNA methylation patterns. However, the MTLE–HS cfDNA 
methylation patterns featured a significant overrepresentation of the epileptic DNA methylation alterations previously 
observed in the hippocampus.

Conclusions:  Our results support the use of cfDNA methylation profiling as a rational approach to seeking non-inva‑
sive and reproducible epilepsy biomarkers.
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Background
Cell-free DNA (cfDNA) consists of small DNA frag-
ments released into the peripheral blood, predominantly 
as a result of apoptosis [1]. This is substantiated by the 
consistent correspondence between the length of human 
circulating cfDNA (167  bp) and the length of DNA 
wrapped around a nucleosome (~ 147  bp) plus linker 
regions, which suggest the action of endonucleases. 

Apoptotic DNA degradation is mediated by caspase-
activated DNase (CAD), which lacks exonuclease activity, 
and therefore can only cleave DNA in inter-nucleosomal 
regions [1, 2]. The evaluation of DNA methylation of 
cfDNA has been used to estimate tissue or cell of origin, 
and to non-invasively track ongoing cell death occurring 
anywhere in the body, based on the cell-specific nature of 
DNA methylation [3]. The use of this approach is spread-
ing in cancer studies [4–8]. Direct detection of altered 
DNA methylation patterns under pathological condi-
tions, regardless of cell or tissue contribution, has been 

*Correspondence:  eballestar@carrerasresearch.org

1 Epigenetics and Immune Disease Group, Josep Carreras Research Institute 
(IJC), 08916 Badalona, Barcelona, Spain
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13148-022-01416-2&domain=pdf


Page 2 of 12Martins‑Ferreira et al. Clinical Epigenetics          (2022) 14:188 

thoroughly examined to determine its value as a strategy 
for searching for biomarkers [9–14]

The identification and development of epilepsy and epi-
leptogenesis biomarkers are of inherent interest [15], but 
progress has been slower than in other settings, includ-
ing other neurodegenerative pathologies like Alzheimer’s 
disease (AD). This can be attributed to the low acces-
sibility to pathological tissue and the complexity and 
variability within the spectrum of epilepsy syndromes. 
Nevertheless, nucleic acid-based biomarkers, predomi-
nantly microRNAs, are promising [16].

Here, we obtained the DNA methylation profiles of 
serum cfDNA samples from mesial temporal lobe epi-
lepsy (MTLE) patients and compared them with those 
obtained from healthy controls. MTLE is commonly 
associated with severe neuronal cell death, termed hip-
pocampal sclerosis (HS) [17]. We hypothesized that the 
analysis of the cfDNA methylome in MTLE–HS patients 
could serve as a predictive, diagnostic or prognostic tool 
of neuronal cell death estimation. Furthermore, a direct 
comparison of the DNA methylation profile between 
patients and healthy controls could potentially fill the gap 
in peripheral biomarker development in epilepsy. Our 
results were not able to identify a significant increase in 
the proportion of cfDNA derived from brain. However, 
the cfDNA methylomes reflect a significant enrichment 
of epileptic patterns overlapping with those described in 
the hippocampus of MTLE patients.

Results
Estimation of cell of origin proportions in serum of MTLE 
and controls based on cfDNA methylation
First, we generated the DNA methylation profiles of 
serum cfDNA samples of MTLE and healthy controls 
(Table  1 and Additional file  4: Table  S1) using Bead-
Chip arrays. To estimate the cell of origin, we used 
the deconvolution algorithm designed for this pur-
pose by Moss et  al. [8], in relation to a 7890-CpG ref-
erence matrix, accounting for 25 tissue and cell types 

