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ABSTRACT

This paper examines the existence of solutions to the continuous Redner-Ben-Avraham-
Kahng coagulation system under specific growth conditions on unbounded coagulation
kernels at infinity. Moreover, questions related to uniqueness and continuous dependence
on the data are also addressed under additional restrictions. Finally, the large-time be-
haviour of solutions is also investigated.
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1. INTRODUCTION

A particulate process is a kinetic process that involves the changing of the physical
properties of particles. These processes are widely studied in a range of domains including
engineering, chemistry, physics, astronomy, and in other disciplines. During a particulate
process, particles may combine to form bigger particles or break down into smaller ones,
with a change in size, shape, volume, etc. Coagulation (aggregation), fragmentation
(breakage), nucleation, and growth are some of the different types of particulate processes.

Coagulation and fragmentation processes describe how clusters merge to form larger
ones and break apart into smaller fragments, respectively, in the dynamics of cluster
formation. In the most basic coagulation models, cluster particles are distinguished by
their cluster size (or volume), which can be continuous [12], or discrete [14], depending on
the physical circunstances. Many researchers have been interested in the mean field models
of the coagulation-fragmentation type [15], of which Smoluchowski’s coagulation system
is a prototype. Smoluchowski coagulation equation governs a fundamental dynamical
process which is illustrated by the binary interaction of a j-cluster (a cluster composed
of j identical particles) and a k-cluster to produce a (j + k)-cluster where the average
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cluster size generally increases with time. In contrast to coagulation, the basic dynamic
process of fragmentation involves the breakup of a given j-cluster into two or more smaller
clusters in which the average cluster size decreases with time.

These mean-field models have received a great deal of attention among the various
mathematical methods for modelling the dynamics of cluster formation.

We shall consider a coagulation system which models a different type of dynamics. This
is nothing but a cluster eating model which governs a coagulation problem that, despite its
primary mechanism being binary cluster reactions, exhibits cluster size development com-
parable to that of a fragmentation problem. Redner, Ben-Avraham and Kahng proposed
a finite-dimensional model based on this mechanism in [13] (see also [7]), later referred
to as the Redner–Ben–Avraham–Kahng (RBK) system. The process is essentially the
following: when particles of size j collides with particles of size i, the result is the partial
anhilation of the particles involved, with the formation of residue particles with size |i−j|
(or no particles left if i = j). Schematically, the process is

(cluster with size i) + (cluster with size j) −→ (cluster with size |i− j|). (1.1)

The infinite-dimensional RBK model describing the time evolution of the concentrations
of the various cluster sizes present in the system reads as (see [4])

d℘i

dt
=

∞∑
j=1

ai+j,j℘i+j℘j −
∞∑
j=1

ai,j℘i℘j, i ∈ N, (1.2)

where ℘i(t) is the concentration of i-clusters at time t ≥ 0 and ai,j is the non-negative and
symmetric (0 ≤ ai,j = aj,i ∀ i, j ∈ N) coagulation rate coefficient for the reaction (1.1).
The first sum on the right-hand side of (1.2) corresponds to the formation of clusters
of size i via the reaction (i + j) + (j) → (i), and the second sum to the destruction of
i-clusters by their reaction with clusters of any size, as in (1.1). This process is similar to
the coagulation-annihilation model with partial annihilation in which two or more species
of clusters, say A and B, are present, and if a cluster Ai reacts with a cluster Bj the
resulting cluster has size |i− j| and is an A cluster if i > j, is a B cluster if i < j, and is
an inert cluster, neither A or B, if i = j.

One of the major distinctions between the RBK and Smoluchowski coagulation models,
developed in 1917 by Marian v. Smoluchowski [14] to describe the coagulation of colloids
moving by Brownian motion, is the absence of the mass conservation property in the
RBK model. Smoluchowski coagulation equation was transformed by Müller [12] into
a continuous integral version in 1928. In a similar way, the continuous version of RBK
coagulation system corresponding to the discrete case (1.2) can be given as:

∂℘

∂t
=

∫ ∞

0

a(ς + ϱ, ϱ)℘(ς + ϱ, t)℘(ϱ, t)dϱ−
∫ ∞

0

a(ς, ϱ)℘(ς, t)℘(ϱ, t)dϱ (1.3)

with initial condition

℘(ς, 0) = ℘in(ς) ≥ 0, (1.4)

where ℘(ς, t) denotes the concentration of particles of volume ς ∈ R+ := (0,∞) at time
t ≥ 0. The non-negative quantity a(ς, ϱ) represents the coagulation rate at which particles
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of volume ς and particles of volume ϱ interact to produce particles of volume |ς − ϱ|.
The rate ‘a’ is also known as the coagulation kernel or coagulation coefficient, which, as
in the discrete case, is assumed to be non-negative and symmetric i.e. 0 ≤ a(ς, ϱ) =
a(ϱ, ς), ∀ (ς, ϱ) ∈ R2

+. The physical meaning of each of the integrals on the right hand
side of (1.3) is also similar to what was described above for the discrete case (1.2): the
first integral describes the creation of particles of size ς as a result of the coagulation
of two particles with respective sizes ϱ and ς + ϱ, while the second one represents the
disappearance of particles of size ς due to coalescence with other particles.

Furthermore, we require some information on the time evolution of moments of solutions
‘℘’ to (1.3) throughout this article. For the concentration ℘ of particles, we define the rth

moment by:

Mr(℘)(t) = Mr(t) :=

∫ ∞

0

ςr℘(ς, t)dς, for r ∈ R. (1.5)

For r = 0, the zeroth moment M0(t) represents the total number of particles while for
r = 1, the first moment M1(t) denotes the total mass (volume) of particles at time t.
Generally, both moments are assumed to be finite. For the RBK system, the zeroth
moment M0(t) is a decreasing function because of annihilation of particles and the first
moment M1(t) is not conserved but a decreasing function.

The primary goal of this research is to determine the existence and uniqueness of solu-
tions to the continuous RBK model (1.3)-(1.4), which does not satisfy mass conservation
property. Moreover, the continuous dependence on the input data and the large-time
behaviour of weak solutions have also been investigated. On the topic of the existence
and uniqueness of solutions to the Smoluchowski coagulation equation derived by using
various techniques under varied growth conditions on the coagulation kernel, several arti-
cles have been published, see [1, 2, 3, 6, 9, 10, 11, 15, 16]. However, The RBK coagulation
system has not been much explored. In [4], da Costa et al. established the existence and
uniqueness of solutions to (1.2) under reasonably general conditions on the coagulation
coefficients. Furthermore, they proved the differentiability of the solutions as well as their
continuous dependence on the input data. In addition, certain remarkable invariance as-
pects were illustrated. Finally, a study of the long-term behaviour of solutions as well
as a preliminary analysis of their scaling behaviour, were conducted. In [5] the authors
have discussed the large-time behaviour of solutions (℘i) to the RBK coagulation system
(1.2) with nonnegative compactly supported initial data, which, due to the invariance
properties alluded to above, turn system (1.2) into a finite-dimensional differential equa-
tion. However, to the best of our knowledge, the continuous version of the RBK model
(1.3)-(1.4) has not yet been taken into account at all, and this is the first mathemati-
cal contribution for investigating the existence, uniqueness, continuous dependence and
large-time behaviour of solutions to the continuous RBK model (1.3)-(1.4).

