
 1

Reverse Engineering to Achieve Maintainable WWW Sites

Cornelia Boldyreff1 and Richard Kewish
R.I.S.E.

Department of Computer Science
University of Durham

Durham, DH1 3LE, U.K.
+44 191 374 2638

cornelia.boldyreff@durham.ac.uk

1 Corresponding author

ABSTRACT
The growth of the World Wide Web and the accelerated
development of web sites and associated web technologies
has resulted in a variety of maintenance problems. The
maintenance problems associated with web sites and the
WWW are examined.
It is argued that currently web sites and the WWW lack
both data abstractions and structures that could facilitate
maintenance. A system to analyse existing web sites and
extract duplicated content and style is described here. In
designing the system, existing Reverse Engineering
techniques have been applied, and a case for further
application of these techniques is made in order to prepare
sites for their inevitable evolution in future.

Keywords
Web site maintenance, web analysis, detection of
duplicated web content, re-structuring, data abstraction

1 BACKGROUND
Since the World Wide Web (WWW, or web) first became
widely accepted, it has grown to be a huge information and
storage medium. The speed and breadth of its growth and
its inherent complexity have meant that the web has not
seen many of the rigorous development and maintenance
principles applied to its contents and applications that
traditional Software Engineering applies to more
conventional large scale software applications [1,2].

In the 1970s and 80s, computer scientists started to
consider software as another engineered product and began
to apply the same stringent design, production, and
maintenance procedures that more conventional
engineering disciplines already employed. The web is now
being considered in the same way [2] and concepts
developed in traditional Software Engineering, for

example, Lehman's Laws [3] are beginning to be studied
with respect to the development of web sites over time [1].
However, this does not address the issue of web site
maintenance which has not been as widely considered as
the development of a web site [4,5], but is equally
important now that the web has grown so large and has
become an integral part of modern society.

The current web site format is a collection of files
containing several different types of information that can be
retrieved and viewed using a web browser. Typically
documents are constructed using the Hypertext Markup
Language (HTML) which defines the style, structure, and
content of the web pages. These pages can also contain
embedded elements and links to other files of the same or
different formats such as images or Java applets.

On a conventional web site, each page is stored as a
separate file in a hierarchical directory structure. These are
stored on one or more servers that run software to
implement the Hypertext Transfer Protocol (HTTP) which
processes client requests (e.g. from distributed web
browsers) and returns the relevant files. However, the
haphazard manner in which the web has come into being
has had a profound influence on the its current state and as
a result much of the existing web is very hard to maintain
and has not been subjected to systemic or routine
maintenance.

The current system of storage for web sites causes several
problems for maintaining the site; these are as follows:

• the contents of individual files may be duplicated
across several pages, possibly causing inconsistent data
throughout the site;

• the page styles may not be consistent across the site
giving an unprofessional look to the site and possibly
making it difficult to navigate;

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/56074?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 2

• links and references on web sites are notoriously
volatile so they require frequent checking and updating
[6], a task that is impeded by decentralisation of the
web site contents and distribution of its maintenance.

It is now beginning to be accepted that a web site can be
regarded in much the same way as a large-scale
conventional software system [2,7], with many of the same
maintenance requirements as well as some of the
specification and design requirements. Therefore, in a
similar manner to the way that software models and
programming language structures have been adapted to
accommodate our changing perception of software, a new
more easily maintained structure for web sites is required.

The problems identified above can be ameliorated or solved
altogether by the centralisation of web content storage and
the introduction of some basic, well established software
maintenance principles. In the remainder of this paper,
maintenance problems associated with the WWW are
analysed in greater depth in the following section. The
application of traditional reverse engineering techniques to
existing web sites is covered in a further section. The
results achieved are discussed and evaluated in a final
section, where future work is also considered.

2 MAINTENANCE PROBLEMS ASSOCIATED
WITH THE WWW

Similarities can easily be drawn between large web sites
and large-scale software systems [1,2]. Large sites often
contain many thousands of lines of 'code' split into many
'modules' stored in many places with large amounts of data
often important to the owner of the site.

In most traditional software systems, the code is segregated
from the data by data abstraction, and many systems are
data processors in which the program only interacts with
the data when that data is provided to it. However, due to
the design of HTML, in web documents, the data is marked
up by tags to format both its structure and style of
presentation. Thus, the data is an integral part of the 'code',
and this complicates web maintenance. Others have noted
that the blurred distinction between data and software in the
HTML model presents developers with some interesting
and problematic consequences [1,7].

