

Nova Southeastern University NSUWorks

Marine & Environmental Sciences Faculty Reports

Department of Marine and Environmental Sciences

1-1-2001

Fish Census of Selected Artificial Reefs in Broward County

Richard E. Spieler

Find out more information about Nova Southeastern University and the Halmos College of Natural Sciences and Oceanography.

Follow this and additional works at: https://nsuworks.nova.edu/occ_facreports

Part of the Marine Biology Commons

Fish Census of Selected Artificial Reefs in Broward County

Fish Census of Selected Artificial Reefs in Broward County

Florida Fish and Wildlife Conservation Commission Grant Agreement FWCC-99054

Submitted to: Broward County Department of Environmental Planning and Protection 218 SW First Avenue Fort Lauderdale, Florida 33301

Submitted by:

Richard E. Spieler, Ph.D. Oceanographic Center Nova Southeastern University 8000 North Ocean Drive Davie, Florida 33004

Signed:

Richard E. Spieler, Ph.D.

Date:

TABLE OF CONTENTS

EXECUTIVE SUMMARY	2
INTRODUCTION	4
MATERIALS AND METHODS	
Site	4
Data Collection	
Statistical Analysis	5
RESULTS	6
Abundance	
Richness	
Biomass	6
DISCUSSION	6
Abundance	
Richness	
Biomass	
Conclusion	
AKNOWLEDGEMENTS	8
REFERENCES	9

INTRODUCTION

Derelict ships have been used to aggregate fish assemblages since before their first recorded deployment off the coast of New Jersey in 1935 (Stone 1985). There are well over 400 such reefs in Florida, with 40+ in Broward County alone. Deployed mainly for fishers and divers, in Broward County most ships have been sunk in shallow coastal waters, at less than 150', since 1980. Despite the popularity of these reefs, there have been a surprisingly small number of studies on the fish assemblages associated with sunken ships and few of these have been rigorous. (Tsuda et al., 1975; Higo et al., 1978, 1979, 1983; Jones and Thompson, 1978; Chandler et al., 1985; Baynes and Szmant, 1989; Lindquist and Pietrafesa, 1989; Okamoto, 1989; Shinn and Wicklund, 1989; Stephan and Lindquist, 1989; Brock 1994; Markevich 1994; Eggin 1997). This study is one of few to statistically compare the fish assemblages on shipwrecks to adjacent natural reefs (Jones and Thompson, 1978; Markevich 1994).

The objectives for this study are to 1) acquire a multi-seasonal portrait of the fish assemblages associated with six ships used as artificial reefs in Broward County 2) compare the fish assemblages among the six ships 3) compare the fish assemblages between the ships and the adjacent natural reefs. The study is planned for two years; this report covers the first year.

MATERIALS and METHODS

Site

The inshore environment of Broward generally consists of three reef-tracts (inshore, middle, and offshore; locally labeled first, second and third reef) each separated by sand substrate, running parallel to the coast in sequentially deeper water. The six shipwrecks were deployed as artificial reefs at various times between the early 1970's and 1999 (Table 1). All vessels lie on the sandy substrate separating the middle and offshore reef tracts in approximately 20-25m of water (Figure 1).

Data Collection

During the 13-month period (March 2000 through March 2001) SCUBA divers used a non-destructive, visual census method, commonly called a point-count, (Bohnsack and Bannerot 1986) to determine species richness and abundance at the shipwrecks and the adjacent natural reef sites. Each ship was censused at least four times during the year, two ships per month (Table 2). The censuses of the adjacent natural reefs occurred at irregular intervals throughout the study period. In brief, the visual census consisted of counting the fishes in a 15m diameter cylinder, which extends from the substrate to the surface. Each diver was equipped with a 7.5m line and anchor weight, a slate with a waterproof data sheet and pencil, an underwater watch, and a one meter fish-stick as an aid in measuring fish lengths. The 7.5m line was used as a reference radius for the sample area. Safety

divers would remain well outside of the 15m cylinder, within visual contact, while the trained fish counter completed the sample.

First the diver recorded all the species seen during a 5 min period. After the 5 min species count was completed, the number of fish per species and the minimum, maximum and mean total length was recorded. Total length estimates allow for post-census calculation of biomass using length-weight equations published by Bohnsack and Harper (1988). When a length-weight equation for an identified species was not available, the equation for a congeneric was used. Sample times outside of the five-minute initial count were kept to no more than 20 min. The 20 min time limit was sufficient to complete abundance and size data collection and allowed divers to complete repetitive dives without need for lengthy decompression.

The bow, stern, port and starboard sides were censused on 5 of the 6 ships to obtain a reliable estimate of the ship's fish assemblage. Due to its high complexity and extensive footprint, the sixth ship (Edmister) required two additional mid-ship sites to get an accurate estimate of its fish assemblage. A total of 114 point-counts were made on the ships over the 13-month period of this report.

A concurrent study, funded by the National Marine Fisheries Service (NMFS) and also using the point-count method, counted fishes on the natural reefs of Broward County. This NMFS study is inventorying the fishes on east-west transects every quarter nautical mile along the coastline of Broward County. On each transect a point count is made at the eastern and western edges of each reef-tract as well as the center or crest of each tract (for details on methodology see Ettinger et al., in press). Sixteen transects were made in the vicinity of the permitted artificial reef site containing the ships used in this study. Therefore, we have also included data from the reef-tract edges that border the ships. Specifically 15 point counts on the eastern edge of the second reef-tract and 16 counts from the western edge of the third reef-tract are included. Only edge data nearest the ships is included because of their close proximity and the fact that the edges have the most complex habitat and hold the most species and total fish of reef tract sites (Ettinger et al., in press). The assumption is that if fishes are moving between natural and artificial reef, or being aggregated from natural to artificial reef, they will most likely come from neighboring sites. Also, comparing neighboring reef areas of high topographical relief and large numbers of fishes, to ships, which also show these characteristics, is probably a more realistic comparison than one incorporating low relief hardbottom.

Statistical Analysis

Fish abundance, fish richness, and fish biomass were entered into the SAS[®] program and analyzed by several analysis of variance (ANOVA) techniques with PROC GLM procedures [ANOVA] and Student-Newman-Keuls (SNK) comparison of means (SAS Institute Inc., Cary, N.C., USA). A probability value of less than 0.05 in both ANOVA and SNK were accepted as a significant difference. The data was not normally distributed and were heteroscedastic with highly differing variances. The most appropriate analysis of such data is open to question. According to some statisticians, although the data does not meet basic assumptions of a parametric ANOVA the equal cell numbers and high sample numbers make rigorous analysis of the data by parametric tests possible (Zar 1999). Other statisticians counsel the use of non-parametric techniques in such a situation (Krauth, 1988). Therefore, to be assured of optimum statistical interpretation, the data were subjected to multiple analysis of variance techniques. Specifically a 2-way ANOVA; a ranked (non-parametric) ANOVA (PROC RANK in SAS \cong Kruskal-Wallis test); and, due to extreme heteroscedasticity, the log transformation $Y = \log (X+1)$ was employed (Zar, 1999) for abundance data and the transformed data analyzed with a parametric ANOVA. The parametric and non-parametric tests yielded similar results. Therefore, parametric analysis of richness and parametric analysis of transformed abundance data is used in the rest of this paper.