The article is organised in different sections. A few required definitions and assump-
tions, along with the main results, viz. existence, uniqueness and large-time behaviour of
solutions to (1.3)-(1.4) are stated in Section 2. Section 3 is devoted to prove the existence
of solutions to the continuous RBK system (1.3)-(1.4) for the initial data belongs to the
space X+

0,1 and to prove that the mass is not conserved and decreases with time. Next, the
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proof of Theorem 2.2 is described in Section 4 which shows the uniqueness of solutions to
(1.3)-(1.4). Further, the continuous dependence of solution on the initial data is shown in
the Section 5. At the end, the large-time behaviour of solutions to (1.3)-(1.4) is discussed
in the last section.

2. PRELIMINARIES AND MAIN RESULTS

Let us define the following Banach space:

X0,1 := L1(R+, (1 + x)dx),

with norm

∥f∥X0,1 :=

∫ ∞

0

(1 + x)|f(x)|dx.

Then we set

X+
0,1 := {y ∈ X0,1 : y ≥ 0},

which is the positive cone of the space X0,1.

Let us assume that the coagulation kernel ‘a’ is a non-negative, symmetric (0 ≤ a(ς, ϱ) =
a(ϱ, ς), ∀ (ς, ϱ) ∈ R2

+), and measurable function on R2
+ and that there are α ∈ [0, 1) and

a constant k ≥ 0 such that

a(ς, ϱ) ≤ k(1 + ς)α(1 + ϱ)α, (ς, ϱ) ∈ R2
+. (2.1)

We begin by defining the notion of the solution that will be used throughout the paper.

Definition 2.1. Let T ∈ (0,∞], ℘in ∈ X+
0,1, and the coagulation kernel ‘a’ satisfy (2.1). A

(mild) solution of (1.3)-(1.4) on [0, T ) is a solution of the corresponding integral equation,
namely: it is a non-negative real valued function ℘ : [0, T ) → X+

0,1 such that for every
t ∈ [0, T ), the following holds:

℘ ∈ C([0, T );L1(0,∞)) ∩ L∞(0, T ;X0,1), (2.2)

(ϱ, s) 7→ a(ς, ϱ)℘(ς, s)℘(ϱ, s) ∈ L1((0,∞) × (0, t)), (2.3)

and for almost every ς ∈ R+,

℘(ς, t) = ℘in(ς) +

∫ t

0

∫ ∞

0

a(ς + ϱ, ϱ)℘(ς + ϱ, s)℘(ϱ, s)dϱds

−
∫ t

0

∫ ∞

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱds. (2.4)

Our main contribution in this article is given by the following theorems:

Theorem 2.1. Suppose the coagulation kernel ‘a’ satisfies (2.1) and consider any initial
condition ℘in ∈ X+

0,1. Then, the initial value problem (1.3)-(1.4) has at least one solution
‘℘’ on [0,+∞), and it satisfies

M1(℘)(t) ≤ M1(℘
in), t ≥ 0.
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Theorem 2.2. Assume the coagulation kernel ‘a’ satisfies (2.1) with α ≤ 1
2
. and take

any non-negative initial condition ℘in ∈ X+
0,1. Then there exists a unique solution ‘℘’ of

(1.3)-(1.4) on [0,∞).

Theorem 2.3. Let ‘℘’ be a solution to (1.3)-(1.4) with ℘in ∈ X+
0,1. Assume that for

(ς, ϱ) ∈ R2
+, there exists W > 0 such that the coagulation kernel ‘a’ satisfies (2.1) along

with

a(ς, ϱ) ≥ W. (2.5)

Then

lim
t→∞

M0(t) = 0. (2.6)

Moreover, let us consider ‘a’ satisfying (2.1) and

a(ς, ϱ) ≥ C0(ςϱ)ω/2, (ς, ϱ) ∈ R2
+ (2.7)

for some ω ∈ (1, 2] and C0 > 0. Then

lim
t→∞

M1(t) = 0. (2.8)

3. EXISTENCE OF SOLUTIONS

The aim of this section is to construct solutions for the continuous RBK system (1.3)-
(1.4) having a initial condition ℘in ∈ X+

0,1. In order to attain this, we employ the weak
L1-compactness technique. This approach was first introduced in the classic work of
Stewart [15]. For a very clear presentation of the method in the context of the continuous
Smoluchowski’s equation see [10].

3.1. The truncated problem. The first step of this approach is the selection of an
approximate system to the continuous RBK equations (1.3)-(1.4) with initial condition
℘in ∈ X+

0,1. For this, we consider the so called n-truncated system, i.e., the equation that
results from considering that only clusters of sizes up to n are allowed to exist initially,
and so, due to the RBK dynamics, clusters outside this size range will never be formed.
The corresponding equation is

∂℘n

∂t
(ς, t) =

∫ n−ς

0

an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dϱ−
∫ n

0

an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱ, (3.1)

where (ς, t) ∈ (0, n) × R+, having initial condition

℘n(ς, 0) = ℘in
n (ς) = ℘in(ς)1(0,n)(ς), ς ∈ R+ (3.2)

where n ≥ 1 is a positive integer, and

an(ς, ϱ) = a(ς, ϱ)1(0,n)(ς)1(0,n)(ϱ), for (ς, ϱ) ∈ R2
+, (3.3)

and 1(0,n) is the characteristic function on the interval (0, n).
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Theorem 3.1. Let us consider (2.1) holds and ℘in
n ∈ X+

0,1. Then there exists a unique
non-negative solution ℘n ∈ C1([0,∞);L1(0, n)) to (3.1)-(3.2) which satisfies, for all ϕ ∈
L∞(0, n),

d

dt

∫ n

0

ϕ(ς)℘n(ς, t)dς =

∫ n

0

∫ ς

0

ϕ̃(ς, ϱ)an(ς, ϱ)℘(ς, t)℘(ϱ, t)dςdϱ, (3.4)

where ϕ̃(ς, ϱ) := ϕ(ς − ϱ) − ϕ(ς) − ϕ(ϱ), and∫ n

0

ς℘n(ς, t)dς =

∫ n

0

ς℘in
n dς − 2

∫ t

0

∫ n

0

∫ ς

0

ϱan(ς, ϱ)℘n(ς, s)℘n(ϱ, s)dϱdςds, (3.5)

for t ≥ 0 and n ≥ 1.

