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Popular science summary of the thesis 
Predictions are becoming increasingly popular in modern life. Predictions influence what 
music we listen to, what shows we stream, and even what advertisements we see online. 
The goal of these predictions is often to personally tailor our individual experience in 
order to sell more goods, keep you listening/watching longer, and grab your attention for 
longer periods of time to increase profit. In scientific terms, the outcome is the amount 

of time using their service measured on an individual level, the treatment is what 
information is placed in front of the individual and how it is presented, and the 
predictors are individual level measurements such as age, gender, profession, political 

leanings, recent search history and preferences, etc. 

As a simplified example, assume that you are a popular music streaming service. As a 
responsible streaming service, you ensure that young kids are not exposed to mature 
content, so you collect date of birth from all of your customers. You would like to 
provide your customers with the most enjoyable streaming experience, which you 
measure as the average amount of time a customer streams your service per week. In 

order to maximize this average time, you might randomize the most popular songs 
within five years of each person's 18th birthday, predicting that each person will like 
those songs most and therefore stream longer. This rule of which songs to stream to 
which person is a called a prediction-driven decision rule, because it is a rule, or 

treatment, based on predicting your streaming habits.  

These prediction-based decision rules are becoming more and more relevant in medical 
practice. You may have heard the term 'personalized medicine' which can mean 
optimizing treatment outcomes for each patient based on individual factors such as age, 
gender, type of disease, etc. One of the earliest examples involves the disease breast 

cancer. The breast cancer tumor itself was biopsied and tested for the HER2 protein, a 
biomarker, and the results helped guide the patient's treatment. Some treatments target 
the HER2 protein specifically, and therefore, it was thought that if the HER2 protein was 
not present, those treatments would not be as effective as other treatments that did 
not target the HER2 protein. In this way, physicians predicted which treatment would 

optimize survival based on the HER2 biomarker and prescribe accordingly. As disease 
analysis becomes more specific and accurate and treatments become more targeted, 
more precise prediction-based decision rules are both possible and necessary to 

optimize treatment for each individual. 

Finding a better performing prediction-based decision rule for treatment management 
of HIV in resource-limited regions of the world was the goal of Project 1, resulting in the 
Statistics in Medicine original research article, "Prediction-Driven Pooled Testing 
Methods: Application to HIV Treatment Monitoring in Rakai, Uganda". HIV, once fatal, is 
now a manageable disease with proper treatment. There are many different treatments 



for HIV, and most of them work for most people. But sometimes a person's HIV builds a 

resistance to the particular treatment that person is receiving. This is usually not a 
problem, because switching that patient to a different treatment can regain control of 
the disease. However, detecting that a person has built resistance to their HIV treatment 
necessitates regular HIV viral load testing, which for some regions is too expensive to 

carry out for all those infected.  

Pooled testing for HIV treatment management was developed to minimize the cost of 
regularly testing people infected with HIV for treatment failure, that is, building a 
resistance to their treatment such that their HIV viral load spikes above a pre-defined 

threshold. The idea is that one can pool samples from multiple infected individuals and 
test the pool, reducing the number of tests to be conducted. If the pool tests below a 
threshold, those patients are deemed to have not failed their treatment and no further 
action is required. If a pool tests above the threshold, then further action is required to 
determine who, if any, have failed their treatment. How patients are pooled and what 
further action to take comprise the different pooled testing methods for detecting HIV 

treatment failure, of which there are multiple. 

In Project 1 we improved on existing pooled testing methods for detecting HIV treatment 
failure by incorporating covariates that could be used to predict HIV viral load levels, 

something that had not yet been done successfully. We developed multiple such 
methods using predictions based on covariates, and each of these methods chose 
which patients to test individually based on those predictions combined with pooled 
test results. These methods were also prediction-based decision rules, because based 
on predictions using baseline covariates, they determined the treatment each patient 
received, that is, only pooled testing versus pooled and individual testing. We found 

through simulations using both simulated viral loads and real viral load data collected in 
a clinic in Rakai, Uganda, that two of our methods showed great promise, improving on 
existing methods. One method, that we call the prediction-driven mini-pool method, 
greatly increases efficiency of testing, that is, reduces the number of tests needed. 
Another method, the linear regression systems of equations method, increases 

efficiency while sacrificing the least efficiency when predictions are very wrong. If 
utilized effectively with accurate viral load prediction models in resource-limited 
regions, the cost of regular testing for HIV treatment failure could potentially be 
dramatically reduced, perhaps leading to controlling HIV viral load levels in all infected 

patients and eventually eradicating the disease. 

But how do we know that these methods will actually work, that is, that these methods 
won't reduce the survival of infected HIV patients in resource-limited regions while 
reducing the number of tests? Our simulations showed promise, but in those 
simulations, we only compared efficiency and sensitivity, or the proportion of patients 

who failed HIV treatment that we detected as failing HIV treatment. How do those 



 

 

outcomes affect the outcome of survival for those patients? The gold standard for 

answering such questions is the randomized controlled trial (RCT). But how do we design 

a trial involving prediction-based decision rules? The answer is the subject of Project 2. 

In Project 2, we sought answers for how best to design RCTs involving prediction-driven 

decision rules, and we found through a thorough literature search that the majority of 
that research is in the field of cancer, just as in our example above with the HER2 protein 
and breast cancer. However, even in the field that has most researched prediction-
driven RCTs, or RCTs involving predictions typically based on one or more biomarkers, 
most research has not focused on evaluating the effectiveness of prediction-driven 

decision rules, which is also called the clinical utility of a biomarker. The clinical utility of 
a biomarker is the benefit gained from knowledge of that biomarker, and it is the 
question we are asking when we are evaluating the effectiveness of prediction-driven 

decision rules. 

Consider again the example above of the music streaming service predicting that 
people will stream more if they are sent songs from the time period around their 18th 
birthday. In this example, the customer's birth date is the biomarker, and the decision 
rule is sending the customer randomized songs within five years of their 18th birthday. 
The clinical utility is then the additional average weekly streaming time increase by 

knowing their birth date. It may not yet be clear that assessing clinical utility provides us 
with an estimate of the benefit of using that prediction-driven decision rule. Consider 
the case where the customer chooses on their own to listen to randomized songs within 
five years of their 18th birthday. In this case, we're assuming that the customer will have 
the highest average weekly streaming time by listening to music in this time period. 
While the prediction-driven decision rule does indeed optimize streaming time, it is not 

necessary, because without it there is no change in streaming time. If we simply asked 
the question, 'does the prediction-driven decision rule optimize streaming time?', we 
would answer yes, even though the prediction-driven decision rule does not add any 
benefit. Knowledge of birth date in this case provides no additional benefit. Therefore, 
when evaluating the effectiveness of prediction-driven decision rules, it is clinical utility 

that needs evaluating, not clinical validity, which answers the question, 'does the 

decision rule optimize the outcome?' 

The above point had already been made in the literature, but the RCT design literature 

seems to neglect the finer points in evaluating prediction-driven RCT designs. For 
example, literature evaluating such RCT designs frequently uses an experimental 
treatment setting where an experimental treatment is compared to the standard of 
care, which could be an existing treatment or no treatment at all. And because this is a 
prediction-driven RCT setting, there is typically a biomarker signature, made up of one 
or more biomarkers, that separates patients into two or more categories. Let's call the 

patient groups positive and negative. In this experimental setting, assume that it is 



thought that positive patients will do better on treatment A and negative patients will do 

better on treatment B. In this case, the prediction-driven decision rule is that positive 

patients receive A and negative patients receive B. 

In such a scenario, it is stated in the literature that clinical utility can be assessed by 

either randomizing each patient group to the treatments separately, or by randomizing 
patients to one of two arms, one arm using the prediction-driven decision rule and one 
arm being fully randomized. But as we saw with the music streaming example above, 
finding that the prediction-driven decision rule optimizes treatment does not mean the 
decision rule adds any benefit. For example, assume that positive patients do indeed 

have improved outcomes on treatment A, but negative patients have identical 
outcomes on treatment A and B. In this case, the prediction-driven decision rule does 
optimize the outcome, but it is not necessary. Giving every patient treatment A, without 
knowledge of the biomarker also optimizes the outcome for all patients. This is why 
neither of the designs mentioned above can reliably evaluate the benefit of using a 
prediction-driven decision rule, however, they are often promoted over the standard 

clinical utility design, because they are more 'efficient', ignoring the fact that they are 

answering different questions. 