(Fig. 1A, Additional file 1: Figure S1 and Additional file 5: 
Table S2). In agreement with other studies, including the 
original source of the algorithm, hematopoietic cells were 
the main contributors. We also noted contributions from 
non-blood cell or tissue types, including bladder, breast, 
vascular endothelial cells and cortical neurons. Signifi-
cant differences in the cell-of-origin proportion between 
controls and MTLE patients were only observed for vas-
cular endothelial cells (p = 0.02, Wilcoxon test) (Addi-
tional file 1: Figure S1B). No significant differences in the 
cortical neuronal origin were observed between patients 
and controls (p = 0.54, Wilcoxon) (Fig.  1B). We noted a 
striking predominance of neutrophil contribution in both 
groups, with a mean percentage contribution of approxi-
mately 92% across all samples (Fig.  1A and Additional 
file 1: Figure S1); this is a higher value than that reported 
by Moss and colleagues. This might be due to the use of 
serum samples, instead of plasma samples, as they used. 
We can speculate that the predominance of neutrophil 
contribution is associated with increased coagulation-
related NETosis during sample collection.

Differentially methylated regions (DMRs) in cfDNA
We then determined DMRs, using the mCSEA algorithm, 
between MTLE and healthy control cfDNA. Three sets 
of DMRs, located in promoters, gene bodies and CpG 
islands (CGIs), were calculated. We identified 873 sig-
nificant promoter DMRs (744 hypomethylated and 129 
hypermethylated in MTLE relative to controls) (Fig.  2A 
and Additional file  6: Table  S3). Gene ontology (GO) 
analysis of the hypermethylated and hypomethylated 
DMR clusters demonstrated enrichment of CNS-related 
terms, including some associated with GABAergic path-
ways, synaptic transmission, microglia activation and 
neurotrophin receptor binding. A thorough inspection of 
the DMRs associated with these GO categories included 
biologically relevant promoters such as those associated 
with the GABRG3 and CDH9 genes (hypermethylated), 
and those at the GABRA1, GABRA2, GABRG2 and BDNF 
genes (hypomethylated) (Fig.  2B). GABAergic receptors 
represent key constituents of the CNS. γ-aminobutyric 
acid (GABA) is the main inhibitory neurotransmit-
ter in the cerebral cortex and disruption in the excita-
tory/inhibitory balance has long been associated with 
seizure development [18]. On this basis, genetic vari-
ability related to GABAergic subunits has shown poten-
tially causal epileptogenic effects [19]. BDNF encodes 
the brain-derived neurotrophic factor, one of the most 
prominent members of the neurotrophin family, which 
has a wide range of functions, encompassing regulation 
of neuronal development and synaptic plasticity [20]. The 
regulation of the BDNF gene in neurons has long been 
associated with DNA methylation-related mechanisms 

Table 1  Clinicodemographic characterization of the studied 
populations

MTLE Mesial temporal lobe epilepsy, FS Febrile seizures, SD Standard deviation

Controls MTLE p

n 11 12 –

% Female (n) 81.8 (9) 75.0 (9) 1.000

Age, years (mean ± SD) 38.9 ± 8.4 44.8 ± 11.4 0.2063

Age of onset, years (mean ± SD) – 14.0 ± 13.6 –

Epilepsy duration (mean ± SD) – 30.8 ± 14.5 –

% of pharmacoresistant (n) – 83.3 (10) –

% of FS history – 75.0 (9) –
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[21]. It has been described as being overexpressed in epi-
lepsy [22–26]. Moreover, the DNA methylation status of 
its promoter regions has been explored [27–29], reveal-
ing a marked tendency towards demethylation.

We also described 327 gene-body DMRs (65 hypo-
methylated and 262 hypermethylated in MTLE com-
pared with healthy controls) (Fig.  2C and Additional 
file  6: Table  S3). Multiple CNS-related GO categories 
were also found to be associated with obtained DMRs. 
These included terms associated with synaptic assembly 
and organization (hypermethylated) and febrile seizures 
(hypomethylated) (Fig. 2D).

We found 550 significant CGI-DMRs (334 hypometh-
ylated and 216 hypermethylated) (Fig. 2E and Additional 
file  6: Table  S3). GO analysis was consistent with that 

described above, with the enrichment of multiple mecha-
nisms of potential relevance in neuropathology (Fig. 2F).