The proof of the above theorem easily follows from [3, Proposition 4.1].

3.2. Weak compactness. Firstly we computed the estimates for large and small sizes
to rule out the escaping of matter as ς → 0 or ς → ∞. This is further complemented
with the uniform integrability to prevents the concentration at a finite size. In view
of Dunford-Pettis’ theorem, these estimates ensure that the approximation sequence is
weakly compact with respect to the volume variable.

Lemma 3.1. Let T ∈ (0,∞). Let us assume that (2.1) holds true for coagulation kernel
‘a’, then the following are true

(1) For each t ∈ [0, T ], there exists L(T ) > 0 such that∫ n

0

(1 + ς)℘n(ς, t)dς ≤ L(T ) for n = 1, 2, 3, ... (3.6)

(2) Given ϵ > 0, there exists R > 0 such that for t ∈ [0, T ]

sup
n

{∫ ∞

R

℘n(ς, t)dς

}
≤ ϵ. (3.7)

(3) (Uniform Integrability) Choose ϵ > 0. Then there exists δϵ > 0 such that for
every measurable set A ⊂ (0,∞),∫

A

℘n(ς, t)dς < ϵ whenever µ(A) < δϵ

for all n = 1, 2, 3, ... and t ∈ [0, T ].

Proof. (1) Let n > 1, n ∈ N and t ∈ [0, T ], where T > 0 is fixed. Now, by using
(3.5), we obtain∫ n

0

(1 + ς)℘n(ς, t)dς =

∫ n

0

℘n(ς, t)dς +

∫ n

0

ς℘n(ς, t)dς

≤
∫ 1

0

℘n(ς, t)dς + 2

∫ n

0

ς℘n(ς, t)dς. (3.8)

Set ϕ(ς) = 1(0,1)(ς) in (3.4) and note that
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ϕ̃(ς, ϱ) :=


1, if (ς, ϱ) ∈ R7,

0, if (ς, ϱ) ∈ R4 ∪R6 ∪R8,

−1, if (ς, ϱ) ∈ R1 ∪R3 ∪R5,

−2, if (ς, ϱ) ∈ R2.

where the regions Rj are identified in Figure 1.

R1

R2

R3

R4
R5

R6

R7

R8

1 2 3

1

2

3

ς

ϱ

ϱ = 1
ς − ϱ = 1
ς = ϱ
ς = 1

Figure 1 Regions Rj where ϕ̃(ς, ϱ) has constant values

Since ϕ̃ have positive values only in the region R7 in which ς ∈ [1,∞), ϱ ∈ [1,∞),
(ς − ϱ) ∈ (0, 1), we get

d

dt

∫ 1

0

℘n(ς, t)dς ≤
∫ n

1

∫ ς

ς−1

an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

≤ 2

∫ 2

1

∫ 1

0

ς℘n(ς, t)℘n(ϱ, t)dϱdς + 2

∫ 2

1

∫ ς

1

ςϱ℘n(ς, t)℘n(ϱ, t)dϱdς

+2

∫ n

2

∫ ς

ς−1

ςϱ℘n(ς, t)℘n(ϱ, t)dϱdς

≤ 2M1(℘
in)

∫ 1

0

℘n(ς, t)dς + 4(M1(℘
in))2.

Integrating both sides with respect to t ∈ (0, T ) and using Gronwall’s lemma we
obtain ∫ 1

0

℘n(ς, t)dς ≤ N(T ),
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where

N(T ) = [∥℘in∥L1(R+),dς + 4T (M1(℘
in))2] exp(2TM1(℘

in)).

Next, from (3.5) we have∫ n

0

ς℘n(ς, t)dς ≤
∫ n

0

ς℘in
n dς ≤

∫ ∞

0

ς℘in
n dς = M1(℘

in) ≤ ∥℘in∥X0,1 ,

using the above inequality in (3.8), and defining, with L(T ) := N(T ) + 2M1(℘
in),

we conclude the proof of part (1) of Lemma 3.1.

(2) Let Rϵ > 0 be such that Rϵ >
L(T )

ϵ
for some fixed ϵ > 0. Then∫ ∞

Rϵ

℘n(ς, t)dς ≤ 1

Rϵ

∫ ∞

Rϵ

ς℘n(ς, t)dς

≤ 1

Rϵ

L(T )

for each t ∈ [0, T ] and positive integer n ≥ 1. The proof of part (2) of Lemma 3.1
is completed by taking the supremum over all n in the above inequality.

(3) Choose ϵ > 0. By (2.1), 0 ≤ α < 1 and we can therefore choose R > 1 such that

L(T )

R
+

k(L(T ))2

(1 + R)1−α
≤ ϵ. (3.9)

Let A ⊂ R+. Using part (2) we have, for all n ∈ N sufficiently large and
t ∈ [0, T ], ∫ ∞

R

1A(ς)℘n(ς, t)dς ≤
∫ ∞

R

℘n(ς, t)dς ≤ ϵ. (3.10)

For n ≥ 1, δ ∈ (0, 1), and t ∈ [0, T ], let us introduce the following notations:

En,R(t, δ) = sup

{ ∫ R

0
1A(ς)℘n(ς, t)dς :

A is a measurable subset of R+ with |A| ≤ δ

}
,

and

E in(t, δ) = sup

{ ∫ R

0
1A(ς)℘0(ς)dς :

A is a measurable subset of R+ with |A| ≤ δ

}
,

where 1A is the indicator function on the set A.

For T > 0, R > 1 and δ ∈ (0, 1), by Fubini’s Theorem

d

dt

∫ R

0

1A(ς)℘n(ς, t)dς

≤
∫ R

0

∫ n−ς

0

1A(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dϱdς

≤
∫ R

0

∫ R

0

1A(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dςdϱ︸ ︷︷ ︸
=:In1
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+

∫ n

R

∫ n−ϱ

0

1A(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dςdϱ︸ ︷︷ ︸
=:In2

. (3.11)

Then, again by Fubini’s theorem and applying the transformation ς + ϱ = ς ′ and
ϱ = ϱ′, the integral In1 can be estimated as follows (where we have dropped the ′ )

In1 =

∫ R

0

∫ ς

0

1A(ς − ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dςdϱ︸ ︷︷ ︸
=:In1,1

+

∫ 2R

R

∫ R

ς−R

1A(ς − ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dςdϱ︸ ︷︷ ︸
=:In1,2

.