RESULTS

Abundance

A total of 59467 fish were counted on ships and natural reef combined. Excluding the natural sites but with all ships combined there was no statistical difference (p>0.05, ANOVA) (Figure 2) amongst months. There was also no difference in fish abundance between individual ships (p>0.05, ANOVA)(Figure 3). However, there was a significantly greater abundance of fish on ships than either reef edge (p<0.05, ANOVA) but not between edges (p>0.05, ANOVA)(Figure 4).

Richness

A total of 191 species were counted on ships and natural reef combined, of these 59 were only found on natural reef and 20 only on ships (Table 3, 4). Excluding the natural sites but with all ships combined there was a difference amongst months with December having more species present than May (p<0.05, ANOVA; SNK)(Figure 5). There was also a difference in richness between individual ships with the "unnamed barge" having more species than the Tracy (p<0.05, ANOVA; SNK)(Figure 6). There were significantly more species on the ships than the edge of the third reef (p<0.05, ANOVA) but not the eastern edge of the second reef (p>0.05, ANOVA)(Figure 7).

Biomass

Excluding the natural sites but with all ships combined there was a difference amongst months with January having a higher biomass present than July (p<0.05, ANOVA; SNK)(Figure 8). There was no statistical difference in biomass between individual ships (p>0.05, ANOVA)(Figure 9). The ships had a higher amount of biomass than either reef edge (p<0.05, ANOVA); edges did not differ from each other (p>0.05, ANOVA)(Figure 10).

DISCUSSION

Abundance

The one thing that stands out concerning fish abundance is the greater number of fishes noted on the ships than on surrounding reef. Similar differences have been reported previously (for references see Bohnsack et al., 1991). In this study there was a mean of 146 ± 41 individuals on the eastern edge of the middle reef and 79 ± 9 on the western edge of the offshore reef and 491 ± 56 on the ships. The lower number on the natural reefs is apparently not a function of a lower sampling frequency missing a period of increased abundance. A previous study in Broward County, also using point counts, reported abundance means of 108 ± 49 and 75 ± 16 on the second reef eastern and third reef western edges respectively (Ettinger et al., in press). The reason for greater abundance on artificial reefs is not clear but may be due to either the ships providing greater vertical relief or void space than surrounding reef or access to increased food resources in soft sediment or plankton (Lindquist et al., 1994; Lindquist and Pietrafesa, 1989).

Richness

The increased numbers of fishes in December versus May is unexpected but not unique. Other studies in Broward County, on artificial as well as natural reefs, have repeatedly indicated a decline in species numbers during winter months. However, several of these same studies highlighted exceptions when winter months had higher species numbers (Spieler 1998 a, b, c, 2000; Ettinger et al., in press).

The difference in richness between individual ships, with the "unnamed barge" having more species than the Tracy, may to some extent be a measure of the deployment date. The "unnamed barge" was sunk in the late 1970's whereas the Tracy was deployed in 1999. Although the "unnamed barge" has less vertical relief than the Tracy, it carries a much richer fouling community. Thus, it appears that the "unnamed barge" would offer more diverse food and refuge resources than the Tracy.

The increased species numbers on the ships in comparison to the edge of the third reef is also not surprising as previous reports on other artificial reefs have reported increased, as well as decreased, species on artificial reefs in comparison to adjacent natural reef (Rilov and Benavahu, 2000).

It is noteworthy that of the total 191 species recorded in this study 59 were only found on natural reef and 20 exclusively only on ships. Some of the latter fish are soft sediment species that would be expected to be on the bottom area surrounding the ships while others are relatively rare and it is unclear if their presence represents a preference (Table 2, 3). However, some of the species found only on the ships have rarely or never been previously recorded in natural reef surveys in Broward County i.e. yellow goatfish Mulloidichthys martinicus, and blackfin snapper, Lutjanus buccanella. The blackfin snapper presence is particularly interesting, as this is a deep-water species of recreational and commercial value. Only juveniles, ranging in size from 10-26 cm total length, were recorded. Interestingly, another deep-water species, the snowy grouper, Epinephelus niveatus, has also only been recorded in shallow water from artificial reef surveys in Broward County and only as a juvenile. It has previously been hypothesized that Broward County reef tracts may be refuge limited (Spieler, 1998c). Further, the deep-reef environment (>70m) appears to be mainly low-relief with abundant fine-grained sediment (Ken Banks, personal communication). Thus, although other hypotheses can be forwarded, it appears the ships are supplying ancillary nursery/juvenile habitat for these animals that later migrate to deep water.

Biomass

Biomass has also repeatedly been reported to be higher on artificial than natural reefs (for references see Bohnsack et al., 1991). In this study, the differences in biomass parallel the differences noted in abundance. This indicates the increased fish abundance noted on the ships is not due simply to large numbers of juveniles as juvenile fishes normally weigh dramatically less than adults.

Conclusion

This report analyzes the data of a planned two-year study. The second year's data should clarify whether or not the seasonal and site associated distributions of specific species noted here represent true distributional patterns or simply chance occurrences. Nonetheless, it is clear from this study that the fish assemblages on derelict ships and neighboring reef differ in species composition as well as numbers of fish and biomass per unit volume.

The fact that some species appear to be restricted to, or at least predominate at, the sunken vessels implies that these structures offer some unique resource(s) either not available or limited on neighboring reef. It would be premature to conclude that increasing both diversity and biomass of fishes in Broward County by deploying derelict vessels is desirable. However, certainly the data in this report indicate a more detailed examination of deploying ships as artificial reefs is warranted.

AKNOWLEDGEMENTS

Florida Fish and Wildlife Conservation Commission, Division of Marine Fisheries funded this research through a grant to Broward County. Broward County Department of Planning and Environmental Protection (DPEP) was directly responsible for funding the study. The project benefited from discussions with DPEP personnel, Kenneth Banks during the design stage. Pamela Fletcher helped resolve grant related problems, critiqued a draft of this report, and kept us on schedule.

South Florida Sport Fishing Classic Inc. and Patty Carr were instrumental in obtaining ancillary research funding for this project.

Nova Southeastern University, Oceanographic Center, students were essential to completion of the project. The research accomplished in this study was part of the graduate research of Paul Arena. Approximately 10 additional graduate students aided this project as fish counters and dive partners. The work would not have been accomplished with out these unpaid, yet enthusiastic volunteers.

