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Abstract

Characterizing the stimulus selectivity of sensory neurons is an important
step towards understanding how information about the world is represented
in the brain. However, this is a computationally challenging task, in par-
ticular due to the probabilistic nature of the relationship between external
stimuli and neural responses and the high dimensionality of the space of
natural stimuli. State-of-the-art receptive field identification methods based
on empirical Bayes scale poorly to high-dimensional settings, and computa-
tionally efficient implementations rely on stringent assumptions about the
spike generation process. Furthermore, these models fail to provide prin-
cipled credible intervals for experimentally relevant parameters making it
hard to propagate uncertainty for hypothesis testing in regimes of sparse or
noisy data.

Here, we present a full Bayesian approach to identify receptive fields
in sparse data regimes, which provides also a principled quantification of
the estimation uncertainty. We take advantage of the fact that, for many
sensory areas, there are canonical models that explain how neurons encode
their inputs into firing rates. These models usually rely on few, interpretable
parameters and can be used to constrain the space of receptive fields that
can explain the data. While such models may not be flexible enough to
capture all nuances of a particular receptive field, they can be effective for
obtaining a fast characterization of the encoding properties of a neuron.

We perform Bayesian inference directly on these model parameters and
we show that we can detect the presence of a receptive field with a few
tenths of measured spikes in physiological conditions. Furthermore, we in-
vestigate how different amounts of data constrain the model parameters and
we illustrate how a full Bayesian approach can be used to test competing
hypotheses and characterize a dataset of real, sparsely-sampled neurons. In
this work, our focus is directed in modeling neurons in visual cortical areas,
but our flexible approach has the potential to be generalized to neurons in
other brain areas, with different input-output properties.
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Chapter 1

Introduction

In order for us and other animals to be able to interact with our envi-
ronments, the brain must encode, store and process information about its
surroundings. In this thesis, we study and apply computationally and data-
efficient methods to characterize the encoding properties of neurons in the
early stages of the visual processing system.

The neural coding problem

In a typical experiment, a subject is presented with a rich repertoire of
visual stimuli while at the same time neural activity from visual areas of the
brain is acquired by different means which may consist of electrophysiological
recordings or imaging data (see Fig. 1.1A). Neuronal activity consists of
trains of stereotypical events called action potentials, or spikes. We can
observe that a particular neuron responds particularly vigorously to some
features of the visual stimulus, while remaining relatively silent in their
absence (see Fig. 1.1, panels B and C). We call the entire set of features
that drive the activity of that specific neuron its receptive field (RF). We
can think of the receptive field as the piece of reality encoded in the activity
of each specific neuron. Defined more rigorously, the receptive field is a
relatively small dimensional subspace of the entire high-dimensional stimulus
in which a neuron computes its response and it is a fundamental component
of any model of neural encoding. Since neural activity is intrinsically variable
even to repeated presentations of the same stimulus [11, 52, 94, 109], the
neural coding problem has to be addressed statistically or probabilistically.
In mathematical terms, if we denote a stimulus with s and the associated
evoked response with r, solving the neural coding problem implies a full
characterization of the conditional probability

p(r|s). (1.1)

Due to the high-dimensional nature of visual stimuli, as well as to the vari-
ability of neural responses, receptive field characterization usually requires

1



2 CHAPTER 1. INTRODUCTION

Fig. 1.1: A typical neuroscience experiment. A) A repertoire of visual
stimuli is presented to a test subject, while electrical activity from one or
more neurons is recorded from the visual areas of the brain. Here, the
stimulus consists oB) Bars with distinct orientations and moving in different
directions are presented on the screen, which elicit a neural response that is
picked up by the electrode. The high-frequency events observable in some
of the traces are known as spikes. C) Average number of elicited spikes per
second (from here on referred to as the firing frequency of the neuron) as a
function of the orientation of the bar, aligned to the preferred orientation
(i.e. the value resulting in the highest observed spike count). The response
intensity rapidly falls off when the stimulus orientation departs from the
preferred one. This analysis reveals that the orientation of the bar is encoded
in the firing frequency of this unit. 2

long recording sessions to mitigate the effect of neural noise and explore the
stimulus space sufficiently. This requirement may not always be compatible
with other experimental constraints (e.g. when receptive-field identification
is only one of several stages of an extensive experimental protocol) and,
to complicate matters, neural selectivity may change on the timescale of
an experiment due to adaptation or learning [67]. Similarly, experimental
preparations involving awake or behaving animals also place tight technical
constraints on the total length of an experiment for reasons concerning the
stability of the recording or the minimization of the animal’s distress. Con-
sequently, receptive fields may have to be estimated from short segments of
data containing only a small number of spikes.

Current approaches and their limitations

A popular approach to the neural coding problem is to identify a low-
dimensional linear projection of the stimulus space that preserves the as-
pects of the stimulus that affect a neuron’s probability of spiking. Several
dimensionality reduction methods have been developed to address the prob-

2Panels B and C from Fig. 1.5 in Dayan and Abbott, “Theoretical Neuroscience”
(2005), MIT Press [20].



3

lem of receptive field characterization. These methods can be categorized
into three groups: moment-based [15, 98], model-based [76, 83, 84], and in-
formation theoretical [85, 99, 100], although these last two classes are often
equivalent in several concrete cases [116]. Since all these methods make use
of at least one parameter for each stimulus dimension, we commonly refer to
them using the umbrella term “non-parametric” models.3 The basic idea is
that a neuron computes its response in a low dimensional subspace, spanned
by a small number of stimulus features. Each direction defining a partic-
ular subspace can be thought of as a spatiotemporal subfield of the entire
receptive field of the neuron. The identification of this subspace, which we
denote with K, therefore overlaps with the characterization of the receptive
field. We can express the probabilistic relationship between neural response,
stimulus and receptive field by means of the conditional probability distri-
bution

p(r|s,K). (1.2)

For model-based methods, the subspace K can be identified e.g. by max-
imizing its log-likelihood function L(K; r, s) = log p(r|s,K). A common
feature to many of these models is their very high number of parameters,
which makes them particularly “data-hungry”. For example, using a stim-
ulus consisting of a movie with a frame resolution of 100 × 100 pixels dis-
play at 50 Hz, and assuming that a neuron computes its response integrat-
ing 500 ms of visual stimulation, the parameter space is 250k-dimensional.
Model/likelihood-base estimators therefore require thousands of spikes to
converge (see Fig. 1.2C). Given the low firing rates sometimes encoun-
tered in in vivo preparations, this translates potentially into hours of data.
To address this issue, clever regularization strategies have been developed
that take into account known properties of visual receptive fields, like their
smoothness [96], spatial and frequency locality [79] or low-dimensional struc-
ture [80, 85]. Most of these regularizers can be interpreted in a Bayesian
setting as placing a prior distribution over the model parameters encoding
our prior knowledge and expectations about the expected properties of a
visual receptive field. Priors, in turn, belong also to some parametric fam-
ily, whose parameters (here called hyper-parameters) are usually optimized
using a technique know as type II maximum likelihood or empirical Bayes
[96]. These algorithms in general scale poorly to high-dimensional settings.
State-of-the-art efficient implementations often rely on stringent assump-
tions, e.g. by restricting p(r|s,K) to be a normal distribution or by limiting
the analysis to linear models [5, 79, 96]. Whether or not these constraints are
appropriate in a specific context must be assessed on a problem-by-problem

3In this context, non-parametric denotes a lack of semantically meaningful parameters,
rather than an actual lack of parameters. We maintain that probably the term unstruc-
tured model would have been a better choice, but non-parametric is already widespread
in the literature.



4 CHAPTER 1. INTRODUCTION

basis,4. We must be aware that, should the data not meet the assumptions,
the resulting estimates are distorted [68].

Setting aside for the moment any concern regarding computational ef-
ficiency, we identify at least two more potential problems associated with
non-parametric approaches. The first one is the lack of interpretability of
the estimates: since model parameters do not carry any particular meaning
other than the intensity of the receptive field in a specific point in space
and time (see Fig. 1.2D), quantifying high-level properties of a receptive
field, e.g. its frequency or orientation selectivity, requires an additional
analysis step in which a parametric model of the receptive field shape is fit-
ted to the non-parametric estimate [89, 93]. The second limitation regards
the propagation of estimation uncertainty for hypothesis testing: when the
non-parametric RF estimate is not well constrained by the data, there is a
need of a method to propagate this uncertainty down the analysis pipeline
to derive credible intervals for the inferred RF properties [17]. This prob-
lem is particularly aggravated in cases where the data is so scarce that the
marginal likelihood of the data is not tightly concentrated around its maxi-
mum. In this case, point estimate computed by empirical Bayes used to set
the hyper-parameters does not provide an exhaustive representation of the
RF structure supported by the data, with the effect of heavy underestimat-
ing of the actual amount of posterior uncertainty on the values of the model
parameters.

Bayesian Inference on parametric receptive field models

To tackle these issues, we propose to include the receptive field properties of
interest directly in the generative model of neural responses. We want also
to leverage formerly acquired knowledge to model neural responses to visual
stimuli using a small number of semantically meaningful and experimen-
tally relevant parameters. For example, the role of most cells in the early
visual areas can be interpreted as edge detectors whose receptive fields can
be well approximated by a Gabor wavelet [49]. This model is encoded as the
conditional probability distribution p(r|θ, s) describing the data-generating
process, where θ is a small vector of parameters describing the properties of
the receptive field. We will also regularize our estimates by strongly encour-
aging parameter values that result in a priori expected receptive field shape.
Concretely, these regularizers will be implemented by means of a prior distri-
bution p(θ) and we will operate within a Bayesian framework, where we will
explicitly target the posterior distribution of the model parameters given
the data:

p(θ|r, s) = p(r|θ, s)p(θ)
p(r|s)

. (1.3)

4For example, linearity is definitively not a good assumption when modeling the re-
sponse of non linear units like visual cortical complex cell.
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Fig. 1.2: Limitations of a non-parametric approach. A) 1 minute of
simulated activity. The instantaneous firing rate of the neuron is shown as
a gray solid line, while sampled spikes are represented as black ticks above
the trace (here, 57 spikes). B) A random stimulus frame covering a field of
view of approximately 120× 60 degrees and the spatial receptive field of the
simulated unit (for details about the generative model, see Chapter 4). The
stimulus consisting of spatially and temporally correlated Gaussian noise,
contrast-modulated at 0.1 Hz. The result is the modulation of the firing
rate at the same frequency observable in A. C) The spike-triggered average
(STA), computed from the spikes in (A) and the corresponding stimuli (for
the definition of the STA, see Chapter 3.3). The STA shows what was on
average presented on the screen when the unit fired a spike. Due to the
presence of spatial correlations in the stimulus, the STA is a biased estima-
tor of the RF. Red indicates excitatory regions of the RF, while inhibitory
regions are represented in blue. D) Regions of the STA within which values
significantly deviate from zero (p > 99% computed using bootstrap), indi-
cating non-random correlations between the spike train and the stimulus
within these regions. However, due to the scarce amount of data used to
compute the STA, we cannot tell which regions popped out by chance and
which ones instead genuinely suggest the presence of a receptive field. E)
95% (pink line) and 99% (maroon line) credible regions for the receptive field
position parameters, derived from the posterior distribution given the spikes
in (A). This result suggests strong evidence for the presence of a receptive
field within the region encircled by the pink solid line.
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Fig. 1.3: Receptive fields sampled from the posterior distribution.
Receptive field shapes sampled from the posterior distribution after observ-
ing 24 (left), 38 (center) and 79 (right) spikes, corresponding, respectively
to 1, 2 and 4 minutes of data. Notice how samples become less scattered as
more data is used for inference.

The benefits of this approach are two-fold: first, a low number of parame-
ters allows to estimate receptive fields from a small number of measurements
[44]; second, Bayesian inference provides a principled way of deriving cred-
ible intervals from the posterior distribution of the model parameters (see
Fig. 1.2E). Estimation uncertainty is completely encoded in the posterior
distribution, and new evidence is automatically accounted for as it becomes
available (see Fig. 1.3). Finally, the marginal likelihood of the data p(r|s),
known also as model evidence, can be used to compare different compet-
ing hypotheses about the spike generation process in a principled, Bayesian
way. We will discuss this idea in the next chapter and we will see a concrete
application in Chapter 7.

Outline

The rest of this thesis is organized as follows. In the next chapter we will re-
fresh the notions of Bayesian inference and Bayesian model comparison, and
we will introduce nested sampling. In Chapter 3 we will revise the properties
of neurons in primary visual cortex, the statistical models developed to de-
scribe them, and we will have a closer look at the commonly used techniques
to identify their receptive fields, which we have already partially introduced
here. In Chapter 4 we will present a RF model governed by a small num-
ber of parameters, but still flexible enough to capture the salient features of
early visual cortical neurons. Chapter 5 will introduce a strategy to perform
Bayesian inference efficiently on this type of models. In Chapter 6 we will
investigate the convergence properties of our Bayesian approach to recep-
tive field characterization; we will do so by assessing the RF detection and
identification performance of our algorithm on simulations spanning a wide
range of physiologically realistic firing-rates and noise levels. In Chapter 7
we illustrate the potential of a fully Bayesian approach to the analysis of a
large dataset of electrophysiological recordings from rat primary visual cor-
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tex; we will show that even small amounts of data can be leveraged to draw
meaningful and interesting conclusions. Chapter 8 will provide an overview
of the results presented and discussed in previous chapters, and will offer an
outlook on possible future research lines.



8 CHAPTER 1. INTRODUCTION



Chapter 2

Bayesian inference

Bayesian inference (BI) is a method of statistical inference in which Bayes’
theorem is used to update the probability for a hypothesis as more evidence
or information becomes available. In this chapter we will go briefly through
some basic concepts behind a Bayesian inference framework, such as param-
eter inference Bayesian model comparison (BMC). We will also introduce
Nested Sampling, an alternative to Markov-Chain Monte Carlo (MCMC)
sampling methods for Bayesian inference combining two inference steps in
one single algorithm, and we will explain its advantages over MCMC meth-
ods.

2.1 Bayes’ theorem

Bayes’ theorem provides a principled way to update one’s belief regarding
some hypothesis X after having observed the outcome of some experiment
Y . Any prior knowledge or belief about X is encoded in a prior probability
distribution p(X). The dependency between X and Y is encoded by a
conditional probability p(Y |X). This can be interpreted also as the likelihood
of X for a fixed Y , because p(Y |X) = L(X;Y ). Bayes’ theorem states that
the updated belief on the value of X is given by the posterior probability

p(X|Y ) =
p(Y |X) · p(X)

p(Y )
. (2.1)

Here, p(Y ) =
∫
p(Y |X)p(X)dX is sometimes termed themarginal likelihood.

It is the normalizing factor for the posterior distribution and it plays a
crucial role in the context of Bayesian model comparison, discussed in the
next section.

9
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2.2 Formal definition

Three levels of inference can be identify in a Bayesian inference framework,
which we are going to address in order.

Parameter inference

The first level is parameter inference: here we have a specific model in
mind, which we denoted by M, parameterized by a vector of parameters
θ, to explain the data generation process p(D|θ,M). At this level, we are
concerned with identifying the favorite values of the parameters which are
consistent with both the observed data D and some prior knowledge or
expectation. This updated belief is encoded in the posterior distribution

p(θ|D,M) =
p(D|θ,M)p(θ|M)

p(D|M)
(2.2)

where p(θ|M) is our a priori belief before we observed any data. Here, the
marginal likelihood p(D|M) is often also termed model evidence or Bayesian
evidence or model likelihood, since it quantifies the probability that the data
was generated by the model in question after taking into account all the
uncertainty about the model parameters. It is obtained by marginalizing
the model parameters:

p(D|M) =

∫
p(D|θ,M)p(θ|M)dθ (2.3)

Evaluating the model evidence is arguably computationally demanding and
it is a crucial component for Bayesian model comparison and averaging,
which we are going to discuss next.

2.2.1 Model comparison

The second level is model comparison. At this stage, we realize that there
are several possible competing modelsM0,M1, . . . to explain our data, and
we want to know what the relative plausibility of each of them is in light of
the data. To this end, we compute the posterior odds

p(M1|D)
p(M0|D)

.

Each model’s posterior is delivered by Bayes’ theorem:

p(Mi|D) =
p(D|Mi)p(Mi)

p(D)
. (2.4)

We do not need necessarily to derive the value of p(D), since this term
cancels out when computing the posterior odds:

p(M1|D)
p(M0|D)

=
p(D|M1)

p(D|M0)
· p(M1)

p(M0)
, (2.5)
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| lnB| relative odds best model probability interpretation

< 1.0 < 3 : 1 < 0.75 not worth mentioning

< 3.0 < 20 : 1 < 0.95 Substantial
< 4.6 < 100 : 1 < 0.99 Strong
> 4.6 > 100 : 1 > 0.99 Decisive

Table 2.1: BF reference table. A slightly modified Kass and Raftery’s
scale to assess the strength of evidence [53].

from which we can learn that the posterior odds equal the Bayes factor
[50] times the prior odds. The Bayes factor (BF) is the leftmost term on
the r.h.s. of eq. (2.5) and can be interpreted as a Bayesian version of the
likelihood ratio of two competing hypotheses in classical statistical terms
[33]. The BF betweenM1 andM0 is often denoted as B10:

B01 =
p(D|M0)

p(D|M1)
.

Table 2.1 gives an indication of the scale for the strength of the evidence
in favor of either model as a function of the Bayes factor. Bayes factors
provide a Bayesian alternative to classical hypothesis testing [34, 35] and in
Bayesian statistics they play a similar role to what p-values do in classical
statistics [62]. Unlike p-values, however, Bayes factors allow one to compute
evidence in favor of a null hypothesis and can be used to compare models
that cannot be nested. An other advantage of Bayes factor is that they
automatically implement a penalty for including too much model structure,
therefore guarding against over-fitting [53].

In Bayesian model selection (BMS), the model with the highest posterior
probability among a set of competing models is picked to represent the data:

M̂BMS = argmax
Mi

p(Mi|D). (2.6)

2.2.2 Model averaging

The third level of inference is represented by Bayesian Model Averaging
(BMA) [43, 82]. When none of the proposed models is clearly the best in
terms of explaining the data, we incorporate the account for model uncer-
tainty within a posterior predictive distribution of the values of the param-
eters given the data:

p(θ|D) =
∑
i

p(θ|D,Mi) · p(Mi|D). (2.7)

This strategy is useful when several competing models relying on the same
parameters but different mechanics compete as an explanation of the data.
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Fig. 2.1: Nested Sampling. For a detailed description of the algorithm,
see the main text.

2.3 Nested Sampling

As already mentioned, evaluating the model evidence is a computationally
demanding task, because it consists in solving a multi-dimensional inte-
gral, averaging the likelihood over a possibly much wider prior. Nested
sampling (NS) [103] is a clever algorithm to compute the model evidence:
it transforms the D-dimensional integral into a 1-dimensional integration
problem that can easily be solved. As a byproduct, NS also produces poste-
rior samples: it has the unique advantage over MCMC algorithms to tackle
model likelihood and parameter inference simultaneously. It can readily be
used for most inference problems, within some efficiency limitations that are
implementation-dependent.

2.3.1 Mathematical formulation of NS

In this and the following subsections, we will omit the explicit dependency
on the model and will use the symbol L(θ) to denote p(D|θ,M), in order to
emphasize that we treat the likelihood as a function of the model parameters.
Rewriting (2.2) accounting for this new notation,

p(D) =
∫
L(θ)p(θ)dθ,

we emphasize how the evidence is the expected value of the likelihood un-
der the prior. In order to solve this high-dimensional integral, we start by
defining X(λ) as the prior mass associated with likelihood values above λ:

X(λ) ≜ Pr(L(θ) > λ) =

∫
L(θ)>λ

π(θ)dθ. (2.8)
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This is also sometimes termed the likelihood-restricted prior (LRP) and the
entire nested sampling scheme is built upon this concept. The LRP is a
decreasing function of λ, with X(0) = 1 and X(Lmax) = 0, where Lmax is
the maximum possible value of the likelihood. We also additionally define
dX as the prior mass associated with likelihoods [λ, λ+dλ]. An infinitesimal
interval dX contributes an amount λdX to the evidence, therefore:

p(D) =
∫
L(θ)p(θ)dθ =

∫ 1

0
L(X)dX, (2.9)

where L(X) is the inverse of X(λ), defined as L(X) ≜ arg infλX(λ) ≥ X.
Inverting eq. (2.8) has the effect “sorting” the prior volume X according to
increasing values of the likelihood function. Assuming that we can evaluate
Lj = L(Xj) for a sequence

0 < XM < · · · < X2 < X1 < 1,

then the evidence (2.9) can be numerically approximated with arbitrary
precision as

p(D) ≈ ẐNS =
M∑
j=1

wjLj , (2.10)

for a suitable set of weights wj proportional to the change in volume δVj ,
e.g. computed using the trapezium rule

wj =
1

2
(Xj−1 −Xj+1).

Since L(X) is a positive, monotonically decreasing function, this sum is well
behaved and a lower and an upper bound exist [104].

2.3.2 Algorithm

In general, except for the most trivial distributions, L(X) is unknown. NS
overcomes this issue by picking the likelihood levels Li in a way that the
expected value of each Xi is known. Suppose we begin with an initial set of
N i.i.d. samples θi drawn from the prior, labeled θ1, . . . ,θN : by definition,
this set of points is associated to the prior mass X0 = 1 with corresponding
likelihood L0 = 0. Without any loss of generality, we also assume that these
points are sorted according to their likelihood value, i.e.

Li = L(θi) < Lj = L(θj), for 0 < i < j ≤ N. (2.11)

We now remove θ1, the point with the lowest likelihood, and replace it with
another draw from the prior, θN+1, under the constraint L(θN+1) > L1.
According to (2.8), this new set of points occupies a fraction of the prior
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mass corresponding to X(L1), therefore we can associate the prior vol-
ume X1 ← X(L1) to θ1. We relabel the new sequence ensuring all points
are sorted according to their likelihood; we now have a set of N points
θ2, . . . ,θN+1. Now θ2 is the point with the lowest likelihood, L2, so it must
represent the slice X2 ← X(L2). We remove it and we keep iterating the
procedure illustrated in this paragraph, accumulating evidence at each iter-
ation following (2.10), until we collectM points and the sum has converged.

The amount prior volume shrinks at each iteration following a Beta dis-
tribution [104]:

Xi/Xi−1 ∼ Beta(N, 1), (2.12)

corresponding to an expected shrinkage factor of e−
1
N . This fact can be

exploited to replace X(Li) with its expected value E[Xi] = e−
i
N when com-

puting the weights in (2.10). The resulting estimator Ẑ is consistent. Al-
ternatively, eq. (2.12) can be used to generate samples from Xi, which can
be used to estimate a credible interval for p(D).

Samples from the posterior p(θ|D) can be extracted as a free by-product
of the integration routine by taking the sequence of sampled points θi and
weighting each sample j by pj = wjLj/p(D).

Sampling step

The hardest part of nested sampling is to sample uniformly from the prior
subject to the hard constraint that the likelihood needs to be above a certain
level. This is an active field of research and many specific implementations
of this step have been proposed. These include (MCMC-based) local step
algorithms, exploiting the live point knowledge, sampling by proximity, and
sampling by direction. An excellent review of all these methods is provided
in [10]. Some specific implementations worth mentioning because they have
been used for some analysis or will be discussed in this thesis are Metropo-
lis nested sampling [104], ellipsoidal sampling with X-means [26], rejection
sampling (MultiNest) [27], and slice-sampling (PolyChord) [36].

Termination

The running sum (2.10) will eventually converge for all well behaving likeli-
hood functions, i.e. if L(θ) <∞ for all θ): since the amount of prior volume
occupied by the pool of live points shrinks exponentially with rate 1/N , the
contribution of the likelihood term Li to the estimate of the evidence be-
comes vanishingly small for i → ∞. NS can be terminated when the live
point with the highest likelihood Lmax would not contribute significantly to
Z if it were removed in the next iteration. This is the approach adopted
by MultiNest [27], which terminates if LmaxXi < ϵ · p(D), where ϵ is a user-
defined tolerance. The number of iterations required for convergence scales
linearly with the number of live points [105].
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2.4 Why Nested Sampling?

Nested sampling was developed to estimate high dimensional integrals of-
ten encounter in a Bayesian inference framework when computing e.g. a
model’s evidence. Very conveniently, NS generates a set of samples from the
posterior probability as a byproduct of computing the evidence, solving two
problems (parameter inference and computing the evidence) simultaneously.
Its convergence properties are a well understood and studied problem and its
intrinsic approximation errors are well characterized and have been explic-
itly modeled [16, 42, 104]. Nested sampling is routinely used as a fool-proof
inference black-box in a variety of fields [6].

Multimodal posteriors

One advantage of NS over MCMC algorithms is that NS can deal effortlessly
with multi-modal target distributions [26]. When performing Bayesian infer-
ence in a scarce-data scenario, multi-modal posterior distributions represent
a likely scenario because many diverse explanations may be possible to ex-
plain the data. Furthermore, to add additional confusion to an already chal-
lenging task, there might be unknown singularities in a model’s parameteri-
zation causing different parameter sets resulting in the same model behavior:
in such cases, the posterior will always be a multi-modal distribution. Al-
though strategies to deal with this problem exist (e.g. simulated annealing
[64]), their use requires a considerable amount of fine tuning. When eval-
uating the target probability distribution is a computationally demanding
task, extensive fine tuning sessions for each instance of the problem may be
prohibitive. On the other hand, several NS implementations extensions ex-
ist to address multi-modal targets, with many of them requiring a minimal
amount or not tuning at all [10, 26, 36, 107].