Since (A + ϱ) ∩ (0, ς) ⊂ (0, R) and |(A + ϱ) ∩ (0, ς)| ≤ |A + ϱ| = |A| ≤ δ then it
follows by (2.1) and (3.6) that

In1,1 ≤ kL(T )(1 + R)αEn,R(t, δ).

Next, for In1,2, since (ς − A) ∩ (ς − R,R) ⊂ (0, R) and |(ς − A) ∩ (ς − R,R)| ≤
|ς − A| = |A| ≤ δ it follows by a similar way to above that

In1,2 ≤ kL(T )(1 + R)αEn,R(t, δ).

Therefore, we have

In1 ≤ 2kL(T )(1 + R)αEn,R(t, δ).

Now, for ϵ > 0, from part (2), we have∫ n

R

℘n(ς, t)dς =

∫ n

0

∫ ς

0

[1(R,n)(ς − ϱ) − 1(R,n)(ς) − 1(R,n)(ϱ)] ×

×an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

≤ L(T )

R
,

and so by (2.1), (3.9), Fubini’s Theorem and part (1) of the present lemma, we
get∫ n

0

∫ ς

0

1(R,n)(ς − ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

≤ L(T )

R
+

∫ n

0

∫ ς

0

1(R,n)(ς)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

+

∫ n

0

∫ ς

0

1(R,n)(ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

≤ L(T )

R
+

∫ n

0

∫ n

0

1(R,n)(ς)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς
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≤ L(T )

R
+ k

∫ n

R

(1 + ς)α℘n(ς, t)dς

∫ n

0

(1 + ϱ)α℘n(ϱ, t)dϱ

≤ L(T )

R
+

k(L(T ))2

(1 + R)1−α
≤ ϵ.

Therefore, from above inequality and Fubini’s theorem, we obtain

In2 =

∫ n

R

∫ n−ϱ

0

1A(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dςdϱ

=

∫ n

R

∫ ς

R

1A(ς − ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς ≤ ϵ.

Hence, it follows from (3.11) and the bounds on In1 and In2 , that

d

dt
En,R(t, δ) ≤ 2kL(T )(1 + R)αEn,R(t, δ) + ϵ.

Since ϵ > 0 is arbitrary, we conclude that

d

dt
En,R(t, δ) ≤ 2kL(T )(1 + R)αEn,R(t, δ).

Finally, by Gronwall’s lemma we get

En,R(t, δ) ≤ E in(δ) exp(2kTL(T )(1 + R)α),

and the proof of part (3) is completed by taking the limit as δ → 0 and using the
uniform integrability of ℘in.

□

Hence by the Dunford-Pettis theorem, for each t ∈ [0, T ], we have a sequence {℘n}n>1

which lies in a weakly compact subset of L1(R+, dz) with respect to the volume variable.

3.3. Time equicontinuity. The weak compactness issue has been resolved by the results
of the previous section. Now, we will look for the time variable. For this, we need the
following lemma.

Lemma 3.2. Suppose that t1, t2 ∈ [0, T ], T < ∞, and the assumptions of Lemma 3.1
still hold. Then, for λ ∈ (1,+∞) we have∫ λ

0

|℘n(ς, t2) − ℘n(ς, t1)|dς ≤ L(λ, T )|t2 − t1|, (3.12)

where L(·) > 0 is a function dependent on the parameters k and ℘in.

Proof. Let t > 0. By (3.1) we have∫ λ

0

|℘n(ς, t2) − ℘n(ς, t1)|dς

≤
∫ t2

t1

[ ∫ n

0

∫ n−ς

0

1(0,λ)(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dϱdς︸ ︷︷ ︸
=:L1,n
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+

∫ n

0

∫ n

0

1(0,λ)(ς)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς︸ ︷︷ ︸
=:L2,n

]
dt (3.13)

Using Fubini’s theorem,

L1,n(℘n)(λ, t) =

∫ n

0

∫ n−ς

0

1(0,λ)(ς)an(ς + ϱ, ϱ)℘n(ς + ϱ, t)℘n(ϱ, t)dϱdς

=

∫ n

0

∫ n

ϱ

1(0,λ)(ς − ϱ)an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dςdϱ

≤
∫ n

0

∫ ς

0

an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς ≤ 2kL2(T ). (3.14)

Next, for ς ∈ (0, λ) and λ ∈ (1, n),

an(ς, ϱ) ≤ k(2 + λ)(1 + ϱ)α,

and using the above inequality we get

L2,n(℘n)(λ, t) =

∫ λ

0

∫ n

0

an(ς, ϱ)℘n(ς, t)℘n(ϱ, t)dϱdς

≤ k(2 + λ)

∫ λ

0

∫ n

0

(1 + ϱ)α℘n(ς, t)℘n(ϱ, t)dϱdς

≤ 2k(2 + λ)L2(T ). (3.15)

Now, using (3.14) and (3.15) in (3.13) and defining

L(λ, T ) := 2k(3 + λ)L2(T ),

the proof of Lemma 3.2 is completed. □

For any given ϵ > 0 and ϕ ∈ L∞(R+) there exists λϵ > 1 such that

L(T )

λϵ

<
ϵ

4∥ϕ∥L∞
.

Next, for n ≥ 1 and t ∈ [0, T ], using (3.7), we have∫ ∞

λϵ

℘n(ς, t)dς <
ϵ

4∥ϕ∥L∞
. (3.16)

Therefore, for t1, t2 ∈ [0, T ], by using (3.12) and (3.16), we get∣∣∣∣ ∫ ∞

0

ϕ(ς)[℘n(ς, t2) − ℘n(ς, t1)]dς

∣∣∣∣ ≤ ∥ϕ∥L∞

∫ λϵ

0

|℘n(ς, t2) − ℘n(ς, t1)|dς +
ϵ

2

≤ ∥ϕ∥L∞L(λϵ, T )|t2 − t1| +
ϵ

2
≤ ϵ, (3.17)

provided

|t2 − t1| ≤ δ(ϵ, T ) :=
ϵ

2∥ϕ∥L∞L(λϵ, T )
.
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The time equicontinuity of the family {℘n(t), t ∈ [0, T ]} in L1(R+) is implied from the
estimate (3.17). Thus, a refined version of the Arzelà−Ascoli Theorem (see [15, Theorem
2.1]) implies the existence of a subsequence (℘n) (not relabelled) and a function ℘ ∈
L∞((0, T );L1(R+)) such that

℘n → ℘ in C([0, T ];L1(R+)w), (3.18)

which means

lim
n→∞

sup
t∈[0,T ]

{∣∣∣∣ ∫ ∞

0

{℘n(ς, t) − ℘(ς, t)}ϕ(ς)dς

∣∣∣∣} = 0, (3.19)

for all T > 0 and ϕ ∈ L∞(R+). Non-negativity of ℘n(., t),∀ n ∈ N, implies that, for every
t ∈ [0, T ],

℘(., t) ≥ 0 a.e. in R+.