We also examined the TF binding motif enrichment 
of the generated DMRs (Fig. 2G). To analyse the poten-
tial CNS-specific activity of the enriched TFs, we used 
data from the HPA repository. Many of the enriched TFs 
were consistently expressed across different brain regions 
(Additional file  2: Figure S2A). Moreover, we searched 
for associations of the genes coding the enriched TFs 
with HPA tissue clusters and HPA single-cell clusters. 
The most prominent results were the high confidence 
levels of ZNF528 and RARB in Cluster 73—Brain: Tran-
scription regulation (RNA HPA tissue expression cluster) 
(Additional file  2: Figure S2B) and Cluster 8—Neurons 
& Oligodendrocytes: Synaptic function (RNA HPA 

Fig. 1  Estimated percentage contribution of each cell and tissue type from the meth_atlas deconvolution tool for the 11 control (CTR) and 12 
MTLE serum samples analysed. A Pie chart of the mean estimated percentage contribution for each group. Percentage of cfDNA originating in 
cortical neurons is highlighted in bold and with an asterisk. B Boxplot representation of the individual estimated proportion of cfDNA originated by 
cortical neurons within each study group (p = 0.54, Wilcoxon test)

Fig. 2  Heatmap representation of DNA methylation of promoter (A), gene (C), and CGI-DMRs (E) in 12 MTLE patients compared with 11 controls. 
The DNA methylation value of each DMR corresponds to the mean beta value across all single-nucleotide positions encompassed by the DMR. Each 
individual is annotated with respect to age and sex. GO enrichment analysis of hypermethylated and hypomethylated DMRs across the promoter 
(B), gene (D), and CGI-DMR (F) types, showing the most biologically relevant terms. GO categories include biological process (BP), molecular 
function (MF), cellular component (CC) and human phenotype (HP). Enrichment is represented by p value and fold enrichment. For each GO term, 
the corresponding DMR hits were identified in a heatmap. NES and beta difference values (MTLE-CTR) for each gene were included to represent 
the degree of differential methylation. G HOMER binding motif enrichment of hypomethylated and hypermethylated DMRs. Colour depicts the 
transcription factor family; bubble size indicates the level of significance (p)

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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single-cell expression cluster) (Additional file  2: Figure 
S2C), respectively. This suggests possible brain specificity 
in the establishment of these DNA methylation patterns 
in cfDNA of MTLE patients.

cfDNA DMRs in MTLE show enrichment of brain epileptic 
DMRs but not of neuron‑ or glia‑specific methylation 
patterns
Previously, our group described significantly altered DNA 
methylation patterns in the hippocampus and neocortex 
of MTLE–HS patients compared with autopsied controls 
without neuropathology [30]. These include 2650 DMRs 
in the hippocampus (736 promoter, 1111 gene and 803 
CGI) (Additional file  3: Figure S3A) and 2950 DMRs in 
the adjacent neocortex (785 promoter, 1264 gene and 
901 CGI) (Additional file  3: Figure S3B). The overlap 
of cfDNA DMRs with hippocampal DMRs in MTLE 
patients was significant (Fig.  3A, B). The coincidence of 
the direction of methylation change (hypermethylated or 
hypomethylated in both cfDNA and hippocampus) rein-
forced the relevance of the overlap of DMRs. Regarding 
the comparison between cfDNA and neocortex DMRs, 
there was a marked enrichment between hypermethyl-
ated DMRs, but we found no significant overlap between 
hypomethylated DMRs (Fig. 3C, D).