Due to the ease with which web pages can be generated
using a variety of tools (MS Frontpage, Netscape
Composer, Macromedia Dreamweaver to name but a few),
web sites can be created by people with little or no formal
knowledge of software engineering and in very little time.
For small scale personal web sites, it is not important that
the site is error free and up-to-date; however, for larger
corporate sites, this is often key to the businesses' on-line
success.

Despite being young, the WWW has grown and is still

growing rapidly with the result that modern sites are as
large and complex as large-scale traditional software. In
1996, the maintainers of the Microsoft web site1 estimated
that they maintained over a million pages with a predictable
impact on maintenance [8].

The rapid growth of the WWW combined with the
necessity for businesses to quickly deploy the sites results
in sites being produced with little or no design and no
concern for the maintenance issues. This has resulted in a
state of poorly maintained sites [9].

Specific Problems Identified
In research carried out into the state of web sites [10,8,9],
four common problems has been identified; they are as
follows:

• broken links,

• incorrect or out-of-date data,

• inconsistent information, and

• inconsistent style.

Surveys of web users [4] have shown that inconsistency
and inaccuracy of data rank alongside with broken links as
major obstacles in the take-up of the web. Inconsistent style
and poor navigation have also been cited as major problems
that discourage users from continuing to use a site [11].
Research into these areas is developing alongside Human
Computer Interaction and Usability research to try and
develop guidelines and strategies that will help businesses
to utilise the web more effectively [5].

Broken links
This especially common problem is due to links being
explicitly "hard-wired" into the HTML of a web page no
longer pointing to the target page and its contents. A
broken link is usually a consequence of one of the
following:

• the linked site has moved or closed down;

• the linked page has been removed or renamed;

• the link has been incorrectly specified (i.e. it is mis-
spelt or simply nonexistent);

• the page exists, but the its access permissions have
been wrongly set;

• the page exists but the relevant information has
changed or been removed making the linked content
no longer relevant to the originating page with a link to
it.

Ways have been developed to minimise the first three
situations described above. These fall into two categories:

1 http://www.microsoft.com

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 3

dynamic link storage and link testing tools.

Dynamic storage usually consists of a database that stores
the links centrally [6]. The HTML page containing the link
is dynamically generated with the data for the database
when requested. This enables the maintainer to easily
update all occurrences of a link in a site when the link
changes. It also simplifies the process of re-structuring a
web site.

Link testing is carried out to find links that are no longer
valid [6]. Typical systems parse the HTLM document and
systematically test every link to ensure that a valid page
exists at the end of the link. These tools can be used in
conjunction with dynamic storage to provide more
comprehensive aid to maintainers.

The final two situations are almost impossible to prevent
unless there is co-operation between the maintainers of the
pages at both ends of the link. Typically this will only be
possible for links within a site.

Incorrect or Out-of-date Information
One of the major reasons for businesses setting up web
sites is that they have large amounts of data that changes
too frequently for them to publish or disseminate
effectively through standard media (e.g. booklets, mailings,
retail outlets) [10]. By creating a web site, they can have
one central information point and concentrating on keeping
it up-to-date and as accurate as possible. However,
problems of out-of-date information are still common [9]
and many sites give no indication of the currency of their
information, nor do they indicate the last time of up-date.

Inconsistent Information
Inconsistent information is separate from the previous
category because, although it will invariably include
incorrect information, in the case of inconsistent
information, some of it may be correct. In a typical web
site, the same information may be stored in one or more
different places. If this information changes and the
maintainer doesn't up-date all occurrences of the
information, the inconsistencies will be introduced into the
site [9]. Consequently some of the information will be
incorrect and misleading [4].

These problems of information incorrectness and
inconsistency have been addressed by the creation of server
side scripting systems [7] connected to databases that can
be used to dynamically generate pages containing the most
recent and up-to-date information obtained from the
database. This will be discussed in greater detail in the
section on problems using database storage with the
WWW.

Inconsistent Style
This is a separate consideration from the design of the user
interface in so much as it is not concerned with the actual
choice of style used, but rather the consistent application of

the styles used. Research into Human Computer Interaction
has shown that systems should use a consistent and
standard style throughout [4]. However, it is not uncommon
to find different fonts, font sizes, colours, backgrounds and
other style variations within the same web site across
several pages or even in single pages of the site. Obviously
this gives the site an unprofessional image as well as
causing problems for users with navigation and readability.