Computational advantages

State-of-the-art MCMC algorithms (e.g. HMC) [64] often require the gradi-
ents of the target log-probability density with respect to the model param-
eters to explore the parameter space efficiently. Computing these gradients
may be a computationally expensive operation. Although Hamiltonian tra-
jectories can (in principle) be simulated using approximated gradients com-
puted on mini-batches of data (provided that the acceptance criteria are
computed over the whole dataset), this strategy presents a major challenge:
smaller batches trade computational time against the efficiency of the sam-
pler, as rougher approximations of the gradients lead to inexact Hamiltonian
trajectories, which in turn result in higher rejection rates. Finding the right
batch size requires a fair amount of fine tuning. On the other hand, NS
relies solely on log-likelihood evaluations and does not need gradients at all.
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It is important to mention that, like any other Monte Carlo algorithm,
nested sampling also cannot guarantee that all modes of the target distri-
bution are identified. However, the resolution of the algorithm is controlled
by the number of live points, which is a free parameter, with higher values
of Nlive resulting in better resolution. This effectively reduces the chances
of missing a narrow mode, as more and more live points are used to explore
the likelihood landscape. On the other hand, since NS computational cost
scales as O(Nlive), using more live points produces more precise estimates
at the cost of longer run times. A compromise between computational costs
and accuracy must therefore be assessed on a problem-by-problem basis.

Conclusions

Nested Sampling relies on a minimal number of free parameters which for
most do not require tuning (e.g. of a proposal distribution as in conventional
MCMC). The number of live points, Nlive, is the only free parameter of
the original NS algorithm, but other implementations may rely on a few
extra parameters. MultiNest, for example, requires one additional tolerance
parameter for the stopping criterion. Furthermore, it is possible to combine
several independent NS runs with a small number of live points into an
equivalent extended run with a larger number of live points [104], allowing
a user to dynamically increase the resolution of the algorithm if they realize
that their initial guess for the Nlive parameter was not good enough. Since
one of the motivations of this work is to provide a flexible and reliable
Bayesian inference tool to a community of non-expert users, dealing with a
small number of easily interpretable parameters, which require a minimum
amount or no tuning at all, is a very desirable property.

We should also emphasize that NS combines parameters and model in-
ference within one single algorithm by simultaneously sampling from the
posterior on its way to compute the model evidence. In our opinion, this is
one more reason that makes it a powerful alternative to MCMC algorithms,
since, for the latter, model evidence must be estimated in some additional
post-processing routine after collecting samples from the posterior distribu-
tion.

2.5 Summary

In this chapter we formally introduced the most important concepts related
to a Bayesian inference framework. After introducing Bayes’ theorem, we
discussed the three possible levels of Bayesian inference: parameter infer-
ence, model inference, and model averaging. We will see concrete applica-
tions of all the three types of inference throughout Chapter 6 and 7, where
we will discuss receptive field identification and will compare different alter-
native hypotheses to explain the data. We then introduced nested sampling
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and explained we think why it is a valid tool for Bayesian inference, espe-
cially for model comparison and averaging. We also mentioned that choosing
the right value for the Nlive parameters is crucial to achieve a good com-
promise between computational performance and accuracy of the estimates.
In Chapter 5 we will present a novel strategy to reduce the number of live
points without sacrificing accuracy.
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Chapter 3

Modeling and identification
of receptive fields in the
primary visual cortex

In this chapter, we will discuss the physiological properties of neurons in
the primary visual cortex (V1). This will lay the basis to understand the
computational model presented in the next chapter. We will also introduce
the probabilistic framework that has been developed to model neural ac-
tivity in V1 and discuss modern inference procedures and their limitations.
These considerations provide the motivations for our different approach to
modeling neural activity and will serve as a context for the work discussed
in this thesis.

3.1 Neurons in the Primary visual cortex

Neurons are specialized cells found in the nervous system. They are elec-
trically excitable cells which form a network and communicate with each
other via specialized connections called synapses. The signaling process is
partly electrical and partly chemical. Neurons maintain voltage gradients
across their membranes. If the voltage abruptly changes over a short in-
terval, the neuron generates an all-or-nothing,1stereotypical electrical pulse
called action potential, or spike. This potential then rapidly activates synap-
tic terminals and propagates activity to other neurons. Neural coding is
concerned with how sensory and other information are represented in the
brain by neurons – in our specific case, in the early stages of the visual (sen-
sory) system. The main goal of studying neural coding is to characterize the
relationship between the stimulus and the individual or ensemble neuronal

1When we speak about all-or-none responses we mean that, if a neuron responds at
all, then it must respond completely. Greater intensity of stimulation does not produce a
stronger signal, but can increase firing frequency [51].

19
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responses, and the relationships among the electrical activities of the neu-
rons within the ensemble [9]. The features of the sensory stimulus that drive
the response of a specific neuron is known in the literature as that neuron’s
receptive field (RF) [45]. Here, we focus on models of the RF of single visual
cortical neurons and how to efficiently identify their parameters.

Primary visual cortex (V1) is the first cortical area dedicated to visual
processing. The physiological properties of this area have been intensively
studied since the seminal work by Hubel and Wiesel [46], who also intro-
duced the standard classification of neurons in V1 into two main groups:
simple and complex cells. The original classification is based on four charac-
teristic properties of simple cells: 1) the presence of distinct excitatory and
inhibitory subregions; 2) spatial summation within each subregion, that is,
responses become stronger as stimuli fill more space within a subregion; 3)
excitatory and inhibitory subregions are antagonists, i.e. their contributions
cancel out; 4) the response to any stimulus can be predicted from the recep-
tive field map. Cells that do not show these characteristics are classified as
complex.

Simple cells respond selectively to bars and gratings presented at a spe-
cific position, orientation, spatial frequency, and contrast polarity [46, 97];
complex cells also respond to bars or gratings of adequate orientation and
spatial frequency, but are insensitive to small translations of the stimulus
within the receptive field and respond equally well regardless of the contrast
polarity of the stimulus [46, 56]. This constancy in the response to variations
of the stimuli is commonly called phase invariance [12, 69]. Some simple
and complex cells are not only sensitive to the spatial orientation of a visual
stimulus, but also to the direction of its motion; these cells are said to be
direction selective [22, 25].

The discovery of these properties inspired the notion that these neurons
operate as edge or line detectors. A simple cell’s RF is reminiscent of a
linear filter consisting of a single Gabor wavelet [30]: its response depends
on the exact alignment of a stimulus bar or grating on the excitatory and
inhibitory subfields of the wavelet [49, 87]. The response of a complex cell,
instead, resembles the output of an energy model, a mechanism combining
the response of a quadrature pair of Gabor wavelets2 to produce a phase
invariant response in a similar way that cos2 x+ sin2 x = 1 [1, 40, 58, 115].

Multiple alternative and complementary network architectures have been
proposed to explain the receptive fields of simple and complex cells, includ-
ing the effects of recurrent intracortical connections [7, 14], but a detailed
discussion of these is beyond the scope of this thesis. The next section will
be dedicated to phenomenological, probabilistic models of the activity of
cortical neurons in V1.

2Two Gabor wavelets with identical envelope function, frequency, and orientation but
with a 90-deg phase difference.
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3.2 Receptive-field models

Model of RFs can be divided into two categories: mechanistic models, con-
ceived to explain how the observed RF properties may arise from the un-
derlying anatomical structure of the system and phenomenological models,
which abstract all the anatomical or physiological details and focus on the
mathematical relationship between sensory stimuli and a neuron’s evoked
response. All models we are going to introduce rely on two assumptions:
1) sensory neurons compute their responses in a low dimensional subspace,
interpreted as the spatiotemporal receptive field(s) of the neuron [101], com-
prising a small number of stimulus features; 2) spike generation is a prob-
abilistic process, to account for the considerable variability exhibited by
neural activity even in response to the repeated presentation of the same
stimulus [11, 94, 109].

Stimuli and filters

Visual stimuli are usually presented as discrete time signals (e.g., think of
the frame rate of a video signal). The stimulus at each time point t can
be considered a high-dimensional vector s[t] containing one value for each
pixel in a video frame. We denote the size of the frame (the total number
of pixels) as nxy = nx × ny. For simplicity, we assume that the response is
measured with the same temporal precision as the stimulus and we represent
it as a vector r ∈ NT , where T is the length of the experiment (and the
number of stimulus frames). Each component rt is the spike count in time
bin t, for 1 ≤ t ≤ T . To simplify the notation in this introduction, we
restrict our presentation to finite impulsive response (FIR) filters, which
can conveniently be expressed in terms of matrix-vector dot products (one
can opt for an infinite impulsive response, but the notation would not be as
compact). This is equivalent to assuming that all the information required to
explain the response at time t is contained in all stimulus frames extending
up to nd time delays in the past, therefore we collect all stimuli preceding
each time point t in a single m-dimensional column vector

st = vec([s[t], s[t− 1], . . . , s[t− nd]]), (3.1)

where m = nxy × nd and vec(·) is the vectorization operator stacking the
columns of its input on top of one another (stimuli indexed by negative
values are assumed to be identically equal to zero).

The output of a discrete-time FIR filter can be expressed as a vector
dot-product between the stimulus vector st and a vector of filter weights k
with the same layout as the stimulus:

k⊤st =
M∑
i=1

kist,i,
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Fig. 3.1: LN cascade models.4A) Filtering of stimulus examples through
the linear filter k. B) (Threshold-)Linear model with Gaussian noise. C)
Poisson model with exponential nonlinearity. D Bernoulli model. All models
can be extended using a post-spike filter that indicates dependence of the
model’s output on the recent response history (light gray).

where st,i denotes the i’th entry in st. Each value in k indicate the sensi-
tivity of the neuron to inputs at the corresponding point in space and time
(Fig. 3.1A).

3.2.1 Linear-Gaussian Models

The simplest model uses the output of one single filter, and a constant
bias term (or offset), to model the expected value of the neural activity
and generate the neural response from a normal distribution with constant
variance and mean firing rate given by the filter output:

rt ∼ N (r̂t, σ
2), r̂t = k⊤st. (3.2)

The bias term k(0) is absorbed into the vector k and the stimulus vector st
is augmented with an entry equal to 1 at all times, so the offset becomes the
coefficient associated to this extra dimension. The normality assumption
is not appropriate for spike count data, because it fails to capture the fact
that spike counts are non-negative integer numbers. However, it makes
analytical derivations very convenient and several regularization techniques,
which we will describe in a later section, rely on this assumption for this
reason. This model can be extended with a thresholding linear function to
filter out negative spike counts predictions (Fig. 3.1B).

4From Meyer et al. (2017) [68]. This content is licensed under the CC BY 4.0 license.
The terms of the license are available at https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/
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3.2.2 Linear-Nonlinear (LN) cascades

Linear-nonlinear cascade models [15] provide a useful framework for de-
scribing neural responses to high-dimensional stimuli and address the issue
of modeling non-negative firing rates. These models define the spiking re-
sponse in terms of the cascade of linear, nonlinear, and probabilistic stages.
They extend the Gaussian model with a rectifying nonlinear stage before
the probabilistic spike-generation process:

r̂t ∝ f(k⊤st), (3.3)

where r̂t is the expected spike count in time bin t; f : R → R+ is a
static, memory-less function mapping the filter’s output to non-negative
firing rates, which are assumed to be constant within a bin of size ∆; f
accounts for nonlinearities like rectification and response saturation.

The most common instance of the LN cascade model is the Linear Non-
linear Poisson (LNP) model (Fig. 3.1C). In an LNP (), spike times are
generated by an inhomogeneous Poisson point process [106] governed by the
instantaneous firing rate λ(t). The defining feature of a Poisson process is
that responses in non-overlapping time bins are conditionally independent
given the spike rate. The resulting distribution of spike counts within a bin
of size ∆ then follows a Poisson distribution:

p(rt|st,k) =
1

rt!
(λt∆)rte−λt∆, λt = f(k⊤st). (3.4)

If f is monotonic and fixed, then the above equation describes an instance of
a Generalized Linear Model (GLM, see Appendix A) [66, 72], which extend
multi-linear regression to noise models in the exponential family.

Sometimes, the Poisson distribution does not provide an accurate model
of the variability observed in the data. In this cases, an alternative noise
model can be adopted, like a Bernoulli (giving a Linear Nonlinear Bernoulli
cascade) or a negative Binomial distribution.

It is worth mentioning that it is possible to model interactions between
spikes in different bins to take into account cellular biophysical processes
such as an absolute refractory period or accumulation or spike facilitation
(Fig. 3.1D, gray inset) [110].

3.2.3 Multi-filter LN cascades

Multi-filter extension of the LN cascade are also possible. By replacing the
single filter k with a tall matrix K = [k1,k2, . . . ,knl

], we can generalize a
LN cascade model to RFs spanning a nl-dimensional linear subspace of the
stimulus (Fig. 3.2). Each filter represents a spatitemporal receptive field
encoding a specific relevant feature of the high-dimensional stimulus. The
definition of the instantaneous nonlinearity must of course be adapted to
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Fig. 3.2: Multi-filter LNP model.6The input stimulus s is projected onto
a D-dimensional features subspace K representing the linear receptive fields
of the neuron. The output of the filters is transformed by an instantaneous
nonlinearity f , mapping the filtered stimulus to an instantaneous spike rate
λ. Finally, spikes r are generated according to an inhomogeneous Poisson
process.

take into account the dimensionality of the stimulus subspace: f : Rnl →
R+. The nl-dimensional nonlinear behavior of f completely defines the
nonlinear response properties of the neuron. In general, multi-filter LN
cascade models are not GLMs and therefore, in general, they do not benefit
from the convergence properties conferred by the GLM framework. An
exception is posed by a specific type of quadratic models discussed below.

Generalized Quadratic Model (GQM)

In order to better understand the type of quadratic model discussed here,
we should momentarily depart from the formalism we adopted so far to
introduce a generalization of the linear model:

r̂t = k(0) +
M∑
i=1

k
(1)
i st,i +

M∑
i,j=1

k
(2)
ij st,ist,j + . . . (3.5)

This series expansion is a generalization of function polynomial series ex-
pansion to nonlinear filtering operators mapping one time series to another,
known as the Volterra expansion [114]. The parameters k(n) are known as
the Volterra kernels. We can generalize this input-output relationship to
non-Gaussian observation noise by introducing a fixed non-linearity as we
did for the LN cascade. If we truncate the expansion at the second order
term, we obtain a Generalized Quadratic Model (GQM) [78]:

r̂t = f
(
k(0) + k(1)⊤st + s⊤t K

(2)st

)
, (3.6)

6From Meyer et al. (2017) [68]. This content is licensed under the CC BY 4.0 license.
The terms of the license are available at https://creativecommons.org/licenses/by/4.0/.

https://creativecommons.org/licenses/by/4.0/
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where K(2) =
[
k
(2)
ij

]
is a compact matrix representation of the second order

Volterra kernel. Although the mapping is nonlinear in the stimulus, it is
linear in the kernel parameters, therefore the GQM is a GLM on the space of
quadratically-transformed stimuli [32]. This means that the considerations
about the geometry of the parameter landscape apply to the GQM as well.

The second Volterra kernel K(2) of a GQM and the filter matrix K of a
multi-filter LNP are two distinct objects and should not be confused. How-
ever, the two are related through a low rank decomposition of K(2) [78]: con-
sider the low-rank factorization K(2) =

∑nl−1
i=1 diiwiw

⊤
i = WDW⊤, where

W is a (tall, skinny)M×(nl−1) matrix with columnswi andD is a diagonal
matrix whose entries dii ∈ {−1,+1} are constants that control the shape of
the non-linearity along each axis in the feature space (−1 for suppressive and
+1 for excitatory); then, the matrix K = [k(1),w1,w2, . . . ,wD] encodes the
linear subspace of a multi-filter LN cascade where the nonlinearity results
from the composition of a quadratic function that maps the nl-dimensional
stimulus to the real line

z(s) = k(0) + k(1)⊤s+

nl−1∑
i=1

dii(w
⊤
i s)

2

and a 1-D nonlinearity g(z). The full nonlinearity is thus f(x) = g
(
z(x)

)
.

3.3 Receptive field identification

After introducing the modeling framework, we will now focus on the estima-
tion of the model parameters. Receptive field estimators can be coarsely sub-
divided into three distinct classes: moment-based, model-based (or likelihood-
based) estimators and information-theoretic estimators. All approaches rely
on the dimensionality-reduction assumption we have already introduced
when talking about models of the neural activity in the previous section:
they all try to find a linear subspace of the stimulus, such that the prob-
ability of the response rt depends uniquely on the linear projection of the
stimulus st on said subspace.

Within the commonly adopted LNP framework, information-theoretic
estimators have been shown to be equivalent to likelihood-based estima-
tors [116], therefore we will focus on the latter. Since we are concern with
Bayesian inference for RF model parameters, model-based estimators pro-
vide the necessary context to understand this work. Moment-based estima-
tors are also important, since they are widely adopted for their mathematical
simplicity.
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3.3.1 Moment-based methods

By characterizing the moments of the spike-triggered stimuli ensemble (STSE)
distribution p(s|r), moment-based estimators seek to identify the kernels of
the Volterra expansion (3.5). The spike-triggered average (STA) and the
spike-triggered covariance (STC) that we are going to discuss below, esti-
mate the first and the second order terms, respectively.

Spike Triggered Average (STA)

The STA provides an estimate of a neuron’s linear receptive field. As the
name suggests, the STA is given by the average stimulus in the spike-
triggered ensemble (Fig. 3.3) [15, 101]:

µ =
1

nsp

T∑
t=1

tist, (3.7)

where nsp =
∑
ri is the total number of spikes in the dataset. The STA

is an estimate of the cross-correlation between the stimulus and the neural
activity. In computing (3.7) we assume that the stimulus has zero mean
(i.e. E[s] = 0) – if not, it can be made so by subtracting the mean from
each vector. We can express eq. (3.7) can be more compactly using matrix
notation:

µ =
1

nsp
S⊤r, (3.8)

where S = [s1, s2, ..., sT ]
⊤. The STA is the first term in the Volterra kernel

series expansion of an LNP neuron’s transfer function and can be used to
estimate the linear stage of the LNP cascade model [101]. However, it pro-
vides an unbiased estimate of a neuron’s receptive field only if the stimulus
distribution is spherically symmetric (i.e. white noise) [15, 99]. If the stim-
ulus presents non-zero correlations across space or time, the estimated RF
is distorted [75]. In this case one can whiten the STA by left-multiplying it
with the inverse of the stimulus covariance matrix:

µw =
T

nsp
(S⊤S)−1S⊤r = (S⊤S)−1µ. (3.9)

This is equivalent to the linear least-squares regression of the stimulus
against the spike train, which is the maximum likelihood estimate (MLE)
for the model parameters of the linear Gaussian model (3.2). The whitened
STA is a consistent estimator (i.e., it converges to the true linear subspace)
of the subspace spanned by the linear filter of an LNP if 1) the stimulus
distribution is elliptically symmetric and 2) the expected STA is not zero,
i.e. the nonlinearity induced a shift in the spike triggered-stimulus distri-
bution. Furthermore, if the stimulus distribution is Gaussian and the the
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Fig. 3.3: Spike-Triggered Average.8Spikes are recorded while a stimulus
(represented here by the checkerboard patterns) is presented. The stimulus
preceding each spike is extracted (here, the 3 lags denoted by the color
boxes) and the resulting stimuli subset are averaged. The STA suggests
that this neuron is selective for bright spots of light located in the top left
corner of the checkerboard.

neuron’s nonlinear response function is the exponential, the whitened STA
is an asymptotically efficient estimator [75]. For arbitrary stimuli, the STA
is in general not consistent nor efficient.

Spike Triggered Covariance

STC analysis provides a complementary tool to STA for estimating linear
filters in an LNP cascade model, but, unlike STA, it can be used to identify a
multi-dimensional feature space. The STC, as the name suggests, is the co-

8Created by StphTphsn and published in Wikipedia at the following link un-
der the CC BY-SA 4.0 license. The terms of the license are available at
https://creativecommons.org/licenses/by-sa/4.0/deed.en

https://en.wikipedia.org/wiki/File:Illustration_diagram_for_the_Spike-triggered_average.pdf
https://creativecommons.org/licenses/by-sa/4.0/deed.en
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variance of the spike-triggered stimulus ensemble. Given the spike-triggered
covariance

Λ =
1

nsp − 1

T∑
t=1

rt(st − µ)(st − µ)⊤, (3.10)

and the raw stimulus covariance (assuming the stimulus has zero mean)

C =
1

T − 1

T∑
t=1

sts
⊤
t ,

STC analysis identifies the stimulus features affecting a neuron’s response via
an eigenvector decomposition of (Λ−C) [98]. Eigenvectors with eigenvalues
significantly positive or negative correspond to stimulus axes along which
the neural response is enhanced or suppressed.

The requirements imposed on the stimulus for the STC to provide a
consistent estimator of the relevant stimulus subspace, are stricter than for
the STA. The STC estimate is unbiased provided the overall stimulus distri-
bution is spherically or elliptically symmetric (as was the case for the STA
estimator of a single-filter model) and the stimulus dimensions are indepen-
dent or can be linearly transformed to be independent of each other [75, 98].
These conditions are met only by a Gaussian stimulus distribution, and in
other cases the bias can be very significant [75].

3.3.2 Model-based estimators

Maximum likelihood

The consistency of model-based depends on specific assumptions about the
nature of the stimulus and the type of transformation mapping the input
stimulus to the observed output response. Maximum likelihood estimators
(MLEs), on the other hand provide consistent estimates of the RF’s filters,
independently of the choice of the stimulus distribution. This approach
rely on explicit generative models of neural activity, such as those intro-
duced in the previous section. The relationship between the stimulus and
the corresponding evoked response is encoded in the conditional probability
distribution p(r|S,θ), where S = [s1, s2, . . . , sT ]

⊤ is the stimulus matrix.
For simplicity, we lumped together all model parameters (the filters and
any parameter of the nonlinearity) in one single vector parameter θ. This
distribution acts as likelihood function of the model parameters given the
observed data D = {S, r}, therefore the value of θ that can best explain the
data is the one maximizing the likelihood:

θ̂ML = argmax
θ

p(r|S,θ)

= argmax
θ

[
log p(r|S,θ)

]
(3.11)



3.3. RECEPTIVE FIELD IDENTIFICATION 29

Introducing the logarithm operation does not change the position of the
maximum, but makes inference easier by making the cost function more
numerically stable. For many common choices of f , the log-likelihood of an
LNP is a concave function [76], therefore a single global optimum exists and
it can be found by standard optimization techniques such as gradient ascent
or Newton’s method.

MLEs are prone to suffer from noise in the data, which they tend to over-
fit when the number of parameters per data point ratio is high. For example,
we already mentioned that the whitened STA is the MLE for a linear, Gaus-
sian model. Despite providing an unbiased estimate, the whitening proce-
dure has the undesired effect of amplifying noise at high spatial frequencies,
therefore increasing the variance of the estimator and its data requirements.
For a model with of tenths of thousands of parameters like those used to
characterize a visual receptive field9, the amount of data required for an
accurate estimate is experimentally unfeasible. With limited data, optimiz-
ers tend to fit also random fluctuations, leading to poor estimates of RF
parameters. This problem is exacerbated when experimental time budgets
are very tight or the population of neuron being analyzed is intrinsically
low-firing, resulting on very sparse data available for inference.

Maximum a posteriori (MAP)

The necessity of preventing overfit led to the development of several reg-
ularized estimators that penalize implausible values of the model parame-
ters. Similar considerations apply also to STA and STC analysis, for which
regularized estimators have been developed [77, 78, 85]. Regularizers are
often contextualized within a Bayesian framework, where a prior distribu-
tion p(θ,α) explicitly encodes prior knowledge about the system, where α
is a vector of hyper-parameters. For visual RFs, the prior may encode, for
example, smoothness an locality. The regularized estimate is obtained by
maximizing the (unnormalized) posterior belief p(θ|r, s), which is known as
maximum a posteriori (MAP) estimator:

θ̂MAP = argmax
θ

p(r|S,θ)p(θ|α)

= argmax
θ

[
log p(r|S,θ) + log p(θ,α)]. (3.12)

Again, taking the log does not change the location of the maxima, but it
makes the optimization computationally easier. Since multiple observations

9A multi-filter LN cascade has ndnxynl RF parameters. For a stimulus of 100 × 100
pixels, 50 temporal delays (spanning 1s at 50Hz) and a 10-dimensional subspace, this
amounts 5 ·106M RF parameters. A GQM (with full-rank K(2)) has n2

dn
2
xy +ndnxy model

parameters, which, for the same stimulus as for the previous example, amounts to more
than 50 · 109 parameters.
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are usually considered conditionally independent given the predicted instan-
taneous firing rate (which in turn is a function of past stimuli and model
parameters), the likelihood factorizes into a series of independent terms,

p(r|S,θ) =
T∏
t=1

p(rt|st,θ), (3.13)

where T is the number of observed data points. The log-likelihood term in
(3.12) therefore scales linearly with T , whereas the magnitude of log prior is
constant in the number of data points. For a small number of data points,
the regularization effect of prior is not negligible and it pushes the estimates
towards a priori expected solutions. This reduces the variance of the MAP
estimator, while at the same time it helps preventing overfitting the noise.
When T is large, the contribution of the prior becomes vanishingly small in
comparison to the likelihood, and the MAP estimate converges to the ML
estimate. This property makes the MAP estimate asymptotically unbiased
and consistent.

The functional form of the prior determines the a priori expected struc-
ture of an RF. Assuming a Gaussian prior with covariance matrix Σ = αI,
strong weights are penalized – this is also known as ridge regression, or L2

regularization. Using the same covariance matrix, but using a Laplace prior
instead, is equivalent to performing Lasso regression, or L1 regularization,
which results in sparse estimate. Again using a Gaussian prior, but placing
a separate penalty on each parameter, i.e. we assume a diagonal covariance
such that σ2ii = α−1

i , we get Automatic Relevance Determination (ARD)
[108], which promotes sparse estimates as well; an ARD prior can also be
imposed also on a per-filter basis to automatically selection the appropriate
dimensionality of the feature space in a multi-filter LNP [78]. With Au-
tomatic Smoothness Determination (ASD) [96] the covariance matrix of a
Gaussian prior is parameterized using a squared exponential kernel [92], in
a way that the correlation between filter coefficients falls off as a function
of their spatial distance; ASD is used to encourages spatial and temporal
smoothness. Finally, with Automatic Locality Determination (ALD) [79] we
can encourage spatiotemporally- and frequency-localized estimates. ALD
contains ASD and ridge regression as special cases.