We considered whether the dimensionality reduction 
achieved by genome-wide deconvolution algorithms 
was too broad and overlooked specific DNA methylation 
changes that could indicate differences in the cell-specific 
contribution. Cell of origin may be represented by a small 
subset of target regions. Therefore, we also attempted 
to determine whether the DMRs obtained in cfDNA of 
MTLE patients are enriched in neuron- or glia-specific 
DNA methylation patterns. We used public EPIC data 
consisting of neuron and glia samples and blood cells 
(monocytes, neutrophils, B cells, CD4+ T cells, CD8+ T 
cells and NK cells). We identified 5943 neuron-specific 
DMRs (1504 promoter, 2174 gene, 2265 CGI) (Additional 
file  3: Figure S3C) and 3523 glia-specific DMRs (1038 
promoter, 1444 gene, 1041 CGI) (Additional file 3: Figure 

S3D). We did not find any significant overlap between 
cfDNA DMRs from the MTLE/CTR comparison or 
neuron-specific or glia-specific DMRs with concordant 
behaviour. In fact, greater enrichment was observed for 
DMRs with opposite behaviour (e.g. hypermethylated 
promoter cfDNA in MTLE cfDNA and hypomethylated 
promoter neuron-specific DMRs) (Additional file 3: Fig-
ure S3E–H). These results therefore imply that the dif-
ferences in DNA methylation observed in the cfDNA 
of patients compared with controls do not appear to be 
a consequence of increased circulating neuronal or glial 
DNA.

DNA accessibility may provide clues about the origin 
of cfDNA DMRs
At this point, we have demonstrated that DNA methyla-
tion alterations in the MTLE brain are, to some extent, 
replicable in circulating cfDNA. However, we are yet to 
determine which cells are the source of the fragments 
carrying such differentially methylated patterns. We 
next investigated the potential origin of the fragments 
carrying the identified cfDNA DMRs by using public 
chromatin accessibility data, namely DNase-seq. It can 
be assumed that euchromatic regions (open chromatin) 
would be highly degraded and the resulting fragments 
would be too small to be detected in circulating cfDNA 
[31]. We were able to individualize DMRs with higher 
chromatin accessibility in blood cells than in brain tissue 
(Fig. 3E–F). We found lower DNA methylation levels in 
the promoter of the PM20D1 gene in both cfDNA and 
hippocampus of MTLE patients. This hypomethylation 
pattern is neither neuron- nor glia-specific. DNA acces-
sibility, however, is high in blood cells but low in brain 
tissue (Fig. 3E). We identified two more DMRs, localized 
in CpG islands located at the PLEC and AUTS2 genes, 
that show hypermethylation in cfDNA and hippocam-
pus of patients compared with controls. Although the 
DMR does not show overall significant hypermethyla-
tion in neurons or glia, individual CpG probes that over-
lap with the blood euchromatin region have higher DNA 

(See figure on next page.)
Fig. 3  A Representation of the overlap between cfDNA DMRs in MTLE and hippocampal DMRs in MTLE. The sets of DMRs overlapped separately 
in relation to the type of DMR (promoter, gene, CGI) and the methylation behaviour (hypermethylated and hypomethylated). Red bars and lines 
indicate the overlap of DMRs with coincidence in the direction of change. B Heatmap matrix representation of the p values associated with the 
Fisher’s exact test of the overlaps between DMRs in cfDNA and in the hippocampus. C Representation of the overlap between cfDNA DMRs in MTLE 
and neocortical DMRs in MTLE. The sets of DMRs overlapped separately in relation to the type of DMR (promoter, gene, CGI) and the methylation 
behaviour (hypermethylated and hypomethylated). Red bars and lines indicate the overlap of DMRs with coincidence in the direction of change. D 
Heatmap matrix representation of the p values associated with the Fisher’s exact test of the overlaps between DMRs in cfDNA and in the neocortex. 
E–G Graphical representation of the DNA methylation of the individual probes in cfDNA, hippocampus, neurons vs. blood cells, and glia vs. blood 
cells, and DNase-seq hypersensitivity in brain tissue and blood cells, corresponding to the DMRs located at the promoter of the PM20D1 gene (E), at 
the chr8:145,008,908–145,009,407 CGI (F) and at the chr7: 70,254,894–70,255,986 CGI (G). DNA methylation is presented as beta values. Beta diff is 
the mean difference of the beta values of all individual probes in the DMR for each comparison. FDR corresponds to the Bonferroni-adjusted p value 
emerging from the mCSEA DMR calculation. The genomic location of each DMR is highlighted by a red line in the respective chromosome. The 
DMRs (green) and the individual probes (orange) are presented in relation to the annotated genes in the UCSC Ref Seq
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Fig. 3  (See legend on previous page.)
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methylation levels in neurons and glia than in blood cells. 
Both these regions also present higher accessibility in 
blood cells than in brain tissue (Fig. 3F–G).