LITERATURE CITED

- Baynes, T.W. and Szmant, A.M. 1989. Effect of current on the sessile benthic community structure of an artificial reef. Bull. Mar. Sci. 44 (2): 545-566.
- Bohnsack, J.A. and Bannerot, S.P. 1986. A stationary visual census technique for quantitatively assessing community structure of coral reef fishes. U.S. Dept. of Commerce, NOAA Technical Report NMFS 41:1-15.
- Bohnsack, J.A. and Harper, D.E. 1988. Length-weight relationship of selected marine reef fishes from southeastern United States. NOAA Technical Memorandum NMFS-SEFC. U.S. Dept. of Commerce.
- Brock, R.E. 1994. Beyond fisheries enhancement artificial reefs and ecotourism. Bull. Mar. Sci. 55(2-3): 1181-1188.
- Chandler, C.R., Sanders R.M. Jr. and Laundry A.M. Jr. 1985. Effects of three substrate variables on two artificial reef fish communities. Bull. Mar. Sci. 37(1): 129-142.
- Eggen, M. 1997. That sinking feeling. Do "artificial reefs" in BC waters increase biodiversity or waste? Alternative, vol. 23 (1):7
- Ettinger, B.D., D. S. Gilliam, L. K.B. Jordan, R. L. Sherman and Spieler, R.E. The coral reef fishes of Broward County Florida, species and abundance: a work in progress. Proc. Gulf Caribb. Fish. Instit. (in press).
- Higo,N. and Nagashima, M. 1978 On the fish gathering effect of the artificial reefs ascertained by the diving observation _ 2. At the sea of the Satsuma Peninsula in Kagoshima Prefecture. Mem. Fac. Fish., Kagoshima Univ., 27(1), 117-130.
- Higo, N., Hashi, H., Tabata, S. and Kamimizutaru, T. 1979. On the fish gathering effect of the artificial reefs ascertained by the diving observation. 3. At the off sea of Taniyama, Kagoshima City. Mem. Fac. Fish., Kagoshima Univ., 28, 91-105.
- Higo, N., Yoshiga, S, Yoshida, M., Takenoshita, Y., and Hashi, H. 1983. On the fish gathering effect of the artificial reefs ascertained by the diving observation. 12: In case of the open sea off Kanoya City. Mem. Fac. Fish. Kagoshima Unive./Kagoshima-Dai Suisangakubu Kiyo., 32: 229-243.
- Jones, R.S. and Thompson, M.J. 1978. Comparison of Florida reef fish assemblages using a rapid visual technique. Bull. Mar. Sci. 28(1): 159-172.

Krauth, J. 1988. Distribution-free statistics. Elsevier, New York. 381 p.

Lindquist, D.G. and Pietrafesa, L.J. 1989. Current vortices and fish aggregations: The current field and associated fishes around a tugboat wreck in Onslow Bay, North Carolina. Bull. Mar. Sci. 44(2):533-544.

- Lindquist D.G., Cahoon, L.B., Clavijo, I.E., Posey, M.H., Bolden, S.K., Pike, L.A., Burk, S.W., and Cardullo, P.A. 1994. Reef fish stomach contents and prey abundances on reef and sand substrata associated with adjacent artificial and natural reefs in Onslow Bay, North Carolina. Bull. of Mar. Sci. 55(2-3): 308-318.
- Markevich, A.I. 1994. Species composition and ecological characteristics of fishes of artificial shelters in Peter the Great Bay, Sea of Japan. Russian Journal of Marine Biology, Vol.20 (3): 169-173
- Okamoto, M. 1989. Ability of a small observation ROV to observe fish fauna around artificial fish reefs in comparison with diving observation. Nippon Suisan Gakkaishi/Bull. Jap. Soc. Sci. Fish.55(9):1539-1546.
- Rilov, G. and Benayahu, Y. 2000. Fish assemblage on natural versus vertical artificial reefs: the rehabilitation perspective. Marine Biology 136: 931-942.
- Shinn, A. and Wicklund, R. 1989. Artificial reef observations from a manned submersible off southeast Florida. Bull. Marine Sci. 44(2): 1041-1050.
- Spieler, R.E. 1998a. Artificial reef design: complexity and shelter size. Contract completion report to Broward County Office of Natural Resource Protection.
- Spieler, R.E. 1998b. Artificial reef design: void space, complexity, and attractant. Contract completion report to Broward County Office of Natural Resource Protection.
- Spieler, R.E. 1998c. Recruitment of juvenile reef fishes to inshore and offshore artificial reefs: final report. Contract completion report to Broward County Office of Natural Resource Protection.
- Spieler, R.E. 2000. Effects of module spacing on the formation and maintenance of fish assemblages on artificial reefs. Contract completion report to Broward County Department of Planning and Environmental Protection.
- Stephan, C.D. and Lindquist, D.G. 1989. Comparative analysis of the fish assemblages associated with old and new shipwrecks and fish aggregating devices in Onslow Bay, North Carolina. Florida. Bull. Marine Sci. 44(2): 698-717.
- Stone, R.B. 1985. History of Artificial Reef Use in the United States. Pages 3-11 In: Artificial Reefs: Marine and Freshwater Applications. Lewis Publishers, Inc., Chelsea, Michigan
- Tsuda, R.T., Amesbury S.S., and Moras S.C. 1977. Preliminary observations on the algae, corals, and fishes inhabiting the sunken ferry "Fujikawa Maru" in Truk Lagoon. Atoll Research Bulletin no. 212: 1-6.
- Zar, J.H. 1999. <u>Biostatistical Analysis</u>. Fourth Edition. Prentice-Hall, Inc. New Jersey. p. 354.

Table 1. Artificial reefs (derelict vessels), date of deployment, water depth of deployment site substrate, and site coordinates.

Tracy	133' supply boat	1999	64'	N 26 09.578' W 80 04.754'
Merci Jesus	90' freighter	1998	64'	N 26 09.635'W 80 04.747'
Jay Scutti	97' tug	1986	64'	N 26 09.520'W 80 04.760'
Peter B. McAllister	85' tug	1998	69'	N 26 10.149'W 80 04.718'
Robert Edmister	95' USCG cutter	1989	70'	N 26 09.193'W 80 04.837'
"Unnamed Barge"	80' barge	1970's	70'	N 26 08.520'W 80 04.886'

0	Unnamed	Edmister	Scutti	Tracy	Merci Jesus	Mcallister
Giana and						
Mar '00	X	X				a la cara de la
Apr'00		1	X	X		
May '00	280 1 9				X	X
June '00	X	X				
July '00			X	X		
Aug '00					X	Х
Sep '00	X	X	1.1.1.1.1	1.		
Oct '00		188.68	X	X	States and the	and the second
Nov '00	- Carlos and		18101		X	Х
Dec '00	X	Х				and the second
Jan '01		A SAME	X	X		
Feb '01	122010				X	Х
Mar '01	X	X				