The Internet communities, and the standards bodies in
particular, have started to make great efforts to counter this
problem. For instance, the consortium in charge of
standardising the web, the W3C2, has introduced the
concept of Cascaded Style Sheets (CSS) which have been
widely accepted by web site authors and browser
developers alike.

CSS enable the author or author tool to abstract the style,
and to a lesser extent the structure, away from the contents
of the HTML file. Dave Raggett, one of the leading
proponents of CSS and a major contributor to the W3C
recommendation3, has demonstrated the effective
transformations that can be carried out by basic scripting
and CSS [12]. By creating a CSS file for a collection of
pages and making small changes to that single file, it is
possible to dramatically alter the appearance of all the
HTML pages in a consistent manner. This feature is of
great importance to maintainers [14] as it minimises their
maintenance efforts with respect to site style.

Root Causes of Web Site Maintenance Problems
While the above problems all reflect poor maintenance
practices, they are symptomatic of poor design decisions
and a general lack of Software Engineering principles being
applied in web developments. In addition, several features
of the existing WWW architecture compound the situation.
Most notable among these are:

• forced duplication of files or data;

• the file structure of web sites; and

• the HTML format of combined code and data storage.

Duplication of Files or Data
If the same information is required in two or more pages, it
is common for that information to be duplicated and placed
on all the pages. HTML lacks an "include" directive
common in many other languages. This problem is caused
by the method of storage within HTML and forces the
designer to choose between linking pages and copying the
data. Likewise if a file, typically an image file, is needed in
several places and it is awkward to reference it in a single
location (see The Structure of Web Sites below), then

2 http://www.w3c.org
3 http://www.w3c.org/TR/REC-CSS2

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 4

copies may be made and placed throughout the site. This
causes the problems associated with the failure to
successfully update all copies.

The File Structure of Web Sites
Web sites consist of files containing the site contents. The
predominant file format is HTML, with some embedded
content such as images and increasingly the inclusion of
scripts both as part of the HTML document or as a means
of generating the HTML page.

The files, which can be likened to modules in a
conventional software system, are usually stored in
directories to further "modularise" the site into
comparmentalised blocks of similar data type or related
content. When this approach is followed uniformly and
sensibly across the site, it is very useful and effective in
creating a site whose content is easy to manage [1].
However, the huge scale of some web sites and the inherent
complexity of so many interlinked files makes the
organised decentralisation of the pages a complex task
which, if not carried out carefully and with planning, can
result in illogical arrangements of files which quickly
become too complicated to manage.

For instance, in a small site, it is sensible to store all images
required on the site in an images directory and to use
relative URLs to reference them. A relative URL is
preferable to an absolute URL because pages can easily be
moved around, even between web sites, without affecting
the links as long as the file structures are preserved.
However, as the site grows and its file structure becomes
more differentiated, this can result in awkward use of
relative file referencing and the loss of the advantages
associated with relative URLs.

The HTML format of combined code and data storage
As noted earlier, HTML files are a combination of data and
tags. The tags control both the style and layout of pages. As
these contents are intermixed, a maintainer editing a page
to alter content can inadvertently alter tags.

In summary, it is important to carefully design the file
structure associated with a web site and to consider the
implications of file contents on the maintainability of a site.
This is an area of web development that has received little
study until recently. In the following section, consideration
is given to this area and the proposed solution of using a
centralised data storage medium such as a database, as
suggested in [13], is investigated.

Problems of using Database Storage with the WWW
One of the main uses for databases on the WWW is for the
storage of company data such as customer or product
details. This information may be stored in specialised
databases designed and used solely for the company web
site, or it may utilise a connection to existing company
databases to produce the same result [7]. Obviously it is
wasteful to maintain the same information in more than one

database although for security reasons it may be sensible to
make one database a partial or complete replica of another.

Many companies and organisations holding information in
existing databases have sought to integrate these data stores
with their web sites, rather than incur the penalties of
having to maintain separate data sources. Dynamic page
generating systems and associated scripting languages
make such integration possible although considerable re-
development of existing web pages may be necessary. In
addition, co-ordination of the database maintenance with
the web site maintenance is required.