Finally, applying the weak convergence of ℘n(t2) − ℘n(t1) to ℘(t2) − ℘(t1) from (3.18),
Lemma 3.1, and taking ϕ(ς) = sign(℘n(ς, t2) − ℘n(ς, t1)) in (3.17), we conclude that

∥℘(t1) − ℘(t2)∥L1(R+) ≤ ε.

Hence, we have

℘ ∈ C([0, T ];L1(R+)), (3.20)

where C([0, T ];L1(R+)) is the space of all continuous functions from [0, T ] to L1(R+).

3.4. Convergence of the approximations of the integrals. We are now in a position
to complete the proof of the existence of at least one solution to the continuous RBK
model. For this, we show that the function ℘ is indeed a solution to (1.3)-(1.4) in the
sense of Definition 2.1. In order to prove our claim, we demonstrate that the truncated
integrals on the right-hand side to (3.1) converge weakly to the integrals on the right-
hand to (1.3).

Let T ∈ (0,+∞) and W > 0. For W ≤ n, by using (3.6) we obtain∫ T

0

∫ W

0

∫ W

0

a(ς, ϱ)℘n(ς, s)℘n(ϱ, s)dϱdςds ≤ k

∫ T

0

(∫ W

0

(1 + ς)α℘n(ς, s)dς

)2

ds

≤ k

∫ T

0

(∫ n

0

(1 + ς)℘n(ς, s)dς

)2

ds

≤ kL(T )2T =: C1(T ).

It thus follows from (3.18) and the Lebesgue dominated convergence theorem that∫ T

0

∫ W

0

∫ W

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤ C1(T ),

and, as W > 0 is arbitrary, we have∫ T

0

∫ ∞

0

∫ ∞

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤ C1(T ). (3.21)
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From (3.6) we conclude that

sup
t∈[0,T ]

∥℘(t)∥X0,1 ≤ C2(T ). (3.22)

Therefore, (2.3) holds by using (2.1), (3.21), (3.22) and Fubini theorem.

Let us consider a function ϕ ∈ L∞(R+) and t ∈ [0,+∞). Using (3.2) and (3.18) we
obtain

lim
n→∞

∫ ∞

0

ϕ(ς)(℘n(ς, t) − ℘in
n (ς))dς =

∫ ∞

0

ϕ(ς)(℘(ς, t) − ℘in(ς))dς. (3.23)

Next, choose b > 0. For n ≥ 1 and s ∈ (0, t), we set

Z1,n(b, s) :=

∫ b

0

∫ ς

0

ϕ̃(ς, ϱ)an(ς, ϱ)℘n(ς, s)℘n(ϱ, s)dϱdς

Z2,n(b, s) :=

∫ ∞

b

∫ ς

0

ϕ̃(ς, ϱ)an(ς, ϱ)℘n(ς, s)℘n(ϱ, s)dϱdς

and

Z1(b, s) :=

∫ b

0

∫ ς

0

ϕ̃(ς, ϱ)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

Z2(b, s) :=

∫ ∞

b

∫ ς

0

ϕ̃(ς, ϱ)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

where ϕ̃(ς, ϱ) = ϕ(ς − ϱ) − ϕ(ς) − ϕ(ϱ).

Now, for n ≥ b and (ς, ϱ) ∈ (0, b)2, we have an(ς, ϱ) = a(ς, ϱ). Using this along with
(3.18) and [9, Lemma 2.9] it follows that

lim
n→+∞

Z1,n(b, s) = Z1(b, s).

From (3.7) and the Lebesgue dominated convergence theorem together with the above
identity it follows that

lim
n→+∞

∫ t

0

Z1,n(b, s)ds =

∫ t

0

Z1(b, s)ds. (3.24)

Next, by using (2.1), (3.4) and (3.6), we obtain∫ t

0

Z2,n(b, s)ds

≤ 3k

(1 + b)1−α
∥ϕ∥L∞(0,+∞)

∫ t

0

(∫ ∞

0

(1 + ς)℘n(ς, s)dς

)(∫ ∞

0

(1 + ϱ)α℘n(ϱ, s)dϱ

)
ds

≤ 6kTL(T )2

(1 + b)1−α
∥ϕ∥L∞(0,+∞) ≤ C3(T )

(1 + b)1−α
∥ϕ∥L∞(0,+∞), (3.25)

where C3(T ) := 6kL2(T ). Similarly, let C4(T ) be a constant depending on T , k and
℘in. Then
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∫ t

0

Z2(b, s)ds ≤
C4(T )

(1 + b)1−α
∥ϕ∥L∞(0,+∞). (3.26)

Hence, from (3.24)-(3.26), we get

lim sup
n→+∞

∣∣∣∣ ∫ t

0

[
(Z1,n(b, s) + Z2,n(b, s)) − (Z1(b, s) + Z2(b, s))

]
ds

≤ C5(T )

(1 + b)1−α
∥ϕ∥L∞(0,+∞).

The right hand side of the previous inequality is independent of b > 0 and so it is valid
for each b > 0. Hence, we get

lim
n→∞

∫ t

0

∫ ∞

0

∫ ς

0

ϕ̃(ς, ϱ)an(ς, ϱ)℘n(ς, s)℘n(ϱ, t)dϱdςds

=

∫ t

0

∫ ∞

0

∫ ς

0

ϕ̃(ς, ϱ)a(ς, ϱ)℘(ς, s)℘(ϱ, t)dϱdςds. (3.27)

Next, by using (3.23), (3.27) and take n → ∞ in (3.4), we obtain that ℘ satisfies∫ ∞

0

ϕ(ς)(℘(ς, t) − ℘in(ς))dς =

∫ t

0

∫ ∞

0

∫ ς

0

ϕ̃(ς, ϱ)a(ς, ϱ)℘(ς, s)℘(ϱ, t)dϱdςds. (3.28)

Here, ϕ̃ is defined as in (3.4). However, due to (2.3), the Fubini theorem allows us to
rephrase the right-hand side term of (3.28) as∫ ∞

0

ϕ(ς)

∫ t

0

(∫ ∞

0

a(ς + ϱ, ϱ)℘(ς + ϱ, s)℘(ϱ, s)dϱ

−
∫ ∞

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱ

)
dsdς.

Hence, (3.28) can also be written as∫ ∞

0

ϕ(ς)(℘(ς, t) − ℘in(ς))dς

=

∫ ∞

0

ϕ(ς)

∫ t

0

(∫ ∞

0

a(ς + ϱ, ϱ)℘(ς + ϱ, s)℘(ϱ, s)dϱ

−
∫ ∞

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱ

)
dsdς.