Table 2. Sampling schedule

	Edmister	McAllister	Merci Jesus	Scutti	Tracy	Unnamed
Aluterus schoepfi	-	-			-	1/3
Amblycirrhitus pinos	-	-	-	1/1	1/1	-
Apogon affinis	-	-		1/6	-	1/25
Apogon townsendi	-	-	-	1/1	-	- 1
Clupeus sp.	-	1/500	- 3	-	-	-
Decapterus punctatus	-	4/2517		2/180	-	-
Elagatis bipinnulata		-	-	-	1/1	
Emmelichthyops atlanticus	-	1/500	-	1/25	-	-
Epinephelus adscensionis	-	-	1/1	-	-	-
Epinephelus fulvus		-	2/2	-	-	-
Epinephelus niveatus	-		-		2/2	-
Euthynnus alletteratus	-	-	1/6	-	-	
Haemulon album	2/2	1/2	1/6	-	1/4	-
Lutjanus buccanella	5/12	8/32	2/2	1/1	11/94	10/360
Mulloidichthys martinicus	15/127	8/95	11/81	10/72	4/41	- 12
Ogcocephalus nasutus	-		1/1	20-200	-	%
Ogcocephalus radiatus		2/2	- C	-	-	-
Rachycentron canadum	-	1/1	-	-	-	2/2
Rhomboplites aurorubens	-	-	-	1/2	-	-
Seriola dumerili	5/35	6/20	-	-	-	1/1
Total Ship Exclusive Species	4	9	7	8	6	5

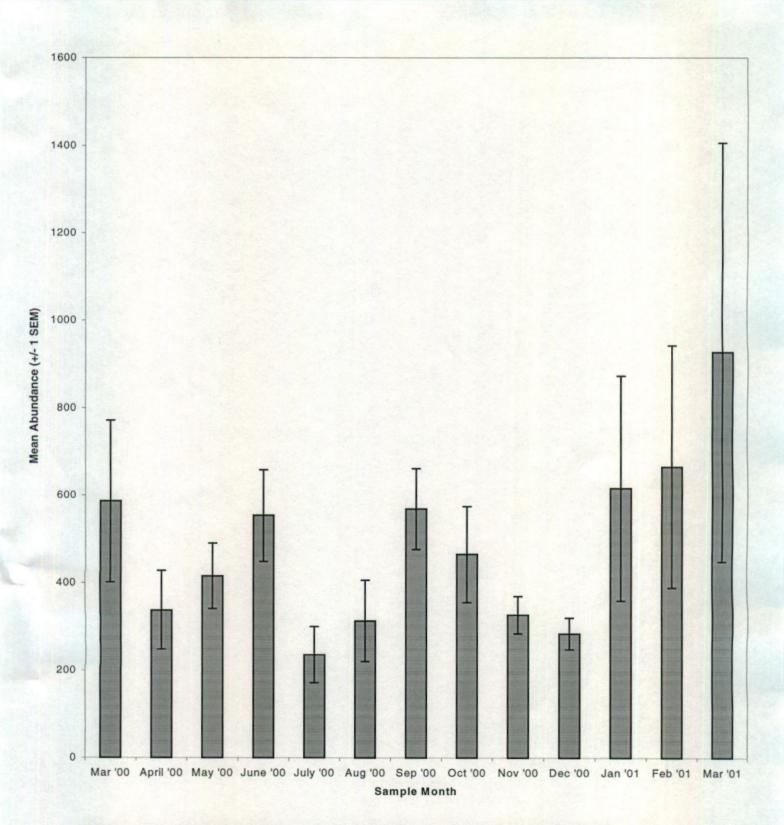
Table 3. Species exclusive to ships, number of times observed / total abundance

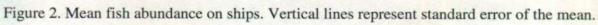
Table 4. List of fishes and site where recorded. Inshore, middle, and offshore refer to reef tract.

Common Name	Scientific Name	Inshore	Middle	Offshore	Ships
ANGELFISHES	POMACANTHIDAE				
Queen Angelfish	Holocanthus cilaris	X	X	X	X
Blue Angelfish	Holocanthus bermudensis	X	X	X	X
Rock Beauty	Holcanthus tricolor		X	X	X
French Angelfish	Pomacanthus paru	X	X	X	Х
Cherubfish	Centropyge argi	a la se la se		X	
Gray Angelfish	Pomacanthus arcuatus	X	X	X	Х
BARRACUDAS	SPHYRAENIDAE		No. Carlo	1000	
Great Barracuda	Sphyraena barracuda	X	X	X	Х
BATFISH	OGCOCEPHALIDAE				
Polka-Dot Batfish	Ogcocephalus radiatus		En Erris		Х
Shortnose Batfish	Ogcocephalus nasutus			1 1 1 1 2	X
BIGEYES	PRICANTHIDAE			Contraction of the second	4
Glasseye Snapper	Priacanthus cruentatus	12000	X	X	Sec. 1
BONNETMOUTHS	INERMIIDAE		2.33	12111	
Bonnetmouth	Emmelichthyops atlanticus		ale al		X
Boga	Inermia vittata		6.2	X	X
BOXFISHES	OSTRACIIDAE		18 4		1.57 1.0
Scrawled cowfish	Lactophrys quadricornis	X	X	X	X
Honeycomb cowfish	Lactophrys polygonia		C. C. S. C.	X	X
Smooth trunkfish	Lactrophrys triqueter	X	X	X	Х
BUTTERFLYFISHES	CHAETODONTIDAE	1 45 C 10 S	Report .		
Spotfin Butterflyfish	Chaetodon ocellatus	X	X	X	X
Banded Butterflyfish	Chaetodon striatus		X		-
Foureye Butterflyfish	Chaetodon capistratus	X	X	X	X
Longsnout Butterflyfish	Chaetodon aculeatus			X	
Reef Butterflyfish	Chaetodon sedentarius	X	X	X	X
CARDINALFISHES	APOGONIDAE				6.20
Twospot Cardinalfish	Apogon pseudomaculatus	X			Х
Belted Cardinalfish	Apogon townsendi	S Contractor			Х
Barred Cardinal Fish	Apogon binotatus	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		X	Х
Bigtooth Cardinalfish	Apogon affinis	1.000			X
Flamefish	Apogon maculatus	X	X		X
CLINIDS	CLINIDAE			1 1 1 2	
Rosy Blenny	Malacoctenus macropus	X	X		X
Saddled Blenny	Malacoctenus triangulatus	X	X		X
Downy Blenny	Labrisomus kalisherae	X		1.1.1.1	
Sailfin Blenny	Emblemaria pandionis	X	X	X	X