Database systems can also be used to store more complex
components of web sites or references to these. Examples
of these are databases to store links [6, 14]. These enable
maintainers to easily verify and update links throughout a
site. However, in the case of older web sites, some reverse
engineering of the site may be required to ensure that
currently replicated elements within the web site are
identified, abstracted, and, where appropriate, moved to a
database or subsumed into a scripting language program.

3 REVERSE ENGINEERING OF WEB SITES
The databases used as discussed above are typically
relational databases. Typically little or no modification of
the existing database structures is required before
integration with the web; however, complex scripts or
programs may be required to extract, process and present
the relevant information.

Many scripting languages have been developed to facilitate
dynamic page creation. Several of these have had
extensions built on to enable database access or have been
designed with database integration in mind. An example of
the latter is Microsoft's Active Server Pages (ASP); and an
example of the former is the perl scripting language.

Databases employed in the fashion need not be closely
integrated into the Web architecture as the scripting
languages are well enough developed to make an almost
seamless integration.

Given the investment of companies in their existing
databases and current web pages, this research has
addressed the possibility of reversing engineering existing
web pages to identify replicated contents that can usefully
be stored in databases where the databases will either
already exist or be specifically created for this purpose.
Through this research, the aim is to determine how to assist
companies in developing a better basis for the future
maintenance of their web sites and to overcome some the
problems associated with web site maintenance discussed
earlier.

The reverse engineering undertaken with respect to web
sites has drawn on earlier work with the Reverse
Engineering community dealing with code analysis and
clone detection as a goal of the work is to detect and

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 5

Parse
Tree
Analyser

Data
Storage

Body
Analyser

Style-
Sheet
Generator

Dynamic
Page
Generation

Head
Analyser

HTML
File
Parser

minimise duplication of web site content. In classical
software engineering, a clone is any piece of code that has
been copied and possibly altered. Clones are characterised
by a measure of similarity ranging from 100% for replicas
to 0% where no similarity can be found. However, as Baker
suggests it is very hard to find two pieces of code that will
not have some similarity, the sophisticated part is finding
code that is a proper clone rather than simply being
coincidentally similar [15].

For example, a designer might create several HTML pages
on a web site, all with the same head section by copying the
head from one page into all the others. This would create
clones with 100% similarity. If subsequently, the titles of
each page are altered, then the clones would not be
identical although they would still have a high similarity.

Given that the alteration of web pages is not random and is
likely to involve identifiable components, such as the page
titles in the above example, the approach adopted here has
been to parse and analyse the web pages adapting
approaches for existing work in Reverse Engineering
applied to software code. An approach employing metrics
based on [16] is ruled out by the current lack of appropriate
metrics defined for web site contents although this is
certainly something to consider in the future.

Architecture of the System Developed
Below is an overview of the high-level architecture of the
system developed.

To achieve adequate coverage, it was decided that the
parser within the system should handle pages that
conformed to the HTML 4.0 specification with some
additional features such as Active Server Pages (ASP),
scripting languages (e.g. Javascript and VBScript) and
Cascaded Style Sheets (CSS).

Although the W3C DOM Parser for HTML 4.0 was
available, our system is based on an HTML 3.2 compliant
parser from the JavaCC distribution. Unlike the W3C
parser, this is not a validating parser, so it can
accommodate invalid HTML. It also produces useful parse-
tree output for further processing and thus, is a better basis
for the replica detection. It is also easy to maintain and
adapt due to its yacc-like design; extensions to HTML 3.2
have been easily achieved through altering the grammar
supplied.

After parsing, the system stores a rationalised copy of the
extracted HTML data in a central data storage with each
unique element (e.g. Page titles separate from links) stored
in a separate part of the repository. Content that cannot
easily be stored (e.g. images) are stored in files within an
organised directory structure. Rather than storing the details
of how to reconstruct the pages, the original HTML page is
modified to use scripts that retrieve the data from storage
and regenerate pages as required. These modified files
contain only the structure of the original HTML files, with
all the content abstracted out into the data storage and the
styles in CSS files. The files are stored in an organised
directory structure on the server. It is these pages that will
be accessed by the server, executed, and published when
requested.

This approach was chosen because it could be implemented
on top of existing web architecture. It also has the
advantage of creating new web pages and an associated
database that is both easy to maintain and limits the
maintainer to altering data at its source, thereby ensuring
that, because the pages are generated from source, they will
always have the most up-to-date data content available. The
database is supported by an organised directory structure
that is used to store the external files. Several types of files
are stored by the system including applets, images, scripts,
and CSS files. The directory structure is created within a
directory specified by the user and consists of the following
directories listed in the figure below.