Discussion
Only two previous studies have analysed cfDNA in the 
context of epilepsy, and they only measured total cfDNA 
concentration levels [32, 33]. MTLE is the most incident-
focal epilepsy in adults, which, together with its high 
pharmacoresistant rates, makes it one of the most widely 
studied epilepsy syndromes. DNA methylation has been 
thoroughly explored within epileptic brain tissue. In a 
recent study by our group [30], we described major DNA 
methylation alterations in the hippocampus, which is the 
focus of the epilepsy and the region of the lesion [17], and 
in the adjacent neocortical areas of MTLE patients, com-
paring these with the state in non-epileptic controls. Our 
present study demonstrates the presence of DNA meth-
ylation alterations in the cfDNA of MTLE patients. We 
have identified a representation of CNS-related genes 
within the identified alterations. The functional enrich-
ment analysis of the distinct cfDNA methylation patterns 
observed in MTLE supports its possible origin by high-
lighting multiple genes, pathways and regulatory tran-
scription factors associated with the CNS paradigm. We 
found that the epileptic patterns described in hippocam-
pus and neocortex tissue were also significantly enriched 
in circulating cfDNA. However, a clearer overlap was 
demonstrated in the hippocampus, which is further evi-
dence of the primary pathological nature of this region. 
This concurs with the findings of previous studies that 
cfDNA from serum and plasma can contain tissue-patho-
logical DNA methylation alterations [34–36].

One aspect that remains unresolved is the source of the 
cfDNA fragments bearing those epileptic patterns. Given 
that blood cells from epilepsy patients and controls also 
present altered DNA methylation patterns [37, 38], epi-
leptic patterns observed in cfDNA could originate from 
blood cells. Furthermore, the DNA methylation profiles 
of peripheral tissues, including blood, positively corre-
late with brain tissue in epilepsy patients [39]. It has been 
proposed that chromatin accessibility states may help to 
infer the origin of cfDNA [31]. Highly accessible euchro-
matic regions are likely to be highly degraded, and the 
resulting fragment would be too small to be detected in 
circulation. In the three examples of DMR-containing 
sequences that we have presented, chromatin accessibil-
ity is high in blood cells whereas it shows a more com-
pact state in brain tissue. We may assume that the cfDNA 
fragments carrying those epileptic patterns, coincident in 
cfDNA and hippocampus, are more likely to originate in 
brain tissue rather than in blood cells. PM20D1, encoding 
an N-fatty acyl amino acid (NAAs) synthase/hydrolase, 

is located within a Parkinson’s susceptibility locus [40]. It 
has been demonstrated that PM20D1 is both an expres-
sion and methylation quantitative trait locus in AD, with 
a direct influence on molecular and behaviour patho-
logical features [41]. In AD blood samples, a U-shaped 
model has been proposed in which DNA methylation of 
this region is decreased in early stages and reverses with 
progression towards late AD [42]. Plectin (PLEC) is a 
plakin responsible for linking elements of the cytoskel-
eton. In the CNS, PLEC has been shown to be predomi-
nantly expressed in pia/glia and endothelia/glia junctions 
[43], where it is paramount for the structural and func-
tional integrity of the BBB and the pial surface [44]. In 
TLE, plectin is upregulated in astrocytes located at the 
sclerotic hippocampus [45]. AUTS2 is a well-known risk 
gene for autism spectrum (ASD) but also for other neu-
rodevelopmental disorders, including epilepsy [46]. The 
autism susceptibility candidate 2 (AUTS2) gene links 
with PRC1 (polycomb repressive complex 1), a known 
epigenetic regulator, and together are responsible for the 
transcription activation of genes associated with neu-
rodevelopment [47].