In Project 2, we illustrate this point and state that in a comparative effectiveness setting, 

that is, a setting comparing only approved treatments, the only RCT design capable of 
reliably evaluating a prediction-driven decision rule is the clinical utility design which 
randomizes patients to either the prediction-driven decision rule or a physician's 
prescription of treatments without knowledge of the biomarker signature. We 
emphasize this point and review other relevant concepts in the British Journal of Cancer 
original research article, "Confirmatory prediction-driven RCTs in comparative 

effectiveness settings for cancer treatment." We focused on the comparative 
effectiveness setting, because in that setting, it is clear what the patient outcomes are 
without knowledge of the biomarker, that is, without using the prediction-driven 
decision rule. In a comparative effectiveness setting without knowledge of the 
biomarker, patients are prescribed treatments by their doctor among approved options. 

It is still not clear to us how to define clinical utility in the experimental setting. In that 
setting, new standards of care can be established based on the results of the trial and it 
is the potentially new standard of care that needs to be compared with the prediction-
driven decision rule. As in the example above, even when the prediction-driven decision 

rule optimizes treatment outcome, it may not be necessary, that is, it may not add value. 

In Project 1, we are also in a comparative effectiveness setting. Regions that cannot 
afford regular testing for all infected HIV patients are already conducting pooled testing, 
albeit without using predictions. Therefore, pooled testing and individual testing are both 
currently employed. Our prediction-driven decision rules choose which patients get 

pooled testing only (treatment A) or both pooled and individual testing (treatment B). 



 

 

And as we found in Project 2, the clinical utility RCT design is the only currently-known 

design that can evaluate the effectiveness of these promising, novel pooled testing 

methods.  

Now that we have developed promising new prediction-driven decision rules in Project 1 

and clarified the proper prediction-driven RCT design for evaluating our prediction-
driven decision rules, we must be able to effectively and efficiently analyze the results 
from the RCTs in order to answer the question, “which treatment or treatment arm is 
better?” In HIV and cancer patients, the primary concern is how long those patients live. 
Other factors are also considered such as quality of life and discomfort, but the primary 

outcome we are concerned with is survival. Therefore, in Projects 3-5, we research the 

analysis of survival data. 

Survival data is simply the time until an event occurs. You can think of it like the time 
until a continuously lit light bulb burns out, the time spent waiting for a bus, or the time 

until death. When all events can be observed, analysis of survival data can be relatively 
straight forward. However, in many situations and especially in clinical trial settings, we 
aren’t able to observe all of the events due to practical reasons. Some patients may live 
longer than funding will allow the trial to continue, and some patients may drop out of 
the trial for a number of reasons. In these cases, survival data also contains censoring, 

which is an indicator that the patient’s event could not be observed. In order to still use 
the information that the patient lived at least as long as they were observed, methods of 
analysis that properly deal with censoring are needed. Survival analysis including 
methods that properly deal with censoring have been researched thoroughly for 
decades, and there are sound theoretical bases for the most common methods we use 

today. However, in practice they are not always employed correctly. 

In Project 3, we reviewed procedures of constructing confidence bands for a survival 
curve estimated via the typical Kaplan-Meier method. A survival curve is a plot with the 
probability of still being alive on the y-axis and time on the x-axis. Following a group of 

observations over time and recording their failure or censoring times, the Kaplan-Meier 
method allows plotting a step function over time. At each time where a failure is 
observed, the survival curve drops by a percentage depending on how many events 
occurred at that time and how many observations survived and/or were censored up 
until that time. With enough observations to begin with and enough events observed, 

the Kaplan-Meier curve is proven to provide an accurate estimate of survival probability 
over time. However, there is always variation in the estimate which can depend on a 
number of factors. In order to account for this variation, confidence bands can be 
constructed which, if constructed properly, will contain the true, unobservable survival 
curve a desired percentage of the time, often 95%. In the review article for Project 3, 
“Confidence bands in survival analysis,” published in the British Journal of Cancer, we 

summarize previously developed methods of constructing confidence bands including 



the implementations of such in statistical software and compare the methods using 

example data from a trial of adjuvant chemotherapy for colon cancer. 

This review article is important for the special statistical issue of British Journal of 
Cancer, because variation in Kaplan-Meier estimates in medical publication is typically 

accounted for with point-wise confidence intervals, not confidence bands. A point-wise 
confidence interval is more constricted than a confidence band and underestimates the 
variation of the survival curve estimate over time. The point-wise confidence interval 
creates an interval for every observed failure time, ignoring the variation at other failure 
times. If we say that we want to be 95% sure that our band or interval contains the true 

value, a confidence band procedure produces an upper and lower boundary over time 
that contains the entire survival curve 95% of the time. The confidence interval 
procedure produces an upper and lower boundary point that contains the true survival 
point 95% of the time. Giving ourselves only 95% surety at each failure means that we’re 
giving ourselves multiple chances to be wrong, and if we’re wrong on one point-wise 
confidence interval, then the connected band we present will not contain the true 

survival curve. In one example provided in the paper, this point-wise method of 
accounting for variation in the survival estimate over time contains the true survival 

curve only 39% of the time instead of the desired 95%.  

This knowledge is not new to the statistical literature or community, however, 
confidence bands connecting point-wise confidence intervals is still prevalent. The main 
purpose of Project 3 was to increase awareness among non-statistical researchers of 
this point in order to increase the use of confidence bands in place of point-wise 
confidence intervals when presenting survival curves. To this end we also described 
various methods of constructing 95% confidence bands, discussed how to construct 

these bands using current statistical software, compared the confidence band methods 
through simulation and provided recommendations. Project 3 is a good introduction to 
survival analysis methods, but constructing proper confidence bands for survival 
estimates does not necessarily answer the question, “are our prediction-driven decision 
rules for HIV treatment management better, or at least as good as, individual testing or 

current pooled testing methods?” In order to answer that question in a scientifically 
rigorous manner, we need formal statistical inference, or a mathematically theoretically-
backed computational method of declaring one treatment or treatment arm superior to 

the other with a desired percentage of certainty. 

Like with confidence bands and intervals, formal statistical inference for comparing the 
survival data between two groups has been researched and published thoroughly. The 
main two methods of such inference for formal testing and approval of new treatments 
and treatment rules are the logrank test and inference based on the Cox proportional 
hazards models. The logrank test rigorously tests whether estimated survival curves of 

the groups being compared come from the same underlying survival distribution. If the 



 

 

data collected fails this test, then we can declare with a pre-set level of certainty that 

the true survival curves are different between the groups. This is perhaps the most 
accepted and most used statistical test for declaring a new medical treatment superior 
to another. However, it does have limitations. For one, it cannot easily incorporate 
covariates, or individual level factors such as age and sex, that may provide information 
regarding the survival estimates, perhaps making it less powerful to detect treatment 

differences than methods that can incorporate such information. Also, which treatment 
is declared superior when the estimated survival curves cross? In this instance, it may 
be clear that the survival curves are different, but because the logrank test does not 
provide an estimate of treatment effect, it cannot estimate which treatment is superior, 

only that they are different.  

The other popular formal statistical inference method of testing for differences in 
survival time is based on the Cox proportional hazards model. Using this method, one 
can easily incorporate covariates, and it also provides an estimate of the treatment 
effect, albeit perhaps one difficult to interpret. The Cox proportional hazards model 

estimates the instantaneous risk of failure over time in each of the comparison groups. 
This risk can, and is likely to, change over time, but the key assumption to this method is 
that the proportion of instantaneous risk of failure between the comparison groups 
remains fixed over time.  The treatment estimate this method provides is the estimated 
ratio of the instantaneous risk of failure in one group over the other. When in truth it is 

not true that this ratio is constant across time, the treatment estimate no longer has a 
causal interpretation, meaning that the estimate and inference based on that estimate 
can no longer be accepted as evidence that one treatment is superior to another. 
Although there are tests to detect obvious departures from the proportional risk 
assumption in the survival data, there is no way to test if the assumption holds true. It is 

often used and accepted if the estimated survival curves do not cross and do not 
appear to obviously violate this assumption. More recently, however, methods that can 
incorporate covariates, provide a treatment effect estimate, and do not rely on the 

proportional hazards assumption have been gaining support. 