Selecting the hyper-parameters

In eq. (3.12), α is assumed fixed. However, α can be also made part of the
inference procedure: its value can be chosen using a procedure known as
Empirical Bayes (EB) or type II maximum likelihood [96], which consists of
maximizing the evidence (also known as marginal likelihood)

p(r|S,α) =
∫
p(r|S,θ)p(θ|α)dθ. (3.14)
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The model parameters are then fitted using the MAP, according to:

α∗ = argmax
α

p(r|S,α)

θ̂MAP = argmax
θ

p(r|S,θ)p(θ|α∗). (3.15)

In ARD, ASD and ALD, this is how the optimal value of the hyper-parameters
are automatically adjusted.

Alternatively, suitable hyper-parameters values can be set by cross-validating
the model predicting performance on some held-out data [44, 63, 67].

Low-rank approximations

Introducing a regularization term is not the only way to facilitate the infer-
ence procedure. The amount of required data can be reduced by reducing
the number of model parameters to be learned. This can be done by impos-
ing a low-rank structure to the RF filters [80, 85]:

kl =

nh∑
i=1

ng∑
j=1

aijl
(
hi ⊗ gj

)
, (3.16)

where hi and gj denote temporal and spatial filters, respectively, and “⊗”
is the Kronecker product. Each hi ⊗ gj is a rank-1, space-time separable
filter. This low-rank approximation of the linear filters reduces the number
of receptive-field parameters from ndnxynl to ndnh + nxyng + nhngnl.

3.4 Summary and discussion

In this chapter we introduced the properties of visual cortical neurons, the
target of our later analyses, and we described several probabilistic gener-
ative models for neural activity in response to external stimuli. We dis-
cussed moment-based and model-based estimators and defined the instances
in which the former are equivalent to the latter. We discussed how the
amount of data required by these estimators can be reduced thanks to prop-
erly chosen regularizers, which can be formalized within a Bayesian inference
framework: for sparse or noisy data, these reduce the estimation variance
by biasing the estimates towards a priori more likely receptive field shapes.
Empirical Bayes methods provide state-of-the-art solutions to the receptive-
field inference problem. However, despite their mathematical elegance, we
identify three major drawbacks of this class of algorithms, which we will
now discuss in detail.
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Computational requirements

The first drawback, is represented by their high computational requirements:
evidence optimization scales cubically with the number of model parameters
and it is a serious computational bottleneck for these algorithms. Efficient
implementations mostly rely on strong modeling assumptions, which consid-
erably limit their application to a restricted number of scenarios. Available
implementations are essentially limited to single-filter linear models with
additive Gaussian observation noise [5, 79, 96], for which the marginal like-
lihood has a closed-form analytical solution. In all other cases, efficient
evidence optimization is still an open matter of research. When not met by
the data, these assumptions may lead to considerably biased estimates [68].

Recent work [44] showed that this limitation can be mitigated to a great
extent by reducing the number of model parameters by modeling each recep-
tive field filter as a linear combination of fixed, well-defined basis functions.
Their choice fell on natural cubic splines, which rely on one single hyper-
parameter – namely, the number of splines. The necessity of evaluating
the marginal likelihood of the data was eliminated altogether, favoring a
model-selection strategy based on cross-validation. This resulted in compu-
tationally efficient algorithms, which the authors showed to outperform the
non-spline versions on a variety of applications.

Quantification of posterior uncertainty

The second limitation we can identify concerns the quantification of the
estimation uncertainty encoded by the posterior distribution. Empirical
Bayes relies on the assumption that the marginal likelihood of the data is
a narrow peak around the optimal value of the hyper-parameters, that is
p(α|r,S) ∝ p(r|S,α) ≈ δ(α − α∗), where δ(·) is a Dirac’s delta. There-
fore all estimation uncertainty is correctly captured by the posterior. In
mathematical terms,

p(θ|r,S,α∗) ≈ p(θ|r,S) =
∫
p(θ|r,S,α)p(α|r,S)dα. (3.17)

For very sparse and noisy data, the model evidence may not meet this as-
sumption, and the posterior distribution p(θ|r,S,α∗) would strongly un-
derestimate the actual amount of estimation uncertainty. To overcome this
problem, a fully Bayesian treatment of the problem targeting p(θ,α|r,S)
would be required. This is notoriously a computationally demanding prob-
lem, especially in very high-dimensional parameter spaces.

Propagation of uncertainty

With one or more parameters per stimulus dimension, non-parametric mod-
els are only informative of whether or not a specific stimulus dimension
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is relevant for the computation performed by the neuron. Any high-level
feature ϕ, e.g. the RF’s location or spatial orientation, is not explicitly
represented. This is actually not an exclusive problem of non-parametric
models: even when the receptive field is modeled as a liner combination of
basis functions, be them raised cosines [84] or splines [44], the issue still
persists.

Usually, a functional receptive field model, which we represent here as
a function f(ϕ), is fitted to point estimates such as kMAP by minimizing
the square loss ∥f(ϕ) − kMAP∥2 [89, 93]. This is in general a non-linear
optimization problem and, especially when kMAP is noisy because the data
itself was sparse or noisy, multiple optima may exist. Additionally, we should
also take into account any uncertainty encoded by p(k|r,S), which with
sparse of noisy data would not be negligible, and propagate it to quantify
Var[ϕ]. This is an open problem, since we have already established that the
mapping k→ ϕ is not necessarily injective.

Conclusions

This third issue is strongly entangled with the second one. We propose
to address both in an organic way, by modeling the RF features of interest
explicitly and adopt a fully Bayesian approach. The benefits of this strategy
are twofold: first, we drastically reduce the number of model parameters,
which will be beneficial to help in the inference procedure [44]; second, we
eliminate any intermediate or post-processing step, effectively getting rid of
the uncertainty propagation problem at the root.
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Chapter 4

A generative model for
neurons in Primary Visual
Cortex

In this chapter we will present a generative model for neural activity in
primary visual cortex. Our aim is to develop a model that encompasses
the most common stereotypical responses observed in primary visual cortex
(V1) using a compact set of parameters. Idealized simple and complex cells
can be described by spatially oriented Gabor wavelets [1, 49, 87]. We will
generalize this notion and develop a low-rank receptive field model able to
reproduce the most salient properties of neural responses in V1.

This chapter is structured as follows. After introducing a high-level
overview of the model, we describe in detail the structure of the receptive
field model. We will then study how this model responds to particular classes
of stimuli often used in neuroscience. We will then describe an efficient
discrete implementation of the model. Finally, we will discuss its relation
with other models found in the literature.

4.1 Generative model

Our generative model is an instance of a Linear Nonlinear Poisson (LNP)
cascade, 1 and is defined by the following equations:

rt ∼ Poisson(λt∆), λt = η
(
a+ b⊤s̃t + s̃⊤t C s̃t

)
, s̃t = F{st}. (4.1)

As in Chapter 3, st and rt denote, respectively, the stimulus and the response
of the neuron, here modeled in terms of spike counts within a bin of size ∆.
The raw stimulus st is mapped to a 2-dimensional feature vector s̃t by a linear
operator F{ · }, which we will discuss next. The instantaneous firing rate of

1For details about LNP models, see Chapter 3.

35
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the neuron λt is related to s̃t by a nonlinear mapping η : R2 → R+, after
the quadratic projection defined by the parameters a, b and C, respectively
a scalar, a vector and a matrix.

4.1.1 Linear filter

The actual receptive field is represented by the linear operator F{ · } in
eq. (4.1). Here, we will provide its definition in continuous space and time,
as the investigation of the filter’s response properties results more amenable
to an analytical treatment in this domain. The actual implementation, how-
ever, must be discretized in space and time to deal with high-dimensional,
unstructured visual stimuli such as sequences of images or movies. The
discussion of the discretization procedure is reserved to a later section.

The linear operator F{ · } consists of a pair of space-time oriented, para-
metric, linear filters f1 and f2. This particular structure allows to tune the
response of the model to visual stimuli with arbitrary orientation and spatial
phase, using only a minimal set of model parameters. 2 Each filter computes
a weighted sum of the stimulus intensities, over recently past time and local
space, and mathematically it is modeled as the time-sliding dot product

s̃i(t) = Fi{s}(t) =
∫
R2

∫ t

0
fi(x, t

′ − t) s(x, t′) dxdt′, (4.2)

where s(x, t) is a spatio-temporal signal s : R2 × R → R, denoting the
stimulus in continuous space and time, assumed identically equal to zero for
t < 0. The two kernels are modeled as follows:

f1(x, t) = h5(−t)gc(x− xo) + kdirh3(−t)gs(x− xo) (4.3a)

f2(x, t) = h5(−t)gs(x− xo)− kdirh3(−t)gc(x− xo) (4.3b)

The core of the model consists of four space-time separable units ob-
tained by combining two spatial kernels gc(x) and gs(x) with two temporal
kernels h3(t) and h5(t) (Fig. 4.1, top row). The spatial kernels gc and gs
form a quadrature pair, i.e. their Fourier transforms are identical up to a
90◦ phase shift, whereas h3 and h5 have different temporal dynamics (their
exact functional form is given below). Alone, these units provide orientation-
selective responses with different temporal onset and spatial phase selectiv-
ity. In order to model direction selectivity, these units must be combined
to give a non-separable spatiotemporal profile [1] (Fig. 4.1, bottom row).
The strength of the effect is controlled by the scalar parameter kdir, which
is assumed to be less than 1 in magnitude. For kdir = 0, we recover the
slow space-time separable units in the top row of Fig. 4.1, resulting in a
receptive field which is insensitive to the motion direction of the stimulus.

2As mentioned in Chapter 3, simple and complex cells in primary visual cortex can be
roughly classified into orientation and direction selective [22, 47].
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k1 = gc · h5 k1' = gc · k3 k2' = gs · k3 k2 = gs · h5

w1 w2 w3 w4

+ + - + + - + +

Fig. 4.1: Separable and non-separable filters. The top row displays a
xt-section of the four space-time separable units of the model. Appropriate
linear combinations of these units result in non-separable filters used for
motion detection (bottom row).

For kdir = 1 we recover the w1 and w2 non-separable kernels in the bottom
row of Fig. 4.1; conversely, for kdir = −1, we recover w3 and w4, which are
selective for the opposite direction. In order to avoid a singular parame-
terization which will introduce artificial modes in the posterior distribution
– by changing the sign of kdir and rotating the spatial filters by 180◦ we
obtain the same filters – for all practical purposes we constrain kdir in the
range [0, 1]. Finally, the 2-dimensional parameter xo determines the spatial
location of the receptive field within the visual field.

Spatial filters

The spatial filters gc(x) and gs(x) are parameterized, respectively, as a cosine
and a sine Gabor functions (see Fig. 4.2A), which are related to a complex-
valued Gabor wavelet g(x) according to g(x) = gc(x)− jgs(x). The Gabor
wavelet is parameterized as follows [30]:

g(x)
def
=
|Σ|
2π

− 1
2

exp

(
− 1

2
x⊤Σ−1x

)
· exp(k⊤x− φ) (4.4)
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where k0 ∈ R2, φ ∈ [0, 2π] and Σ = R⊤SR is a positive-definite, symmetric
matrix with

S =

(
σ2x 0
0 σ2y

)
, R =

(
cosψ sinψ
− sinψ cosψ

)
.

Each parameter has a particular effect on the response properties of the
spatial filter: k determines the preferred spatial frequency and orientation;
φRF determines the preferred spatial phase; σx, σy and ψ determine the
frequency and orientation bandwidth of the filter (Fig. B.1A and B). When
ψ = ∠k, σx and σy determine also the horizontal and vertical size of the
filter in the local coordinate system. To keep the model general, the spatial
frequency k and the covariance matrix Σ are introduced as two indepen-
dent parameters [19, 49]. However, it is not uncommon to align one of the
principal axes of Σ with the preferred spatial frequency, i.e. by constrain-
ing ψ = ∠k. This choice reduces the number of spatial filter parameters
from 7 to 6, but we lose the ability of modeling asymmetrical tuning curves.
This parameterization is usually followed in computer vision literature for
defining a bank of Gabor filters as feature extractors [29, 91], but also in
computational neuroscience [20]. We will also follow the convention ψ = ∠k
in later chapters, although it is important to mention that the model can
be more expressive.

Temporal filters

The temporal subunits h3 and h5 are parameterized as the difference of
two gamma function with the same rate, but different shape parameters
(Fig. 4.2C):

hn(t) ≜ α
(αt)n

n!

(
1− kbp

(αt)2

(n+ 2)!

)
e−αt ·Θ(t), (4.5)

where Θ(t) is the Heaviside step function, α > 0 is a rate parameter that
determines the frequency cutoff of the filter and kbp ∈ [0, 1] interpolates be-
tween a low-pass (kbp = 0) and band-pass (kbp = 1) response (Fig. 4.2D)
[115]. The free parameters of the model are α and kbp, while n is fixed. All
parameters being equal, The two kernels have different temporal profiles,
with h5 being slower than h3. These functions can model the stereotypi-
cal biphasic temporal responses observed in V1, with the amplitude of the
second through controlled by the parameter kbp. Triphasic temporal pro-
files, which are seldom encountered in V1, could be modeled using a more
complex impulsive response by including of additional parameters. Since
this type of response is quite rare [20], we sacrificed some extra flexibility in
order to minimize the number of model parameters to facilitate inference in
very small datasets for the majority of cells.
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-30 dB

-10 dB

Fig. 4.3: Stimulus sensitivity. By changing the relative magnitude of the
nonlinearity parameters a, b and C we can model how tightly the firing
rate of the neuron is coupled to the visual stimulus. Here, we simulated the
response of this model to a filtered stimulus consisting of a sinusoidal signal
to different values of the nonlinearity parameters (raster plots), resulting in
a poorly responsive (top) and well responsive (bottom) unit. The values of
the parameters were chosen to result in the same average firing rate (1 Hz).
The corresponding instantaneous firing rates are reported in the bottom
panel: notice how the fluctuations of the purple line are less pronounced
than those of the orange line.

4.1.2 Static Nonlinearity

While simple cells are tuned to different phases of the stimulus and their
response properties can be captured by a linear model [70], complex cells
exhibit some degree of phase invariance [45] and are responsive to motion
energy in the stimulus [1, 112, 115]. This latter set of properties can be
captured by a so-called energy mechanism3, the response of which is not
sensitive to the relative position of visual features [1, 88]. The quadratic
function

z(t) = a+ b⊤s̃(t) + s̃(t)⊤C s̃(t), (4.6)

which is part of the static nonlinearity of the LNP model defined in eq. (4.1),
is a parsimonious way to implement both linear and non-linear behaviors. It
is equivalent to a second-order Volterra expansion [3] of the actual nonlinear
operation performed by a neuron, and contains both the linear model and the
energy model as special cases: the first by imposing C = 0, while the latter
with b = 0 and C = c ·I, for some positive real-valued scalar c. By changing
the relative magnitude of a and the stimulus-related parameters b and C,

3An energy model is a mechanism summing the squared outputs of a quadrature pair.
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we model different levels of sensitivity to the visual stimulus (Fig. 4.3).

4.2 Response properties

In this section, we are going to investigate the response properties of the
receptive field model defined above. We will analytically derive its response
to a family of signals routinely used to assess the properties of visual re-
ceptive fields, namely contrast-modulated and moving sinusoidal gratings.
We will also study the role played by the non linearity. As we shall see in
the next paragraph, this analytical treatment is easier if we operate in the
complex-valued domain: we will define a complex valued operator W map-
ping a visual stimulus s(x, t) to a complex-valued time series s̃(t) such that
Re[s̃(t)] ≡ s1(t) and Im[s̃(t)] ≡ s2(t), where s1(t) and s2(t) are the outputs
of the linear subunits as defined by eq. (4.2).

A central role in the analysis that follow is played by the notion of power
of a complex-valued periodic signal z(t), which is defined as the average
value of its squared magnitude within one period of length T :

Pz =
1

T

∫ +T/2

−T/2
|z(t)|2dt. (4.7)

From the power, we can derive the another quantity of interest, the root-
mean-squared (RMS) amplitude of the signal,

zRMS ≜
√
Pz, (4.8)

which is the amplitude a constant signal should have to deliver the same
power of the periodic one within the same amount of time. NB: The power
of a signal is a constant. It should not be confused with the power spectrum
of the signal, Pz(ω) = |ẑ(ω)|2, i.e. the squared magnitude of its Fourier
transform, which is instead a function measuring the amount of energy de-
livered at each frequency.

4.2.1 Complex-valued receptive field model

As mentioned above, our analysis will be greatly facilitated by operating
in the complex domain. We define a new complex-valued, space-space time
separable operator

W{s}(x, t) =
∫ t

0

∫
R2

g(x′ − x)h(t− t′)s(x′, t)dx′ dt′, (4.9)

where g(x) is the complex-valued Gabor wavelet (4.4) and

h(t) = h5(t)− j · kdirh3(t), (4.10)
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with hn(t) defined as in eq (4.5). With some derivations, we can show that

s̃(t) =W{s}(xo, t) = F1{s}(t) + j · F2{s}(t), (4.11)

where F1 and F2 are the real-valued linear operators associated to the real-
valued kernels (4.3a) and (4.3b). Thanks to the complex notation, the in-
teractions of four real-valued, space-time separable subunits are compactly
represented by one single complex-valued, space-time separable operator,
which greatly reduces the complexity of our analysis. This new linear oper-
ator is the cascade of a cross-correlation with kernel g(x′) and a convolution
with kernel h(t′). The complex signal s̃(t) can be found by evaluating the
operator’s output at (xo, t), for all values of t, which is a one-dimensional,
complex-valued temporal signal. From the linearity and the separability of
the operator, we can find that its response to a complex-valued harmonic
signal

ξ(x, t) = A · ejk⊤
0 xejω0t (4.12)

with amplitude A ∈ C, spatial frequency k0 and temporal frequency ω0 has
the following simple analytical expression:

W{ξ}(x, t) = A ĥ(ω0)ĝ(k0) e
jk⊤

0 xejω0t = ĥ(ω0)ĝ(k0) · ξ(x, t), (4.13)

where ĝ(·) and ĥ(·) are the Fourier transforms of the spatial and temporal
kernels, respectively, given in eq. (B.1) and eq. (B.12). This means that
ξ(x, t) is an eigenfunction for W . From this, it follows that the receptive
field’s response to ξ(x, t) is a temporal harmonic signal ξ̃(t) = Ȧ ejω0t, where

the complex amplitude is Ȧ = A ĥ(ω0)ĝ(k0) e
jk⊤

0 xo . Since harmonic signals
are a building block for more sophisticated stimuli, if follows that we can
decompose the receptive field’s response to such stimuli in terms of simpler,
analytically available signals.

4.2.2 Orientation and frequency tuning

The orientation-selectivity properties of the model can be investigated by
studying the linear filter’s response to a counterphase sinusoidal grating,
which is a class of stimuli commonly used to characterize the responsive
properties of cortical visual neurons. This type of signal is a static (i.e. non
moving), contrast-modulated sinusoidal grating; the contrast is modulated
by a sinusoidal temporal signal. Mathematically:

s(x, t) = A · cos(k⊤
0 x− φs) cos(ω0t− φt) = A · sx(x) · st(t), (4.14)

where k0 ∈ R2, φs ∈ [0, 2π] and A ∈ R+, are the spatial frequency, phase
and amplitude of the grating, while ω0 ∈ R and φt ∈ [0, 2π] are the angular
frequency and phase of the contrast-modulating signal. The response of the
linear filter factorizes into a spatial and a temporal sub-components:

W{s}(t) = 1

4
A · s̃x(xo) · s̃t(t),
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Fig. 4.4: Orientation selectivity. A) Power spectrum of the Gabor
wavelet corresponding to the spatial filters in Fig. 4.2A. The green and
the blue lines correspond to the slices used to evaluate the spatial orienta-
tion and spatial frequency responses. B) Spatial orientation selectivity. C)
Spatial frequency selectivity.

where s̃x and s̃t are the spatial and the temporal component of the response,
respectively. In this context, s̃x(xo) is a constant modulating the amplitude
(and changing the phase) of the temporal signal s̃t(t). The value of its
squared magnitude defines the selectivity of the receptive field to spatial
properties of the stimulus. It is implicitly a function of the grating’s param-
eters k0 and φs, which we denote with tc(k0, φs) ≜ |s̃x(xo)|2 and we refer
to it as the tuning curve (TC) of the filter. For sufficiently large values of
|k0|, the dependency on xo and φs becomes negligible:

tc(k0, φs) ≈ |ĝ(k0)|2 + |ĝ(−k0)|2. (4.15)

This is a mixture of two 2D Gaussians centered at ±kRF (From here on,
we will use the subscript “RF” to denote those filter parameters having the
same name of some of the stimulus parameters). For sufficiently large values
of the product |kRF |σx, the two lobes are well separated and the function
has two local maxima at k∗

0 ≈ ±kRF (see Fig. 4.4A), corresponding to a
preferred orientation θ∗0 = ∠kRF + nπ (for n ∈ Z) and a preferred spatial
frequency κ∗0 = |kRF | (where κ0 and theta0 denote the polar coordinates of
k0, such that k0 = κ0∠θ0). By evaluating the slice in the spatial frequency
plane with constant magnitude |k0| = κ∗0 we can recover the orientation
tuning curve of the filter (Fig. 4.4B)). Similarly, by fixing the orientation
∠k0 = θ∗0 and varying the magnitude of the spatial frequency, we obtain its
frequency tuning curve (Fig. 4.4C). In general, the orientation and frequency
tuning curves do not have a compact analytical representation, which may
limit the understanding of the effect that each model parameter has on the
selectivity properties of the filter. However, they can be readily evaluated
for any given value of the stimulus and of the model parameters, just by
following their definition. This means that they can be fitted to data, if one
so desires.
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4.2.3 Direction selectivity

The direction selectivity properties of the filter can be investigated by study-
ing its response to a drifting grating, i.e. a sinusoidal plane wave:

s(x, t) = A · cos(2πν(n⊤x− ct)− φ0). (4.16)

The spatial frequency ν is the number of cycles per unit length along the
direction n, c is the drifting velocity and φ0 is the initial phase shift when
t = 0. For c > 0, the drifting direction is n, whereas for c < 0 it is −n.
When c = 0, there is no drift and the grating is static. By rearranging
the terms in eq. (4.16), we can parameterize the grating in terms of the 2D
angular spatial frequency k0 = 2πν n and the angular temporal frequency
ω0 = 2πνc. Using the trigonometric identity 2 cosx = ejx + e−jx, we can
express the drifting grating as the sum of two complex harmonic signals:

s(x, t) = ξ(x, t) + ξ(x, t), (4.17)

where ξ(x, t) = A′ejk
⊤
0 xe−jω0te−jφ0 and A′ = A/2. Unlike the case of a

counterphase grating, we cannot factorize the filter response into the product
of a spatial and of a temporal component, because the input signal is not
space-time separable. We must instead compute the responses to ξ and ξ
individually. Thanks to eq. (4.13), however, we can derive the response

s̃(t) = ĥ(−ω0)ĝ(k0)ξ(xo, t) + ĥ(ω0)ĝ(−k0)ξ(xo, t) (4.18)

From here, deriving the expression for the power is just a matter of a few
steps (see Appendix B.3 for details), from which we obtain

Ps̃ =
[
Ph(−ω0)Pg(k0) + Ph(ω0)Pg(−k0)

]
· Pξ, (4.19)

where Pg(u) = |ĝ(u)|2 and Ph(ω) = |ĥ(ω)|2 denote, respectively, the power
spectra of the spatial and the temporal filter, derived from the Fourier trans-
forms (FT) of the respective kernels given in eq. (B.1) and (B.12). How
exactly each model parameters shapes Ps̃ is not straightforward,4 but we
can nevertheless get a high-level qualitative understanding of this relation-
ship. If the model is space-time separable, i.e. kdir = 0, h(t) is a real-valued
function, therefore ĥ(t) is Hermitian, from which follows that Ph(ω) is an
even function; in this case, Ps̃ has the following simpler expression:

Ps̃ = Ph(ω0)
(
Pg(k0) + Pg(−k0)

)
· Pξ. (4.20)

Since Ph(ω0) is an even function (because it is the power spectrum of a
real valued signal) and Pg(k0) + Pg(−k0) is even by construction, the filter

4We can compute Ps̃ for any choice of model and grating parameters using indeed
eq. (4.19).
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Fig. 4.5: Direction selectivity. A) Velocity power spectrum of the RF
for kdir = 0. The angular dimension is the direction of motion of the grating
and the radial dimension is the speed in (deg/s); radial grid lines are spaced
in steps of 10 deg/s. B) Direction selectivity: using c = c∗, the preferred
speed, we vary the orientation of the grating. C) Speed selectivity: using
a grating with ∠x0 = ∠kRF , we evaluated the strength of the response for
different values of the drifting speed. D, E, F) As A, B and C, but for a
direction selective filter obtained by setting kdir = 1.
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Fig. 4.6: Phase selectivity. A) Preferred spatial phase as a function of
the sum φRF + ∠Ḃ for kdir = 0 (solid line) and kdir = 1 (dashed line).
B) Strength of the response of Ḃ W{s}(t) for a counterphase grating input
s(t), as a function of the phase of the grating, for kdir = 0 (solid line) and
kdir = 1 (dashed line). We measured the output RMS and normalized for
the maximum observed value in each configuration.

response is equally strong up to a 180◦ flip of the drifting velocity and the
resulting model is not direction selective (see Fig. 4.5A, B and C). When
instead kdir ̸= 0, opposite directions will elicit different responses. More
precisely, if kdir > 0 and ∠k0 = ∠kRF , the response will be stronger for
c > 0 than for c < 0 (see Fig. 4.5D, E and F). Conversely, the opposite
relationship is true if kdir < 0.