We did not observe any enhancement of cortical neu-
ron-derived cfDNA in our patients. One must consider 
the potential lack of precision of the current deconvolu-
tion tools in estimating the contribution of brain cells. 
Moss et  al. [8], for instance, used three cortical neuron 
samples to develop their reference matrix. It is of inher-
ent interest to develop more precise algorithms which 
would account for, as far as possible, the whole complex-
ity of the CNS spectrum by including multiple cell types 
(e.g. excitatory and inhibitory neurons, oligodendrocytes, 
OPCs, astrocytes, microglia) and also take regional vari-
ability into account. Additionally, the eventual release of 
brain-derived cfDNA in MTLE may be an acute event. In 
fact, Chatterton et al. reported an increase in the release 
of neuronal and glial cfDNA in the plasma of entry per-
sonnel (breachers) during explosive training, on the day 
that participants were exposed to higher pressures, after 
which it promptly decreased [31]. In MTLE, such events 
could occur immediately following the seizure. However, 
pertinent information such as time elapsed since the last 
seizure, or the frequency of seizures was not taken into 
account and remains a limitation to this study.

Conclusion
Our study shows that the analysis of cfDNA methyla-
tion in epilepsy has predictive potential. To follow this 
up, complementary studies are needed that exploit this 
emerging field to its full potential. Artificial intelligence 
and machine learning predictive models, whose perfor-
mance has been tested in cfDNA [35, 36, 48], would be 
an important next step in the follow-up of the results 
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presented here. We consider cfDNA methylation to be 
a promising tool with which to pursue the ultimate goal 
of reducing patients’ burden through early diagnosis, 
proper monitoring of the progressive nature of the dis-
ease, and a better understanding of the causes of epileptic 
refractoriness.

Methods
Study population
The MTLE patients included in this study were followed 
at the Reference Epilepsy Research Centre of Hospital 
de Santo António—Centro Hospitalar e Universitário 
do Porto (HSA-CHUP) (Table  1 and Additional file  4: 
Table S1). The diagnosis was based on clinical and elec-
trophysiological data (electroencephalogram (EEG) and/
or video-EEG monitoring) and brain MRI (minimum 
1.5 T), as defined by Wieser [49]. A definition of HS by 
brain MRI required the detection of atrophy, T2 hyper-
intensity signal and altered internal structure on one or 
both hippocampi, associated or not with other imag-
ing criteria such as ipsilateral fornix atrophy, ipsilateral 
mammillary body atrophy or ipsilateral entorhinal abnor-
malities. Visual and/or verbal memory impairment were 
not considered exclusion criteria. However, patients with 
other neurological abnormalities were not included. At 
the time of the study, all patients were receiving pharma-
cological treatment (monotherapy or polytherapy). The 
control population comprised healthy individuals who 
were ethnically matched and from the same geographical 
area, and who had been voluntarily recruited from blood 
donors. Individuals with any neurological condition or a 
positive family history were excluded.

Serum collection and DNA extraction
Peripheral blood was collected in Vacuette® tubes with-
out anticoagulant and centrifuged at 490  g for 20  min. 
Collected serum aliquots were stored at − 20  °C. Only 
samples processed within 4 h of collection were included. 
DNA was extracted from approximately 1  mL of serum 
using the QIAmp® MinElute® ccfDNA Mini Kit (Qia-
gen), following the manufacturer’s instructions.