Restricted mean survival time (RMST) methods are survival analysis methods that 
estimate, on average, how long someone in a particular group, in our case treatment 
group, is likely to survive up until some specified time point. For example, an RMST-
based method can estimate that someone receiving treatment A is likely to survive 3.2 
years in the next 5 years. This may seem like a strange way to word it. Why not just 

estimate on average how long someone in treatment group A is likely to survive? In a 
perfect world that is exactly what we would estimate, but in reality, we often do not have 
the opportunity to observe all of the failures, or events. Especially in RCT settings, we 
often do not get to observe the longest surviving patients experiencing an event, in 
which case estimating the average length of time someone is likely to survive is not 



possible. However, when we declare a time interval, for example 5 years, then we can 

estimate the average length of time someone survives within that time frame even if we 
don’t observe all of the events. There are multiple RMST estimation and statistical 
inference procedures in the literature, however, only a few of these have been 

implemented in standard statistical software. 

In Project 4 we developed an R function, RMSTdiff, that provides the user with 5 different 
options for estimating the difference in RMST between two groups and provides the 
statistical inference to test whether the RMST in each group are equal. The first method 
is a Kaplan-Meier-based method that does not allow for incorporation of covariates and 

simply calculates the area under the Kaplan -Meier curve up to the pre-specified time 
point. This method had already been implemented in the statistical programming 
language R, so our function serves as a wrapper function for this method. The second 
method, the Tian method, had also been implemented in R and does allow for covariates. 
This method relies on inverse probability weighting. Another method involves pseudo-
observations. This method is interesting in that is calculates each patient’s contribution 

to the RMST estimate and regresses covariates on those contributions instead of the 
outcome itself. This method had also been implemented in R and statistical 

programming language SAS.  

One new implementation that we undertook as part of Project 4 is a method based on 
the Cox proportional hazards model, called the Chen method. Although this method 
uses Cox proportional hazards models, it does not assume proportional hazards 
between treatment groups, because it uses separate Cox models for each treatment 
group separately. This means that the proportional hazards assumption only pertains to 
the covariates other than treatment group that are modelled. In fact, this method 

necessitates incorporating covariates, because if no additional covariates are modelled, 
it reduces to the Kaplan-Meier method. This is due to the fact that the method uses the 
Nelson-Aalen estimator to estimate the baseline hazard function in each of the Cox 
models. Programming this method is complex and challenging. In order to ensure that 
our programming was accurate, two authors of the paper titles, “Estimating differences 

in restricted mean survival time in R with two new implementations,” coded this method 

independently. The authors then compared and reconciled discrepancies. 

The final method included in the RMSTdiff function is based on flexible parametric 

models (FPM). Flexible parametric models are a fully parametric fit to the survival data. 
This means that unlike the Kaplan-Meier survival estimate which is a step function, these 
models are smooth lines with no points or vertical drops. It is like holding a Kaplan-Meier 
plot in front of you, and fitting a bendy straw to the plot to mimic the plot as close as 
possible using the smooth bends of the straw. FPM models provides nice properties, like 
ensuring that each FPM has at least two defined derivatives which helps in calculating 



 

 

the variance of RMST estimates using these functions and allowing for easy 

incorporation of covariates.  

The FPM method had been implemented in R, but with a variance estimate that 
assumed that any covariates incorporated into the model were fixed. When 

incorporating covariates into any model, it is important to account for variability in the 
covariates. Treating the covariates as fixed is the same as assuming that your sample is 
the whole population. Of course, if your sample is the whole population then the 
variance is zero, and you simply need to calculate the difference in RMST. But this is not 
realistic. In almost all scenarios, as is the case in RCTs, analyzing a sample of the 

population is the goal, in which case correctly estimating the variance is the only way to 
provide reliable statistical inference. Treating the covariates as fixed can underestimate 
the variance of the difference in RMST between groups and therefore can lead to 
unreliable inference. Therefore, we implemented the FPM method using a variance 
estimate via M-estimation. To our knowledge, this is the first implementation of this 
variance estimate for this method in statistical software. Our function also allows the 

user to choose their method of variance estimate between the two options mentioned. 

Also in Project 4, we provide examples on how to use the function and a simulation 
comparison of the methods. The pseudo-observation method seemed to perform the 

best of all the methods in our simulations, having low bias and controlled type 1 error, or 
the probability of detecting a difference when in truth none exists, while allowing for 
incorporating covariates and not incorporating covariates. The FPM method did not 
always converge, meaning that it could not always provide an estimate nor inference. 
This of course is not ideal in a realistic situation in which case you are only analyzing one 
set of data. The Tian and Chen methods can only be used when covariates are included 

in the models. The Chen method outperformed the Tian method in most categories, 
however, the Tian method had tighter type 1 error control. These simulations are a good 
starting point for comparing inferential methods of testing for differences in RMST 
between two groups, however, these simulations do not reflect how these methods 

would likely be used in actual RCTs. 

In practice, RCTs using survival outcomes are designed in such a way to allow for 
multiple tests of differences throughout the trial. This is both for pragmatic and ethical 
reasons. In order to conduct an RCT, there must be equipoise, meaning that is cannot be 

generally accepted that one treatment is superior to the other in the population being 
tested. Basically, it must be unknown which treatment is superior, because otherwise it 
would be unethical to randomize patients to a treatment that is known to be inferior. 
RCTs are designed to have a desired level of power for a minimally clinically beneficial 
treatment effect. This is to ensure that when you have collected all of the data and test 
for differences, it is likely that a difference will be found if there is a true meaningful 

difference. However, the true treatment difference may be much greater than what is 



considered to be minimally clinically beneficial, meaning that the difference can be 

detected using much less patients. As we said above, if it is known that one treatment is 
superior, it is unethical to randomize patients to the inferior treatment. That is why RCTs 
are generally designed to test multiple times throughout the RCT. If there is a large 
difference between treatments, it is ethical and pragmatic to detect the difference as 

early as possible to avoid unnecessary randomization of further patients.  

However, just like when computing multiple point-wise confidence levels that we 
discussed in Project 3, testing for differences multiple times provides multiple chances 
to detect false differences. In order to allow ourselves to test multiple times throughout 

an RCT and still reliably control the type 1 error, or the probability of detecting false 
differences, group sequential procedures must be used. At its core, group sequential 
procedures alter the formal thresholds for detecting treatment differences, so that 
when taken altogether, the desired total type 1 error across all tests is achieved. This 
topic has been researched thoroughly, and there are strong theoretical bases for 
implementing these procedures in RCTs, especially using the logrank test as the 

statistical inference. However, when discussing formal testing using differences in RMST, 
the literature suggests that a fixed follow-up time point must remain constant across all 
tests throughout the trial in order to use the standard, accepted group sequential 
procedures. This restriction puts RMST-based inference methods at a disadvantage to 
the logrank test which uses all available information at the time of each test, and may 

make testing impossible at early trial times.  

If an early time point is chosen to test for difference in RMST, all information gained after 
that time point is ignored, meaning that the RMST-based inference test is not likely to 
have the power that a logrank test would have. If a later time point is chosen in order to 

increase the information used in the test, the test may not be able to be conducted at 
earlier trial times, because there has to be at least one patient on each treatment arm 
that is followed up to that pre-specified time. Ideally when conducting a group 
sequential RCT, one is able to use all information at the time of each test, as is done 
when the logrank test is the formal inference. In Project 5, our goal was to compare the 

standard group sequential inference of the logrank test and Cox proportional hazards 
model to the five RMST difference tests that we discussed in Project 4 in realistic group 
sequential settings in the paper titled, “Evaluating restricted mean survival time 
methods in group sequential RCTs.” The RMST-based inference tests we implemented 
used all available data at the time of each test, just like when using the logrank test, 

against the suggestion in the literature that it must remain fixed. Our primary concern 

was how this affected the type 1 error as compared to the benchmark testing methods. 