4.2.4 Phase dependence and phase invariance

After investigating the selectivity properties of the linear filter, we are now
going to study the role of the quadratic nonlinearity in shaping the selectivity
of the model. To start, denoting as usual the complex-valued output as s̃(t)
and the corresponding real-valued feature vector as ˜stim(t), we note that

b⊤s̃(t) + s̃(t)⊤C s̃(t) = Re
[
Ḃ s̃(t) + Ċ s̃(t)2

]
+D |s̃(t)|2 (4.21)

for some constants Ḃ, Ċ ∈ C and D ∈ R. We will now study separately the
contribute of the linear and of the quadratic terms.

Preferred spatial phase

The net effect of the linear term b⊤s̃(t) is to adjust the phase selectivity of
the linear part of the response. In other words, the parameter b determines
the relative position of excitatory and inhibitory subregions of the spatial
filter. Mathematically, this can be expressed as

b⊤s̃(t) = b1 · F1{s}(t) + b2 · F2{s}(t) = Re
[
Ḃ s̃(t)

]
(4.22)
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for Ḃ = b1 + j · b2. If we expand the term Ḃ s̃(t), we see that the effect of
multiplying by a complex-valued constant is to offset the spatial phase of
the receptive field by ∠Ḃ. In other words, this is equivalent to a new spatial
filter g′(x) with spatial phase φ′

RF = φRF +∠Ḃ, such that Ḃ s̃(t) = |Ḃ| s̃′(t),
where s̃′(t) is the response of this new receptive field. The preferred spatial
phase φ∗ of the filter for different values of φRF+∠Ḃ is reported in Fig. 4.6A:
for kdir = 0, φ∗ = φRF + ∠Ḃ (solid line), up to a 180◦ shift for negative
values; for kdir = 1 we observe the same pattern, but with a displacement
of 45◦ (dashed line); in both cases the relation is periodic with period 180◦.
This plot shows that only the sum φRF + ∠Ḃ is identifiable, making the
spatial phase parameter φRF redundant, since only the combined effect of
φRF + ∠Ḃ can be observed in the output. We can therefore set kRF to
some constant arbitrary value, and let the phase response properties of the
RF be determined uniquely by the parameter b; in our implementation we
used φRF = 45◦, since for this value gc(x) and gs(x) have the same energy.
The strength of the response of a linear filter with preferred spatial phase
φ∗ = 0 to a counterphase grating with spatial frequency k0 = kRF as a
function of the grating’s phase φ0 is illustrated in Fig. 4.6B: while a relative
phase φ0 = ±90◦ completely kills the output Ḃs̃(t) for kdir = 0 (solid line)
because the contributions from excitatory and inhibitory subregions of the
RF completely cancel out, this is not the case for kdir = 1 (dashed line),
which leads to a model with a less pronounced sensitivity to the spatial
phase of the stimulus.

Non-linear response and phase invariance

We now focus on the quadratic term

zsqr(t) = s̃(t)⊤C s̃(t) = Re
[
Ċ s̃(t)2

]
+D |s̃(t)|2. (4.23)

After expanding and rearranging the term s̃(t)⊤C s̃(t), we can show that
|Ċ| =

√
2 tr(C2)− tr(C)2, ∠Ċ = − arctan(2c12, c11 − c22), and D = tr(C),

where “tr(·)” denotes the trace operator. The term D |s̃(t)|2 is actually
proportional to the power of the linear filter’s output, and it does not de-
pend on the specific phase of the input, as confirmed also by simulating this
signal for different values of the spatial phase of a counterphase sinusoidal
grating stimulus (Fig. 4.7A). This term has a net excitatory or suppressive
effect depending of the sign of tr(C) (positive, excitatory; negative, sup-
pressive). The other term, instead, contains higher-order harmonics of the
input. Expanding this terms gives:

Re
[
Ċs̃(t)2

]
= |Ċ||s̃(t)|2 cos

(
2∠s̃(t) + ∠Ċ

)
.

For an input with a sinusoidal temporal component oscillating with fre-
quency ω0, this is a sinusoid with temporal frequency 2ω0 (Fig. 4.7B).
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Fig. 4.7: Phase invariance. A) Normalized output power of the response
to a counterphase sinusoidal input with spatial frequency k0 = kRF ; the
angular dimension is the phase of the stimulus while the radial dimension
is the normalized gain; grid lines are spaced in steps of 0.2 units. Notice
how the gain is constant and equal to 1 as function of the stimulus phase.
B Response to a static grating for kdir = 0 (solid line) and for kdir = 1
(dashed line); the amplitude of the response follows the modulation of the
contrast. C) Response to a rightward moving grating for a receptive field
with preferred direction θ∗ = 0◦ for kdir = 0 (solid line) and for kdir = 1
(dashed line); in this case, after an initial transient, the strength of the
response is more or less constant over time.
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This effect goes under the name of frequency doubling and it is observed
in complex-like cells in V1 [20]. The response to a drifting grating, instead,
after an initial transient is a sustained signal (Fig. 4.7C).

4.3 Discretization of the model

So far we adopted a continuous space-time formulation of the receptive field
model, as this facilitate the analytical investigation of its properties. In con-
crete applications, however, visual stimuli often consist of discrete signals:
for example, a movie is a discrete series of frames, which in turn are a ma-
trix of pixels. These can be thought as piece-wise constant signals defined
on a finite spatiotemporal grid, and can be represented using 3-dimensional
tensors.

The most straightforward way to discretize the linear filters is to take
advantage of the discrete nature of the stimulus and covert all integrals
into sums. For any space-time separable subunits like those forming the
kernels (4.3), this operation would yield:

s̃n =
n∑

k=0

hn−k

∑
i,j

gijsijk. (4.24)

The coefficients hk and gij are obtained by integrating the continuous kernels
on the grid defining the piece-wise constant visual stimulus. If we truncate
the temporal convolution to the first M terms, eq. (4.24) is equivalent to a
vector dot product between the receptive field filter h⊗ g and the stimulus
vector sn, defined as in eq. (3.1) (here, “⊗” denotes the Kronecker’s prod-
uct). Assuming g ∈ RNxy and taking into account the separable structure,
the time required to filter a stimulus sequence of length Nt therefore scales
as O(Nt(M +Nxy)). Although conceptually simple, this approach has one
main disadvantage: the value of M at which we truncate the sum grows,
in general, inversely with the sampling step size ∆ and the decaying rate of
the filter.5

Amore efficient efficient strategy relies on converting the continuous time
filter h(t) to a discrete time one hd[n]. This can be done by transforming the
transfer function of the continuous-time system, H(s) = L{h}(s), into the
transfer function of the discrete-time system, Hd(z) = Z{hd}(z),6through
a mapping of the continuous frequency plane S to the discrete frequency
plane Z [74]:

s← ∆−1 ln z ≈ 2

T

z − 1

z + 1
. (4.25)

5This fact is better illustrated through an example. Consider an exponentially decaying
kernel h(t) = α exp(−αt). The corresponding discrete kernel is h[k] = (1 − a)ak, with
a = exp(−α∆). If we consider only the first M samples, we discard ϵ = aM mass of
the kernel. For a desired level of precision ϵ, M = ⌈−(α∆)−1 ln ϵ⌉, where ⌈·⌉ denote the
smallest integer larger than its argument.
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Operating this mapping is equivalent to approximating the value of the
impulsive response h̃d[n] using the trapezoidal rule [74], i.e.

hd[n] =

∫ n∆

(n−1)∆
h(τ)dτ ≈ ∆

2

[
h((n− 1)∆) + h(n∆)

]
,

which gives an approximation error that scales as o(∆2) [113]. Treating the
convolution as a discrete-time linear time-invariant system, however, has
an additional advantage: the discrete-time system can be expressed by the
linear recursive difference equation

y[n] = −
P∑
i=1

ai · y[n− i] +
P∑

j=0

bj · u[n− j], (4.26)

where u is the input and y is the output of the filter. The computational
cost of this implementation scales as O(Nt(P +Nxy)), where P is the order
of the filter, which depends only on the functional family of the kernel h(t).
In other words, the order of the system is completely independent of the
discretization time step or the value of any of the kernel’s parameters (for
example, the slowest temporal filter used in our model, h5, has order P = 8
and does not depend on the value of α or kbp).

4.4 Relation to other models

The low-rank structure of our receptive field model shares many similarities
with other models of motion perception in V1 [1, 39, 40, 115]. The organiza-
tion of the receptive field in linear subunits and their interactions generalizes
the structure of the energy models developed by Adelson & Bergen [1] and
Watson & Ahumada [115] as an explanation motion perception in complex
cells. By parameterizing the interactions between the output of the two lin-
ear subunits, instead of assuming a fixed quadratic relationship, the resulting
structure can be used to model the linear behavior characteristic of simple
cells as well. In more recent year, low-rank receptive fields models have been
adopted to reduce the number of model parameters in single-filter LNP [80],
and as a basis for an efficient implementation of information-theoretic spike-
triggered average and covariance analysis [85].

This generative model can be interpreted as a generalized quadratic
model (see eq. (3.6)):

k(0) + a, k(1) = Wb, K(2) = W⊤CW,

where W = [f1, f2] and f1, f2 are column vectors representing the linear
subspace spanned by the receptive field. This formulation is reminiscent of

6L and Z denote the Laplace- and the Z-transform [74], respectively.
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the elliptical-LNP model introduced by Park and Pillow [78]. This model can
also be treated as a GQM on the projected stimulus s̃, where the linear filter
plays the role of a family of parametric basis functions extracting relevant
features from the stimulus. As all GQMs, this also can be considered a GLM
on the space of quadratically transformed stimuli [32]. The corresponding
design matrix and GLM coefficients are:

β = [a, b1, b2, c11, c22, c12]
⊤, (4.27)

x = [1, s̃1, s̃2, s̃
2
1, s̃

2
2, 2 · s̃1s̃2]. (4.28)

This equivalence will be fundamental to enable the application of the efficient
nested sampling implementation introduced in the next chapter.

4.5 Summary and discussion

In this chapter we introduced a linear-nonlinear cascade model capable of
reproducing many of the stereotypical responses observed in V1, while rely-
ing on a small number parameters. The RF is modeled in terms of a cascade
of two linear subunits (filters) and a static quadratic non-linearity. Spatial
filters were modeled as Gabor functions because provide a good empirical
description of receptive field shapes typically observed in V1 [49]. As a
fully quadratic generalization of the energy model [1, 115], this model can
reproduce orientation and direction selectivity, linear responses and phase
invariance. Nevertheless, we realize that this is not an exhaustive model of
all properties of V1 receptive fields and we discuss some possible extensions
in appendix C.

By restricting the receptive field to a very specific parametric family, we
can drastically reduce the number of parameters in comparison the other
models discussed in Chapter 3 (see Table 4.1), even below the already small
parameter space represented by a family of splines [44]. By reducing the
number of parameters, we seek to make inference easier when data is scarce.
Inference will be performed on semantically meaningful parameters with-
out any intermediate post-processing stage, making inference results readily
interpretable in terms of experimentally relevant receptive field properties.
Still, this model can be treated within the GLM framework, a property that
is crucial to speed up inference, as we will see in Chapter 5.
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Parameter Dim. Constraint Description

xo 2 - Spatial location
k 2 - Preferred spatial frequency
σx 1 σx > 0 Horizontal scale
σy 1 σy > 0 Vertical scale
ψ 1 [0, 2π] Affects the orientation tuning
α 1 α > 0 Decay rate of temp. filter
kbp 1 [0, 1] Frequency response type (BP/LP)
kdir 1 [0, 1] Direction selectivity

Table 4.1: Receptive field parameters. The receptive field is entirely
modeled by the 8 parameters reported in this table, for a total of 10 degrees
of freedom (DoF), or 9, when enforcing ψ = ∠k.



Chapter 5

Nested Sampling for GLMs
with parametric basis
functions

In this chapter, we will present a variation of Nested Sampling (NS) devel-
oped to target the posterior distribution over model parameters of General-
ized Linear Models (GLMs) where the design matrix is specified by means
of parametric basis functions. We named this new algorithm “Collapsed
Nested Sampling” (CNS), after the strategy used to compute the evidence:
CNS improves sampling efficiency by marginalizing out some of the model
parameters, therefore reducing the effective dimensionality of the parameter
space explored by the sampler. In order to make the distinction between the
two algorithms clear, from here on we refer to conventional NS as “ordinary
nested sampling” (ONS). We will first explain the motivations for develop-
ing CNS, followed by a mathematical characterization of its structure. We
will test CNS and ONS on synthetic data generated using the receptive field
model presented in chapter 4. We will compare CNS’ performance against
ONS on a variety of metrics, to characterize its convergence properties.

5.1 Motivation

Nested sampling is a popular alternative to MCMC algorithms to simultane-
ously estimate a model’s evidence and sample from the posterior distribution
of its parameters (for an overview of the NS algorithm, see Chapter 2.3).
Relying on a very small number of free parameters, nested sampling can as
a black-box Bayesian inference framework. The exact number of parameters
vary across each specific implementation of the algorithm, but one particular
parameter is common to all of them: this is the number of live points, Nlive,
i.e. the number of particles NS uses to explore the posterior landscape. The
choice of Nlive affects both the precision of the estimated model evidence

53
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and of posterior distribution – which we here denote respectively by Ẑ and
p̂(θ|D) to distinguish them from the respective true values. Higher values
produce more precise estimates at the expense of additional computational
cost. As mentioned already in Chapter 2.3, the computational complexity
of NS scales as O(Nlive) [103]. Choosing an appropriate value for Nlive is of
paramount importance: with too small values we sacrifice resolution, con-
cretely increasing the chances of missing some narrow posterior modes (and
as already mentioned in Chapter 2, this is not an only an issue of NS, but a
problem affecting all sampling-based strategies to approximate a probability
distribution); too large values, on the other hand, result in longer running
times for negligible improvements.1 Theoretically, Nlive should scale at least
as O(D2) to produce good estimates [105], where D is the number of model
parameters; this, however, is just a suggested lower bound. In some practical
implementations, having the number of live points scaling as O(D3) gives
better performance [36]. This means that the computational complexity of
NS scales supra-linearly with the number of model parameters. If it were
possible to reduce the dimensionality of the parameters space, while target-
ing the same, identical posterior distribution, we could expect a reduction
in NS’ running time.

5.2 Collapsed Nested Sampling

Nested sampling is a Monte Carlo (MC) algorithm to compute the values of
an integral like

Z = p(D|θ) =
∫
p(D|θ)p(θ)dθ =

∫
p(D,θ)dθ, (5.1)

which, in the context of Bayesian inference, corresponds to the evidence
in favor of a data-generating model p(D|θ), governed by parameters θ and
producing data D. Former knowledge or prior belief about θ in encoded in
the prior probability distribution p(θ). This equation is equivalent to (2.3),
with the omission of the explicit dependence on the model. The integrand is
the joint distribution of parameters and data, p(D,θ), which is proportional
to the posterior distribution of parameters given the data:

p(θ|D) ∝ p(D,θ) = p(D|θ)p(θ).

Without any loss of generality, we can split the vector of model parameters
θ into two disjoint subsets, θ1 and θ2, and factorize the aforementioned joint
distribution accordingly. Mathematically,

p(D,θ) = p(D,θ1,θ2) = p(D|θ1,θ2)p(θ2|θ1)p(θ1), (5.2)

1For example, we are interested only on the value of some summary statistics of the
posterior distribution, like its mean or variance, up to 1 part in 1000 and improving the
precision to 1 part in 1 million would not bring any further practical advantage.
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where

θ1,θ2 ⊂ θ : θ1 ∪ θ2 = θ ∧ θ1 ∩ θ2 = ∅. (5.3)

The posterior distribution allows a similar factorization:

p(θ|D) = p(θ2|θ1,D)p(θ1|D) ∝ p(D,θ1,θ2) (5.4)

If we substitute eq. (5.2) in (5.1), the expression for the model evidence
becomes:

Z =

∫
p(θ1)

(∫
p(D|θ1,θ2)p(θ2|θ1)dθ2

)
dθ1, (5.5)

where the innermost integral is the marginal likelihood of the partial model
p(D|θ1,θ2)p(θ2|θ1) conditioned on the value of θ1:

p(D|θ1) =
∫
(D|θ1,θ2)p(θ2|θ1)dθ2 (5.6)

As such, it is the normalizing constant of the conditional posterior distri-
bution p(θ2|θ1,D) appearing in (5.4). Assuming p(D|θ1) is known, we can
recast the original problem expressed by (5.1) on a lower-dimensional pa-
rameter space, represented by the new integral

Z =

∫
p(D|θ1)p(θ1)dθ1. (5.7)

Reformulating the problem in this way has two main advantages:

1. Since the dimensionality of θ1, D1 is smaller than that of the original
set of model parameters, D, a smaller number of live points is required
to explore the posterior landscape. SinceNlive scales in general as some
monotonically increasing, supra-linear function of the number of model
parameters and the computational cost of NS scales as O(Nlive), we
can theoretically expect asymptotically shorter run times. This is true
as long as there is no additional computational overhead for evaluating
p(D|θ1) instead of p(D|θ2,θ1): this may occur as additional computa-
tional costs for computing p(D|θ1) itself or as additional computational
overhead from some internal step of the NS implementation.

2. We can expect p(D|θ1) to be more efficient to explore. Resulting from
the marginalization of some of the parameters of a higher dimensional
model, p(D|θ1) is smoother than the original p(D|θ1,θ2), i.e. it has
comparatively broader and shallower peaks. This property makes it
less likely for the nested sampler to miss a narrow mode or get stuck
around a local maximum on its way to accumulate evidence across the
posterior distribution.
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We will show in the results that there is some evidence backing up the
second point. Any consideration about the first point is instead a more
delicate matter, since a series of factors determines the actual computa-
tional cost of NS beyond purely theoretical considerations and are poten-
tially implementation-dependent – this point will be discussed in detail in
the results section.

Evaluating p(D|θ1)

So far we have assumed that the value of p(D|θ1) is readily available, but this
is not generally the case: an analytical marginalization is not always possi-
ble. Nevertheless, since p(D|θ1) is the normalization factor of p(θ2|D,θ1),
its value may be approximated, e.g., with variational methods [8] or the
Laplace’s method2[21], provided that p(θ2|D,θ1) meets the criteria for these
approximations to be meaningful.

Sampling the marginalized parameters

If needed, samples from p(θ2|D) can be generated as follows: for each

θ
(k)
1 ∼ p(θ1|D) generated by NS, sample θ

(k)
2 ∼ p(θ2|D,θ(k)1 ). This ap-

proach is similar to how marginalized parameters are sampled in a partially

collapsed Gibbs sampler [111]. How exactly to sample from p(θ2|D,θ(k)1 ) de-
pends on the concrete instance of the problem one is working on. If directly
sampling the conditional distribution is not straightforward, samples could
be generated using MCMC [31] or any other feasible sampling strategy, e.g.,
rejection sampling [8, 13], slice sampling [71] or by importance sampling, to
approximate the posterior distribution p(θ2|D,θ1).

5.3 Application to Generalized Linear Models

Generalized linear models (GLMs) provide a convenient framework to ex-
tend multilinear regression to observation noise models in the exponential
family [66, 72]. We have already mentioned them in Chapters 3 and 4, and
Appendix A discusses them in detail.

In this chapter we are concerned in particular with GLMs which relate
the dependent variable y on some vector of covariates x by means of a linear
mixture of non-linear functions of x:

g
(
E[y]

)
= β0 +

p∑
j=1

βhj(x), (5.8)

where g is the link function (see Appendix A), β0, β1, . . . , βp are linear mixing
coefficients and h1(·), . . . , hp(·) are a set of (non-linear) basis functions [24,
32, 98], whose collective behavior is governed by a set of parameters, ψ.
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The likelihood of a data point (xi, yi) ∈ D is therefore a function of the
dependent variables xi, of the coefficients β = [β0, β1, . . . , βp]

⊤, and of the
parameters ψ. Considering a dataset D = {(xi, yi)} consisting of n pairs
of independent and dependent variables, the likelihood of the entire set of
observations y = [y1, y2, . . . , ]

⊤ factorizes as the product of conditionally
independent terms:

p(y|β,ψ,X) =
n∏

i=1

p(yi|β,ψ,xi),

where X = [x1, . . . ,xn]
⊤. This likelihood being conditionally dependent on

the disjoint set of model parameters θ = {ψ,β} suggests that the posterior
distribution p(β,ψ|y,X) ∝ p(y|β,ψ,X)p(ψ,β) can be explored using the
strategy outlined in (5.5):

Z =

∫
p(ψ)

(∫
p(y|β,ψ,X)p(β)dβ

)
dψ. (5.9)

Here, we also assumed that the β and ψ are a priori independent, therefore
the prior factorizes as p(ψ,β) = p(ψ) · p(β), because there is no reason
to believe that the linear mixing coefficients depends on the actual shape
of the basis functions, or the other way around. Although we could have
decided to marginalize ψ, marginalizing out the coefficients β has a clear
advantage: the structural properties granted by the GLM framework ensure
that p(y,β|p(y|β,ψ,X)p(β) is log-concave in β provided that p(β) is as
well, therefore the innermost integral can be approximated using Laplace’s
method [21] when an analytical solution is not available:

p(y|ψ,X) ≈ (2π)
m
2 ef(β̂)

|H(β̂)|
1
2

,

where m is the dimensionality of β, f(β) = log p(y,β), β̂ = argmax f(β)
and H is the Hessian of f . For a Poisson GLM, log-concavity is preserved
even when a non-canonical link function is used, provided it satisfies some
mild regularity conditions [76].

5.4 Performance analysis

Both ordinary NS and CNS were used to infer the posterior distribution over
model parameters on synthetic data generated by the receptive field model
described in the previous chapter. Both NS and CNS were run different
values of Nlive and, for each configuration, each algorithm was run multiple
times using different random seeds (for details regarding the data genera-
tion and the sampler configuration, see the methods section below). The
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Fig. 5.1: Sampling efficiency. Comparing sampling efficiency, measured
according to several metrics (blue, ordinary NS; orange, collapsed NS). A)
Effective sample size as a function of Nlive. B) Effective samples per live
point per input dimension. C) Average number of effective samples gen-
erated by each actual sample. D) Average number of effective samples
generated for each evaluation of the log-likelihood function. CNS performs
better than ONS on all fronts, except A.

performance of both samplers were evaluated according to a set of differ-
ent criteria: 1) sampler efficiency, 2) approximation error, 3) computational
and memory costs. These will be addressed one by one in the following
subsections.

5.4.1 Sampler Efficiency

As mentioned earlier, the number of iterations of a nested sampler, which
equals the number of generated samples from the posterior distribution,
scales linearly with Nlive. Each sample θ(i) is associated with a weight, wi,
representing the amount of posterior mass associated with the corresponding
likelihood shell. To every set of n weighted samples is associated an Effective
Sample Size (ESS), neff , which gives the equivalent number of independent
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samples in the set [55], computed as follows:

neff =
(
∑n

i=1wi)
2∑n

i=1w
2
i

. (5.10)

ONS generates consistently more effective samples than CNS and for both
samplers, neff steadily increases with Nlive up to Nlive = 1536, and then
it decreases (Fig. 5.1A). Since Nlive = 1536 live points is the configuration
delivering the highest number of effective samples, we will treat the corre-
sponding NS/CNS outputs as a “surrogate” ground-truth posterior distri-
bution for the rest of our analysis. Despite yielding a smaller number of
effective samples, CNS is more efficient than NS in terms of number of ef-
fective samples per live point per input dimension (Fig. 5.1B), number of
effective samples per generated sample (Fig. 5.1C), and number of effective
samples per log-likelihood call (Fig. 5.1D. All three efficiency metrics consid-
ered decay for increasingly large values of Nlive. This seems to be an intrinsic
behavior of a nested sampler when targeting a narrow likelihood (Fig. F.1;
for details see methods below). Note that an efficiency of 0.02 effective sam-
ples per log-likelihood call is half the maximum achievable efficiency, which is
0.04, corresponding 25 log-likelihood evaluations per sample. Samples from
the likelihood-constrained prior are generated by evolving a random point
for 25 random walk steps (the likelihood condition is checked at each step).
If this process were 100% efficient, we would be generating 1 sample per
25 log-likelihood evaluations. Both algorithms struggle with sampling new
independent points from the likelihood-restricted prior (LRP) for very large
values of Nlive. The reason could be an intrinsic limitation of the random-
walk strategy used to generate new proposals. Alternative strategies are
available (see Chapter 2), but our initial experiments revealed that these re-
quire quite some tuning on an instance-by-instance basis, therefore making
them not suitable for the automatic analysis of large datasets. Although
for the specific analysis presented in this chapter we might have fine-tuned
an other strategy for the sake of efficiency, we chose to adopt random-walk
generated proposals to remain consistent with the sampler settings used in
chapters 6 and 7. All considered, the random-walk proposal strategy was
the most efficient on average and without fine tuning.

5.4.2 Approximation Errors

Model evidence

Our experiments suggest that the approximations adopted by CNS do not
substantially affect the final quality of the estimated model evidence: for
Nlive = 1536, CNS estimates are slightly negatively-biased compared to
NS estimates.3 The bias is significant for both GLMs considered (Fig. 5.2A;

3As a matter of fact, Laplace’s method, adopted by CNS to compute p(D|ψ), may
underestimate the amount of probability mass in the tails of the distribution, resulting in
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Fig. 5.2: Errors: Model evidence. A) Estimated log-evidence of the two
GLM models for Nlive = 1536;B) As panel A, but taking into account the
MC error intrinsic in NS/CNS integration. C) Estimated log-evidence of
the quadratic model vs number of live points.

*: p = 2.70·10−2; **: p = 6.58·10−4; independent sample t-test with unequal
variance, alternative hypothesis E[ẐNS ] > E[ẐCNS ]), but small (less than
1% in both cases), even more so compared to the intrinsic variability of NS
estimates: once MC integration errors are taken into account E[ZCNS ] lies
within the 95% confidence intervals of ZNS (Fig. 5.2B). 4 CNS estimates are
also significantly more precise (i.e. have a smaller variance) than their basic
NS counterparts (Fig. 5.2A, B; *: p = 3.31 ·10−2; **: p = 1.78 ·10−3; Levene
test for the equality of variances). This is not true only for Nlive = 1536,
but across the whole range of Nlive values considered: Fig. 5.2C illustrates
the variability of the estimated evidence of the quadratic model across all
values of Nlive.