Directory Structure for the Storage System

public_html

ASP Binaries CSS Images Log Script

JScript Other VBScript

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 6

Database Design
Having decided to use a relational database for the central
data storage, the tables and fields were designed. The first
consideration was given to what extra data should be stored
in the database to facilitate easy maintenance in the future.
From our earlier considerations, it was decided that the
following should be added:

• the last date of update for every element as this enables
the maintainers to track information that is out-of-date
by a given date. Adding finer grained time stamps such
as the time within a day was not considered necessary,
as most information does not change so frequently to
warrant this.

• an identifier for the person who carried out the update.
This enables maintainers to confer with one another
regarding changes that have been made and to ensure
their work is co-ordinated in a consistent manner.

A record of changes can then be made in enough detail for
maintainers to ascertain who changed what when.

Thus, the basic requirement for every table is that it should
have fields allowing the following: unique identification of
every entry; identification of the date of the last update; and
identification of the maintainer who last updated it.

The detailed record of changes made is written to text files
rather than the database as this is primarily for auditing
purposes.

As the system requires the maintainers to supply both a
username and password before changes can be made to the
database, it is possible to identify each maintainer uniquely.
The usernames are stored in a separate table with a unique
ID number, that is referenced by the other tables to identify
them.

The other tables are as follows: Titles, Styles, Scripts,
Objects, Links, Images, Content, Bases, ASP. These are
described in greater detail in the following section.

What is stored in where?
There are three broad types of data extracted by the system,
each requiring a slightly different method of storage. These
are as follows: textual content, large text files, and binary
files.

The textual content of the site is the information that is
presented to the user as text. This can be short strings, e.g.
the title, or long paragraphs of text, more commonly found
in body. This content changes frequently and is very
important to the site owner. Character Large Object
(CLOB) storage is used for textual content. On most
database systems, each CLOB field can store up to 2Gb of
text.

As scripts and CSS files contain large amounts of textual

data. This data is imported into the HTML file by
reference. Although CLOB fields could have been used,
this would introduce the problem of how to recognise when
the client needs the files and how to pass the content as if it
was a separate file. This is avoided by storing all linked
files in the directory structure and storing a reference to the
file in the database.

Binary files, i.e. Image files and Java applets, like the large
text files containing scripts and styles, are stored in the
directory structure, with a reference in the database.

Content Layout and Processing
The tags surrounding the content define the layout of the
HTML page as it will displayed in the client browser. The
introduction of new tags and CSS into HTML4 has allowed
some of the structural layout to be taken out; however,
HTML tags still produce most of the structure.

Originally it was decided that the structure should be
extracted during analysis and stored separately along with
the style and contents; and that all these stored elements
would be used to recreate the page. However, after
studying a number of existing web page layouts, including
sites with consistent structures, it was not possible to find
enough similarities to be able to break the structure down
satisfactorily. For this reason, the system keeps the
structure in place as found in the existing web page and
only extracts the style and content. To facilitate this, the
analyser constructs an HTML file as it processes the parse-
tree. The tags are analysed and then copied to the new file,
with the content that has been removed from them replaced
by an embedded script statement for retrieving the data
from the database. When the analyser has finished, the new
web page file is written to the directory structure at the top
level.

To detect and remove duplication, the system processes
each piece of text as follows:

1. all excess white space is removed (as this is ignored by
browsers),

2. a code is generated for the text,

3. a comparison is made with codes for pieces of text
already processed, and

4. a new element with its corresponding code is only
stored if no match has been found.

Statistics
It was felt that maintainers might find it useful to see some
details of the web page analysis results and subsequent
processing. Therefore, the system generates details of what
went on during the parsing, analysis and storage.

A log file, with a time and date stamp for easy
identification, is created during every run. Logs of all files
parsed are made along with a summary of the analysis. All
error messages reported to the user during parsing are also

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 7

logged.

After each parse, a breakdown is presented. It includes the
following counts:

• count of embedded files identified and how many are
not already recorded, broken down into file types, e.g.
images and scripts;

• count of links identified and how many were not new;

• count of blocks of textual content found and how many
of these were not new; and

• count of files parsed and number of failures and
problems encountered.