As this equality holds for every ϕ ∈ L∞(R+) and by recalling (3.21) and (3.22), we have
shown that ℘ being a weak solution to (1.3)-(1.4) on [0,∞) in the sense of Definition 2.1.

Next, we prove that any weak solution ‘℘’ to (1.3)-(1.4) on [0, T ), T ∈ R+, in the sense
of Definition 2.1 is not mass-conserving and it satisfies

M1(℘)(t) ≤ M1(℘
in), t ≥ 0. (3.29)
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To prove this let ℘n be the solution to the (3.1)-(3.2) for ς ∈ R+. Set ϕ(ς) = 1 and
ϕ(ς) = ς in (3.4), respectively, then we conclude that the total number of particles and
total mass of particles decreases with time (t ≥ 0). Thus∫ n

0

ς℘n(ς, t)dς ≤
∫ n

0

ς℘n(ς, 0)dς

=

∫ n

0

ς℘(ς, 0)dς

≤
∫ ∞

0

ς℘n(ς, 0)dς = M1(℘
in).

Taking n → ∞ in the above inequality we obtain (3.29) for each t ∈ (0, T ].
This complete the proof of Theorem 2.1.

4. UNIQUENESS OF SOLUTIONS

The construction of solutions to the continuous RBK system using weak compactness
arguments has drawback that uniqueness has to be evaluated independently. Thus, the
goal of the present section is to prove Theorem 2.2. For this, we need following lemma:

Lemma 4.1. Let ℘ be the solution of (1.3). Consider g be a measurable function on R+.
For t2 ∈ (0,∞) and t1 ∈ [0, t2), there holds∫ n

0

g(ς)[℘(ς, t2) − ℘(ς, t1)dς

=

∫ t2

t1

[ ∫ n

0

∫ ς

0

[g(ς − ϱ) − g(ς) − g(ϱ)]a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

+

∫ ∞

n

∫ ς

ς−n

g(ς − ϱ)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

−
∫ n

0

∫ ∞

n

g(ς)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

]
ds. (4.1)

Proof. By Fubini’s theorem (2.4), we get∫ n

0

g(ς)[℘(ς, t2) − ℘(ς, t1)dς

=

∫ t2

t1

[ ∫ ∞

0

∫ n

0

g(ς)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

−
∫ n

0

∫ ∞

0

g(ς)a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

]
ds.

Next, set ς + ϱ = ς ′ and ϱ = ϱ′ and use Fubini’s theorem again to we conclude (4.1). □

Proof. (of Theorem 2.2) Let d1 and d2 in X+
0,1 be two solutions to (1.3)-(1.4) on [0, T ],

where T > 0, with d1(ς, 0) = d2(ς, 0). Let G = d1 − d2,

X(ς, ϱ, t) = a(ς, ϱ)[d1(ς, t)d1(ϱ, t) − d2(ς, t)d2(ϱ, t)]

= a(ς, ϱ)[d1(ς, t)G(ϱ, t) + G(ς, t)d2(ϱ, t)],
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and define Y (t) as

Y (t) =

∫ n

0

(1 + ς)β|G(ς, t)|dς,

with α ≤ β ≤ 1 − α. By using |G(ς, t)| = sign(G(ς, t))G(ς, t) in above identity, we get

Y (t) =

∫ n

0

(1 + ς)βsign(G(ς, t))(d1(ς, t) − d2(ς, t))dς. (4.2)

Now, from (4.1) with g(ς) = (1 + ς)βsign(Y (ς, t)) and let

B(ς, ϱ, s) = (1 + ς − ϱ)βsign(G(ς − ϱ, s)) − (1 + ς)βsign(G(ς, s)) − (1 + ϱ)βsign(G(ϱ, s)),

we obtain

Y (t) =

∫ ∞

0

(1 + ς)βsign(G(ς, t))d1(ς, t)dς −
∫ ∞

0

(1 + ς)βsign(G(ς, t))d2(ς, t)dς

=

∫ t

0

∫ ∞

0

∫ ς

0

B(ς, ϱ, s)X(ς, ϱ, s)dϱdςds︸ ︷︷ ︸
=:A1(t)

+

∫ t

0

∫ ∞

n

∫ ς

ς−n

(1 − ς − ϱ)βsign(Y (ς − ϱ, s))X(ς, ϱ, s)dϱdςds︸ ︷︷ ︸
=:A2(t)

−
∫ t

0

∫ n

0

∫ ∞

n

(1 − ς)βsign(Y (ς, s))X(ς, ϱ, s)dϱdςds︸ ︷︷ ︸
=:A3(t)

. (4.3)

We can easily see that in A1, A2 and A3

ϱ ≤ ς =⇒ ϱ ≤ 1 + ς =⇒ 1 + ς − ϱ ≥ 0,

α ≤ β =⇒ (1 + ς)α ≤ (1 + ς)β,

and

1 + ς − ϱ ≤ 1 + ς =⇒ (1 + ς − ϱ)β ≤ (1 + ς)β.

Using the properties of signum function, we estimate B as

B(ς, ϱ, s)G(ϱ, s)

≤ [(1 + ς − ϱ)β + (1 + ς)β − (1 + ϱ)β]|G(ϱ, s)|
≤ [(1 + ς − ϱ)β + (1 + ς)β]|G(ϱ, s)| ≤ 2(1 + ς)β|G(ϱ, s)|, (4.4)

and

B(ς, ϱ, s)G(ς, s)

≤ [(1 + ς − ϱ)β − (1 + ς)β + (1 + ϱ)β]|G(ς, s)|
≤ (1 + ϱ)β|G(ς, s)|. (4.5)
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Next, from (2.1), (4.4) and (4.5), we evaluate A1 as

A1(t) ≤ 2k

∫ t

0

[ ∫ n

0

(1 + ς)d1(ς, s)

∫ ς

0

(1 + ϱ)α|G(ϱ, s)|dϱdς
]
ds

+k

∫ t

0

[ ∫ n

0

(1 + ς)α|G(ς, s)|
∫ ς

0

(1 + ϱ)d2(ϱ, s)dϱdς

]
ds

= 3kL(T )

∫ t

0

Y (s)ds. (4.6)

For A2, again by using (2.1) and |Y (ς, s)| ≤ d1(ς, s) + d2(ς, s), we obtain

A2(t) ≤ k(1 + n)β
∫ t

0

[ ∫ ∞

n

(1 + ς)αd1(ς, s)

∫ ς

ς−n

(1 + ϱ)α|G(ϱ, s)|dϱdς
]
ds

+k(1 + n)β
∫ t

0

[ ∫ ∞

n

(1 + ς)α|G(ς, s)|
∫ ς

ς−n

(1 + ϱ)αd2(ϱ, s)dϱdς

]
ds

≤ kL(T )

∫ t

0

[ ∫ ∞

0

(1 + ς)β|G(ς, s)|dς
]
ds

+kL(T )

∫ t

0

[ ∫ ∞

n

(1 + ς)d1(ς, s)dς +

∫ ∞

n

(1 + ς)d2(ς, s)dς

]
ds. (4.7)

And finally, for A3, we see that

−(1 + ς)βsign(G(ς, s))G(ς, s) ≤ −(1 + ς)β|G(ς, s)| ≤ 0,

and
−(1 + ς)βsign(G(ς, s))G(ϱ, s) ≤ (1 + ς)β|G(ς, s)| ≥ 0.