Roughhead Blenny	Acanthemblemaria aspera		X		
COBIA	RACHYCENTRIDAE			S. Jack	
Cobia	Rachycentron canadum				X
COMBTOOTH BLENNIES	BLENNIDAE				
Barred Blenny	Hypleurochilus bermudensis	and the	X	12.11	X
Seaweed Blenny	Parablennius marmoreus	X	X	5. 2 S. 2. 5 1 S	X
CONGER EELS	CONGRIDAE	18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Constant of the		
Garden Eel	Heteroconger halis	19. 19 A.	2000000	X	X
CORNETFISHES	FISTULARIIDAE				1.6.
Bluespotted Cornetfish	Fistularia tabacaria	x			
DAMSELFISHES	POMACENTRIDAE	ARC IS	1000		
Beaugregory	Stegastes leucostictus	X	X	X	X
Longfin Damselfish	Stegastes diencaeus	X	X		X
Dusky Damselfish	Stegastes fuscus	X	X	021	X
Threespot Damselfish		X	X		X
Bicolor Damselfish	Stegastes partitus	X	X	X	X
Cocoa Damslefish	Stegastes variabilis	X	X	X	X
Yellowtail Damselfish	Microspathadon chrysurus	X	X	~	~
Sunshinefish	Chromis insolatus	~	X	X	X
Yellowtail Reeffish	Chromis enchrysurus		X	X	X
Brown Chromis	Chromis multilineatus	X	~	X	X
Purple Reeffish	Chromis scotti	~	X	X	X
Sergeant Major	Abudefduf saxatilis	X	X	X	X
Blue Chromis	Chromis cyanis	~	X	X	X
DRUMS	SCIAENIDAE	0.00	-		
Spotted Drum	Equetus punctatus		1.	X	
Jacknife Fish	Equetus lanceolatus	0	X	X	
Highhat	Equetus acuminatus	X	X	X	
FLYINGFISH	EXOCOETIDAE		-	1	
Ballyhoo	Hemiramphus brasiliensis		X		
GOATFISHES	MULLIDAE	100			
Yellow Goatfish	Mulloidichthys martinicus	Sec. 1. 6. 8	1.3		X
Spotted Goatfish	Pseudupeneus maculatus	X	X	X	X
GOBIES	GOBIIDAE				
Seminole Goby	Microgobius carri	X	States V.	199.00	
Colon Goby	Coryphopterus dicrus	X			
Dash Goby	Gobiosoma saepepallens		X	X	X
Neon Goby	Gobiosoma oceanops	X	X	X	X
Tiger Goby	Gobiosoma macrodon	X	2.100.2		
Bridled Goby	Coryphopterus glaucofraenum	X	X	X	X
Blue Goby	loglossus calliurus	X	X	X	X
Hovering Goby	loglossus helenae			X	-
Masked/Glass Goby	Coryphopterus hyalinus/personatus	x	x	x	X

Goldspot Goby	Gnatholepis thompsoni	X	X	X	X
GRUNTS	HAEMULIDAE				1.3.8
Porkfish	Anisotremus virginicus	X	X	X	X
Juvenile Grunts	Haemulon sp.	X	X		X
Spanish Grunt	Haemulon macrostomum	X			
Caesar Grunt	Haemulon carbonarium	X			X
Striped Grunt	Haemulon striatum		X	X	X
Smallmouth Grunt	Haemulon chrysargyreum	X			X
Cottonwick	Haemulon melanurum			X	X
White Grunt	Haemulon plumieri	X	X	X	X
Margate	Haemulon album				X
Black Margate	Anisotremus surinamensis	X	191 - 194 - 194	X	X
Tomtates	Haemulon aurolineatum	X	X	X	X
French Grunt	Haemulon flavolineatum	X	X	X	X
Bluestripe Grunt	Haemulon sciurus	X	X	X	X
Sailors Choice	Haemulon parrai	X			X
GUITARFISH	RHINOBATIDAE		2014		
Atlantic Guitarfish	Rhinobatos lentiginosus		X	X	
HAWKFISHES	CIRRHITIDAE	12. 10. 4	12.53	1.2.3.3	
Redspotted Hawkfish	Amblycirrhitus pinos	Des Elsen			X
HERRINGS	CLUPEIDAE	Ser inter	17 × 2	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Unidentified Clupeid	Clupeus sp.	31 A. A.			X
JACKS	CARANGIDAE		10.000		
Almaco Jack	Seriola rivoliana	C	X	1. 1. A.	X
Greater Amberjack	Seriola dumerili	18 7 8 8		1	X
Bigeye Scad	Selar crumenophthalmus	X	X		1999
Round Scad	Decapterus punctatus		1363		X
Mackerel Scad	Decapterus macarellus	10, 10, 10	X	X	X
Rainbow Runner	Elagatis bipinnulata		1.000		X
Yellow Jack	Caranx bartholomaei	X	X	X	X
Leatherjacket	Oligoplites saurus		X		-
Blue Runner	Caranx crysos	X	X	1.1.1	X
Bar Jack	Caranx ruber	X	X	X	X
JAWFISH	OPISTOGNATHIDAE		-	~	-
Yellowhead Jawfish	Opistognathus aurifrons		X	X	X
Banded Jawfish	Opistognathus macrognathus	X		~	-
Dusky Jawfish	Opistognathus whitehursti	X	X		
LEATHERJACKETS	BALISTIDAE	~	-		
Scrawled Filefish	Aluterus scriptus		X	X	X
Orange Filefish	Aluterus schoepfi		~	~	X
Slender Filefish	Monacanthus tuckeri		X	x	X
Orangespotted Filefish		x	X	x	X
Planehead Filefish	Monocanthus hispidus	~	x	X	X
Queen Trigger	Balistes vetula		^	X	~
Ocean Trigger	Canthidermis sufflamen	20.2		X	
Gray Trigger	Balistes capriscus	x	X	X	x