DNA methylation profiling
Extracted genomic DNA was quantified using a Qubit 
DNA Assay Kit (Cat. No. 10146592) in a Qubit 2.0 Fluo-
rometer (Life Technologies, CA, USA). CfDNA samples 
from twelve MTLE patients (8F, 4  M; 44.8 ± 11.4  years 
old) and eleven controls (9F, 2  M; 38.9 ± 8.4  years old) 
were profiled. All DNA extracted from each sam-
ple (44.72–238.95  ng) was bisulphite-converted using 
the EZ DNA Methylation-Gold™ Kit (Zymo Research, 
Irvine, CA, USA), following the manufacturer’s instruc-
tions. Converted DNA was hybridized in Infinium 

MethylationEPIC BeadChip arrays (Illumina), follow-
ing the manufacturer’s instructions. The arrays encom-
pass > 850,000 single-nucleotide methylation sites and 
cover 99% of the annotated reference sequence (RefSeq) 
genes. Fluorescence intensities were imaged using a Bea-
dArray Reader (Illumina), and images were processed 
and intensities measured as previously described [50]. A 
combination of the Cy3 and Cy5 fluorescence intensities 
of the methylated and unmethylated alleles was used to 
obtain each methylation data point. Background intensity 
was computed from a set of negative controls and sub-
tracted from each data point. Beta values were used to 
illustrate methylation. Values can range between zero (0% 
methylation) and one (100% methylation) and represent 
the ratio of the methylated probe intensity to the over-
all intensity (sum of the methylated and unmethylated 
probe intensities). M values were calculated as the log2 
ratio of the intensities of the methylated and unmeth-
ylated probes. M values were used for statistical pur-
poses, because beta values are heteroskedastic for highly 
methylated and unmethylated CpGs [51]. Methylation 
data were analysed in the R statistical environment. The 
shinyÉpico web interface [52], based on minfi [53] and 
limma [54] pipelines, was used for array processing, nor-
malization and differential methylation calculation.

Deconvolution of cell/tissue of origin
The cell or tissue of origin was estimated with the meth_
atlas deconvolution algorithm (https://​github.​com/​nloyf​
er/​meth_​atlas), which estimates the proportion of ori-
gin for a total of 25 tissue and cell types based on 450 k 
and EPIC data [8]. DNA methylation profiles from serum 
cfDNA of epileptic patients and controls were processed 
in accordance with the original study. Normalization was 
performed with the preprocessIllumina function. Probes 
with a detection significance of p > 0.01 were excluded, as 
were those mapping to sex chromosomes. Deconvolution 
was performed using the Python-based method in rela-
tion to the supplied reference atlas matrix composed of 
7890 sites.

Calculation of cfDNA differentially methylated regions 
(DMRs)
Methylation data were normalized with the Noob + Quan-
tile functions to assess the differentials. Probes with a 
detection p < 0.01 were filtered out, as were positions 
located in the X and Y chromosomes and/or overlapping 
with SNPs. CpHs were retained, based on evidence that 
neurons, unlike other CNS cells, present CpH as their 
dominant DNA methylation mark [55]. A total of 783,351 
individual positions were obtained after normalization 
and filtering. DMRs were calculated using the mCSEA 
(methylated CpGs Set Enrichment Analysis) package [56]. 

https://github.com/nloyfer/meth_atlas
https://github.com/nloyfer/meth_atlas
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The eBayes results of limma, sorted by t-statistics, were 
used as input. The limma eBayes-moderated t-test was 
carried out using M values. No differences were observed 
between patients and controls regarding age and gen-
der; therefore, no covariates were included in the model. 
DMRs with at least five CpGs and an FDR < 0.05 were con-
sidered statistically significant.

Gene ontology (GO) and transcription factor (TF) 
enrichment analysis
Gene ontology (GO) evaluation was performed using 
the GREAT online tool (http://​great.​stanf​ord.​edu/​pub-
lic/​html) [57], which accepts genomic regions as input, 
in our case DMRs, with the two nearest genes settings. 
Motif enrichment was analysed using the findMotif-
sGenome.pt tool of the HOMER motif discovery appli-
cation [58], considering a window of ± 50 bp from each 
DMR. The total annotated DMRs from the mCSEA 
analysis were used as a background in both analyses. 
We considered significant enrichment for both GO and 
TF motif enrichment when p value < 0.05.