Then

−A3(t) ≤
∫ t

0

[ ∫ n

0

(1 − ς)d1(ς, s)

∫ ∞

n

(1 − ϱ)β|G(ϱ, s)|dϱdς
]
ds

≤ kL(T )

∫ t

0

[ ∫ ∞

0

(1 + ς)β|G(ς, s)|dς
]
ds. (4.8)

Inserting the estimates on A1(t), A2(t) and A3(t) from (4.6)–(4.7) into (4.3), we obtain

Y (t) ≤ 3kL(T )

∫ t

0

Y (s)ds + 2kL(T )

∫ t

0

∫ ∞

0

(1 + ς)β|G(ς, s)|dςds (4.9)

+kL(T )

∫ t

0

[ ∫ ∞

n

(1 + ς)d1(ς, s)dς +

∫ ∞

n

(1 + ς)d2(ς, s)dς

]
ds. (4.10)

By the definition of solution, we have∫ ∞

n

(1 + ς)d1(ς, s)dς → 0, as n → ∞ pointwise,

and ∫ ∞

n

(1 + ς)d1(ς, s)dς ≤
∫ ∞

n

1d1(ς, s)dς +

∫ ∞

n

ςd1(ς, s)dς ≤ M0(0) + M1(0).
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Thus, by the dominated convergence theorem, we get∫ t

0

∫ ∞

n

(1 + ς)d1(ς, s)dςds → 0, as n → ∞.

Therefore, letting n → ∞ in (4.9), we conclude that∫ ∞

0

(1 + ς)β|G(ς, s)|dς ≤ 5kL(T )

∫ t

0

∫ ∞

0

(1 + ς)β|G(ς, s)|dςds.

Since G(., 0) = 0, Gronwall’s lemma implies∫ ∞

0

(1 + ς)β|G(ς, s)|dς = 0,

and so d1(ς, t) = d2(ς, t) a.e. for each ς ∈ (0,∞) and t ∈ [0, T ), which confirms the
uniqueness of solutions to (1.3)-(1.4). This completes the proof of Theorem 2.2. □

5. CONTINUOUS DEPENDENCE

In order to show the continuous dependence relatively to the initial condition we prove
the following partial result:

Theorem 5.1. Consider ‘℘1’ and ‘℘2’ are the solutions of (1.3) with initial condi-
tions ℘1(0) = ℘in

1 and ℘2(0) = ℘in
2 . Also, assume that the coagulation kernel ‘a’ sat-

isfies (2.1) with 0 ≤ α ≤ 1/2. Then, for each t ≥ 0, there is a positive constant
V (t, ∥℘in

1 ∥X0,1 , ∥℘in
2 ∥X0,1) such that

∥℘1(t) − ℘2(t)∥(L1(R+);(1+ς)βdς) ≤ V (t, ∥℘in
1 ∥X0,1 , ∥℘in

2 ∥X0,1)∥℘in
1 − ℘in

2 ∥(L1(R+);(1+ς)βdς), (5.1)

where α ≤ β ≤ 1 − α.

Proof. According to the Definition 2.1, ℘1 and ℘2 are given as

℘1(ς, t) = ℘in
1 (ς) +

∫ t

0

∫ ∞

0

a(ς + ϱ, ϱ)℘1(ς + ϱ, s)℘1(ϱ, s)dϱds

−
∫ t

0

∫ ∞

0

a(ς, ϱ)℘1(ς, s)℘1(ϱ, s)dϱds,

and

℘2(ς, t) = ℘in
2 (ς) +

∫ t

0

∫ ∞

0

a(ς + ϱ, ϱ)℘2(ς + ϱ, s)℘2(ϱ, s)dϱds

−
∫ t

0

∫ ∞

0

a(ς, ϱ)℘2(ς, s)℘2(ϱ, s)dϱds.

Now, for all ς ∈ (0,∞) and t ≥ 0, let us define f = ℘1 − ℘2 and

g(t) =

∫ ∞

0

(1 + ς)β|f(ς, t)|dς, (5.2)

and by the same calculations as in the proof of Theorem 2.2, we obtain

g(t) ≤ g(0) + k(2∥℘in
1 ∥X0,1 + 3∥℘in

2 ∥X0,1)

∫ t

0

g(s)ds.
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Applying Gronwall’s lemma, we obtain

g(t) ≤ V (t, ∥℘in
1 ∥X0,1 , ∥℘in

2 ∥X0,1)g(0),

where,

V (t, ∥℘in
1 ∥X0,1 , ∥℘in

2 ∥X0,1) := exp[kt(2∥℘in
1 ∥X0,1 + ∥℘in

2 ∥X0,1)].

This completes the proof of Theorem 5.1. □

6. LARGE-TIME BEHAVIOUR

In this section we discuss aspects of the large-time behaviour of solutions to the con-
tinuous RBK equation (1.3)-(1.4) which is motivated from [8]. Because of the cluster
eating mechanism the total number of particles, as well as the total mass of the system
are expected to go to zero when time tends to infinity. This is stated in Theorem 2.3.
Our aim of this section is to prove this theorem, for which we need the following lemmas.
Throughout this section we consider ℘in ∈ X+

0,1, ℘in ̸= 0 and ℘ denotes a solution to
(1.3)-(1.4) on (0,+∞).

Lemma 6.1. For s2 ≥ s1 ≥ 0, we have∫ ∞

0

ςj℘(ς, s2)dς ≤
∫ ∞

0

ςj℘(ς, s1)dς (6.1)

where j ∈ [0, 1].

Proof. Let R ≥ 1 and t = s1 and t = s2. Then from (2.4) and Fubini’s theorem, we get∫ ∞

0

℘(ς, s2) min{ςj, Rj}dς −
∫ ∞

0

℘(ς, s1) min{ςj, Rj}dς

=

∫ s2

s1

[ ∫ ∞

0

∫ ∞

0

min{ςj, Rj}a(ς + ϱ, ϱ)℘(ς + ϱ, s)℘(ϱ, s)dϱdς

−
∫ ∞

0

∫ ∞

0

min{ςj, Rj}a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

]
ds

=

∫ s2

s1

∫ ∞

0

∫ ς

0

[min{(ς − ϱ)j, Rj} − min{ςj, Rj} − min{ϱj, Rj}]a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds.