SYNODONTIDAE				0.000
Synodus intermedius			X	X
SCOMBRIDAE	1 y	19	The second se	
Euthynnus alletteratus		1 2		X
Scomberomorous regalis	X	X	X	X
GERREIDAE	10.00			1
Gerres cinereus	X			1 North
MURAENIDAE				
Gymnothorax moringa		X	X	X
Gymnothorax miliaris	12000	Y	X	1000
		V	X	X
Gymnothorax vicinus	X	X	1 V 17	
		No.		
	X	a strange of the second	X	X
SCARIDAE	1	-		
		X	X	X
	X			X
				X
			X	X
				X
		X		
	X		X	
				X
				X
				X
				X
				X
		and the second se		
	-		-	
			X	1.42
	X	X	~	X
		and the second se		-
	-			-
		~	X	
	-	X		X
	X			X
	-	^	~	-
	X	X	Y	X
	-			-
		^	~	
		in the second second	v	
			^	
	V	v	X	v
	^	~	A CONTRACTOR	X
LUITEUTEUS IIVEAIUS				A
	Synodus intermediusSCOMBRIDAEEuthynnus alletteratusScomberomorous regalisGERREIDAEGerres cinereusMURAENIDAEGymnothorax moringaGymnothorax miliarisGymnothorax funebrisGymnothorax vicinusORECTOLOBIDAEGinglymostoma cirratum	Synodus intermediusSCOMBRIDAEEuthynnus alletteratusScomberomorous regalisXGERREIDAEGerres cinereusXMURAENIDAEGymnothorax moringaGymnothorax moringaGymnothorax funebrisGymnothorax vicinusXORECTOLOBIDAEGinglymostoma cirratumXSCARIDAEScarus croicensisXScarus vetulaXScarus coelestinusXScarus coelestinusXScarus quacamaiaXSparisoma atomariumXSparisoma atomariumXSparisoma atomariumXSparisoma atomariumXSparisoma atomariumXSparisoma atomariumXSparisoma atomariumXCalamus bajonadoDiplodus holbrookiXCalamus pennaXDiplodus argenteusCalamus pennaXSphoeroides spengleriECHENEIDIDAECanthigaster rostrataXSphoeroides spengleriEcheneis naucratesSERRANIDAEMycteroperca phenaxX	Synodus intermediusSCOMBRIDAEEuthynnus alletteratusScomberomorous regalisXXGERREIDAEGerres cinereusXMURAENIDAEGymnothorax moringaXGymnothorax miliarisGymnothorax funebrisGymnothorax funebrisGymnothorax vicinusXXORECTOLOBIDAEGinglymostoma cirratumXScaridae spp.XScarus croicensisXXXScarus coelestinusXScarus coelestinusXScarus coelestinusXScarus guacamaiaXXSparisoma rubripinneXXSparisoma aurofrenatumXXSparisoma aurofrenatumXXSparisoma virrideXXXSparisoma autofrenatumXXXSparisoma virrideXXXSparisoma autofrenatumXXXCalamus bajonadoDiplodus holbrookiXXXCalamus pennaXXXCalamus proridensXXXCalamus proridensXXXSphoeroides spengleriXCalamus calamusXXXSphoeroides spengleriXXXSphoeroides spengleriXXXSphoeroides spengleriX<	Synodus intermediusXSCOMBRIDAEEuthynnus alletteratusScomberomorous regalisXXXGERREIDAEGerres cinereusXMURAENIDAEGymnothorax moringaXXGymnothorax miliarisXGymnothorax miliarisXGymnothorax miliarisXGymnothorax funebrisXGymnothorax vicinusXXSCARIDAEGinglymostoma cirratumXScaridae spp.XScarus croicensisXXScarus colestinusXXScarus coelestinusXScarus coelestinusXScarus coelestinusXScarus quacamaiaXXXSparisoma radiansXXXSparisoma aurofrenatumXXXSparisoma aurofrenatumXXXSparisoma autorfrenatumXXXSparisoma atomariumXXXSparisoma atomariumXXXCalamus bajonadoXCalamus pennaXXXCalamus pennaXXXCalamus calamusXXXCalamus calamusXXXCalamus pendosusXXXCalamus calamusXXXCalamus calamusX


Coney	Epinephelus fulvus				X
Rock Hind	Epinephelus adscensionis				X
Red Grouper	Epinephelus morio	X	X	X	2.00
Graysby	Epinephelus cruentatus	X	X	X	X
Sand Perch	Diplectum formosum	X	X	X	X
Hamlet Juvenile	Hypoplectrus sp.	X		X	X
Barred Hamlet	Hypoplectrus puella	X	X	X	X
Black Hamlet	Hypoplectrus nigricans			X	
Blue Hamlet	Hypoplectrus gemma	X	X	X	X
Shy Hamlet	Hypoplectrus guttavarius	Sale of the second	X	X	1.000
Butter Hamlet	Hypoplectrus unicolor	X	X	X	X
Orangeback Bass	Serranus annularis		X	X	100
Lantern Bass	Serranus baldwini	X	X	X	X
Tobaccofish	Serranus tabacarius	Area and	X	X	X
Harleguin Bass	Serranus tigrinus	X	X	X	X
Chalk Bass	Serranus tortugarum		X	X	X
Tattler Bass	Serranus phoebe	States of a		X	
SEA CHUBS	KYPHOSIDAE	101225	1. 10000	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
Bermuda Chub	Kyphosus sectatrix	X	X		1000
SCORPIONFISH	SCORPAENIDAE				
Spotted Scorpionfish	Scorpaena plumieri	X	X	X	
SNAKE EELS	OPHICHTHIDAE	2.33 43			18
Sharptail Eel	Myrichthys breviceps	X	1.2.3/		12120
SNAPPERS	LUTJANIDAE	1000			121-22
Blackfin Snapper	Lutjanus buccanella				X
Gray Snapper	Lutjanus griseus	X	X	X	X
Dog Snapper	Lutjanus jocu	1.2.1.9.4	X	100 100	
Lane Snapper	Lutjanus synagris	X	1.2763.6	1	X
Vermilion Snapper	Rhomboplites aurorubens	C. S. S. S. S.	18-20-7	121223	X
Mutton Snapper	Lutjanus analis	X	X	X	X
Yellowtail Snapper	Ocyurus chrysurus	X	X	X	X
Schoolmaster	Lutjanus apodus	X	1946		1.21
SPADEFISHES	EPHIPPIDAE	57.1.1.1	14		
Spadefish	Chaetodipterus faber	X	X	X	1000
SPINY PUFFERS	DIODONTIDAE	10.10	200	A 12 8	1 1 1 1 1 1
PorcupineFish	Diodon hystrix	X	1.1.1.1.1.1.1.1		X
Striped Burrfish	Chilomycterus schoepfi	C. C. C.		X	
Balloonfish	Diodon holocanthus	X	X	X	
SQUIRRELFISH	HOLOCENTRIDAE		143.200 100		
Blackbar Soldierfish	Myripristis jacobus	X	Contraining of	X	1
Squirrelfish	Holocentrus adscensionis	X	X	X	X
STINGRAY	DASYATIDAE				-
Yellow Stingray	Urolophus jamaicensis	X	X	X	
Southern stingray	Dasyatis americana	-		X	X
SURGEONFISHES	ACANTHURIDAE	1.00		~	-
				and the second second second	

Doctorfish	Acanthurus chirurgus	X	X	X	X
Blue tang	Acanthurus coeruleus	X	X	X	X
SWEEPERS	PEMPHERIDAE				
Glassy Sweeper	Pempheris schomburgki	X			
TARPON	ELOPIDAE	The second			-
Tarpon	Megalops atlanticus	X	X		
TILEFISHES	MALACANTHIDAE				1919
Sand Tilefish	Malacanthus plumieri		X	X	X
TRUMPETFISH	AULOSTOMIDAE				
Trumpetfish	Aulostomus maculatus		X	Х	X
WRASSES	LABRIDAE	a salar i			
Hogfish	Lachnolaimus maximus	X	X	X	X
Spotfin Hogfish	Bodianus pulchellus		2.190.3	Х	X
Spanish Hogfish	Bodianus rufus	X	X	X	X
Creole Wrasse	Clepticus parrai	X	X	X	X
Clown Wrasse	Halichores maculipinna	X	X	X	X
Slippery Dick	Halichores bivittatus	X	X	X	X
Puddingwife	Halichores radiatus	X	X	X	
Yellowcheek Wrasse	Halichoeres cyanocephalus		X	X	1
Rainbow Wrasse	Halichoeres pictus	Sec. 1	X	X	1.00
Blackear Wrasse	Halichoeres poeyi	X	X	49	-1-11
Green Razorfish	Hemipteronotus splendens	X	X		X
Yellowhead Wrasse	Halichores garnoti	X	X	X	X
Bluehead Wrasse	Thalassoma bifasciatum	X	X	X	X
Real Property and the second	Species per site	117	129	124	133
	Reef Exclusive Species	12	7	13	20
				Sec. A	
	Species only on ships	20		2011	
	Species Found on all 3 reefs	10		1844 Bak	
	Species only on nat. reefs	59	Charles and the		1.200
	Total Species	191			
	Total Abundance on Ships		56007		
NUS	Total Abundance on Edges	1	3460		
	Mean Abundance per count o		491.2		
	Mean Abundance per count o	n reefs	111.6		1.6
				1. 1. 1.	
	Total Abundance on ME	Sales a	2189		
	Total Abundance on OW		1271		-
	Mean Abundance per count o		145.9	2.4.4	
	Mean Abundance per count o	nOW	79.4		
	H of county on object		444	and the	
	# of counts on ships		114	012125	
	# of counts on ME		15	1111	-
	# of counts on OW		16		

Figure 1. Geographical location of the six ships located in the sandy substrate between the middle and offshore reefs.