Posterior distribution

The lower variability of the CNS is observed also in the estimated posterior
densities. The dissimilarity between estimated posterior distributions was
measured in terms of the accuracy of a binary classifier in discriminating
between samples belonging to two different estimated posteriors (for details,
see description in methods). On average, posteriors obtained through CNS
are closer to the reference group than their conventional-NS counterparts
across all values of Nlive (Fig. 5.3A). This effect is invariably observed also
when the reference group is composed of CNS estimates(Fig. 5.3A), and
it is indeed stronger in this second case. The difference is significant even
when measuring the dissimilarity among posterior estimates belonging to
the same reference group (Fig. 5.3B). The same result holds also when dis-
similarity is measured in terms of Kullback-Leibler divergence (for details,
see description in methods). To get a concrete idea of this effect, we shall
compare estimated posterior marginals generated by the two methods con-

slightly negatively-biased estimates.
4MC errors are estimated using the simulated procedure described by Skilling [104].
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Fig. 5.3: Errors: Posterior distribution. A) Dissimilarity, measured
as the accuracy of a binary classifier (for details see text), between refer-
ence posterior distributions and posterior distribution estimated by the ba-
sic sampler (blue) or the collapsed sampler (orange) using different values of
Nlive; the reference group consists of posterior distributions estimated using
ONS (left) or the CNS (right) for Nlive = 1536. B) Dissimilarity between
the reference groups and the output of ONS (blue) and of CNS (orange) for
Nlive = 1536. C) Posterior density of the horizontal RF location parameter
xo for 10 NS runs with different random seeds and Nlive = 64; output of the
basic sampler (left columns) and of the collapsed sampler (right column);
D) Variability of the estimated posterior mean (top) and standard devia-
tion (bottom) as a function of the number of live points used to explore the
posterior, measured as the SD of the posterior mean across the different NS
runs.
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sidered. Fig. 5.3C shows 10 estimated marginals for p(xo|D) under the linear
model, obtained using different random seeds, for Nlive = 64. Posterior esti-
mates provided by the basic sampler (left) show a large degree of variability,
missing the principal posterior mode 50% of the time. Conversely, esti-
mates generated by the collapsed sampler are much more consistent with
each other and show considerably smaller intra-variability. To quantify this
finding, we summarize each estimated posterior distribution using a finite
number of statistics f ; we then evaluate the sample in-group standard de-
viation5. This is a measure of the precision (i.e. intrinsic variability) of the
estimated statistic. The precision of the inferred posterior mean and stan-
dard deviation of the parameter xo for different values ofNlive are reported in
Fig. 5.3D, top and bottom panel, respectively. A condensed summary of the
variability of posterior mean and standard deviation of all RF parameters,
for both the linear and the quadratic model, are reported in Fig. F.2. The
precision of CNS estimates is significantly higher than the one of the basic
NS estimates (Wilcoxon rank-sum and Student’s t-test for paired samples;
all p-values are reported in Table F.1 and Table F.2, respectively).

5.4.3 Computational costs

The asymptotic computational complexity of CNS scales as O
(
f(D1)

)
, while

for ONS it scales as O
(
f(D)

)
, for D1 < D and some monotonically increas-

ing function f . Theoretically, this implies smaller computational costs for
CNS than for NS, but provided that computing p(D|θ1,θ2) or p(D|θ1) takes
approximately the same amount of time and that there is no different com-
putational overhead (of any kind) in the two scenarios. Results prove that
this assumption is not met in this specific case. The amount of time required
on average for one log-likelihood evaluation in CNS is approximately 5 times
slower than regular NS (Fig. 5.4A, B, C): after all, CNS requires to solve
an optimization problem with multiple subroutine calls to evaluate p(D|ψ),
while evaluating p(D|β,ψ) amount to just one function call. Nevertheless,
a word of caution is due here: these performances are computed by divid-
ing the total running time of each NS run by the number of log-likelihood
evaluations performed by the nested sampler and not by profiling the two
functions in an isolated environment. Although the latter method would
be more precise to assess the actual cost of one single log-likelihood call,
evaluating the log-likelihood is just one of many steps of the NS algorithm.
Other factors are at play, which may contribute a considerable amount of
overhead, one above many being the maintenance of an internal compact
representations of the pool of live points, so that new proposals can be effi-

5Posterior estimates are grouped according to the generating sampler and number of
live points used to estimated them; within each group, estimated posteriors were generated
using the same number of live points and sampler, but different random seeds; the standard
deviation is taken across different random seeds.
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ciently generated from the likelihood-constrained prior. These subroutines
affect the de facto running time of a nested sampler implementation beyond
the computational costs of evaluating one likelihood function instead of the
other.

On the other hand, run times alone may be not an ideal metric to com-
pare the performance of CNS and ONS. A better comparison would be asking
how much time is required for the estimated posterior distribution to con-
verge within a desired level of precision. Therefore, although CNS is slower
than ONS for any fixed value of Nlive in our tests, CNS converges faster than
ONS to a good approximation of the posterior distribution (Fig. 5.4D).

Furthermore, good approximations of the posterior distribution is rep-
resented more compactly by CNS than by ONS, as illustrated in Fig. 5.4E.
Here, the average number of generated samples are plotted against the av-
erage quality of the resulting posterior distribution, for any given value of
Nlive considered, resulting in smaller sizes of the corresponding result files.
This fact may not be a critical factor when analyzing a small dataset con-
sisting only of few cells, but it may become an issue for larger datasets sizes
(hundreds of cells) and when multiple models need to be compared for each
cell.6

This statement is true for also if we measures dissimilarity in terms of
KL-divergence, following the procedure described in the methods section
below.

5.5 Methods

5.5.1 Synthetic data

The dataset on which all analyses described in this chapter were carried out
consists of the simulated response of a visual cortical neuron to a spatio-
temporal visual stimulus. The stimulus is a movie consisting of 1800 of
spatio-temporally correlated Gaussian noise, sampled at 30Hz, for an equiv-
alent duration of 1 minute. Frame size is 40 by 40 pixels. Neural activity
was binned in bins aligned with frame presentations and generated using a
slight variation of the generative model described in Chapter 4: the tempo-
ral filter was omitted and the principal axes of the 2D Gaussian envelope
were align to the grating (i.e., ψ = ∠k). A softplus rectifying non-linearity
was used.

6As an example to get a rough idea of the memory requirements, the amount of space
required to store a NS run on the quadratic model consisting of about 103 samples (Nlive =
64) amounts to approximately 200KB, whereas to store 105 samples (Nlive = 4096) it is
approximately 20MB.
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5.5.2 Bayesian inference

The model used to generate the synthetic data, and more generally the
generative model of visual cortical neurons activity presented in chapter 4,
can be used within the framework described in this chapter: it is a GQM
where the predictor is the output of a linear filter, here represented in matrix
notation:

S̃ = SW(ψ),

where, S ∈ R is the entire stimulus, and W(ψ), is a two-column matrix
representing the RF filters; ψ = {xo, yo, θ, κ, σx, σy} is the vector of receptive
field parameters. In this context, the basis functions are represented by the
columns W(ψ) and the parameters of the non-linearity correspond to the
GLM coefficients: as already mentioned, a GQM is linear in its parameters
and it is equivalent to GLM on quadratically-transformed inputs. The design
matrix is

X = [1, s̃1, s̃2, s̃1 ◦ s̃1, s̃2 ◦ s̃2, 2 · (s̃1 ◦ s̃2)]⊤, (5.11)

where 1 is a columns vector of ones, s̃1 and s̃2 are, respectively, the first and
the second columns of S and “◦” is the Hadamard product, also known as
element-wise product. The GLM parameters are β = {a, b1, b2, c11, c22, c12}.
The ground-truth parameters ψ∗ and β∗ used to generate the data are7

ψ∗ = [10,−10, 0.7, 0.05, 2.5, 2.5] β = [0.2, 1.77, 1.77, 0, 0, 0]

The values chosen for β∗ resulted in an average firing rate of about 1Hz and
a signal-to-noise ratio of −18dB. An improper prior p(β) = 1 was used for
β, making the posterior distribution p(β|Θ,D) identical to the likelihood
p(D|β,Θ) up to a normalizing constant. Uniform priors were used for all re-
maining RF parameters, specifically xo, yo ∼ U(−20, 20), σx, σy ∼ U(0.5, 5),
κ = |k| ∼ U(0, 0.5) and θ = ∠k ∼ U(0, 2π). These priors allocate a consid-
erable amount of mass to physiologically very unlikely RF shapes (e.g. large
RF with very large spatial frequency), and may not be a good choice when,
e.g., inference is used to detect a RF in sparse and noisy data; however, the
focus of the analysis in this chapter is to study how the two alternative imple-
mentations of the sampler differ, not how well we can recover ground-truth
model parameters.8 We purposely used wide priors to make it challenging
for both samplers to localize the bulk of the posterior distribution.

In addition to the quadratic model, we fitted also a linear depending
only on the linear terms, i.e. X = [1, s̃1, s̃2] and β = [a,b]⊤. We did this to

7The units for the elements of ψ are pixels, pixels, radians, cycles/pixels, pixels and
pixels, respectively.

8In other words, we want to know how well and efficiently we can learn the posterior
distribution, not how close the GT parameters are to the posterior MAP or mean; this will
be the focus of next chapter and, there, a different prior will indeed be used to encourage
the identification of physiologically realistic RFs when the evidence in the data is low.
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investigate if and how the dimensionality of the marginalized space affects
quality of the estimates.

Task schedule

Multiple values of Nlive were used to assess the dependence of the algorithm
performance on this parameter. The tested values were

Nlive = [64, 96, 128, 192, 256, 384, 512, 768, 1024, 1536, 2048, 3072, 4096].

For each value of Nlive, ONS and CNS were run 10 times with different ran-
dom seeds. Tasks were grouped according to their seed in 10 different scripts.
All tasks corresponding to one specific seed were executed sequentially by
their corresponding script. All scripts were executed simultaneously on a
cluster with the following hardware specifications: 2× Intel® Xeon® Scal-
able Processor “Skylake” 2.40 GHz (for a total of 40 cores), 768GB DDR4
RAM and 8× NVIDIA® GeForce RTX 2080 Ti. This resulted in exactly 10
tasks running simultaneously at all times. We restricted to 4 the number of
CPU cores available to each task; tasks were hosted by 2 GPUs; each GPU
then hosted at most 5 tasks simultaneously at each point in time.

Data for Fig. F.1

To generate Fig. F.1 we used ONS to fit a 6-dimensional problem. For the
prior we used a multivariate Gaussian distribution p(θ) = N (θ;0, I), where
I is the 6-dimensional identity matrix. The likelihood is a multivariate
Gaussian distribution N (1,Σ), where the mean is a vector of ones; diagonal
elements of the covariance matrix are set to 0.01, off diagonal ones to 0.008.
This correspond to a standard deviation of 0.1 in each direction and highly-
correlated parameters, making the posterior approximately 10 times tighter
than the prior, therefore challenging to find. ONS was run using the same
exact setting of every other analysis performed in this chapter.

5.5.3 Estimating the quality of the posterior distribution

The quality of each estimated posterior distribution (θ|D) (s represents the
sampler, n the number of live points and i the random seed) is measured
by computing its average dissimilarity from a group of posterior estimates
posing as reference.9Dissimilarity is measured according to some measure
d(p̂sn,i, p) (where p is the target). We take the reference across a set of
reference targets to mitigate the effects of random factors. Mathematically,
the quality of p̂sn,i is the following function:

Q(p̂sn,i) =
1

M s
n,i

∑
p̂∗j ̸=p̂sn,i

d(p̂sn,i, p̂
s∗
n∗,j), (5.12)
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where p̂s
∗
n∗,j is a reference distribution as , s∗ is the reference sampler and

n∗ = 1536; M s
n,i is the number of reference distributions that are not identi-

cal to p̂sn,i (this is done to compute the quality of estimated belonging to the
reference group itself, without biasing the result by comparing a reference
to itself).

Classifier Two-Samples Test (C2ST)

The first dissimilarity measure is based on how accurately a binary clas-
sifier can discriminate samples generated by two different distributions P
and Q. This technique goes under the name of Classifier Two-Sample Test
(C2ST) [61]. A binary classifier is trained to discriminate between two pop-
ulations of samples, xi ∼ P and yj ∼ Q, then its accuracy on some held-out
data is used as a proxy to the dissimilarity between the two generating dis-
tributions. 10 The binary classifier consists of a Multi-Layer Perceptron
(MLP) [38, 95] with two hidden layers of 60 units each, using a ReLU ac-
tivation function. I used the MLPClassifier implementation provided in
the scikit-learn Python package [81], version 0.23.2. The classifier was
trained using the Adam optimizer [54] for a maximum of 104 iterations on
75% of the available data. The remaining 25% is kept for validation. The
performance of the trained classifier on the held-out data gives the dissimi-
larity between the two distributions.

Kullback Liebler Divergence (DKL)

The second dissimilarity measure is based on the symmetric KL diver-
gence [48]

d(P,Q) =
1

2
DKL(P ||Q) +

1

2
DKL(Q||P ), (5.13)

between the tested probability distribution P and the reference distribution
Q, where DKL(x||y) is the asymmetrical KL divergence between the two
probability distributions x and y [59, 60]. In order to evaluate each KL
divergence, each set of samples was first approximated using a multivariate
normal distribution with mean and covariance matching the relative sample

9Ideally, we would want to compare each p̂sn,i(θ|D) to the true posterior distribution
p(θ|D) by evaluating some dissimilarity measure. However, since ground-truth is not
available, we resort to use what in principle should be a high-quality estimate of the
posterior distribution. These are the posterior estimates generated with Nlive = 1536 – as
already mentioned, this value of Nlive corresponds to the largest ESS for both the basic
and the collapsed sampler, therefore resulting in the highest resolution estimates of the
posterior pdf among the alternatives.

10Intuitively, if samples for the two classes are generated by the same underlying poste-
rior distribution (P and Q are identical), the accuracy of the trained classifier on unseen
data should be close to chance. Conversely, if the P ̸= Q, the classifier would learn, in
principle, how to discriminate between the two and we would observe a higher classification
accuracy.
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statistics and then the KL divergence was evaluated analytically. This is
admittedly a crude approximation, as the posterior distribution may not
necessarily be unimodal and this may be a poor approximation. Since the
posterior distribution of the orientation parameter is bimodal by construc-
tion, this parameter was ignored and only the marginal posterior distribution
of the remaining RF parameters was considered for this analysis.

5.5.4 Implementation

The code for this analysis uses the Nested Sampler implementation provided
in the Python package Dynesty [107]. The likelihood-conditioned prior dis-
tribution is approximated using multiple bounding ellipsoids[26]. New pro-
posal points are generated, conditioned on the multi-elliptical bounds, by
evolving a randomly-picked live point for 25 random walk steps [26].

5.6 Summary

In this chapter we have presented a novel strategy to optimize nested sam-
pling runs when some parameters of a model can be marginalize out effi-
ciently. This strategy resembles a technique known as partially-collapsed
Gibbs sampling used to improve the convergence and efficiency in a Gibbs
sampler [111]. This approach makes it possible to apply NS to an equivalent,
lower-dimensional problem, resulting in better convergence properties. We
named this algorithm Collapsed Nested Sampling. We showed that CNS can
be used to sample from the receptive field model presented in Chapter 4,
treating the RF parameters as basis functions parameters and marginaliz-
ing the parameters of the non-linearity. We benchmarked both samplers
on synthetic data, and showed than CNS is a more efficient sampler than
ONS on this particular problem: not only estimates of the model evidence
returned by CNS have lower variance, but also the quality of the posterior
distributions is superior. We showed that, for each configuration studied,
CNS has a smaller Monte-Carlo error and smaller storage requirements than
ONS for any desired level of accuracy, making it the sampler of choice for
computationally-efficient inference.

We observed that both algorithms struggle when sampling new indepen-
dent points from the likelihood-restricted prior (LRP) for very large values
of Nlive, and the reason could be an intrinsic limitation of the random-walk
strategy used to generate new proposals. As mentioned in Chapter 2.3, sev-
eral strategies have been developed to sample from the LRP. One alternative
would be rejection sampling from a multi-ellipsoid approximation of the cur-
rent set of live points [26]. This strategy requires an additional algorithm
parameter to control how tightly the ellipsoids cover the set of live points.
After some initial experiments in this directions, we realized that this ad-
ditional parameter needs quite some careful fine tuning on each separate
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instance of the problem (i.e. for each simulation or actual neural recording).
While we could have undergone the tuning procedure for the analysis pre-
sented in this chapter, doing so on a recording-by-recording basis on a large
dataset would be unpractical. Furthermore, we observed that the random-
walk strategy was on average a more efficient alternative on large datasets,
and it required no tuning. For thes reasons, in order to make the results
presented here relatable to work presented in following chapters we adopted
here the same LRP-sampling strategy.

CNS can be applied to any GLM using parametric basis functions. For
example, it can sample the non-linearity and scale parameters of a family of
raised cosine basis function used to model the temporal profile of a history
filter [84]. In principle, it can handle also integer or discrete parameters,
such as the number of basis functions itself, for example when modeling a
receptive field as a liner combination of splines [44]. As a matter of fact,
for NS the continuous or discrete nature of the parameter space does not
matter, as long as a prior distribution can be defined and new live points can
be sampled from the likelihood-restricted prior. This fact makes NS, and by
extension CNS, a good sampling strategy in problems where a traditional,
potentially gradient-based MCMC approach could not be applied, opening
to the possibility of sampling the posterior distributions over parameter
classes that are usually not handled in a Bayesian framework.
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Chapter 6

Receptive field identification
on synthetic data

6.1 Introduction

In Chapter 4 and Chapter 5 we presented a compact generative model and
an efficient algorithm to perform Bayesian inference on its parameters. In
this chapter we will investigate the how reliably we can expect to detect a
receptive field and identify its parameters. We will test the detection and
identification tasks on synthetically generated data covering a wide range of
firing rates and noise levels compatible with the physiological levels observed
in real neural population (Fig. 6.1). More specifically, we will investigate
the reliability of a Bayesian classifier to detect the presence of a receptive
field as a function of the amount of available data, here measured as number
of observed spikes, and the noisiness of the neuron. We will also quantify
how these same quantities affect the identification of model parameters.

6.2 Receptive Field detection

To detect the presence of a RF in the data, we built a Bayesian classifier
comparing the evidence of the RF model and the evidence of a null modelM0

predicting random Poisson spikes at constant rate. The Bayesian classifier
performs its classification based on the Bayes factor

BFRF,0 =
p(D|RF)
p(D|M0)

,

whereD is the data and p(D|RF) and p(D|M0) are, respectively, the marginal
likelihoods of the data under the RF model and under the null model (for
details, see sec. 6.5.2 and 2). We are specifically interested in the ability of
the classifier to detect an existing receptive field (i.e. the sensitivity), in the
probability of missing an existing receptive field (i.e. the miss rate), and

71
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Fig. 6.1: Simulated data. Each colored point represents a simulation in
our synthetic dataset. Crosses represent actual neurons in the electrophysi-
ological dataset.
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Test result
Detected Rejected Undefined

Rec. Field

No 2.6% 0.0% 97.4%
Yes 71.2% 19.5% 9.4%

Table 6.1: Summary performance of the Bayesian classifier. High-
lighted are sensitivity (green), miss rate (blue) and fall-out (red). For details
about how these indexes are computed, see text.

in the chances of wrongly detecting the presence of a receptive field in pure
noise (i.e. the fall-out). For definition of these indexes, see section 6.5.4.

Overall, the Bayesian classifier correctly detects 71.2% of the receptive
fields in the dataset. Chances of dismissing a receptive field as noise are
instead 19.5%; the probability of detecting presence of a RF in pure noise in
2.6% (the detailed performances of this classifier are reported in Table 6.1).
The high miss rate can be explained by the relative abundance of trials
with very few spikes in this dataset: 4 out of 7 trials are short, 60s trials
(see Table 6.5 and the methods section for details). If we correct for the
over representation of short trials with almost no spikes and we consider
only segments of data with at least 10 spikes, the situation significantly im-
proves: the sensitivity is now 84.7% and the miss rate is 8.6%. What we just
reported are marginal indexes. We take can also into account the amount
of data available to the classifier, measured in terms of spike counts, and
the intrinsic noisiness of the neuron (its SNR; see Appendix D): the detec-
tion performance steadily increases for higher spike counts and higher SNR,
which signal a strong stimulus drive (Fig.6.2A). Similarly, the probability of
missing an existing receptive field decreases accordingly (Fig.6.2B).

Wrongly detecting a receptive field in noise is an unlikely event. However,
it is interesting that the Bayesian classifier is seemingly unable to definitively
rule out the presence of a RF in a pure noise: the vast majority of these
simulations are left unclassified, with different degrees of mild evidence in
favor or against the receptive field model (Fig. 6.3A; see also Table 6.1).
One would instead expect that all the additional parameters of a RF model
would not find enough support in random data, when instead a more par-
simonious explanation should be preferred. Inspecting the actual posterior
distributions is very insightful, revealing that for all parameters except the
spatial frequency κ, the marginal posterior distributions are indistinguish-
able from the priors; the posterior marginal for κ, instead, is concentrated
at a-priori-very-unlikely high values (see supplementary Fig. F.4). A recep-
tive fields with these properties would integrate a large patch of the the
stimulus, weighting nearby locations with fast-alternating sign. Since the
stimulus is spatially correlated, such an integration effectively cancels out
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Fig. 6.2: Detection perfomance. Sensitivity (A) and Miss Rate (B)
of the Bayesian classifier. Dashed lines show how the index changes as a
function of number of spikes only. Solid lines take into account also the
SNR of the neuron. N.B. Since the Bayesian classifier is not a binary
classifier, the equivalence “sensitivity” = 1−“miss rate” does not hold. The
two indexes are independent, therefore reporting both is not redundant.

the stimulus contribution. This outcome is apparently independent of the
number of spikes in the simulation.

We trained also a binary classifier based on predictive performance on
held-out data, quantified in terms of cross-validated log-likelihood (CVLL;
for details, see the method section). The CVLL classifier does not suffer from
this problem: indeed, for all the tested scenarios, no receptive field was ever
wrongly detected in noise trials, suggesting a virtually optimal performance
(Fig. 6.3B).

6.3 Identification of model parameters

We will now focus on the issue concerning the identification of the receptive
field parameters, a problem that can be summarized by the question: how
does our uncertainty around the model parameters decrease as a function of
available data?

6.3.1 Characterizing the orientation

Let us start with an example: suppose that we want to identify the ori-
entation of the receptive field within a level of uncertainty that we deem
acceptable (Fig. 6.4A). How much data would we need for this task? We
considered the posterior distribution of model parameters for each simula-
tion in the dataset and every subset thereof (for details about data parti-
tioning, see the methods section). For each fit, we computed the posterior
root-mean-squared error (RMSE) from ground-truth according to eq. (6.4),
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Fig. 6.3: Classification results. Test scores for simulations and segments
where a receptive field was not detected by the Bayesian classifier. Noise
trials are shown in blue, while actual RF trials are in red. A) Bayesian
classifier. The vertical red line is the threshold for rejection, based on sub-
stantial evidence in favor of the null model. The green line is the threshold
for detection. B) CVLL classifier. The vertical line is the threshold for the
binary classification.

summarizes both bias and variance of the estimate (details in the next ses-
sion). The RMSE steadily decrease as a function of observed spike counts,
and is as low as 10◦ already with a few tens of spikes. This parameter is
typically assessed by probing the cell with static or moving gratings with
different orientations. Due to a trade-off between accuracy and experimen-
tal time, 8 to 12 equally-spaced different orientations are typically tested,
giving a resolution between 30 to 45 degrees, represented here by the shaded
area. With less than 100 spikes (blue shaded line), we can identify the RF
orientation with a precision approximately 10 times higher than in a typical
study.

6.3.2 Quantification of estimation quality

Intuitively, the more the available data, the more precise the estimates
should be. Residual uncertainty (RU), computed as the ratio of the entropy
of the posterior to the entropy of the prior (see section 6.4.5 for details), pro-
vides a quantitative measure of this trend. RU steadily decreases for higher
spike counts (Fig. 6.4B). Furthermore, comparably less spikes are needed
to achieve a given level of precision for reliably-firing cells (higher SNR)
than for more noisy ones. RU can also be computed on a per-parameter
basis, making it possible to investigate which parameters are more or less
constrained by some given amount of data (Fig. 6.4C; for further details,
see supplementary Fig. F.6). Some parameters, like e.g. position and 2D
spatial frequency (x0 and k), can be learned more efficiently than others,
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Fig. 6.4: Identification of the model parameters. A) Overall identifi-
cation error for the orientation parameter, measured in terms of posterior
RMSE, as a function of spike counts and SNR. The shaded area represents
the typical resolution for the orientation parameters (30◦ – 45◦). The blue
line denotes 100 spikes. B) Total RU as a function of observed spike counts.
C) Per-parameter RU as a function of observed spike counts.

such as the size or the scale parameter of the temporal filter (σx, σy and α,
respectively). For the 2D spatial frequency k, RU decreases faster than for
either the orientation parameter θ or the polar frequency κ. Although at
first surprising, this result is well explainable in terms of basic properties of
the differential entropy: in general, the joint entropy of two random vari-
ables X and Y is bounded above by the sum of the entropy of the respective
marginals:

H[X,Y ] ≤ H[X] +H[Y ],

with equality if and only if X and Y are independent. In this case, θ and κ
are clearly not independent, as revealed by their joint posterior distribution
(see supplementary Fig. F.5).