Recreation of the Web Pages
After the system has been employed, the pages need to be
re-generated from the new web pages and the database
upon requests made for the new web pages by clients.
These new web pages contain scripts that access the
database. One basic function is used to extract the relevant
data; it simply retrieves contents from a specified table and
field. The returned string is appended to the end of the
HTML stream being generated by the server as it interprets
each script in the new web page.

There is an overhead for the script interpretation and the
database accesses at the page load time. This differs in
individual cases; and if the overhead is considered too
great, it would be possible to recreate a new static web page
after processing. However, this would require strict
discipline to ensure that no changes were made to the static
pages and changes were made through the new system with
new versions of the pages being regenerated after any
changes. Quite a sophisticated extension to the system
would be required to determine the impact of any change
on all the other pages in the site to ensure that changes were
made uniformly across a site.

The advantage of using the dynamic approach is that
changes made to the stored database associated with a set
of web pages take effect immediately. Because all the data
is stored within the database and no HTML pages are ever
stored locally, the maintainers cannot make changes to the
pages without changing the database thereby ensuring the
entire set of pages is uniformly updated.

4 RESULTS OBTAINED
The system has been evaluated with a small sample of web
sites:

1. Palatinate'99 - the web site of the student newspaper of
the University of Durham. A snapshot of the site was
taken in June 1999. The site consists of 121 HTML
files in 26 directories with many scripts and linked
files.

2. SEG'99 - The Computer Science Department at
Durham have a web site of material associated with the

second year Software Engineering group project which
is part of the Software Engineering module. A copy of
the site at June 1999 was studied. The site consists of
60 HTML files in 23 directories with scripts and linked
files.

3. Palatinate'00 - This site replaced the Palatinate'99 site
and is a re-designed site. The copy of the site studied
was made in March 2000. The new site consists of 34
HTML files in 12 directories. It contains no scripts but
does contain many linked files.

4. Personal Web Site 1 - This site was the homepage of a
University of Durham student. Although this type of
site would not normally be subject to formal
maintenance, it is a good example of a well designed
site with consistent features and use of scripts. The site
is entirely HTML4 compliant and utilises CSS. It is
well maintained and organised. The site consists of 27
HTML files in 5 directories.

5. Personal Web Site 2 - this is the old site of the same
student. The copy studied has been replaced by
Personal Web Site 1. It uses a combination of scripts,
frames and images; but has been constructed with little
regard to design principles and exhibits poor layout.
The site consists of 16 HTML files in 2 directories. It
contains several linked files.

Duplication Detected
The table below provides evidence of the level of
duplication found and eliminated by the system.

Web site Number of
Pieces of
Content Found

Average Number of
Pieces of Content
Stored

Palatinate’99 907 355

SEG’99 637 245

Palatinate’00 357 186

Personal Site 1 284 201

Personal Site 2 102 91

Note that while the parser consistently identified the same
number of pieces of data for each site analysed,
insignificant variations in the number of duplicated pieces
were found depending on the version of the system used, so
an average is given above.

The figure below shows these results graphically. It can be
seen that there is a direct correlation between the number of
pieces of content in the site and the amount of duplication
detected. The more data there is the more duplication has
been detected.

Conversely the smaller a site is, the amount of duplication

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 8

is also smaller. This is shown by the narrowing gap
between the two lines. For instance, on the larger
Palatinate'99 site, only 355 pieces of data are stored from a
possible 907. This means the system detected that almost
two thirds of the data has been duplicated. However, on the
smaller site, the proportion was found to be much lower.
The second personal site has almost no duplicated data
(only a tenth is duplicated) and the slightly larger and better
designed personal site has only a third of its data
duplicated.

This result is not surprising because the maintainers of
small sites will be able to remember a higher proportion of
the site than the maintainers of large sites, so they are more
likely to realise when they are repeating the content.

Overall, the results show that the system does a good job of
removing duplication within a web site, and thus with
duplication minimised, the new site should be easier to
maintain. Although there is an overhead, in generating the
pages dynamically in the present system, it would be
possible to generate static pages form the databases and use
these provided that no maintenance was carried out on
these directly as all the advantages of removing duplicates
would be lost.

An extension to the system ensures timely up-date by
monitoring changes made to the web site content databases
and informing the maintainers every time that a data item
over a specified age has been accessed. This feature
provides a very useful service for the maintainers because it
informs them if they have neglected some content for a
long time. It also highlights contents that are being
accessed most frequently; and, if necessary, they can focus
their maintenance efforts on some preventative
maintenance to ease the future maintenance.