Human Protein Atlas (HPA) gene expression 
and expression cluster data
We used public data from the HPA to evaluate the 
potential cerebral regional activity of enriched TF asso-
ciated with cfDNA DMRs. To evaluate the expression 
levels of the genes associated with those factors, we 
used the RNA consensus tissue gene data, which con-
sists of transcript expression levels summarized per 
gene in 55 tissues obtained consensually from RNA-seq 
data from the HPA and Genotype-Tissue Expression 
(GTEx) projects.

We also accessed data from the HPA consisting of the 
levels of confidence of protein-coding genes across tis-
sue clusters and across single-cell clusters. For the tissue 
clusters, the HPA used RNA expression data from 53 tis-
sues to classify genes into 87 expression clusters. A total 
of 144 cell types or cell lines were used to construct 68 
single-cell expression clusters. For both approaches, Lou-
vain clustering was performed based on gene-to-gene 
distances calculated from the Spearman correlation of 
gene expression across multiple samples. Clustering was 
performed 100 times to accommodate stochasticity. The 
confidence of the gene-to-cluster value, which varies 
between 0 and 1, corresponds to the proportion of times 
that a gene was assigned to a cluster. Clusters were iden-
tified manually through resource-to-functional annota-
tion tools.

Overlap of cfDNA DMRs with epileptic, neuron‑specific 
and glia‑specific DMRs
We extracted the lists of DMRs significantly altered in 
hippocampal and neocortical tissue in MTLE patients 
relative to autopsied non-epileptic controls, obtained in 
a previous study by our group [30]. We extracted raw 
IDAT files from 33 NeuN + fractions of prefrontal cor-
tex of healthy individuals (GSE112179), 23 NeuN frac-
tions (glia) (GSE166207) and 37 blood-cell-type samples, 
which included B cells, CD8+ T cells, CD4+ T cells, 
monocytes, neutrophils and NK cells (GSE110555). Data 
were processed and DMRs calculated as described above, 
all NeuN or glia samples being compared with all blood 
samples, without discrimination for blood cell types, and 
without considering any covariates. Since the mCSEA 
package was used to calculate DMRs across all settings, 
we overlapped the lists of DMRs based on their anno-
tated identification. The GeneOverlap function, which 
is based on Fisher’s exact test, was used to calculate the 
significance of the overlap. The total number of DMRs 
considered by mCSEA was used as background (26,208 
for promoter DMRs; 23,772 for gene DMRs; 27,187 for 
CGI-DMRs).

DNase‑seq data analysis
DNase hypersensitivity bigwig files with the human 
GRCh37 assembly from brain tissue and blood cells were 
obtained from ENCODE (Additional file 7: Table S4). For 
each setting, the mean function of Wiggletools was used 
to aggregate the multiple files [59]. The outputted wig file 
was reconverted to bigwig format using ucsc-wigtobig-
wig [60].

Heatmaps, DMR visualization and plots
All heatmaps were developed using the R gplots and 
ComplexHeatmap [61] packages. Row dendrogram clus-
tering was carried out with complete-linkage hierarchical 
clustering. The overlaps between lists of DMRs were rep-
resented using the UpSet function of ComplexHeatmap. 
To visualize individual DMRs, along with genomic loca-
tion and epigenetic and chromatin accessibility marks, 
we used the functions available in the gviz package [62]. 
All additional plots were generated with the ggplot2 
package [63].

Statistical analysis
All statistical analyses were done using R v4.0.2. or 
IBM SPSS Statistics version 27 (Armonk, NY, USA). All 
graphs were created in R. Group medians were compared 
using the Mann–Whitney test for numeric variables (age, 

http://great.stanford.edu/public/html
http://great.stanford.edu/public/html
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percentage of cell/tissue type contribution). Fisher’s exact 
test was used to calculate the significance of non-random 
association between two categorical variables (sex distri-
bution in patients and controls). The levels of significance 
were: *p < 0.05; **p < 0.01; ***p < 0.001.
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