RU provides a useful but at the same time a very abstract quantitative
insight about the how the quality of the estimates is shaped by the amount
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Residual Uncertainty Spike Count
ρ2 p-value ρ2 p-value

param.

xo 0.93 4.85e-142 0.51 2.14e-39
k 0.90 1.60e-124 0.49 1.14e-37
σx 0.89 2.33e-117 0.47 7.48e-36
σy 0.87 2.79e-108 0.47 4.28e-35
α 0.60 2.14e-50 0.32 1.83e-22
k12 0.84 8.12e-98 0.44 1.10e-32

Table 6.2: RMSE vs RU and spike counts. Correlations between
RMSE and residual uncertainty (left) and between RMSE and spike count
(right) are measured in terms of Spearman’s ρ correlation coefficient. As
we are interested only in the amount of correlation and not on its sign, we
report here its square ρ2.

of data: it does not tell us directly how tightly around GT the posterior dis-
tribution is concentrated. Thanks to our knowledge of ground-truth model
parameters, we can investigate address this question by actually inspecting
the posterior distributions. We measure estimation errors as RMSE from
ground truth (definition in sec. 6.4.6). This error metric has the advantage
of being expressed in the same units of the parameters, therefore it pro-
vides an easily interpretable quantification of the actual magnitude of the
errors. The same qualitatively dependency on spike count and SNR is also
found for the RMSE (see supllementary Fig. F.7): RMSE decreases with
increasing spike counts and is smaller for higher SNR. We find that, overall,
RMSE is better predicted by RU than it is by spike count (see supplemen-
tary Fig. F.8; Table 6.3.2, Kendall’s tau). AS RU can easily be evaluated
after the posterior distribution has been learned via nested sampling, we can
use its value as a reliable proxy for the underlying RMSE. This information
can be used to assess the amount of data collected was sufficient to achieve
a desired error level.

We can further decompose the estimation error into bias and variance
according to

MSE = BIAS + VARIANCE,

in order to empirically quantify the accuracy and the precision1 of the es-
timate. Here, MSE indicates the mean square error, which is of course the
square of the RMSE. We found that for all parameters except the tem-
poral filter’s scale parameter α, the variance of the posterior distribution
contributed significantly more than bias to the total estimation error (see

1Accuracy refers how close the average estimate is to ground truth; precision refers to
how close measurements are to each other.
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average s.e.m. z-score p-value
param.

xo 0.620 0.014 8.73 1.26 · 10−18

k 0.652 0.016 9.64 2.59 · 10−22

κ 0.665 0.016 10.23 7.48 · 10−25

σx 0.689 0.014 13.11 1.48 · 10−39

σy 0.685 0.014 12.84 5.05 · 10−38

α 0.493 0.019 0.36 3.60 · 10−01

k12 0.586 0.016 5.30 5.78 · 10−08

Table 6.3: Variance vs bias. Fractional amount of the Mean Squared
Error accounted for by variance (s.e.m.: Standard Error of the Mean).

Table 6.3); for α the difference was not significant. This is a desirable re-
sult: since in a real-world application ground-truth knowledge would not be
available, it is reassuring to know that bias is not a main source of error in
our estimates.

6.4 Simulation details & inference

6.4.1 Generative model

Neural activity was simulated using the generative model presented in Chap-
ter 4 using the receptive-field model parameters reported in Table 6.4. We
simulated a purely linear, direction-selective cell (kdir = 1, C = 0) for dif-
ferent values of the parameters a and b (its magnitude), resulting is the
distribution of average frequency and SNR reported in Fig. 6.1 (for details
on how to compute the SNR of a Poisson spiking neuron, see Appendix D).

6.4.2 Stimulus and simulation partitioning

In order to minimize potential discrepancies between the simulations and a
target real-world application presented in the next chapter, we used the the
same stimulus movie that was used in the electro-physiological recordings
discussed in Appendix E. This resulted in 5 minutes of simulated activity
for each tested condition. The last minute of the simulation was held-out
for cross-validation. The remaining 4 minutes were split in chunks of 1
and 2 minutes, resulting in 7 data segments for each simulated recording
(partitioning details are reported in Table 6.5).
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Units Value Prior
Param.

xo deg 20 U(xmin, xmax)
yo deg 20 U(ymin, ymax)
θ deg 30 U(0, 2π)
κ cycles/deg 0.05 κ/κmax ∼ Beta(1.5, 8)
σx deg 3.75 4σx ∼ LN (2.9, 0.28)
σy deg 3.75 4σy ∼ LN (2.9, 0.28)
α s−1 60.0 (α− 40)/80 ∼ Beta(3, 6)
k12 – 0.8 U(0, 1)
a – varying N (0, 25)
b – varying N (0, 25 · I2)

Table 6.4: Ground truth and priors.. Values used to generate the sim-
ulated data. U(·, ·), N (·, ·) and LN (·, ·) are the Uniform, the Normal and
the Log-Normal distributions, respectively. I2 is the 2× 2 identity matrix.

Duration tstart [ s ] tend [ s ]
Block

1.1 1 min 0 60
1.2 1 min 60 120
1.3 1 min 120 180
1.4 1 min 180 240
2.1 2 min 0 120
2.2 2 min 120 240
4.1 4 min 0 240

Table 6.5: Details on data partitioning. Beginning and end of each
simulation segment.

6.4.3 Noise simulations

Noise trials were constructed by randomly shuffling the spikes of the receptive-
field simulations and then partitioning the result spike train according to
Table 6.5.

6.4.4 Sampler settings

The posterior distribution were sampled using to the algorithm discussed
in Chapter 5. We used a random-walk proposal with 25 steps and we set
Nlive = 512.
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6.4.5 Residual uncertainty

The dimensionless residual uncertainty RU of (a subset of) model parame-
ters Θ′ is computed as

RU = 1−
H
[
p(Θ′|D)

]
H
[
p(Θ′)

] , (6.1)

where H[p] is the entropy of the distribution p, and θ′ ⊆ θ. RU = 1 means
that the posterior is indistinguishable from the prior. Conversely, RU = 0
means that the posterior has collapsed onto a delta peak, i.e. we assign with
absolute confidence a certain value to the model parameters. Each of the
1D and 2D marginals considered must first be discretized into a probability
histogram, and then its entropy is computed according to:

H[ψ] = −
N∑

n=1

pn log2 pn, (6.2)

where N is the number of bins of the histogram and pn is the probability
mass associated with the n-th bin. The marginal posterior distributions are
discretized as follows: for the receptive field center xo is discretized on a
grid of 120×68 bins along the horizontal and vertical direction respectively,
corresponding to a resolution of 1 pixel; the spatial frequency κ onto 34 bins
in the range [0, 0.34]; the orientation θ onto 360 bins in [0, 2π] corresponding
to a resolution of 1 degree; the 2D spatial frequency k = [κ cos θ, κ sin θ]⊤

into 64×64 bins in the range [−0.34, 0.34]2; width and height of the receptive
field, respectively w and h, onto 30 bins in the range [0, 30]; the temporal
filter rate α into 80 bins in the range [40, 120]; the temporal filter shape
parameter k12 into 20 bins in the range [0, 1].

6.4.6 Estimation Error

RMSE from ground truth for a parameter ξ is defined as

RMSE(ξ) =
√

Eξ|D∥ξ − ξ∗∥2 ≈

√√√√ N∑
i=1

wi∥ξ(i) − ξ∗∥2, (6.3)

where ξ∗ is the ground-truth value, ξ(i) is a weighted sample from the
marginal posterior distribution p(ξ|D) and wi is the corresponding weight.
A special treatment is reserved to the orientation parameter θ, because it
represents a circular variable. In this case, we compute the cosine distance,
instead of the magnitude of the difference:

RMSE(θ) =
180

π
arccos

(
Eθ|D[cos(θ − θ∗)]

)
. (6.4)

The multiplicative factor converts from radiants to degrees, for a more easily
interpretable result.
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6.5 Data classification

6.5.1 Control model

Concerning the data classification task, the control M0 is provided the con-
stant firing-rate Poisson neuron

Pr(Yi = y) =
λ0
y!

y

exp(−λ0), (6.5)

where λ > 0 is the firing rate parameter. Under the assumption that spike
counts in different bins are i.i.d. according to eq. (6.5), the log-likelihood of
an entire spike train r is

ln p(r|λ0) = S lnλ0 −Nλ0 −
N∑
i=1

ln yi!, (6.6)

where S =
∑N

i=1 yi is the sufficient statistic for this model. The maximum

likelihood solution for λ0 is the empirical mean λ̂0 = S/N . Assuming a unin-
formative prior p(λ0) = λ−1

0 , we obtain the following posterior distribution
and marginal likelihood:

p(λ0|r) = Gamma(S,N) (6.7)

p(r|M0) =
Γ(S)

NS
∏N

i=1 yi!
(6.8)

6.5.2 Classification based on Bayes factors

The Bayesian classifier perform its decisions based on Bayes factors (see
Chapter 2.2.1). In the context of this chapter, the control model M0 is
the constant firing rate model, and the alternativeM1 is the receptive field
model. For numerical convenience, the logarithm of the Bayes factor was
used. The classifier detects the presence of a receptive field in the data if
strong evidence is found in favor of M1. Conversely, if strong evidence is
found in favor of the control model, the presence of the receptive field is
excluded. If there is no strong evidence in favor of either model, the data
segment is left unclassified. The decision was based on whether the BF
would exceed a certain threshold ϑ. Multiple candidate values were tested
on a grid ranging from 0 to 5 with a sampling step of 0.1. The optimal
cutoff that minimizes maximizing the probability of correct detection while
simultaneously minimizing the occurrence of false positives was found at
lnK = 2.7 nats, which is consistent with what is considered a sign of strong
evidence in favor of the alternative model [48, 53].
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6.5.3 CVLL classifier

This classifier bases its decision on comparing prediction performances on
some held-out data {rtest, stest}, according to

R = Ep(θRF |D)

[
ℓ(θRF )

]
− ℓ0(λ̂0), (6.9)

where ℓ(θRF ) = log p(rtest|θRF , stest) is the predicted log-likelihood of the
receptive field model on the held-out data, ℓ0(λ̂) = ln p(rtest|λ̂0) the one of
the null model, according to eq. (6.6) and λ̂0 is the maximum likelihood
solution for λ0 on the training set. The expectation is taken with respect
to the posterior distribution of the RF model parameters given the training
data and it is needed to take into account our uncertainty about the model
parameters. The classification rule is very simple: the presence of a receptive
field is detected if R > 0; conversely, it is rejected if R < 0. Considering
that ℓ(θRF ) is itself a random variable, a more rigorous Bayesian treatment
taking into account not only its mean, but its overall probability distribution
would make some form of soft labeling possible.

6.5.4 Classification performances

The selectivity of a classifier refers to its ability to correctly reject negative
instances. Mathematically it is defined as the ratio between the number of
rejected negatives (True Negatives, TN) and the total number of negative
cases (N), hence also its alternative name “True Negative Rate” (TNR):

Sensitivity =
Number of detected positives

Total number of positives

The sensitivity of a classifier is its ability to correctly detect positive in-
stances. Mathematically it is defined as the ratio between the number of
detected positives (True Positives, TP) and the total number of positive
cases (P), hence also its alternative name “True Positive Rate” (TPR):

Sensitivity =
Number of detected positives

Total number of positives

Its complement is themiss rate, which measures how many positive instances
are dismissed as negatives. It is defines as the ratio between the number of
false negatives (FN) and the total number of positives, therefore it also
known under the name “False Negative Rate” (FNR):

Miss rate =
Number of false negatives

Total number of positives

Finally, the fall-out measures how likely it is to classify a negative instances
as positive. Is is computed as the False Positive Rate, the ratio of wrongly
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detected negative instances and the total number of positive instances:

Fall-out =
Number of false positives

Total number of negatives

Fall-out and miss rate provide a quantification of the relative occurrence of
type I and type II errors, respectively [23].

NB: For a binary classifier, TPR = 1 − FNR and TNR = 1 − FPR is
always true; this is however not the case for a 3-way classifier, like the
Bayesian classifier discussed in this chapter. Talking about TPR and FNR
as well TNR and FPR as two separate entities actually makes sense in this
context.

6.6 Summary and Discussion

In this chapter we addressed the detection of a receptive field and of the
identification of its parameters. We showed that a Bayesian classifier can
reliably detect the presence of a receptive field from a few tens of spikes.
The absence of a receptive field is instead better asserted by a classier based
on cross-validate log-likelihoods on held-out data. Both classifiers have their
perks and disadvantages but it seems that their properties complement each
other. Pure noise trials pose a challenge to the Bayesian classifier, which
appears to be unable to distinguish between a very noisy neuron and no
RF at all, whereas the CVLL classifier shows virtually perfect performance.
On the other hand, on scenarios where data is really scarce, the Bayesian
classifier makes use of all the available data, whereas the CVLL classifier
must reserve some data for testing. Yet, we showed that validating on
held-out data strongly penalizes any kind of over-fitting. The development
of a composite classifier built upon the Bayesian and the CVLL classifiers
constitutes a promising line of research for possible future work.

We also showed how the quality of estimated model parameters improves
with the amount of observed data and provided an interpretable quantifica-
tion of this trend. The empirical finding that, on average, variance accounts
for the largest portion of the identification error is an encouraging starting
point for a further, more rigorous investigation of consistency properties of
the algorithm presented in this Chapter 5.
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Chapter 7

Analysis of an
electrophysiological dataset

In this chapter, we will illustrate the power of a fully Bayesian approach to
the problem of receptive field identification on a real-world dataset, consist-
ing of the activity of 80 neurons acquired by means of electrophysiological
recordings in rat primary visual cortex. The analysis presented in this chap-
ter will unfold as follows: first, we will tackle the problem of receptive field
detection, to establish how many cells in the dataset are responsive to vi-
sual stimulation; we will then illustrate a detailed analysis of a single cell,
showing how access to the complete posterior distributions allows us to test
different hypotheses and associate a given, rigorously estimated, confidence
level to different assertions about the data; we will then report the results
of our analysis on the entire dataset.

7.1 Detection and model identification

7.1.1 Properties of the dataset

ù For the analysis described in this chapter, we considered only the data
from 80 well isolated cells, acquired during binocular visual stimulation (for
details see Methods and Appendix E) The average firing rate (FR) in this
dataset is 3.91 ± 8.56 Hz (mean ± sd). The FR was computed using the
number of observed spikes during the entire duration of each 4 minutes
segment of data. The distribution of measured FR is very skewed (Fig. 7.1A)
and it spans two orders of magnitude between a minimum of 0.05Hz to
a maximum of 61.37Hz. Half of the cells fire very sparsely (median FR:
1.43Hz). The distributions of observed spike counts for segments consisting
of 1, 2, and 4 minutes of data are illustrated in Fig. 7.1B, and detailed
information is reported in Table 7.1.

85
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Fig. 7.1: Distribution of firing rates and spike counts. A) Distribution
of observed firing rates. B) Distributions of observed spike counts within
segments consisting of 1, 2, or 4 minutes of data.

Duration min. 2.5% 25% 50% 75% 97.5% max.

1 min 3 1 3 76 171 1389 3682
2 min 6 24 67 179 347 2913 7170
4 min 15 47 162 361 703 6033 14215

Table 7.1: Distribution of spike counts. The table reports the observed
spike counts corresponding to different quantiles, together with the minimum
and maximum observed values. Each row summarizes the data correspond-
ing to different segment lengths.
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7.1.2 Models used for the analysis

We will compare the predictive properties of four different configurations of
the generative model presented in Chapter 4, which will allow us to test dif-
ferent hypothesis about the process underlying the generation of the spikes.
These four models are: LO, separable RF and linear response; LD, non sep-
arable RF and linear response; QO, separable RF and quadratic response;
QD, non separable RF and quadratic response. We denote the set of all
models asM = {LO,LD,QO,QD}. A summary of the properties defining
these models is available in Table 7.2. With these four configurations, we
aim to characterize the selectivity properties and the linearity of the cells
in this dataset. In particular, we include the purely linear configurations to
assess whether the quadratic terms substantially contribute to the quality
of the firing rate prediction.

Null model For any given cell, the null model m0 models all observed
spike counts yt (for t = 1, . . . , T ) as i.i.d. random Poisson variables with
constant rate λ0 > 0:

yt|λ0 ∼ Poisson(λ0), t = 1, . . . , T ; (7.1)

Assuming an uninformative prior p(λ0) = 1/λ0, the evidence of the null
model for data D = {y1, . . . , yT } can be computed analytically:

p(D|m0) =
Γ(S)T−S∏T

t=1 yt!
, (7.2)

where S =
∑T

t=1 yt is the total spike count and Γ(·) is the gamma function.

ID Separable Linear kdir Nonlinearity

LO ✓ ✓ 0 C = 0
LD ✓ 1 C = 0
QO ✓ 0
QD 1

Table 7.2: Model configurations. Settings and constraints of the four
model configurations considered in this chapter. “Ori-Sel” and “Dir-Sel”
stand for “orientation selective” and “direction selective”, respectively. The
purely linear models are obtained from the original quadratic models by
enforcing C = 0.

7.1.3 Receptive Field identification

The first question of our extensive analysis concerns the number of cells
in this dataset that are actually responsive to visual stimulation. In other
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Fig. 7.2: Receptive field detection. A) Number of identified receptive
field, as a function of amount of data used for inference. B) Number of cells
assigned to each model class with at least moderate confidence (P > 75%).
C)Detailed model posterior probability from 2 minutes of data. D)Detailed
model posterior probability from 4 minutes of data. The QD model is the
most represented in this dataset.
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words, how many RFs can we detect? To answer this question, we score
each model m ∈M against a null model m0, defined below, using the Bayes
factor (BF)1

BFm,m0 =
p(D|M = m)

p(D|M = m0)
. (7.3)

If lnBFm,m0 > 3 for at least one model there is substantial evidence for the
presence of a receptive field. This value of the BF corresponds to 20 ÷ 1
odds against the null model. Conversely, if lnBFm,m0 < −3 for all models,
odds are at least 20 ÷ 1 in favor of the null model against all the alterna-
tive explanations, and we can conclude that spike generation is completely
random – or at least not coupled to the stimulus – with 95% confidence.
W found substantial evidence in favor of the presence of a receptive field
in 78 cells (lnBFm,m0 > 3), while moderate to strong evidence in favor
of m0 was found in only 2 cells (lnBFm,m0 < −3; Fig. 7.2A). We found
that evidence was always strong in either directions; in other words, the
classification was always backed by high confidence. We repeated the same
analysis considering only segments consisting of 1 or 2 minutes of data, and
we found strong evidence in favor of at least one RF model in 59 and 75 cells,
respectively(Fig. 7.2A). The complete outcome of this analysis is reported
in Table F.3. From these results, we concluded that using 2 minutes of data
provides enough evidence to detect a RF in most of the cells in this dataset.
Nevertheless, we can expect than using more data is beneficial to identify
more precisely which model provides a better explanation of the data. From
now on, we will consider only those 78 cells for which one receptive field was
detected using 4 minutes of data.

7.1.4 Model identification

Once we have established the presence of a receptive field, we would like to
know which model, if any, provides the best explanation for the data. To
this end, we inspect how the posterior belief is distributed across the four
models. For each cell n, we compute the model posterior probabilities

Pn(m|Dn) =
p(Dn|m)p(m)∑

m′∈M
p(Dn|m′)p(m′)

, (7.4)

where p(Dn|m) = exp(Ẑm,n) and Ẑm,n is the log-evidence estimated by the
nested sampler for the model m fitted to the neuron n (Dn is the data
associated to neuron n). We classify each cell according to the following
rule: if p(M =∗ m|Dn) > 95%, the cell is classified as an instance of model
m∗. This threshold is equivalent to posterior odds at least as large as 19÷ 1
favoring m∗ against all competing alternatives. Overall, 44 out of 78 cells

1For the definition and meaning of Bayes factors, see Chapter 2.2.1.
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LO LD QO QD
Duration

1 min 9.3% 18.6% 17.1% 55.0%
2 min 6.2% 18.1% 14.4% 61.3%
4 min 5.7% 9.9% 17.5% 66.9%

Table 7.3: Average posterior model probabilities.

can be classified with high confidence as an instance of a specific model,
while, for the remaining 34, the odds were not high enough in favor of any
hypothesis, leaving these cells unclassified. 57 out of 78 cells are assigned to
one specific model if we relax the classification criterion and classify based on
whether P (M = m∗|D) > 75% (corresponding to at least 3÷1 posterior odds
in favor of m∗ against all the alternatives). The number of unclassified cells
decreases accordingly, and is 21 in this scenario. Most cells in this dataset
are best explained by the QD model, which represents 47 out 78 according
to the relaxed classification criterion, whereas only 10 are instead classified
as an instance of the remaining three models (Fig. 7.2B, dark bars). We
repeated this analysis based on the posterior distributions inferred using
only the first 2 minutes of data for each cell. The number of classified
cells decreased to 42 out of 78 cells (Fig. 7.2B, light bars), supporting our
earlier intuition that additional data would improve model identification,
rather than receptive field detection. The model posterior probabilities,
for each cell, are illustrated in Fig. 7.2C and D (2 and 4 minutes results,
respectively). The average posterior model probabilities across all cells are
reported in Table 7.3. Considering 4 minutes instead of 1 minute of data,
roughly 12% of the mass shifts from the two linear models to QD, suggesting
that the proper characterization of the additional parameter C in eq. (4.6)
of a quadratic model may require more data than to characterize the linear
parameter b.

7.2 Single cell analysis

We will now illustrate a full Bayesian analysis of one single example cell.
The cell we chose has an average firing rate of 0.33 Hz, for a total of 79
spikes within a 4 minutes observation window, and a measured signal-to-
noise ratio of −19.11 ± 0.55 dB. It is therefore a quite typical cell in this
dataset.

7.2.1 Model comparison

We found no strong evidence in favor of any of the tested models. Never-
theless, the QD model provides slightly better explanation of the data than
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Fig. 7.3: Model comparison and predicted properties. A) Posterior
probabilities of all 4 tested models. Most evidence points in favor of the
QD model, although not strongly. B) Posterior belief in favor of linear (LO
and LD; gray) or non-linear (QO and QD; black) models. C) Posterior
belief in favor of separable (LO and QO; gray) or non-separable models
(LD and QD; black); we observe no substantial evidence supporting either
model class. D) Tuning curves predicted from the posterior distribution
(thin lines) and posterior-predicted mean tuning curve (solid white line).
E) Posterior mean OI and DI computed from the tuning curves in D, bars
indicated 95% confidence intervals. This cells is clearly orientation selective,
but can only slightly discriminate direction. F) Distribution of the linear
(blue) and quadratic (orange) SNR computed from the posterior distribution
of the QD model parameters. G) Predicted OI for the linear (LO and LD,
blue) and quadratic (QO and QD, orange) models. H) Predicted DI for the
LD (blue) and QD (orange) model; the quadratic model is more selective.
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the alternatives (odds are about 2÷ 1 for QD vs QO, 3÷ 1 for QD vs LO,
but 30÷ 1 for QD vs LD; Fig. 7.3A). There is substantial evidence support-
ing a quadratic nonlinearity (odds are 4 ÷ 1 for {QO, QD} vs {LO, LD};
Fig. 7.3B), but no clear indication whether a separable receptive field pro-
vides a better explanation than a non-separable one (Fig. 7.3C). Marginal
posterior distributions of the QD model for 1 and 4 minutes of data are
reported in Fig. F.9 and F.10

7.2.2 Orientation and direction selectivity

We then investigated the orientation and direction selectivity properties of
this cell. Orientation selectivity is quantified by means of the orientation
index (OI) [65] computed as

OI =
Rpref −Rorth

Rpref
, (7.5)

where Rpref and Rorth are, respectively, the average firing rates in response
to a grating drifting in the preferred direction, θpref , and its two orthogonal
directions. More specifically, Rorth = (Rorth+ + Rorth−)/2, where Rorth+

and Rorth− are the average firing rates for a grating moving in the direction
θorth+ = θpref + 90◦ and θorth− = θpref − 90◦ (modulo 360◦). As the name
suggests, the preferred direction is the one eliciting the strongest response.
Similarly, direction selectivity is quantified by the direction index (DI) [65],
computed as

DI =
Rpref −Rnull

Rpref
, (7.6)

where Rnull is the response for a stimulus moving in the null direction, i.e.
θnull = θpref + 180◦ (modulo 360◦).

Since no model is a clear winner, we must resort to Bayesian model
averaging (see Chapter 2.2.2) to investigate the posterior-predicted selectiv-
ity properties of this cell. First of all, we simulated the cell’s response to
multiple moving gratings

s(x, t) = cos
(
κ0(n · ⊤x− vt)

)
= cos(k0 · x− ω0t),

where n is a unit vector n = (cos θ0, sin θ0), with direction θ0 discretized
in 1◦ steps in the range 0◦ to 360◦. We followed a Cartesian convention
to represent directions, in which 0◦ corresponds to a vertical grating mov-
ing to the right. The spatial frequency of the grating, κ0, is fixed to the
posterior-predicted expected preferred frequency EθRF |D[∥kRF ∥], while the
temporal frequency to ω0 = EθRF |D[αRF ]/5. The posterior predicted means
of (functions of) the model parameters is derived from eq. (2.7), which is

Eθ|D[f(θ)] =
∑
m∈M

p(m|D)
∫
f(θ)p(θ|m,D)dθ︸ ︷︷ ︸

Eθ|m,D[f(θ)]

(7.7)



7.2. SINGLE CELL ANALYSIS 93

Based on the closed-form solution reported in eq. (4.18) (for details, see
methods), we evaluated the posterior-predicted tuning curves (Fig. 7.3D),
from which we computed the OI and DI. This cell is quite tuned to the
stimulus orientation (OI = 0.88 ± 0.06, P (OI > 0.66) = 99.0%), but only
poorly to its direction (DI = 0.28± 0.26; Fig. 7.3E). The small value of the
DI was expected, given the amount of evidence supporting either one of the
separable models (Fig. 7.3C), which deflate its value: the separable mod-
els cannot discriminate between stimuli moving in two opposing directions,
therefore the response to θpref and θnull are always equally strong, hence
DI = 0 always for LO or QO.