Since j ∈ [0, 1], we have min((ς − ϱ)j, Rj) − min(ςj, Rj) − min(ϱj, Rj) ≤ 0 for 0 ≤ ϱ ≤ ς.
Using this we obtain, for R ≥ 1,∫ ∞

0

℘(ς, s2) min{ςj, Rj}dς ≤
∫ ∞

0

℘(ς, s2) min{ςj, Rj}dς.

Owing to Definition 2.1, we may let R → ∞ in above inequality and get (6.1). This
completes proof of Lemma 6.1. □

Lemma 6.2. For s2 ≥ s1 ≥ 0 and Q > 0, we have∫ s2

s1

∫ ∞

0

∫ ∞

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤
∫ ∞

0

℘(ς, s1)dς (6.2)
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and ∫ s2

s1

∫ ∞

Q

∫ ∞

Q

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤ 2

Q

∫ ∞

0

ς℘(ς, s1)dς (6.3)

Proof. From (2.4) and Fubini’s theorem, we obtain, as above,∫ s2

s1

∫ ∞

0

∫ ς

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds =

∫ ∞

0

℘(ς, s1)dς −
∫ ∞

0

℘(ς, s2)dς.

Since the above inequality is true for each ς ∈ (0,∞), so we get (6.2).

Next, for proving (6.3), multiplying both side of (2.4) by min{ς, Q} then integrating
with respect to ς and using Fubini’s theorem, we notice that∫ ∞

0

℘(ς, s2) min{ς, Q}dς −
∫ ∞

0

℘(ς, s1) min{ς, Q}dς

=

∫ s2

s1

[ ∫ ∞

0

∫ ∞

0

min{ς, Q}a(ς + ϱ, ϱ)℘(ς + ϱ, s)℘(ϱ, s)dϱdς

−
∫ ∞

0

∫ ∞

0

min{ς, Q}a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdς

]
ds

=

∫ s2

s1

∫ ∞

0

∫ ς

0

[min{(ς − ϱ}, Q} − min{ς, Q} − min{ϱ,Q}]a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds,

where

min{ς − ϱ,Q} − min{ς, Q} − min{ϱ,Q} ≤


−2ϱ, if ς ≤ Q

−ϱ, if ς > Q, ϱ < Q

−Q, if ς > Q, ϱ > Q,

and using these values in the integral above we conclude that∫ s2

s1

∫ ∞

Q

∫ ∞

Q

Qa(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤
∫ ∞

0

ς℘(ς, s1)dς −
∫ ∞

0

ς℘(ς, s2)dς.

Using (6.1) with j = 1 we obtain (6.3). □

We are now ready to prove Theorem 2.3.

To prove the first assertion of the theorem, consider

 L(ν, t) :=

∫ ∞

ν

℘(ς, t)dς, where ν > 0, and t ≥ 0.

Then, for s2 ≥ s1 ≥ 0

 L(ν, s2) −  L(ν, s1)

≤ −
∫ s2

s1

∫ 2ν

ν

∫ ν

ς−ν

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds

−
∫ s2

s1

∫ ∞

ν

∫ ς

ν

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds ≤ 0 (6.4)
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From (6.4), we can easily see that  L(ν, .) is a non-increasing and non-negative function of
time, which implies there exists  L(ν) ≥ 0 such that

lim
t→+∞

 L(ν, t) =  L(ν). (6.5)

Again from (6.2), we deduce that (2.5) gives, for U ∈ (ν,∞), that∫ t

0

(∫ U

ν

℘(ς, s)dς

)2

ds ≤ 1

W

∫ t

0

∫ U

0

∫ U

0

a(ς, ϱ)℘(ς, s)℘(ϱ, s)dϱdςds

≤ 1

W
M0(0),

and so

t 7−→  L(ν, t) −  L(U, t) ∈ L2(0,+∞). (6.6)

Next, from (6.5), (6.6) and time monotonicity of  L(U, .) we have

0 ≤  L(ν) =  L(U) ≤  L(U, 0), U ∈ (ν,∞).

Since ℘in ∈ L1(R+), we pass to the limit as U → ∞ in the above identity to conclude
that  L(ν) = 0 for each ν > 0. We next observe that

∥℘(t)∥L1(0,+∞) =

∫ ν

0

℘(ς, t)dς +  L(ν, t).

Now, letting t → +∞ and then ν → 0, we obtain

lim
t→+∞

∫ ∞

0

℘(ς, t)dς = 0.

This implies (2.6).

Now, to prove the second assertion of the theorem, we argue as in [8]. For this, let us
take ϑ(x) = (x1−ω/2 − 1)+, x ∈ R+, where ω ∈ (1, 2). Since ω + 1 > 2 and ϑ vanishes in
a neighbourhood of x = 0, we notice that

ℑ =

∫ ∞

0

ϑ′(x)x−1/2dx < +∞,

Next, for s2 ≥ s1 ≥ 0, Hölder inequality, (2.7), and (6.3) imply that∫ s2

s1

(∫ ∞

0

ϑ′(Q)

∫ ∞

Q

ςω/2℘(ς, s)dςdQ

)2

ds

≤ 2ℑ2

C0

M1(s1).

Noticing that ∫ ∞

0

ϑ′(Q)

∫ ∞

Q

ςω/2℘(ς, s)dudQ ≥ K(ω)

∫ ∞

2

ς℘(ς, s)dς,

and combining the previous inequalities we get∫ s2

s1

(∫ ∞

2

ς℘(ς, s)dς

)2

ds ≤ KM1(s1) (6.7)
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where K is a positive constant which depends only on ω and C0. Now, from (2.7) and
(6.2), we notice that ∫ s2

s1

(∫ 2

0

ς℘(ς, s)dς

)2

ds ≤ KM0(s1). (6.8)

Next, using (6.1), (6.7), (6.8) and Young’s inequality, we conclude that∫ ∞

0

M1(s)
2ds ≤ K

∫ ∞

0

(1 + ς)℘(ς, s1)dς

≤ K(M0(0) + M1(0)). (6.9)

which implies M1(t) ∈ L2(0,∞). Also, (6.1) with j = 1 implies that the total mass is a
decreasing and non-negative function. Therefore,

lim
t→∞

M1(t) = 0.

Finally, for ω = 2 also, from (2.7) and (6.2), the identity (6.9) holds true. This completes
proof of Theorem 2.3.
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[9] Laurençot, Ph., On a class of continuous coagulation-fragmentation equations, J. Differ. Equ. 167,
245–274, 2000.
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