We compared the methods in four different scenarios: two scenarios where proportional 
hazards was true between the treatment groups and two scenarios where proportional 

hazards was not true. For the scenarios where proportional hazards held true, the first 



 

 

scenario included covariates not associated with our outcome of survival and the 

second scenario included covariates that were associated, meaning that including them 
in survival models should improve method performance. The third scenario where 
proportional hazards did not hold true included associated covariates and represented 
a delayed treatment effect. The fourth scenario included associated covariates and 

represented an early treatment effect that tapered to no treatment effect at later times. 

What we found was that the RMST-based methods actually had better control of type 1 
error across all scenarios than did the logrank test, the most widely accepted test for 
difference sin survival. In the fourth scenario, the sample size was only 150 due to the 

early pronounced treatment effect, resulting in over doubling the desired type 1 error 
using the logrank test. While the type 1 error was elevated slightly for two of the RMST-
based tests, it was much closer to the desired level. This provides strong evidence that 
RMST-based methods can be used safely in group sequential RCTs while using all 
available information at the time of each test as opposed to fixing a constant time point 
for every test. This is an important discovery, because as stated above, RMST-based 

tests do not rely on the assumption of proportional hazards and provides an easily 
interpretable treatment effect estimate to inform which treatment is superior when 
survival curves do cross. We also found that RMST-based methods have similar power 
to detect treatment differences even when those assumptions are met. Therefore, using 
RMST-based inference for differences in survival does not do much harm in the best-

case scenarios and in the worst-case scenarios is clearly preferred to the benchmark 

methods. 

In Project 1 we developed novel prediction-based decisions rules for treatment 
management of HIV patients. In Project 2 we identified the proper RCT design to test the 

effectiveness of our prediction-driven decision rules. In Project 3-5 we studied ways of 
analyzing the survival data that would be the outcome of our prediction-driven RCT. We 
developed new implementations for R of RMST-based statistical inference methods and 
compared those methods to the benchmark methods of testing for differences in 
survival between two groups in realistic group sequential RCT settings. At first glance 

the projects may seem disjointed, but they followed our natural thought process of 
always asking the question, “What next?” Throughout we discovered what we viewed as 
holes or inaccuracies in the current research, and we thought it important to fill those 
holes and correct those inaccuracies. At the end of this dissertation, we feel that we 
have developed promising prediction-driven decision rules for HIV treatment 

management, and that we have developed a deep understanding on how to rigorously 
test those rules, hoping we contributed to statistical knowledge and understanding 

along the way.  



Abstract 
Predictions are becoming more and more a part of our lives, and they are becoming 
increasingly useful in medical science as the science evolves. Increased understanding 

of disease and its treatments allows us to use predictions based on predictive 
biomarker signatures to optimize treatment outcomes for increasingly granular subject 
groups. One such potential use is in the field of HIV treatment monitoring. In resource-
limited regions where regular testing for HIV treatment failure is not always possible, 
pooled testing methods can reduce the burden of regular testing for all infected. 

Incorporating predictions to choose who is individually tested based on pooled test 
results is a way to increase the efficiency of such methods, the treatment being the 

individual testing versus pooled testing only. 

The use of biomarker-guided treatment decision rules, or prediction-driven decision 

rules, can be informal or formally well-defined. For a well-defined prediction-driven 
decision rule to be implemented, it must first be rigorously tested for efficacy based on 
a comparison against the standard of care. The definition of standard of care and thus, 
the definition of clinical utility, depends heavily on the treatment setting. Poorly defining 
clinical utility can result in great bias, potentially leading to implementing unnecessary 

prediction-driven decision rules. 

Formal prediction-driven decision rules are currently most applied in the disease area of 
cancer. Rigorous testing of these rules is often conducted through RCTs, specifically 
group sequential RCTs, utilizing a survival endpoint. It is important to understand the 

analysis of survival data in order to ensure the appropriate analysis methods for such 
data. Confidence bands for survival estimates over time should be constructed to have 
nominal coverage rates, and analysis methods like RMST should be understood to allow 

for rigorous testing of differences when proportional hazards assumptions are not met. 

Developing prediction-driven decision rules in the form of pooled testing methods for 
HIV treatment failure, identifying an RCT trial design(s) capable of rigorously evaluating 
these prediction-driven decision rules, and studying survival analysis methods capable 
of analyzing the data from such RCTs, whether proportional hazards holds or not, are the 

subjects of this dissertation.  
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1 Introduction 
Medical advances have facilitated the emergence of targeted treatments for disease 
and the ability to identify those subjects who can benefit from those treatments using 
biomarker signatures, that is, a summary of measurements of one or multiple 
biomarkers. Predictive biomarkers, or biomarkers that can help predict a subject’s 

response to treatment, have been very useful recently in medical fields such as cancer 
(Slamon, 2000; Paik, 2003, Conley and Taube, 2004; Taube et al., 2005; Sequist et al., 
2007; Bonomi et al., 2007; Mandrekar and Sargent, 2010; Renfro et al., 2016; Hu and 
Dignam, 2019, Mandrekar and Sargent, 2019). Optimizing treatment for increasingly 
granular patient subgroups in this rapidly-evolving environment necessitates the use of 
prediction-driven decision rules. As Sachs et al. (2020) states, "A prediction-based 

decision rule is a rule for taking an action in response to a prediction and it may be 
informal, unspecified, and varying across individuals, or it may be formalized as clinical 

guidelines for a population."  

One area where predictive biomarkers and prediction-driven decision rules have not yet 
been implemented is treatment management for those infected with HIV. There are 
many approved therapies for controlling a subject’s HIV viral load (VL), and controlling a 
subject’s VL improves mortality and reduces the probability of transmission by up to 
96% (Cohen et al., 2011; Insight Start Study Group, 2015). A subject infected with HIV can 

become resistant to their current therapy, necessitating a change of therapy, or the 
subject will experience treatment failure, that is, their VL will increase. If left uncontrolled, 
the increasing VL will eventually lead to AIDS, increasing both mortality and the 
probability of transmitting the disease to others. In order to maintain control of VL, 
subjects need regular testing to detect resistances to current treatment. This is 
typically not a problem in regions with adequate resources. However, a large portion of 

HIV infected subjects live in resource-limited regions where regular, individual testing for 

all those infected can be difficult (US DHHS, 2020). 

In order to reduce the financial burden of regular, individual VL testing, pooled testing 

methods for detecting HIV treatment failure have been developed. May et al. developed 
two different pooled testing methods for detecting HIV treatment failure, a single 
pooling method called the mini pool + algorithm method and a matrix-based method 
called the simple search method (May et al., 2010). These methods have been shown 
through simulation by May et al. to increase the efficiency of individual testing, defined 
by the proportion a of tests saved compared to individual testing, while maintaining high 

levels of sensitivity, defined as the proportion of treatment failures detected compared 
to individual testing. Field studies have shown these pooled testing methods for 
detecting HIV treatment failure to be viable in practice for pool sizes up to 10 (Kim et al., 
1999; Smith et al., 2009; Van Zyl et al., 2011; Kim et al., 014; Omooja et al., 2019). Hanscom 
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improved upon the simple search method, creating the modified simple search method, 

however, none of these methods incorporate biomarkers that could be predictive of HIV 

viral load (Hanscom, 2014). 