7.2.3 Role of the nonlinearity

Since we observed substantial evidence supporting one of the two quadratic
models (Fig. 7.3B), we will investigate more in detail the role played by the
quadratic terms in eq. (4.6). First, we ask how much of the observed re-
sponse variability can be explained by the linear and by the quadratic terms
alone. We computed the signal-to-noise ratio of the linear (SNRL) and of
the quadratic terms (SNRQ) for the QD model according to eqs. ((D.14),
(D.15))), respectively. While the posterior predicted SNRL is well con-
strained by the data (SNRL = −19.72 ± 0.46 dB), the quadratic compo-
nent is not and it has a lower explanatory power than the linear term
(SNRQ = −28.20 ± 5.10 dB). Nevertheless, despite its moderate contri-
bution, the quadratic term must play a significant role in predicting the
response of this neuron, otherwise we could not explain the larger amount
of evidence in favor of the quadratic models.

The effect of the quadratic term is not easily interpretable from the
posterior distribution of the matrix parameter C alone (see Chapter 4.2.4):
the trace of C does not indicate whether the phase invariance component of
the quadratic response is excitatory or suppressive (Fig. F.11A), while the
second harmonic term (see eq. (4.23)) is clearly not zero (Fig. F.11B). We
look instead at the effect that using a quadratic model has on the predicted
OI and DI of the model. We compute again each index, but this time based
only on the posterior distributions of the linear models (OIL, DIL) or of
the quadratic models (OIQ, DIQ). While we observed no big differences
for the predicted OI (OIQ = 0.88 ± 0.07; OIL = 0.88 ± 0.06; Fig. 7.3G),
including a quadratic term improves the direction selectivity of this cell
(DIQ = 0.52 ± 0.07; DIL = 0.44 ± 0.04; Fig. 7.3H; DI computed using only
from LD and QD). As we will see in the next section, this is a general finding
of this study.
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Fig. 7.4: Orientation and direction selectivity. A) OI distribution
across all cells. B) DI distribution across all cells. The solid line outlines
the DI distribution for those cells that are well described by one of the
non-separable models (LD or QD). C) OI and DI distributions, conditioned
on the type of model (linear or quadratic). D) OI values predicted by
the quadratic models vs the values predicted by a linear model. E) DI
values predicted by the quadratic models vs the values predicted by a linear
model, for the same cells used in (B). Using quadratic features of the filtered
stimulus improves the orientation and direction selectivity of the model, as
measured by the posterior-predicted OI and DI.

7.3 Aggregate results

7.3.1 Orientation and direction selectivity

We will now characterize the orientation and direction selectivity properties
of all cells in the dataset. In order to quantify orientation selectivity of
a given cell n, we compute the OI posterior mean, Eθ|Dn

[OI]. Direction
selectivity is instead quantified by the DI posterior mean, Eθ|Dn

[DI]. All
aggregate values are reported as mean ± sd, if not otherwise specified.

OI values are quite homogeneously distributed between 0 and 1 (Fig. 7.4;
OI = 0.55 ± 0.30) with only with 33 cells in this dataset being sharply
tuned for orientation (i.e., they satisfy the criterion E[OI] > 0.66). Overall,
cells in this dataset do not show signs of strong direction selectivity (DI =
0.27±0.19; Fig. 7.4B). DI are higher (0.37±0.16, mean ± SD) if we restrict
our analysis to the 47 cells for which the non-separable models provide



7.3. AGGREGATE RESULTS 95

a good explanation (Fig. 7.4B, shaded histogram), which we quantify as
P (M = LD|D) + P (M = QD|D) > 95%. From here on, all direction-
selectivity analyses are performed only on these 47 cells.

Using quadratic features of the filtered stimulus increases both orienta-
tion and direction selectivity (for details, see methods). Not only the overall
means are significantly larger (OIL = 0.49, OIQ = 0.63, p = 2.1 · 10−2;
DIL = 0.25, DIQ = 0.39, p = 2.2 · 10−6; Wilcoxon rank-sum test; Fig. 7.4C),
but OI and DI are significantly larger on a cell-by-cell basis (Fig. 7.4D and
E, respectively; OI: p = 1.9 · 10−5, DI: p = 5.7 · 10−8, one-sided Wilcoxon
signed-rank test).

7.3.2 Non-linear response properties

In the previous section we have established that our model predicts that
the neurons in this dataset respond with a diverse range of selectivity to
sinusoidal gratings drifting through their receptive fields. In this section, we
want to assess the strength of the modulation that a stimulus exerts on the
neural response. A primary choice to quantify this is the modulation index
(MI) [69, 70] defined as the ratio of the magnitude of the response at the
fundamental frequency of the stimulus (F1 component) to the magnitude
of the average response (F0), or in other words, the F1 to F0 ratio (see
Methods section below). MI was introduced to assess the degree of linearity
in spatial summation within receptive fields of single neurons in the primary
visual cortex. MI values close to 1 suggest a strong linear modulation of the
response. Low values, on the other hand, indicate that either the neuron
is not responsive to the stimulus or that the response is modulated in a
non-linear fashion. Our analysis yields MI = 0.57±0.25 (mean ± sd) across
the entire dataset. For cells that are well described in terms of a quadratic
model, i.e. P (m ∈ {QO,QD}|D) > 95% (54 cells), which we will refer to
as “quadratic cells”, the posterior-predicted MI = 0.50±0.26 is significantly
lower than for the remaining cells, which is MI = 0.70 ± 0.14 (mean ±
sd; p = 2.87 · 10−4, Wilcoxon rank-sum test; Fig. 7.5A). This result is
expected, since the quadratic models include a phase invariant component
in the predicted response. Furthermore, MI > 0.66 for 17 non quadratic
cells, which accounts for 71% of this group, but only for 18 quadratic cells,
i.e. 33% of them.

In order to understand if the lower predicted MI is due to a strong role
played by the quadratic term, or whether instead these quadratic neurons
are just less responsive to the stimulus, we assess the distribution of signal-
to-noise ratios (SNR) of the entire population (the details of computing the
SNR for a GLM neuron are outlined in Appendix D). The SNR compares
the strength of the response to the level of background noise, which in our
case is the intrinsic noise of the spike-generating process (for details, see
method). A high SNR indicates that the stimulus-driven component plays
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Fig. 7.5: Non-linear response properties. A) MI distribution across the
dataset (solid black line), and across quadratic cells (shaded area); for the
definition of quadratic cells, see main text. B) SNR distribution across the
dataset (solid black line), and across quadratic cells (shaded area). C) MI
vs SNR; the two are quite correlated, suggesting that a low MI is indicative
of poorly responsiveness to the stimulus, rather than of some non linear
interaction. D) Linear vs quadratic SNR, across quadratic cells; the color of
the dot encodes the effect of the quadratic term: inhibitory (blue), excitatory
(red) or undefined (white). There is no significant correlation between linear
and quadratic SNR; however, for all cells with inhibitory quadratic terms,
the quadratic SNR is larger than the linear SNR.
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a major role in shaping the response. In our dataset, the SNR ranges from
−37.8dB to −10.6 dB, with a median value of −20.12dB, values compatible
with those measured also in other areas of the brain [18]. Furthermore, the
predicted distribution for the quadratic cells is not significantly different
than the one for the remaining cells value are not significantly differently
(p = 0.31, Mann Whitney U test), suggesting that the stimulus drive is not
different across these two subgroups (Fig. 7.5B). MI and SNR are positively
correlated (ρ = 0.51, p = 2.07 · 10−6, Pearson’s rho), even more so if we
consider only the non quadratic cells (ρ = 0.90, p = 2.92 · 10−9, Pearson’s
rho; Fig. 7.5C), suggesting that indeed low MI values are due to a small
stimulus drive rather than to a quadratic (e.g. phase invariant) modulation,
except for two cells which have a high SNR but pretty low MI (Fig. 7.5C,
encircled dots).

Nevertheless, for about 2 out of 3 cells in this dataset, we found substan-
tial evidence for quadratic models. Therefore, we think it is appropriate to
investigate a more deeply the role of the quadratic terms in the response.
To this end, we compute SNRL, the SNR attributed exclusively to the lin-
ear component of the response, and SNRQ, the SNR of the quadratic term
Fig. 7.5D; for details, see Appendix D.4) – we restricted this analysis only
to the 54 quadratic cells. These two indexes are informative of how much
of the firing rate variability is explained by the linear and the quadratic
terms of the nonlinearity. Their distributions are not significantly different
(p = 0.22, Mann-Whitney U test), nor we could measure any significant
correlation (ρ = 0.22, p = 0.11, Pearson’s rho). For 32 cells SNRL > SNRQ,
but result does not point to any significant underlying relationship (p = 0.28,
Wilcoxon signed-rank test). We then investigated the effect of the quadratic
terms. We classified each cell as “quadratically inhibited” if the posterior
probability of tr(C) < 0 was larger than 0.95 (Fig. 7.5D, blue dots); con-
versely, as “quadratically excited” if the trace of C was positive with at
least 95% confidence (Fig. 7.5D, red dots); we left them unlabeled if none of
the criteria were met. Very interestingly, for all cells with clearly inhibitory
quadratic interactions (9 cells) SNRQ was always (significantly) larger than
SNRL (p = 3.91 · 10−3, Wilcoxon signed-rank test; Fig. 7.5D, blue dots).
Furthermore, for these 9 cells, DI was significantly smaller than for the rest
of the subset (DI = 0.047 ± 0.062, mean ± sd; p = 1.53 · 10−3, Wilcoxon
rank-sum test). No other significant effect was measured on the other in-
dexes.
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7.4 Material and Methods

Data acquisition

Data was acquired by means of juxtacellular electrophysiological recording
in layer 2/3 or rat visual cortex during visual stimulation. The details of
the experimental procedure are reported in Appendix E.

The duration of each recording session was 5 minutes.Should I give this
detail? An initial screening of the data revealed that the stability of the
recordings degraded with time, therefore we used only the first 4 minutes of
each recording for the analyses reported in this chapter.

Spikes times were binned according to stimulus presentation times.

Models details

We used a ln(1 + ex) nonlinearity for all model configurations considered in
this chapter. We used the same prior distributions for all four configurations,
since they all share the same parameters. We used the same priors we used
in Chapter 6. Details can be found in Table 6.4.

Posterior sampling

The posterior distribution of model parameters was estimated using the
algorithm outlined in Chapter 5, using 128 live points. New proposals from
the likelihood-restricted prior were generated by evolving a random live point
with 25 random-walk steps.

Tuning curve

For each sample θ(i) from the posterior distribution, we simulated the re-
sponse of the model to a moving sinusoidal grating with spatial frequency
k0 and temporal frequency ω0. Let us denote the response as r(t;k0, ω0,θi).
The tuning curve was computed by averaging the response over one period
of the stimulus:

tc(k0, ω0,θ
(i)) =

1

T

∫ T

0
r(t;k0, ω0,θ

(i))dt, (7.8)

where T = 2π/ω0 is the period. We discretized on temporal period into a
grid of 100 points and approximated the integral using the trapezoidal rule.

The direction of motion was discretized in 360◦ steps in the range [0, 2π),
corresponding to a resolution of 1◦. The spatial frequency was fixed to
the expected preferred spatial frequency ∥k0∥ = Eθ|D

[
∥kRF ∥

]
, while the

temporal frequency was fixed to the expected posterior-predictive preferred
temporal frequency ω0 = Eθ|D

[
αRF /5

]
.
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Modulation index

The modulation index was computed as follows. Denoting the response to a
moving grating with temporal frequency ω0 as r(t), and its Fourier transform
as r̂(ω), we define F1 = r̂(ω0) and F0 = r̂(0). Therefore MI = r̂(ω0)/r̂(0).

7.5 Summary and Discussion

In this chapter we showed how a full Bayesian analysis applied to real electro-
physiological recordings may lead to interesting insights about the properties
of the cells in the dataset. We first showed that is possible to categorize cells
according to the type of their response to visual stimulation and that for
about half of the cells in the dataset this classification can be performed
with high confidence. Concretely, we found that most cells in this dataset
are best described in terms of one of the two quadratic models proposed.
Only a small minority of cells are best described by one of the linear mod-
els, and specifically only 1 out of 80 with high confidence after observing 4
minutes of data. Although they not always play a major role in terms of ex-
plained neural variability, this analysis reveals that these features contribute
enough to justify their presence in the model, in contrast to preferring a more
parsimonious, purely linear model. This suggests that the contribution of
these three second order features to the firing of the neuron is not negligible.
In a future study, we may drop the linear models altogether.

We characterized the orientation and direction selectivity properties of
these neurons. Our analysis revealed an heterogeneous landscape of orien-
tation selectivities, predicting strong orientation selectivity for about 40%
of the cells in the dataset. The predicted direction selectivity was instead
way milder. This fact does not necessarily reflect a true underlying feature
of these cells, but may be imputable to a limitation of our RF model: with
the current parameterization, stimuli moving in the null direction always
elicit a positive response –albeit smaller in magnitude than for the preferred
direction– therefore preventing the DI from taking values close to 1. This
shortcoming can be fixed by adopting a different parameterization that ex-
plicitly models a property called motion opponency. We discuss how to
extend the model in this direction in Appendix C.1. We also showed that
the role of the quadratic features consists mostly in sharping the orientation
and direction tuning.

Finally, our analysis revealed that for the vast majority the cells in this
dataset exhibit a mostly linear response. Their responsiveness to the visual
stimulus is similar in strength to that of sensory neurons in other sensory
areas.
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Chapter 8

Conclusions

In this thesis we have addressed the problem of the characterization of re-
ceptive fields in primary visual cortex in terms of high-level, interpretable
features. We placed particular emphasis in the quantification of the estima-
tion uncertainty when data is sparse or noisy. Since we have summarized
and discussed the results at the end of each chapter, here we provide a short
summary and an overarching overview of our findings, and suggest further
potential developments.

Functional receptive field models are routinely fitted to non-parametric
estimates to infer high-level properties of the stimulus encoding (e.g, the
orientation selectivity) [89, 93]. These “second hand” estimates may be
used to test some hypothesis about the properties or the structure of the
receptive field. According to this approach, one implicitly assumes that MLE
or MAP non-parametric point estimates present a good characterization of
the receptive field. This strategy does not account for any uncertainty on
the MLE or MAP estimates on which the inference of the functional model
is based, with two major drawbacks: confidence intervals on the derived
parameters are too tight, which, in turn, may lead to wrong conclusions.
This problems are exacerbated with sparse or noisy data.

We adopted a different strategy and inferred the relevant high-level re-
ceptive field features directly from the data. We operated within a Bayesian
framework, which naturally allows to account for estimation uncertainty by
encoding it in the posterior distribution of model parameters. With sparse or
noisy data, access to the full posterior is critical, both to avoid over-fitting
and to quantify uncertainty. Furthermore, posterior distributions provide
a principled base to test different or competing hypothesis regarding the
data-generation process.

We included prior knowledge by modeling the known structure of V1
receptive fields using a well-defined functional model. In Chapter 4 we
presented a compact generative model of neural responses in V1 relying
on 10 free parameters to describe the entire spatio-temporal structure of

101
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a receptive field. Thanks to its flexibility, this model can reproduce most
stereotypical properties of visual cortical neurons such as orientation and
direction selectivity, linear modulation and phase invariance. Similarly to
some recent work on spline-base receptive field modeling [44], our aim is to
facilitate the inference procedure by focusing the (possibly scarce) evidence
in the data on a small number of parameters. Clearly, this model is a
stark over-simplification of stimulus selectivity in visual cortical neurons, 1

however in Chapters 6 and 7 we showed it is nevertheless useful for obtaining
a fast characterization of a receptive field directly from sparse or noisy data
without any intermediate analysis steps.

In Chapter 6, we studied how confidently we can recover ground-truth
generating parameters as a function of the amount of available data (mea-
sured in terms of observed spike counts) and overall noisiness of the neuron.
We showed that in physiological settings a receptive field can be detected
from a few tens of observed spikes and that the identification error quickly
shrinks to a few percent points accordingly. These are of course optimistic
lower bounds on the potential identification errors, obtained from a simu-
lation study with no model mismatch, but they may nevertheless provide a
useful guideline for planning the amount of data to collect within an experi-
ment if one wants to attain a certain level of confidence on the estimates. In
Chapter 7 we analyzed a dataset of electrophysiological recordings acquired
in rat primary visual cortex and were able to show that a full Bayesian treat-
ment of the problem can lead to interesting insights despite the scarcity of
available data. Not only that, we could also associate a degree of confidence
to each statement.

The computational resources required by a full Bayesian approach re-
mains one of the main challenges to its widespread adoption in data analysis.
Our application is not different: despite the small number of parameters,
the evaluation of the receptive field response – which is a necessary step
to evaluate the goodness of each new proposed sample – is the main com-
putational bottleneck of our model. To address this issue, in Chapter 5 we
introduced Collapsed Nested Sampling (CNS). This algorithm exploits some
geometrical properties of our model to marginalize some of its parameters
and explore the resulting lower-dimensional parameter space using ordinary
nested sampling (ONS). Marginalizing out some of the model parameters
smooths the likelihood landscape of the remaining ones, hopefully making it
easier for the sampler to explore. We benchmarked CNS against ONS on the
task of estimating the posterior distribution of the parameters of our gen-
erative model, and showed that CNS has comparatively better convergence
properties and reduced storage requirements. The potential application of
CNS goes beyond the generative model used in this work: it can indeed be

1In Appendix C, we discuss some extensions to overcome some of the limitations of
this model that became evident during our analyses.
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adopted to any GLM making use of parametric basis functions to efficiently
sample from the joint distribution of basis functions parameters and GLM
coefficients.

We developed this method to infer visual receptive field properties from
high-dimensional, unstructured visual stimuli. As mentioned above, due to
the size of the tensor operations involved in computing the receptive field
response to unstructured video data, a few minutes are required to analyze
even short segments of data, even when all tensor operations take advantage
of the hardware acceleration provided by the GPU. Certain types of stim-
uli, however, can be conveniently expressed by a small number of control
parameters – this is, e.g., the case of the counterphase or drifting sinusoidal
gratings considered in Chapter 4. In such cases, it is possible to derive an
analytical expression to compute the receptive field response, which can be
evaluated almost instantaneously compared to the general-purpose, tensor-
based implementation. We have not thoroughly tested this idea in our work,
but we expect inference to be much faster in this context. This opens the
door to a series of interesting scenarios: we could infer receptive field prop-
erties under different types of visual stimulation and test the consistency
of the neural representation across stimulus classes; we could analyze short
segments of responses to structured stimuli to get a first rough idea of the
frequency-response properties of a neuron, in order to design optimal un-
structured stimuli for further experiments; the possibilities offered here are
really many, and mostly limited by our creativity.

Although in this thesis we focused exclusively on modeling neural activ-
ity in the primary visual cortex, the potential scope of application of our
work is broader. We have already mentioned that it is possible to extend
the model or to adopt a slightly different functional parameterization of the
spatial filters (see Appendix C). As a matter of fact, the entire functional
form of the receptive field can be changed without invalidating our approach:
neural data from any sensory area for which canonical receptive fields mod-
els have been developed can potentially be analyzed with the algorithms
presented in this thesis. For example, many neurons in the retina and in
the LGN have center-surround receptive fields[22], which can be modeled
as a temporally-weighted difference of 2D Gaussian using just 7 parameters
[20]. All considerations on deriving an analytical expression to evaluate the
response to structured stimuli are valid also in this scenario, provided the
core model structure does not change.

Overall, we believe that this work may benefit the neuroscientific com-
munity to make use of very sparse or noisy data from a variety of sensory
areas, in turn playing a major role in contributing to the progress of our
knowledge of how sensory information is represented by the living brain.
Considering an even broader context, the computational advantages offered
by CNS may increase the feasibility of a full Bayesian approach to the wide
model family represented by GLMs with parametric basis functions, with
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potential applications to shallow neural architectures in machine learning.



Appendix A

Generalized Linear Models

Generalized Linear Models (GLMs) are a flexible generalization of ordinary
multilinear regression to response variable following a distribution other than
normal [66, 72]. We consider here a dataset D = {xi, yi} consisting of pairs
of independent and dependent variables. We can also compactly represent
such a dataset using the design matrix X = [x1,x2, . . . ,xn]

⊤ and a vector
y = [y1, y2, . . . , yn]

⊤. Each observation of the dependent variable yi is
assumed to be generated from a particular distribution within an exponential
family [4, 57, 86],1 which can be expressed in the form

fY (yi; θi, ϕ) = h(y, ϕ) exp

(
yiθi −A(θi)

δϕ

)
,

where A(θi), h(y, ϕ) and δ(ϕ) are known functions. The dispersion pa-
rameter ϕ is typically known and is usually related to the variance of the
distribution. The parameter θi is the natural parameter of the distribution
and it is related to its mean. The function A(θi) is a convex function, called
the log-partition function because it is the logarithm of the normalization
factor that makes fY (y; θi, ϕ) a probability distribution (or probability mass
function, for the case of a discrete distribution). The mean and the variance
of the distribution are µ = E[Y ] = A′(θi) and Var[yi] = A′′(θi)δ(ϕ) [72]. In
a GLM, the mean of the distribution depends on the independent variables
xi through:

E[yi|xi] = µi = g−1
(
x⊤
i β

)
, (A.1)

where E[y|xi] is the expected value of yi conditional on xi; g is the link
function2 relating the mean of the observed variable to a linear predictor
ηi = x⊤

i β, a linear combination of unknown parameters β.The linear pre-
dictor incorporates the information about the independent variables into
the model. For each family, there is a particular link function that makes

1A large class of probability distributions that include the normal, Bernoulli and Pois-
son distributions, among many others.

2Its inverse is the mean function.
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Distribution Support Link Function Mean function

Normal real: (−∞,+∞) x⊤β = µ µ = x⊤β

Poisson integer: 0, 1, 2, . . . x⊤β = ln(µ) µ = exp(x⊤β)

Bernoulli integer: {0, 1} x⊤β = ln
(

µ
1−µ

)
µ = 1

1+exp(−x⊤β)

Table A.1: GLM examples. Support and canonical link-function for the
exponential families discussed in Chapter 3.

the linear predictor the natural parameter of the distribution: this func-
tion is called the canonical link function of the GLM. A single-filter linear-
nonlinear cascade model (see Chapter 3) can be interpreted as a GLM. The
static nonlinearity is the inverse (of a possibly non canonical) link function.
Table A.1 table lists the canonical link functions and their inverse for the
three exponential-family distributions encountered in Chapter 3.

A.1 Learning the model parameters

The optimal value of the model parameters β can be found by maximizing
its likelihood under the observed dataset; mathematically, by solving the
following optimization problem:

β̂ML = argmax
β

p(y|X,β). (A.2)

Since all observation are assumed to be independent conditional on the value
of the predictor variables, the conditional probability in the above equation
can be expressed as a product of independent terms:

p(y|X,β) =
n∏

i=1

p(yi|xi,β). (A.3)

Since directly maximizing (A.2) may be numerically unstable task, it is
customary to maximize the corresponding negative log-likelihood instead:

β̂ML = argmin
β

− log p(y|X,β) = argmin
β

−
n∑

i=1

log p(yi|xi,β). (A.4)

By making use of the canonical link function, the quantity X⊤y becomes a
sufficient statistic for β, and the above equation can be expressed as:

β̂ML = argmin
β

(
− (y⊤X)β +

n∑
i=1

A(xiβ)

)
+ const, (A.5)
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where const is a constant term in β, which can be ignore for optimization
purposes. Since A(θ) is convex and (y⊤X)β is linear, the negative log-
likelihood is convex in β and a single global minimum exists [72]. There-
fore, the maximum likelihood solution can be found with standard convex-
optimization techniques like the Newton method.

For a non-canonical link function, the optimization problem is expressed
in a more complex form. For a Poisson GLM, this would be:

β̂ML = argmin
β

−
n∑

i=1

(
yi ln f(xiβ)− f(xiβ)

)
, (A.6)

where f is the inverse of the link function. This expression is convex as long
as f is convex and log-concave, i.e. it grows at least linearly and at most
exponentially [76]. Examples of mean function satisfying these constraints
are, among others, f(x) = ex and f(x) = ln(1 + ex).

Maximum a posteriori

For a series of reasons, it may be desirable or needed to add additional regu-
larization terms to the cost function in (A.4). For example to regularize the
estimate and avoid overfitting (when the dimensionality of the parameters
space is large compared to the size of the dataset) or to include prior infor-
mation we may have about the system we are modeling. We can interpret
this extra term as a probability distribution over the model parameter, p(β),
encoding our prior belief over β before any data is acquired. After observing
the data, D = {X,y}, the belief over β is updated by including the newly
acquired information into a posterior probability distribution p(β|X,y). Fol-
lowing Bayes’ rule, this is proportional to p(y,β|X) = p(y|X,β). Instead
of maximizing the likelihood, we maximize the joint probability distribution
p(y,β|X), obtaining the maximum a posteriori estimate:

β̂MAP = argmax
β

p(y|X,β)p(β)

= argmin
β

−
[
log p(y|X,β) + log p(β)

]
. (A.7)

Provided the prior is log-concave, the optimization problem (A.7) is still
convex and therefore it still enjoys the same convergence properties of the
maximum likelihood estimates, provided the same requirements for (A.5) or
(A.6) are met.