5 CONCLUSIONS
This research has demonstrated that a significant reduction

in the duplicated content of web sites can be achieved
through application of the system described here. The
system achieves this through a more rational re-structuring
of the original web site pages and their contents.
Identifying common styles and other contents requires
extensive analysis of the existing web pages. However, the
rationalisation of the site achieved should in theory allow
maintainers to understand the contents of the web sites
more straightforwardly and to separate concerns of style
from other types of information content during subsequent
maintenance of the site. Empirical evidence of such
benefits can only be obtained in the longer term. At present
the system developed has only been used in trials with a
very small number of web sites. Integration of such a
system with one of the more popular web page
development systems would provide the necessary
employment of the system by practitioners needed to form
the basis for a more in-depth evaluation. We are
considering this as a future development of the system.

The modest results achieved do clearly show that
techniques from conventional Reserve Engineering can be
applied to alleviate some of the maintenance problems
found with existing web sites and the current storage
systems employed for web sites. Certainly this work has
shown that there is scope for further research on the reverse
engineering of web sites.

REFERENCES
1. Warren, PJ, Boldyreff C, Munro M, The Evolution of

Websites, International Workshop on Program
Comprehension, IEEE Computer Society Press, 1999.

2. Brereton P, Budgen D, Hamiliton G, Hypertext: The
next Maintenance Mountain, IEEE Computer, Vol. 31,
No. 12, pp. 49-55, 1998.

3. Lehman MM, Belady L, Program Evolution: Processes
of Software Change, Academic Press, London, pp.
247-274, 1985.

4. White MD, Abels EG, Hahn K, Identifying user-based
criteria for Web pages, Internet Research, Vol. 7, No.
4, pp. 252-262, 1997.

5. White MD, Abels EG, Hahn K, User-based design
process for Web sites, Internet Research, Vol. 8, No. 1,
pp. 39-50, 1998.

6. Arnold SC, An Architecture for Maintaining Link
Structure of a Website, Proceedings of WSE'99, 1st
Annual Workshop on Web Site Evolution, pp. 9-11,
1999.

7. Antoniol G, Canfora G, et al, Web Sites: Files,
Programs or Databases?, Proceedings of WSE'99, 1st
Annual Workshop on Web Site Evolution, pp. 6-8,
1999.

8. Prevelakis V, Managing large WWW Sites, Internet

Amount of Duplicated Data in Web Sites

0

100

200

300

400

500

600

700

800

900

1000

1 2 3 4 5

Number o f
Pieces of
Content

Average
Number o f
Pieces of
Content Stored

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 9

Research: Electronic Networking Applications and
Policy, Vol. 9, No. 1, pp. 41-48, 1999.

9. Warren, PJ, Boldyreff C, Munro M, Characterising
Evolution in Web Sites, Proceedings of WSE'99, 1st
Annual Workshop on Web Site Evolution, pp. 46-48,
1999.

10. Aspden P, Katz J, Motivations for and barriers to
Internet usage, Internet Research: Electronic
Networking Applications and Policy, Vol. 7, No. 3, pp.
170-188, 1997.

11. Nielsen, J, Designing Web Usability, new Riders
Publishing, 2000.

12. Raggett D, Adding Style and Behaviour to Web Pages
with a Dash of Spice, Computer Networks and ISDN
Systems, Vol. 30, pp. 676-678, 1998.

13. van Ossenbruggen J, et al, Requirements for

Multimedia Markup and Style Sheets on the World
Wide Web, Computer Networks and ISDN Systems,
Vol. 30, pp. 694-696, 1998.

14. Hartman JH, et al, Index-based Hyperlinks, Computer
Networks and ISDN Systems, Vol. 29, pp. 1129-1135,
1997.

15. Baker, SB, On Finding Duplication and Near-
Duplication in Large Software Systems, Proceedings
of the Working Conference on Reverse Engineering,
IEEE Computer Society Press, 1995.

16. Mayrand J, Leblanc C, Merlo EM, Experiment on the
Automatic Detection of Function Clones in a Software
System Using Metrics, Proceedings of the International
Conference on Software Maintenance, IEEE Computer
Society Press, pp. 244-253, 1996.

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

 10

Proceedings of the Eighth Working Conference On Reverse Engineering (WCRE�01)
0-7695-1303-4/02 $17.00 © 2002 � IEEE