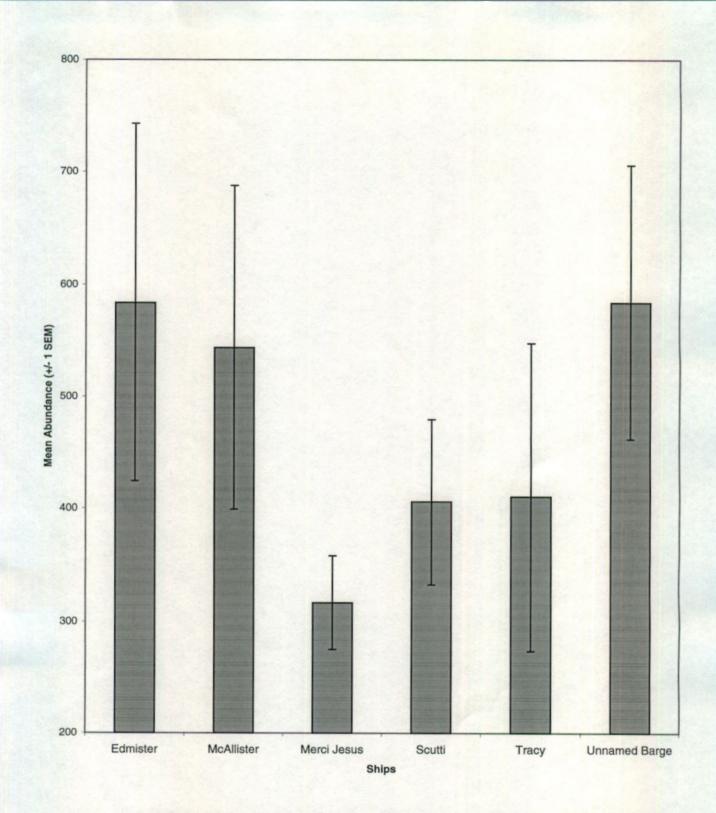


Figure 3. Mean abundance of fish on ships. Vertical lines represent standard error of the mean.

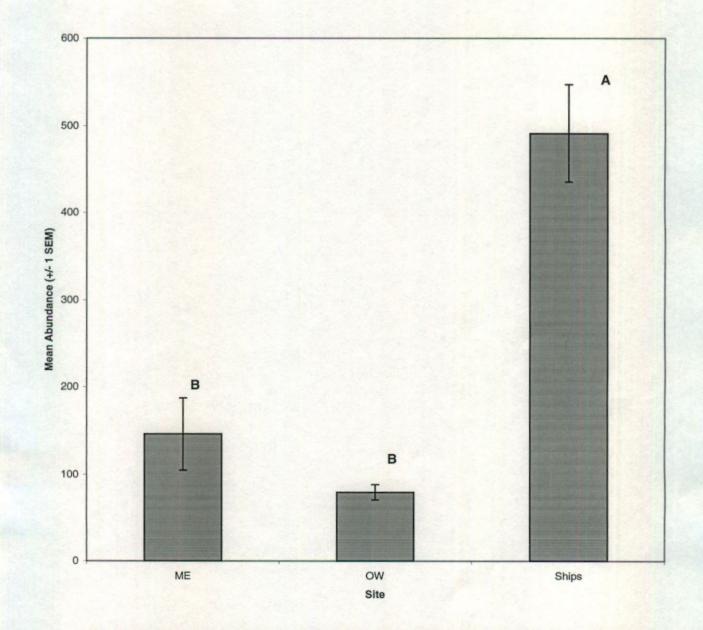


Figure 4. Mean fish abundance on natural and artificial reef sites, second reef eastern edge = ME, third reef western edge = OW. Vertical lines represent standard error of the mean. Means with differing letters are statistically different (p<0.05; ANOVA,SNK).

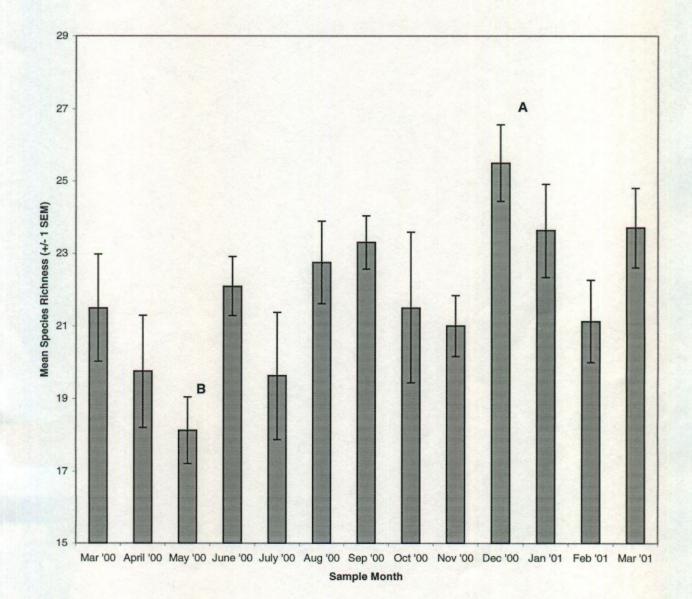


Figure 5. Mean monthly species number on ships. Vertical lines represent standard error of the mean. Means with differing letters are statistically different (p<0.05; ANOVA, SNK).

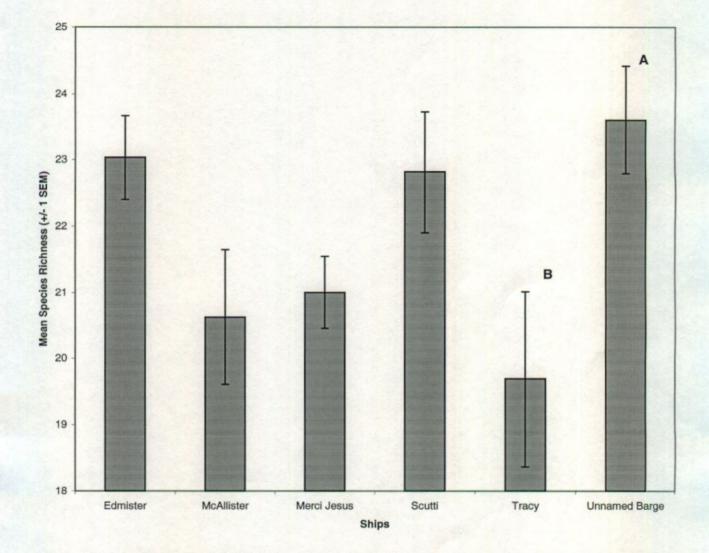


Figure 6. Mean monthly species numbers on ships. Vertical lines represent standard error of the mean. Means with differing letters are statistically different (p<0.05; ANOVA, SNK).