A.2 Generalized Quadratic Models (GQM)

Generalized quadratic models extend of GLMs to model an additional quadratic
dependence on the predictor variables:

E[y|x] = µ = g−1
(
a+ b⊤x+ x⊤Cx

)
, (A.8)
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where b and C are a scalar, a vector and a square symmetric matrix of
appropriate size; the scalar a models the implicit bias term that is often
assumed by a GLM.3 While quadratic on its inputs, a GQM is still linear
on its parameters, therefore it can be conceived as a GLM on the space of
quadratically-transformed inputs [32]. As such, a GQM enjoys the same
convergence properties a GLM does. It is important to notice that the
number of parameters scales as O(m2), where m is the dimensionality of
the input. Fitting such a large number of parameters would require massive
amounts of data or very strong regularization of the estimate. However,
even if these were not an issue, for large values of m, the amount of memory
required to store all this parameters may grow beyond the capacity of the
system.4 In such a scenario it could be desirable to reduce the dimensionality
of the problem by adopting a low-rank factorization of C: C = WDW⊤,
where D ∈ Rp×p is a diagonal matrix with entries dii ∈ {−1,+1}, and W ∈
Rm×p. This parameterization effectively reduces the number of parameters
from m(m + 3)/2 + 1 to m(p + 1) + 1, but does not guarantee the same
convergence properties of a GLM, since now the model is no more linear in
its parameters.

A.3 Basis functions

GLMs offer quite some flexibility in building the design matrix. So far we
have assumed that all independent variables are used as they are in building
the design matrix. For a dataset {si, yi}i=1...n like the one described at the
beginning of this chapter,5 this means that each rows of design matrix X is
given by the corresponding set of independent variables, i.e.

X = [s1, s2, . . . , sn]
⊤

. This, however is just one of many possible design choices. As we have
already mentioned in the previous section, a GQM can be treated as a GLM
on the space of quadratically-transformed input, i.e. we can write

xi = [1, s1, s2, . . . , sn, s
2
1, s

2
2, . . . , s

2
n, s1s2, s1s3, . . . , sn−1sn].

We can generalize this concept by letting each entry in the design matrix be
some fixed function of the vector of covariates [24, 32]:

xi = hψ(si) = [h1(si;ψ), h2(si;ψ), . . . , hp(si;ψ)], (A.9)

3For consistency with (A.8), we should rewrite (A.1) as E[y|x] = µ = a+ b⊤x, where
the linear predictor is now η = a + b⊤x. However, this expression is more compactly
represented using the formalism in (A.1), taking β = [a, b1, b2, . . . ]

⊤ and prepending a
constant entry with value 1 to each vector of covariates x.

4For 150k parameters (100 pixels, integrating 15 frames in the past, i.e. to 0.5s, at a
sampling rate of 30Hz), the total number of parameters is 2.25 · 1010.

5Here we denote the independent variables of the problem using the symbol si to
distinguish them from the rows of the design matrix, xi.
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where ψ is a parameter vector controlling the behavior of each hj(·). This
technique has been used, for example, to model the dependency of the firing
rate of a neuron on a linear mixture of smoothed versions of its own past
activity [84, 110]. In general, the conditional probability of the dependent
variables given the inputs must take into account this new set of parame-
ters, that is p(y|X,β) = p(y|S,β,ψ), where S is a matrix with each row
equal to the corresponding observation of the independent variables (i.e. the
“default” design matrix). The parameters ψ and p are usually considered
fixed and their value is a modeling choice. In Chapter 5 we describe an al-
gorithm to perform Bayesian inference on ψ, which exploits the convenient
convergence properties of GLMs.
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Appendix B

Frequency response
properties of the receptive
field model

In this appendix we derive the frequency response properties of the recep-
tive field model, which provide some context for the study presented in
Chapter 4.2. Throughout this appendix we will use u and ω to denote the
normalized 2D spatial frequency and temporal frequency, respectively, and
j is used to denote the imaginary unit.

B.1 Spatial filter

The Fourier transform (FT) of the spatial filter (4.4) is

ĝ(u) ≜ F{ĝ}(u) = exp

(
− 1

2
(k+ u)⊤Σ (k+ u)

)
ejφ. (B.1)

By applying some basic properties of the FT, we find also that

ĝc(u) =
1

2

(
ĝ(u) + ĝ(−u)

)
and ĝs(u) =

1

2j

(
ĝ(−u)− ĝ(u)

)
. (B.2)

When fixing φ = π/, the corresponding power spectra |gc(u)|2 and |gs(u)|2
are identical and equal to

|ĝ(u)|2 + |ĝ(−u)|2 = exp
(
− 2(u⊤Σu+ k⊤Σk)

)
cosh(2u⊤Σk). (B.3)

From this expression we can derive the orientation and frequency tuning
curves of the spatial filters and have a better understanding of how the
model parameters shape the selectivity of the filters (Fig. B.1A and B).
The preferred spatial frequency is |u| = |k|, from the fact that all curves in
Fig. B.1A have a peak at |u|/|k| = 1. There orientation tuning is periodic
with period 180◦ and has a peak at ∠u = ∠k+ nπ for n ∈ Z.
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Fig. B.1: Selectivity of the spatial filters. A) Frequency tuning,
computed by evaluating the power spectrum (B.3) along a line such that
∠u = ∠k; the horizontal axis is the relative frequency |u|/|k|. B) Orienta-
tion tuning, computed by evaluating the power spectrum (B.3) on a circle
with constant radius, i.e. for |u| = |k|.

B.2 Temporal filter

The basic building block of the temporal filter is the the gamma density
with integer shape parameter m

γm(x;α) =
αm+1

m!
xme−αx · u(x), (B.4)

out of which we can build the spatial kernels hn as

hn(t;α) = γn(t;α)− κbp γn+2(t;α). (B.5)

The Laplace transform of a gamma density with integer shape parameter
m has a convenient recursive structure for m > 2, which allows it to be
expressed as a product of transforms of lower-order filters:

Γm(s) ≜ L{γm}(s) =
αm+1

(s+ α)m+1
, Γm(s) = Γm−2(s)Γ1(s). (B.6)

We can use the above identities to arrive at an expression for the FT of the
temporal filter defined in eq. (4.10). First, we consider the Laplace transform
of the generic filter hn(t), which is

Hn(s) ≜ L{hn}(s) = Γn(s)− kbpΓn+2(s) (B.7a)

= Γn(s)
(
1− kbpΓ1(s)

)
(B.7b)

For n ≥ 3, the above expression also has a recursive structure,

Hn(s) = Γ1(s)Hn−2(s), (B.8)
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from which we obtain that

H(s) ≜ L{h}(s) = H5(s)− j · kdirH3(s) (B.9)

= H3(s)[Γ1(s)− j · kdir] (B.10)

The unilateral and the bilateral Laplace transform coincide for causal ker-
nels. Furthermore, the bilateral transform, Bh(s), and the FT ĥ(ω) = F(h)
are related according to

F{h}(ω) = B{h}(s = jω). (B.11)

We can then finally obtain the following expression for the FT of the tem-
poral filter h(t):

ĥ(ω) = ĥ3(ω)[γ̂1(ω)− j · kdir]. (B.12)

B.3 Direction selectivity

In this section we will provide derivations and proof for the statements in
Chapter 4.2.3 concerning the direction-selectivity properties of the model.

B.3.1 Power of the response to a moving grating

In order to compute Ps̃ we first need to evaluate |s̃(t)|2. From eq. (4.18) we
can derive

|s̃(t)|2 =
[
Ph(−ω0)Pg(k0) + Ph(ω0)Pg(−k0)

]
· |ξ(xo, t)|2

+ 2Re
[
ĥ(ω0) ĥ(−ω0) ĝ(k0) ĝ(−k0) ξ(xo, t)

2
]
.

The r.h.s. of the above expression consists of a constant offset, the first
term, and a periodic signal with period 2π/ω0, the second terms. When
plugged in eq. (4.7), the net contribution of the second term to the integral
is zero and only the constant offset remains. We can pull out of the integral
all the remaining terms that are not depending on the temporal variable t,
obtaining

Ps̃ =
[
Ph(−ω0)Pg(k0) + Ph(ω0)Pg(−k0)

]
· 2π
ω

∫ +−π/ω0

−π/ω0

|ξ(xo, t)|2dt.

The integral is the power of the input signal ξ(xo, t), Pξ. Therefore we
obtained the result reported in eq. (4.19).

B.3.2 Assymetry of the response

Let s̃pos(t) be the filter response to a moving grating spos(x, t) with spatial
orientation kpos = kRF and speed ωpos = ω0, and let Ppos = ⟨s̃pos⟩2RMS be
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the power of the response. Similarly, we define Pneg as the power of the
response to a second grating, sneg(x, t), with the same spatial orientation
kneg = kRF but opposite speed, ωneg = −ω0. We want to know for which
values of ω0 the condition ∆P = Ppos − Pneg > 0 is satisfied. We start
by expanding Ppos and Pneg (we omit the constant term A2/4, the effect
of which is merely a constant rescaling and does not otherwise change the
qualitative result):

Ppos = Ph(−ω0)Pg(kRF ) + Ph(ω0)Pg(−kRF )

Pneg = Ph(ω0)Pg(kRF ) + Ph(−ω0)Pg(−kRF ).

We then subtract the second from the first, obtaining:

∆P = −
(
Ph(ω0)− Ph(−ω0)

)︸ ︷︷ ︸
∆Ph(ω0)

·
(
Pg(k0)− Ph(−k0)

)︸ ︷︷ ︸
∆Pg(k0)

Therefore for ∆P to be positive, ∆Pg(kRF ) and ∆Ph(ω0) must have opposite
signs. Since ∆Pg(kRF ) is negative

1, ∆Ph(ω0) must be positive to make ∆P
positive. After expanding ∆Ph(ω0) (derivation in the next proof below),
we get

∆Ph(ω0) = 8Ph3(ω0)
α3kdirω0

(α2 + ω2
0)

2
> 0⇔ kdirω0 > 0.

From here, we can see that when kdir > 0 a positive ω0 results in a positive
∆P , i.e. the response spos is stronger than the response sneg, meaning that
∠kRF is the preferred direction.

Deriving the value of ∆Ph(ω)

We start by expanding the expression for the power of ĥ(ω):

Ph(ω) ≜ |ĥ(ω)|2 = |ĥ3(ω)|2 · |γ̂1(ω)− j · kdir|2

= Ph3(ω)
(
Pγ1(ω) + k2dir − 2kdirIm[γ1(ω)]

)
(B.13)

Now, we consider the power at opposite temporal frequency, Ph(−ω):

Ph(−ω) = Ph3(−ω)
(
Pγ1(−ω) + k2dir − 2kdirIm[γ1(−ω)]

)
(B.14)

= Ph3(ω)
(
Pγ1(ω) + k2dir + 2kdirIm[γ1(ω)]

)
, (B.15)

where the second line follows from h3(ω) and γn(ω) being Hermitian func-
tions, since they are the FT of real-valued functions.2 After subtracting the
two expressions and rearranging the resulting terms, we obtain

Ph(ω)− Ph(−ω) = 8Ph3(ω)
α3ωkdir

(α2 + ω2)2
. (B.16)

1∆Pg(u) = −2e−u⊤Σue−k⊤
RFΣkRF sinh(2u⊤ΣkRF ), which is negative for u = kRF .

2A Hermitian function f(x) satisfies f(x) = f(−x).



Appendix C

Extending the receptive field
model

This appendix proposes two possible extensions of the receptive field model.
Since we concretely formalized these concepts after all analyses were per-
formed, we considered it would be more appropriate to talk about this ad-
ditional work on a dedicated appendix rather than in the may body of the
thesis, in order to avoid any potential confusion for any discrepancy between
the model presented in Chapter 4 and the model used in our analyses.

C.1 Motion opponency

The receptive field model discussed in Chapter 4 was used in Chapter 7 to
characterize neural receptive fields in actual electrophysiological recordings
of neural activity. This model is quite flexible and it can reproduce some
of the most salient features often observed in V1 neurons (orientation and
direction selectivity; linearity or phase invariance), but it is not an exhaus-
tive model of the response properties of these neurons. More specifically,
its capability to model direction selectivity is limited and it cannot entirely
reproduce the direction selectivity properties often observed in V1. Experi-
mental evidence suggests that some direction selective cells in V1 are some-
times inhibited by stimuli moving in the null direction[1, 41, 90, 102, 112],
i.e. the opposite of the preferred direction. In the present model, however,
a stimulus moving in the null direction always elicit a positive, albeit small,
response (see Fig. 4.5). Denoting with θpref and θnull = θpref + 180◦ the
preferred and the null direction respectively, one way to model motion op-
ponency is by subtracting the response of an hypothetical “θnull-selective”
neuron from that of a “θpref -selective” one, in order to obtain a signal with
strong excitation for motion along θpref and inhibition for motion in the
opposite direction [1, 115]. This could be done by adding to our model a
quadrature pair of receptive field filters with opposite selectivity. By mir-
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roring the construction of the kernels (4.3), we obtain

w3(x, t) = h5(t)gc(x)− kdirh3(t)gs(x)
w4(x, t) = h5(t)gs(x) + kdirh3(t)gc(x),

which are built from the same separable components (see Fig. 4.1). We
need of course to adjust the quadratic nonlinearity to perform the required
computation. Denoting with s̃p = [s̃1, s̃2] the stacked response of w1 and w2,
and with s̃n = [s̃3, s̃4] the response of w3 and w4, we specify the following
new quadratic function:

Q(s̃p, s̃n) ≜ b⊤s̃p + s̃⊤p C s̃p − s̃⊤nD s̃n (C.2)

where b and C are defined as before and D is a 2×2 real matrix. In order to
avoid singularities both C and D must be non-negative definite matrices. If
that were not the case, one could change the sign of their respective eigen-
values and change the spatial filter orientation by 180◦ and the response
would still be the same. This would introduce an undesired singular param-
eterization in our model. Note also that only s̃p participates in the linear
response, for an analogous reason. Imposing the non-negativity constraint
would effectively restrict the feasible domain of the GLM parameters, there-
fore potentially limiting the application of the sampling scheme discussed in
Chapter 5. In order to not sacrifice inference, we could consider a stricter
parameterization, i.e. imposing that D = C and introduce a new parameter
kopp ∈ [0, 1] to control the degree of motion opponency expressed by the
model. We must therefore adapt the quadratic non-linearity:

Q(s̃p, s̃n) ≜ b⊤s̃p + s̃⊤p C s̃p − kopp · s̃⊤nC s̃n. (C.3)

This way, the model can still be treated as a 6-dimensional GLM, albeit
with a different design matrix. If we expand and rearrange the terms in
eq. (C.3), we obtain that a single row of the design matrix is

[1, s̃1, s̃2, s̃
2
1 − kopp s̃23, s̃22 − kopps̃24, 2 (s̃1s̃2 − kopp s̃3s̃4)].

C.2 Non-zero DC gain

An other potential limitation of the present model is the presence of a non-
zero DC gain for constant stimuli. This is not an issue in itself, but in
some cases this behavior may be undesirable. This is a direct consequence
of parameterizing the spatial filters using Gabor wavelets: the non zero DC
gain of a Gabor wavelet (see eq. (B.1)) implies that the response of the filter
depends also on the overall average value of the input signal. In other words,
the filter would respond differently to two otherwise identical signals which
differ only by a constant offset in their intensities. This may not be the way
a V1 neuron would respond in this scenario.
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Solution 1

We may adjust the existing Gabor kernels by subtracting the corresponding
offset

g′(x) ∝ exp

(
− 1

2
xΣ−1x

)[
exp(−j(k⊤x− ϕ))− ĝ(0)

]
, (C.4)

where ĝ(0) is the DC gain, obtain by evaluating the FT of the Gabor at
the zero frequency. Adopting this new filter is equivalent to having an extra
spatial filter consisting only of the envelope of the original Gabor kernel,
scaled by the DC offset factor. This is the most economical solution in
terms of changes to apply to the existing code base. Moreover, if the output
of the extra spatial filter is explicitly computed, its value could be of used
to normalize the response of the linear filter (i.e. to implement some kind
of gain modulation mechanism [2, 40]), but we will not discuss this aspect
in the current work.

Solution 2

Two dimensional Log-Gabor wavelets[19, 28] offer an alternative solution
to the DC-gain problem. We propose a parameterization emphasizing the
periodic nature of the orientation parameter:

ĝlog(κ, θ) =
κ0
κ

exp

(
− ln2(κ/κ0)

2 ln2(σf/κ0)

)
exp

(
− 1− cos θ

2σ2θ

)
, (C.5)

where κ0 is the center frequency, σf the width parameter for the frequency,
θ0 the center orientation, and σθ the width parameter of the orientation.
The frequency and orientation bandwidths are encoded independently of
each other, in contrast to a conventional Gabor parameterization1, and are
easily expressed in terms of other model parameters:

Bκ = 2

√
2

ln 2
·
∣∣∣∣ ln σfκ0

∣∣∣∣ and Bθ = 2σθ
√
2 ln 2.

Log-Gabor wavelets have been shown to better encode natural images than
the original Gabor filter[28].

1In a conventional Gabor, the frequency bandwidth depends on |k| and σx, while the
orientation bandwidth depends on σx and σy, therefore the two are entangled.
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Appendix D

Signal-to-Noise Ratio for
GLMs

In this appendix we discuss how the concept of signal-to-noise ratio (SNR)
can be generalized to GLMs. Sections D.1 to D.3 provide a summary, based
on the work in [18, 37]. The last section applies these concepts to the
generative model presented in Chapter 4.

D.1 SNR in a linear system with additive Gaus-
sian noise

We start by considering a linear system with additive Gaussian observation
noise, defined by the following observation model:

yk = x⊤
k β + εk, εk ∼ N (0, σ2ϵ ), (D.1)

where xk = [1, x
(k)
1 , . . . , x

(k)
m ]⊤ is vector of fixed and known covariates, β is

a parameter vector, and εk is the observation noise.

The SNR is defined as the ratio of the variance of the signal component
to the variance of the noise, that is

SNR =
σ2signal
σ2noise

, (D.2)

where σ2signal is the variance explained by the linear predictor, and σ2noise is
the intrinsic variance due to noise. Assuming E[xi] = 0 (for i = 1, . . . ,m),

σ2signal = Ex[(x
⊤β − β0)2]. (D.3)

Under this model, the variance of the noise can be expressed as the variance
of the residuals rk = yk − x⊤

k β, meaning that σ2noise can be interpreted as
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the expected prediction error (EPE) if we use x⊤
k β to predict the observed

data point yk:

σ2noise = EPE(y,x⊤β) = Ey|x[(y − x⊤β)2]. (D.4)

Similarly, the total variance of the data can be defined as the EPE when
predicting the value of yk using its unconditional mean,

σ2total = EPE(y, β0) = Ey[(y − β0)2], (D.5)

where we assumed that all covariates have zero mean, so that Ey[y] = β0.
Since σ2signal = σ2total − σ2noise, we can then express the SNR as

SNR =
EPE(y, β0)− EPE(y,x⊤β)

EPE(y,x⊤β)
, (D.6)

which is the reduction of the EPE after accounting for the signal, divided
by the intrinsic EPE due to noise.

D.2 SNR for a GLM

Based on eq. (D.6), we can now extend the definition of SNR to a GLM
system where the expected value of the observed variable is E[y] = µ =
g−1(x⊤β), and observation are distributed according to an exponential fam-
ily with density p(y|µ) = f(y;µ). We substitute the square-error EPE in
eq. (D.6) with the KL-based EPE

EPE(y,x⊤β) = Ey|x⊤β[−2 ln f(y;µ)], (D.7)

The factor of two is included to make the KL-based EPE identical to the
squared-error based EPE for Gaussian variables. Similarly, the uncon-
ditional prediction error is the expected error, in terms of negative log-
likelihood loss, when predicting y using only its unconditional mean µ0 =
g−1(β0):

EPE(y, β0) = Ey|x⊤β[−2 ln f(y;µ0)]. (D.8)

If we substitute (D.7) and (D.8) in (D.6), we obtain a KL-based expression
for the SNR:

SNR =
EPE(y, β0)− EPE(y,x⊤β)

EPE(y,x⊤β)
= − DKL(µ∥µ0)

Ey|x⊤β[ln f(y;µ)]
, (D.9)

where the numerator is the Kullback-Liebler divergence

DKL(µ∥µ0) = Ey|x⊤β

[
ln

f(y;µ)

f(y;µ0)

]
(D.10)
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D.3 Partitioning the SNR

We now generalize the SNR to quantify the contribution of different covari-
ates to the prediction of the observed variables. We start by assuming that
linear predictor can be partitioned in two components as

x⊤β = x⊤
1 β1 + x⊤

2 β2. (D.11)

If we consider the values of β, β1 and β2 which minimize respectively
EPE(y,x⊤β), EPE(y,x⊤

1 β1) and EPE(y,x⊤
2 β2) and replace EPE(y, β0) with

EPE(y,x⊤
1 β2) in (D.9), we can define a SNR with respect to x2 while con-

trolling for the effect of x1:

SNR2 =
EPE(y,x⊤

1 β1)− EPE(y,x⊤β)

EPE(y,x⊤β)
. (D.12)

The numerator is the reduction in EPE due to x⊤
2 β2 when controlling for

the systematic changes in y attributed to x⊤
1 β1. The denominator is the the

EPE due to noise, like in (D.6) and (D.9).

D.4 Application to the V1 generative model

The total SNR of the V1 generative model presented in Chapter 4 is

SNRL =
EPE(y, a+ s̃⊤Cs̃)− EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)

EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)
, (D.13)

where the numerator is the reduction in EPE after accounting for the con-
tribution of the stimulus to the total firing rate of the neuron, and the
denominator is the intrinsic EPE due to the noise in the spike generation
process. The linear SNR is defined as

SNRL =
EPE(y, a+ s̃⊤Cs̃)− EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)

EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)
, (D.14)

where the numerator measures the net contribution of the stimulus after
controlling for the effect of the quadratic term and the offset. Similarly, we
defined the quadratic SNR as

SNRQ =
EPE(y, a+ s̃⊤b)− EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)

EPE(y, a+ s̃⊤b+ s̃⊤Cs̃)
, (D.15)

where the numerator measures the net contribution of the stimulus after
controlling for the effect of the linear term and the offset.
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Appendix E

Electrophysiological
recordings

This appendix contains the details concerning the dataset of electrophysio-
logical recordings analyzed in Chapter 7. This dataset was collected in the
Department of Behavior and Brain Organization lead by Dr. Jason Kerr
at the Max Planck Institute for Neurobiology of Behavior – caesar, Bonn,
Germany. The data was kindly made available for this study as part of a
collaboration.

Contributions The data was acquired by Dr. Takashi Handa and Dr.
Carl Holmgren, who both also curated the spike sorting and performed an
initial screening of the data. Experiments were supervised Dr. Damian
Wallace.

Experimental setup Neural activity was recorded by means of juxta-
cellular recordings in layer 2/3 of awake, head-fixed rats. Animals were
placed in front of a flat screen at a distance of 30 cm. The screen size was
106 × 60cm. The screen therefore covered a visual field portion of 121◦ × 63◦

(horizontally and vertically, respectively). The stimulus was repeatedly pre-
sented to the animals, either binocularly or covering alternatively the left or
the right eye. This monocular stimulation protocol, however, was performed
only for a subset of all cells.

Visual stimulus The visual stimulus consisted of 5 minutes of spatially
and temporally correlated Gaussian noise, displayed at 30Hz, for a total
of 9000 frames. The stimulus contrast was temporally modulated at a fre-
quency of 10 Hz [73]. The frame size was 120 × 68 pixels (columns, rows),
corresponding to a resolution of for a vertical resolution of 0.93 and a hori-
zontal resolutions of 1.01 degrees/pixels.
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Appendix F

Supplementary figures and
tables

param xo yo freq hsize vsize
model stat

lin avg 1.474e-03 1.474e-03 1.474e-03 1.474e-03 1.474e-03
sd 1.474e-03 1.474e-03 1.474e-03 1.474e-03 1.474e-03

sqr avg 1.474e-03 1.474e-03 5.772e-03 1.474e-03 2.366e-03
sd 1.474e-03 1.474e-03 1.474e-03 1.474e-03 2.977e-03

Table F.1: Wilcoxon rank-sum test results.

param xo yo freq hsize vsize
model stat

lin avg 1.598e-04 1.306e-05 9.226e-04 7.847e-08 8.674e-09
sd 2.226e-05 2.153e-04 2.324e-05 2.105e-09 3.915e-05

sqr avg 1.688e-04 5.543e-06 1.062e-02 1.137e-04 1.651e-04
sd 8.676e-05 8.018e-05 3.067e-04 1.609e-06 2.632e-03

Table F.2: Student’s t test for paired samples
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Fig. F.1: Sampling efficiency on a toy model. We repeated the same
analysis represented in Fig. 5.1, but on a toy problem represented by a 6-
dimensional Gaussian (for details see main text). The performance pattern is
qualitatively similar to the one observed in the actual problem. A) Effective
sample size as a function of Nlive. B) Effective samples per live point per
input dimension. C) Average number of effective samples generated by each
actual sample. D) Average number of effective samples generated for each
evaluation of the log-likelihood function. CNS performs better than ONS
on all fronts, except A.

Duration P < 0.05 P < 0.25 0.25 ≤ P ≤ 0.75 P > 0.75 P > 0.95

1 min 4 4 10 3 59
2 min 0 1 1 3 75
4 min 1 1 0 0 78

Table F.3: Details on RF detection – Supplement to Fig. 7.2A. This
table reports the number of cells corresponding to each class.
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Fig. F.2: Supplement 1 to Fig. 5.3. Variability of the estimated posterior
means and standard deviations under the two models here considered (linear
and quadratic output); Each row correspond to one RF parameter, each
column to one statistic. Variability of the basic sampler is reported in blue
and the one of the collapsed sampler in orange. Notice the log scaling of the
y axis.
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Fig. F.3: Supplement 2 to Fig. 5.3. Variability of the estimated posterior
means and standard deviations under the two models here considered (linear
and quadratic output); Each row correspond to one RF parameter, each
column to one statistic. Variability of the basic sampler is reported in blue
and the one of the collapsed sampler in orange. Notice the log scaling of the
y axis.
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Fig. F.4: Posterior marginals: false detection. Full posterior distribu-
tion corresponding to 1 minute of noise data wrongly classified as containing
a receptive field.
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Fig. F.5: Orientation-frequency joint marginal. Data from a randomly
chosen simulation.
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Example cell used in Chapter 7.2, posterior of the QD model. A) Receptive
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Example cell used in Chapter 7.2, posterior of the QD model. A) Receptive
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