It is reasonable to suggest that incorporating biomarkers predictive of VL could further 

improve on the existing pooled testing methods that do not make use of this 
information. Pooled testing methods are designed to identify the individuals, from 
pooled sample tests, that are most likely suffering from treatment failure and therefore 
need to be individually tested. The methods themselves differ in how they make use of 
the pooled sample test information to select those receiving individual testing. The best 

methods will identify the largest proportion of those experiencing treatment failure 
using the smallest number of tests. If the pooled sample test information can be 
enhanced with predictive information obtained by readily available biomarkers, it is likely 
that better decisions can be made as to which subjects are individually tested. 
Biomarkers predictive of VL have been studied thoroughly (Fätkenheuer et al., 1997; 
Burger et al., 1998; Robbins et al., 2007; Swiss HIV Cohort Study, 2008; Khienprasit et al., 

2011; Bacha et al., 2012; Sebunya et al., 2013; Ayalew et al., 2016; Bezabih et al., 2019), 
providing evidence that such predictive biomarkers exist and can be collected with 
relatively few resources. Hanscom developed two pooled testing methods that can 
incorporate predictive biomarkers, but the methods did not perform well in realistic 
simulations with heavily skewed VL distributions and/or when predictions were not 

highly predictive of high VL, or treatment failure (Hanscom, 2014). 

In the paper titled, “Prediction-driven pooled testing methods: Application to HIV 
treatment monitoring in Rakai, Uganda,” published in Statistics in Medicine, we 
developed novel pooled testing methods for detecting HIV treatment failure and 

compared those methods in realistic simulations with highly skewed VL distributions 
and varying levels of predictive accuracy (Brand et al., 2020). One of the methods 
performed with very high efficiency and sensitivity when the biomarker signature was 
predictive of treatment failure, but could lose efficiency when predictions were very 
poor. Another method we developed increased efficiency while maintaining high 

sensitivity, and remained robust to very poor predictions, showing promise that 
predictive biomarkers can safely improve performance of pooled testing methods for 
detecting HIV treatment failure. It is an important development, because if proven to 
work safely in reality, it could enable regular testing for all HIV infected subjects, possibly 
leading to an eradication of the disease. However, to ensure that such pooled testing 

methods can be used safely on a real infected population, it must be rigorously teste.  

The pooled testing methods we developed are prediction-driven decision rules. The 
rules determine, based on predictions and the pooled sample test results, which 
subjects receive only pooled testing and which subjects also receive individual testing. 

The different types of testing are the treatment being prescribed. Rigorously testing 
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prediction-driven decision rules requires evaluation of the causal benefit of using a 

prediction-driven decision rule, ideally through use of a randomized controlled trial 
(RCT). Prediction-driven RCTs, or RCTs designed to incorporate biomarker signatures 
and evaluate prediction-driven decision rules, have been researched extensively. A 
review of such trial designs is provided by Renfro et al. (2016). An overview of key 

concepts of prediction-driven RCT design is given by Hu and Dignam (2019). 

Evaluating the causal benefit of a prediction-driven decision rule necessitates 
evaluating the clinical utility of the prediction-driven decision rule, that it, assessing the 
causal benefit of using the prediction-driven decision rule versus the standard of care. It 

is not enough to evaluate clinical validity, that is, the extent to which the prediction-
driven decision rule optimizes treatment outcomes. A prediction-driven decision rule 
may optimize outcomes from treatment while having zero clinical utility. For example, 
suppose there are two subject groups, positives and negatives, defined by a biomarker 
signature and two treatments, A and B. Also suppose that it is hypothesized that 
positives will have better outcomes on treatment A and negatives on treatment B. In this 

case, the prediction-driven decision rule is that positive subjects are treated with 
treatment A and negative subjects are treated with treatment B. If in truth, positive 
subjects do have better outcomes on treatment A, but negative subjects have identical 
outcomes on both treatments, the prediction-driven decision rule optimizes treatment 
outcomes while having zero clinical utility. In this case, standard of care could easily be 

to treat everyone with treatment A, which also optimizes treatment outcomes. 
Therefore, the prediction-driven decision rule is not needed even though it optimizes 
the outcomes. It is this point that is overlooked in the current literature on evaluating 

prediction-driven RCT designs. 

The definition of standard of care when evaluating clinical utility depends heavily on the 
treatment setting. In the comparative effectiveness setting, that is, comparing 
treatments that have already been approved and are currently being prescribed by 
physicians, the standard of care is what a physician would prescribe to that subject 
without knowledge of the biomarker/prediction-driven decision rule. In the experimental 

treatment setting, it is not clear what the standard of care is, because based on the 
results of the trial a new standard off care may be established. However, the prediction-
driven RCT literature focuses on the experimental setting when evaluating RCT designs 
for evaluating clinical utility. In this setting, authors compare a treatment arm using the 
prediction-driven decision rule to randomized treatment or a single approved treatment 

option (Shih and Lin 2017; Shih and Lin, 2018; Sargent and Allegra, 2005). However, once 
the trial is completed, randomized treatment or a single treatment option may not be 
the standard of care. If both/all treatments are subsequently approved, physicians will 
prescribe one or another based on a number of factors. And this physician prescription 
could perform as well or even better than the prediction-driven decision rule. Using this 
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definition of standard of care when evaluating a prediction-driven decision rule in an 

experimental setting provides the ability of certain RCT designs to identify clinical utility, 
but this definition of clinical utility lacks the ability to assess the benefit of applying a 

well-defined prediction-driven decision rule. 

It is still not clear what the correct definition of standard of care is in the experimental 
setting to these authors, however, the clear definition in the comparative effectiveness 
setting does not enable certain RCT designs to directly identify clinical utility. The 
comparative effectiveness definition of standard of care implies that only one of the 
current prediction-driven RCT designs can directly identify the clinical utility of a 

prediction-driven decision rule. The distinction and importance of using the correct 
definition of clinical utility and identifying the RCT designs that can directly identify it is 
main point of the paper titled, “Confirmatory prediction-driven RCTs in comparative 
effectiveness settings for cancer treatment,” published in the statistical methods 
special issue of the British Journal of Cancer (Brand et al., 2023). Also in the paper is a 
definition of other common prediction-driven contrasts of interest and a description of 

the RCT designs that can identify each of the contrasts. 

Identifying the correct version of clinical utility and the RCT designs that can directly 
identify it in the comparative effectiveness setting is necessary to evaluate the efficacy 

of the prediction-driven decision rules in the form of pooled testing methods that were 
developed in the first paper. As stated above, pooled testing and individual testing have 
both been used to detect treatment failure in subjects infected with HIV. This 
represents a comparative effectiveness setting where both treatments, pooled testing 
and individual testing, are currently being used. The prediction-driven decision rules, or 
pooled testing methods that incorporate predictions, decide which subjects receive 

which treatment. In the second paper, we have identified the RCT design that is able to 
effectively evaluate these prediction-driven decision rules. In the following three papers, 

we will focus on methods of analyzing the outcome of such RCTs. 

For subjects infected with HIV, a natural outcome of interest is survival, or time until 
death. Survival is a natural outcome of interest for any disease which can be fatal and is 
also frequently used as the main outcome of interest in the disease area of cancer. The 
next three papers focus on methods of analysis of survival data. The setting we use is 
the cancer setting, because most of the applied literature on analysis of survival data 

uses cancer data and/or involves the cancer setting. However, the methods discussed 
apply to any setting in which survival is the relevant outcome, such as the HIV treatment 

management setting. 

Perhaps the most recognizable representation of survival analysis is the Kaplan-Meier 

(KM) survival curve based on the survival estimate over time developed by Kaplan and 
Meier (Kaplan and Meier, 1958). Plotting time on the x-axis and survival probability on the 
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y-axis, the KM curve is an easily interpretable estimate of length of survival over time for 

groups of subjects. As with any estimate, the KM curve is subject to variability, and 
quantifying this variability is often of interest. In standard practice and standard 
statistical software packages, this variability is often calculated and represented as 
point-wise confidence intervals. These point-wise confidence intervals are computed at 
each time where an event is observed with a certain level of confidence, (1-α). These 

confidence levels are valid for each point separately, but they are often connected to 
represent a confidence band depicting the variability of the entire survival curve. Similar 
to the issues of multiple testing, constructing a confidence band using this point-wise 
procedure compounds the chances for error, increasing α and thereby lowering the 
desired level of confidence. In the paper titled, “Confidence bands in survival analysis,” 

published in the statistical methods special issue of the British Journal of Cancer, we 
show through a simple example how this method of constructing a confidence band can 
result in a confidence level of only 39% when the desired confidence level is 95% (Sachs 
et al., 2022). This means that instead of the confidence band containing the true survival 
curve 95% of the time, there is at least one time point where the true survival curve lies 

outside the confidence band 61% of the time.  