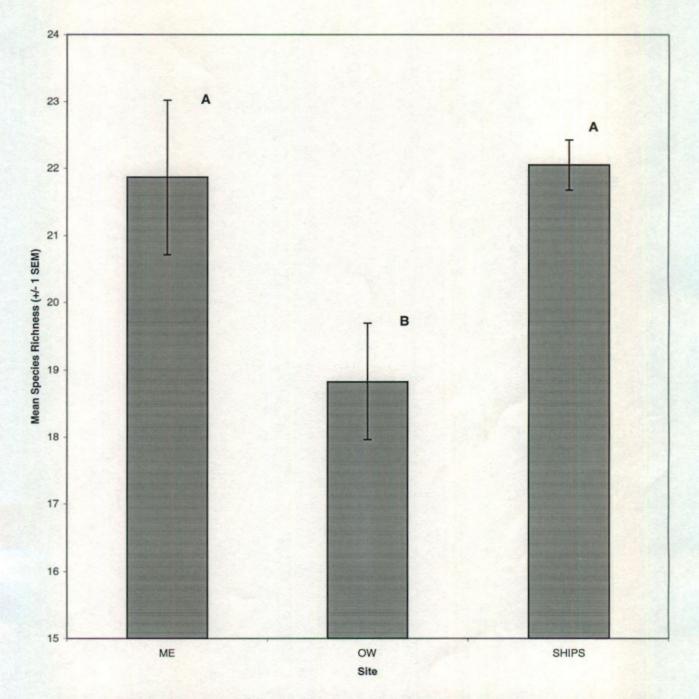
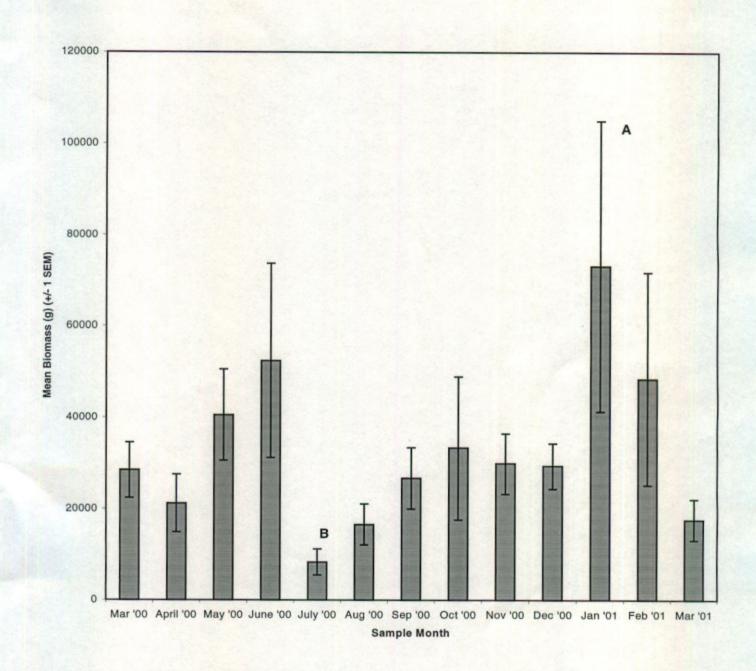
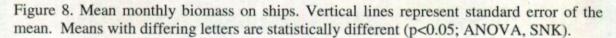




Figure 7. Mean number of species on natural and artificial reef sites, second reef eastern edge = ME, third reef western edge = OW. Vertical lines represent standard error of the mean. Means with differing letters are statistically different (p<0.05; ANOVA,SNK).

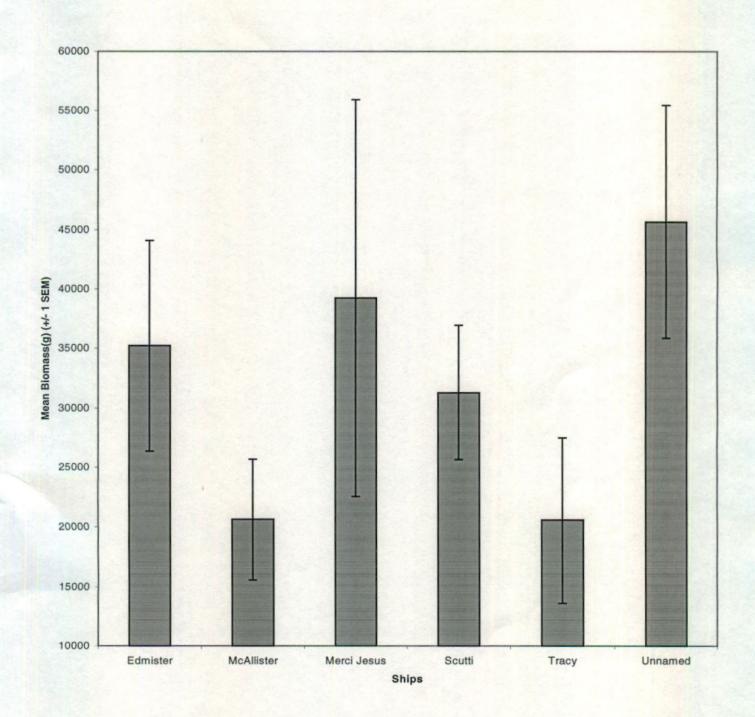


Figure 9. Mean biomass on Ships, vertical lines represent standard error of the mean.

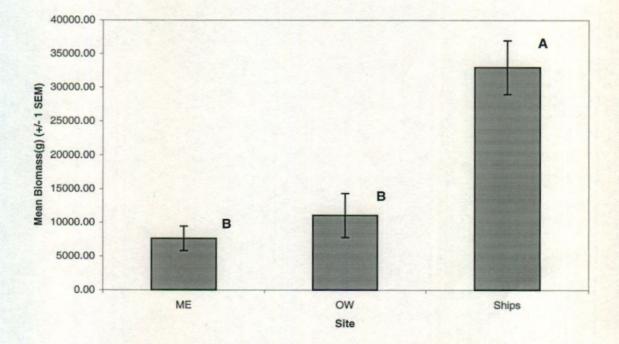


Figure 10. Mean biomass on natural and artificial reef. second re Figure 10. Mean biomass on natural and artificial reef sites, second reef lir eastern edge = ME, third reef western edge = OW. Vertical lines le represent standard error of the mean. Means with differing letters are statistically different (p<0.05; ANOVA, SNK).