Methods of constructing simultaneous confidence bands for the KM survival curve that 
provide the desired level of confidence have been developed and have a strong 
theoretical basis (Thomas and Grunkemeier, 1975; Efron, 1979; Gill, 1980; Hall and Wellner, 

1980; Gill, 1983; Nair, 1984; Akritas, 1986; Hollander et al., 1997). Some of these methods 
have been implemented in standard statistical software such as R, Stata and SAS. Other 
methods have not been formally implemented, but we have included an example of how 
to implement those methods in R in the paper supplement. We also provide a simulated 
comparison of these methods in R using publicly available data from the survival 

package in R from a trial of adjuvant chemotherapy for colon cancer along with 
recommendations for use (Moertel et al., 1995; Therneau and Grambsch, 2000; R Core 

Team, 2020; Therneau, 2020). 

This review paper on methods of constructing proper confidence bands for KM survival 

curves we think is important for the typical audience of the British Journal of Cancer, 
because many non-statistician researchers report confidence bands for KM curves 
using the point-wise confidence bands which are too narrow and do not accurately 
represent the variability in the survival estimate. Presenting an example of the degree of 
misrepresentation and examples on constructing proper confidence bands using 

standard statistical software we hope encourages researchers to replace the existing 
reporting with the proper KM confidence bands. Researching methods of correctly 
quantifying variability in the KM survival estimate provides insight into descriptive 
survival analysis, but it alone cannot rigorously answer the question of which treatment 
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arm provides superior outcomes in an RCT. To answer this question, statistical inference 

methods are needed.  

Survival analysis research has a long and rich history since John Graunt first analyzed 
mortality in 1662 (Morabia, 2013). The most fundamental methods of survival analysis in 

recent decades have been KM plots, mentioned above, Cox proportional hazards 
models and the logrank test (Lee and Go, 1997). The logrank test is a statistical inference 
method of testing whether two or more survival curves have been drawn from the same 
survival distribution (Mantel, 1966). It is purely an inferential test, providing no treatment 
effect estimate nor, in cases of crossing survival curves, an indication of which survival 

curve may be preferred. Cox proportional hazards models can be used as an inferential 
test while also providing an estimate of treatment effect (Cox, 1972). The proportional 
hazards model models the instantaneous risk (log transformed) of experiencing an 
event, such as dying, over time. This risk can fluctuate over time, but it does require that 
the proportion of risk between groups defined by the model remain constant over time. 
It is this proportion that is provided as the treatment effect estimate and combined with 

an estimate of the variability can be formed into a rigorous statistical inference test. 
Although the Cox proportional hazard model is a benchmark in survival analysis methods 
that provide a treatment effect estimate and easily allow the adjustment of covariates, 
arguments have been made against the use of this method (Hernan, 2010, Stensrud, 
2019). An alternative inferential analysis of survival data that is gaining popularity is the 

analysis of the restricted mean survival time (RMST) (Royston and Parmar, 2013; Uno et 

al., 2014; Uno et al., 2015; Pak et al., 2017; Huang and Kuan, 2018; Kloecker et al., 2020). 

Restricted mean survival time, first proposed by Irwin, estimates the average survival of 
a group of subjects up to a pre-specified time point (Irwin, 1949). For example, it can 

estimate the expected survival time up to five years. A natural question might be, “Why 
not estimate the average survival time, why only up to a certain time?” This is because 
the overall mean survival, or average survival time without specifying an ending time 
point, is not defined in many practical applications, especially in clinical trials. In order to 
estimate overall mean survival, one must observe enough events that the KM survival 

estimate goes to zero. If there is a lot of censoring before the curve drops to zero, the 
survival estimate at later time periods can be highly variable. In clinical trials, the final 
analysis is often conducted when the desired number of observed events is reached, 
resulting in administrative censoring where some of the longest surviving subjects are 
censored. Restricting the mean to a pre-specified time point ensures that the estimand 

is well-defined at the time of final analysis.  

Multiple options exist for estimating RMST. In fact, as many options exist as there are 
options for estimating survival over time, as RMST can be calculated as the area under 
an estimated survival curve up to a pre-specified time. Some of these methods have 

already been implemented in statistical software while other methods had not yet. In 



 

 7 

the paper titled, “Estimating Differences in Restricted Mean Survival Time in R with Two 

New Implementations,” we introduce an R function we developed called RMSTdiff. This 
function serves as a wrapper function for those methods of estimating differences in 
survival between two groups that have already been implemented while also including 
two methods that have not, to our knowledge, been implemented. The paper describes 
each of the methods implemented in the function, provides example calls for how to use 

the function, compares the methods through simulation, and provides 

recommendations in the discussion.  

RMST-based methods of inferring statistical differences in survival over time are 

promising in that they do not rely on the proportional hazards (risk) assumption as does 
the Cox model, and RMST estimates provide easily interpretable treatment effect 
estimates that can inform even when the survival curves being compared cross. 
However, this alone is not enough to justify their use over the benchmark methods in 
modern clinical trials. For this, RMST methods need to be shown to be reliable when 

using them in modern RCT designs, namely, group sequential RCTs. 

Group sequential RCTs are RCTs designed to allow multiple formal testing for 
statistically significant differences in the outcome between groups throughout the 
course of a trial. Proposed by Armitage popularized by Pocock and O’Brien and Fleming, 

group sequential RCTs are the benchmark RCT designs in modern RCTs, especially when 
the outcome is survival, for both practical and ethical reasons (Armitage, 1954; Pocock, 
1977; O’Brien and Fleming, 1979). Properly powered RCTs, that is, RCTs designed to 
detect a minimal clinically relevant treatment benefit with a high probability, are 
designed to observe a specific number of events in order to detect the smallest 
meaningful treatment difference. However, treatments can exceed this minimal 

treatment effect, requiring fewer (sometimes much fewer) observed events. Rigorously 
detecting a meaningful statistical difference in treatments earlier than when the full 
designed number of events is reached is beneficial for two reasons. On the ethical side, 
it is unethical to randomize subjects to a treatment that is inferior. For practical reasons, 
stopping a trial early saves resources, both subject resources and financial resources. 

Therefore, group sequential RCT designs should always be strongly considered, 
especially when the outcome is survival.  However, adjustment to standard statistical 

significance tests must be incorporated to avoid the issues arising from multiple testing. 

Similar to the problem with constructing confidence bands for KM curves based on 
connecting point-wise confidence intervals discussed above, multiple testing 
throughout the course of a trial can increase the type 1 error of the tests combined, that 
is, increase the probability of declaring a treatment effect when none exists. Procedures 
of altering the threshold for declaring a treatment effect among the multiple tests have 
been developed and studied extensively, controlling the type 1 error rate to nominal 

levels, and it is known that these methods work reliably with the logrank test and Cox 
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proportional hazards models when the assumptions are met (Pocock, 1977; O’Brien and 

Fleming, 1979, DeMets and Lann,1994).  

However, it is argued, for example buy Murray and Tsiatis (1999), that when using RMST-
based survival analysis methods in group sequential trial settings, a fixed time be used 

for the upper limit of RMST calculation for all analyses. The argument for this revolves 
around the fact that the estimand changes when the upper limit of calculating changes. 
But this argument can also be applied to the logrank test or the Cox proportional 
hazards model when the assumptions are not met. Because it is not observable whether 
these assumptions are met, it seems arbitrary to apply this restriction to RMST-based 

methods and not the logrank test nor Cox models. Applying this restriction to only the 
RMST-based methods put RMST-based methods at a distinct disadvantage to the 
current benchmark methods. When employing the logrank test or Cox proportional 
hazards models in group sequential trial settings, those analysis methods make use of all 
available information at the time of analysis. Fixing a single follow-up time for all RMST-
based analysis either throws away useful information by ignoring all information after 

that fixed time point or renders the RMST-based analysis undefined by fixing a time 
point longer than the current follow-up allows. Imposing such a restriction should only 
be done if it is shown that RMST-based analysis methods behave poorly in group 
sequential RCT settings compared to the current benchmark methods. This means 
showing that the type 1 error is not controlled as reliably in these settings compared to 

the logrank test and the Cox proportional hazards models.  

In the paper titled, “Evaluating Restricted Mean Survival Time Methods in Group 
Sequential RCTs,” we compared the five RMST-based inference methods included in our 
RMSTdiff R function to the logrank test and the Cox proportional hazards model in four 

scenarios using a common group sequential RCT design with two formal interim 
analyses and a final analysis. In the RCT analysis, we allowed the RMST-based inference 
methods to use all available data at the time of analysis, instead of fixing an analysis 
time point, just as for the benchmark methods. We showed that not only is the type 1 
error controlled using the RMST-based methods, but it is better controlled than using 

the logrank test and the Cox models, especially when the proportional hazards 
assumption was violated. Although the power to detect treatment differences was 
slightly higher for the benchmark methods when the proportional hazards assumption 
held true, the RMST-based methods performed well in all scenarios and remained robust 

to the false assumptions.  

This dissertation utilizes predictive capability to construct prediction-driven decision 
rules in the form of novel pooled testing methods for detecting HIV treatment failure, 
identifies the appropriate prediction-driven RCT design to test the efficacy of those 
decision rules, and studies the methods of analyzing the data from such trials, resulting 

in five papers on those topics. We also provide a summary of our work with a popular 
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science summary (above), this introduction, a literature review in Section 2, research 

aims in Section 3, description of methods in Section 4, Results in Section 5, discussion in 

Section 6, conclusions in Section 7 and points of perspective in Section 8. 
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2 Literature review 
The literature review for this dissertation can be classified into four categories: the 
history and current methods of pooled testing to detect HIV treatment failure, 
prediction-driven RCT design, Kaplan-Meier (KM) confidence bands, and restricted 
mean survival time (RMST) analysis. The history and current methods of pooled testing 

to detect HIV treatment failure is a specific topic, so it was possible to read all of the 

relevant papers in the literature.  

Prediction-driven RCT design is a more wide-open topic, covering enrichment designs 
and biomarker stratified designs that are ubiquitous in modern medical research. 

Reading all of the papers including these designs may not be feasible and was not 
necessary for our goal. Our review goal was to study the relevant designs for testing the 
prediction-driven decision rules that we developed in the first paper, and it quickly 
become apparent to us that the only relevant design was the biomarker strategy design, 
although current literature suggested, in the experimental treatment setting, that one 

could also use the biomarker stratified design. It was this realization compared against 
the current literature that formed the concept of the second paper, emphasizing the 
importance of clearly defining clinical utility in the proposed setting and using that 
definition to identify the RCT design(s) that can directly identify that well-defined 

contrast.  

The concept for the third paper on KM confidence bands was formed during a course on 
survival theory using counting processes. My final project for that class reviewed and 
described various ways of constructing simultaneous confidence bands based on using 
Brownian motion and where to find those methods in current statistical software. From 

there we expanded the review to include methods using the likelihood ratio statistic and 

bootstrapping.  

The concept for the fourth and fifth paper were formed by asking, “how can we make 

use of the full survival curve estimate in a way that provides an easily interpretable 
treatment effect estimate, allows adjustment of covariates and does not rely on 
assumptions other than the independent censoring assumption needed for analyzing 
right-censored data?” Already having knowledge of the benchmark logrank test and 
hazard ratio (HR) via the Cox proportional hazards model, we reviewed RMST methods in 
the context of randomized controlled trials (RCTs). We reviewed different methods of 

estimating RMST and its variance, including basic methods that do not easily allow for 
covariate adjustment (KM method) and other methods that do allow for covariate 
adjustment. We chose five candidates from this review to implement into an R function 

and compare in the fourth paper.  
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We also reviewed literature concerning the use of RMST-based analysis methods in 

RCTs, particularly group sequential RCTs, because they are the most commonly-used, 
ethical and practical designs when the endpoint is survival. We found that the literature 
suggests fixing an analysis time point for RMST analyses in group sequential settings, 
which seemed unnecessary and likely to produce an unfair comparison to the logrank 
test and HR. The fifth paper sought to evaluate if fixing a time point was necessary for 

RMST-based analyses and compared these methods to the benchmarks.  

The following subsections describe the literature review for the four topics, providing 

brief descriptions of the papers reviewed for each of the topics. 

2.1 The history and current methods of pooled testing to detect HIV 
treatment failure 

Pooled testing methods were initially proposed and used to screen for blood infected 
with transmissible diseases (Pilcher, 2002; Westreich, 2008; Bilder, 2010). More recently, 
pooled testing methods have been used in the HIV treatment management setting to 

detect treatment failure, that is, when a patient becomes resistant to their current anti-
retroviral therapy (ART), through regular testing of the patient's HIV viral load (VL). 
Initially, pooled testing methods were developed only to detect acute HIV infection 
using a binary outcome (Westreich, 2008; Behets, 1990; Brookmeyer, 1999; Busch, 2005; 
Cahoon-Young, 1989; Gastwirth, 1989; Hammick, 1994; Hudgens, 2016; Kim, 2007; Kline, 
1989; Patterson, 2007; Pilcher, 2002; Pilcher, 2005; Quinn, 2000; Tu, 1995). Then May 

(2010) developed pooled testing methods for a continuous outcome, using HIV VL, to 
improve the detection of HIV treatment failure. May (2010) showed that these methods 
improved the operating characteristics of existing methods for pool sizes up to 10. 
These methods were further extended by Hanscom (2014), who improved on the simple 
search method proposed by May (2010) with use of covariates. Hanscom (2014) also 

developed methods incorporating predictive covariate information, but these methods 
proved unsuccessful in improving upon existing methods in realistic scenarios with 

highly skewed data. 

HIV treatment failure can reduce transmission of HIV by up to 96% (Cohen, 2011; Insight 

Start Study Group, 2015). However, most people infected with HIV live in, and most new 
infections occur in, regions that do not have the resources to regularly test all infected 
patients (US Department of Health and Human Services, 2019). Pooled testing for HIV 
treatment failure can potentially dramatically reduce the cost of individual testing while 
maintaining sensitivity to detect treatment failures in resource-limited regions (May, 

2010; Hanscom, 2014). The clinical validity of these pooled testing methods has been 
proven in the HIV treatment management setting for pool sizes up to 10 (Omooja, 2019; 
Kim, 2014; Smith; 2009, Van, 2011; Kim, 2013). Ssempijja (2019) attempted a different 
approach to reducing the cost of individual testing called adaptive frequency 
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monitoring, but this method resulted in an increased number of treatment failures and 

deaths. 

It has also been shown that there is covariate information predictive of HIV treatment 
failure (Bezabih, 2019; Khienprasit, 2011; Fatkenheuer, 1997; Sebunya, 2013; Burger, 1998; 

Robbins, 2007; Ayalew, 2016; Bacha, 2012; Swiss HIV cohort Study, 2008). Methods that 
successfully incorporate such information to improve method performance could lead 
to a reduction in, and possibly eradication of, transmission of HIV. This provided the 
motivation behind the development of our extended methods, which performed well in 
realistic simulations using highly skewed simulated data and using data collected from 

an HIV clinic in Rakai, Uganda (Brand et al., 2021). 

2.2 Prediction-driven RCT design 

A review of prediction-driven trial designs and their comparisons is given by Renfro et 
al., 2016). Renfro et al. describes a variety of designs including both frequentist and 
Bayesian designs. As our goal was to study designs for rigorously evaluate the 

performance of the pooled testing methods we developed in the first paper, we focused 
only on the frequentist designs that allow for accurate assessment of type 1 error, that is, 
the probability of declaring a treatment effect when none exists. Most of the literature 
on this topic focuses on the cancer treatment setting where the use of predictive 
biomarkers is common (Slamon, 2000; Paik, 2003; Conley and Taube, 2004; Taube et al., 

2005; Sequist et al., 2007; Bonomi et al., 2007; Mandrekar and Sargent, 2010; Renfro et 
al., 2016; Hu and Dignam, 2019; Mandrekar and Sargent, 2019). Prediction-driven RCTs are 
essential to maximizing the treatment outcomes using these predictive biomarkers 
(Woosley and Cossman, 2007; Hu and Dignam, 2019). Hu and Dignam (2019) outline the 
key concepts regarding prediction-driven RCTs. Two examples of prediction-driven 

RCTs are ProBio, a platform RCT designed to evaluate treatment outcomes for 
metastatic castrate-resistant prostate cancer and SHIVA which evaluates molecular 
profiling to direct treatment of metastatic solid tumors (Crippa et al., 2020; Le Tourneau 

et al., 2015). 

While researching these designs, it became apparent that existing prediction-driven 
RCT designs were often compared only with respect to efficiency between designs 
using different contrasts of interest, providing an unfair comparison (Shih, 2017). In order 
to rigorously evaluate the prediction-driven pooled testing methods developed in the 
first paper, it was clear that we needed an RCT designed to identify the clinical utility 

contrast, and this contrast is often overlooked (Sachs et al., 2020). Even when clinical 
utility is discussed, the definition of clinical utility leads to interpretability issues. Shih 
and Lin (2017 and 2018) and Sargent et al. (2005) define clinical utility in the 
experimental treatment setting as the difference between using the prediction-driven 
decision rule versus either a single option standard of care or randomizing between the 
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treatments. However, at the end of the trial, the standard of care could be different, 

immediately rendering the estimate of clinical utility irrelevant. No other research, to our 
knowledge, defined clinical utility in a comparative effectiveness setting where all 
treatments being compared are approved. It is still not clear to us what a proper 
definition of clinical utility in the experimental setting is, and we have found no literature 

discussing this point.  

2.3 Kaplan-Meier (KM) confidence bands 

The concept for our review paper on KM confidence bands was derived from a course 
on survival theory using counting processes which used the textbook, “Survival and 
Event History Analysis,” by Aalen, Borgan and Gjessing (Aalen et al., 2008). From there 

we reviewed the articles that originated some of the theory on survival curves and 
estimators such as Kaplan and Meier (1958), Aalen and Johansen (1978) and Aalen 
(1989). In the construction of the confidence bands, we use the Greenwood estimator 
for the variance function of the KM survival estimate divided by the true survival which is 
necessary for the confidence bounds using Brownian motion (Greenwood, 1926). The 

Brownian motion-based constructions of the KM confidence bands came from Gill 
(1980; 1983), Hall and Wellner (1980), and Nair (1984). Akritas (1986) then proposed using 
a bootstrap (Efron, 1979) to estimate the necessary parameters in the method proposed 
by Hall and Wellner (1980), and Beyersman (2013) showed that a wild bootstrap is useful 
in survival settings, leading to computational efficiency and applying to a variety of 
estimands. We then studied confidence band construction based on the likelihood ratio 

statistic first proposed by Thomas and Grunkemeier (1975) for confidence intervals and 

extended into confidence bands by Hollander et al. (1997). 

The remaining literature review regards documentation on the current implementations 

of these confidence band construction methods in standard statistical software. In R, 
construction starts with the ‘survival’ package (Therneau, 2020), and using this package 
one can construct the Hall and Wellner (1980) and Nair (1984) bands using the ‘km.ci’ 
package (Strobl, 2009). This package also allows for a log transformation as well as the 
linear representation. The ‘km.ci’ package also provides point-wise confidence intervals 
based on the likelihood ratio statistic, and we show that this can be modified to produce 

the confidence bands in Hollander et al. (1997). In Stata, the same features as ‘km.ci’ can 
be found with the ‘stcband’ function, although the ‘stcband’ function also allows for an 
arc-sign transformation as well as the log transformation (Coviello, 2008). And in SAS, it 
is also the case that the same features can be found. SAS uses the ‘lifetest’ function, and 
this function can also use the log-log transformation and the logit transformation in 

addition to the preceding transformations. 
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2.4 Restricted mean survival time (RMST) analysis 

The concept for studying restricted mean survival time (RMST) analysis methods 
originated from asking, “How to analyze the survival data from a clinical trial in a rigorous 

manner?” The logrank (Mantel, 1966) test and hazard ratio via Cox proportional hazards 
(Cox, 1972) was known to us, but each of these methods has its issues (Hernan, 2010; 
Stensrud et al., 2019). We wanted a rigorous, inferential statistical method that used the 
whole survival curve, provided an easily interpretable estimate of differences in survival, 
and was still valid when survival curves did not follow proportional hazards or when 

survival curves crossed. RMST, first proposed by Irwin (1949), satisfies these criteria and 
has been argued for recently as an alternative to the benchmark methods of the logrank 
test and Cox proportional hazards (Royston and Parmar, 2013; Kloecker et al., 2020; 
Huang and Kuan, 2018; Pak et al., 2017, Uno et al., 2015, Uno et al., 2015; McCaw et al., 202). 
Many RMST-based statistical tests and estimation methods have been developed. 
Hasegawa et al. summarizes the concepts involved when estimating differences in RMST 

including information fraction for differences in RMST, interpretation of those 

differences, sample size calculation and adjusted RMST analysis methods (). 

A method of estimating differences in RMST between groups was implemented in R via 

the ‘survRM2’ package by Uno et al. (2022) that utilizes an inverse probability censoring 
weighted analysis proposed by Tian et al. (2014). This method is a version of linear 
regression where the observations are weighted based on the invers of the KM survival 

estimate.  

Klein et al. (2008) implemented another method of estimating differences in RMST in 
both SAS (‘pseudosurv’) and R (‘pseudo’) that is based on pseudo-observations that 
were first developed by Andersen et al. (2003). This version models each observation’s 
contribution to the overall survival estimate of the group and regresses covariates on 

that contribution.  

Another method of estimating differences in RMST is based on flexible parametric 
models and was both developed by Royston and Parmar (2002) and implemented in 
statistical software by Royston and Lambert (2011) in Stata. This method fits fully 
parametric models to the survival estimate over time. It uses restricted splines to 

increase the flexibility in model fitting while ensuring that the first two derivatives are 
defined, which is helpful in calculating the variance of the estimate. This method was 
also implemented by Clements et al. (2018) in R via the ‘rstpm2’ package. However, in 
both implementations, the variance of the estimated difference in RMST is calculated 
using the delta method. This method of variance calculation treats the covariates as 

fixed, representing a population and not a sample from a population. This could 
underestimate the variance of difference in RMST if the data is indeed a sample and not 

the entire population. 
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A method of estimating differences in RMST based on the Cox proportional hazards 

model was developed by Chen and Tsiatis (2001), which to our knowledge, had not been 
implemented in statistical software. Although this method uses the Cox proportional 
hazards model, it does not assume proportional hazards holds between the groups 
being compared, because it models each of those groups separately with their own Cox 
model. The survival estimates are then calculated from the models using the Breslow 

(1972) estimator for the cumulative hazard function. 

The above methods we viewed as the most varied and promising methods of estimating 
differences in RMST that provide a treatment effect estimate and also an estimated 

variance of the estimate which can be used for inferential tests. However, we also 
reviewed other tests based on differences in RMST. The following tests we reviewed, but 
we chose not to include them in our analysis of RMST-based methods, because they 
showed less promise than the more current methods we did include in our analysis. 
Reasons for this include the fact that some methods do not provide a direct estimate of 
difference in RMST, some do not allow for incorporation of covariates, and some perform 

well only in certain situations. 

Pepe and Fleming (1989;1991) developed a weighted KM (WKM) statistic. Using this 
statistic, they showed that RMST-based tests can be more powerful than the logrank 

test when proportional hazards does not hold. The weighted mean statistic (WMS) was 
developed as an extension to the WKM by incorporating covariates via the Cox 
proportional hazards model by Shen and Fleming (1997). This method was designed to 
give lower weight to later differences in RMST when estimates can likely be more 
variable, that is, times when less observations are at risk. This makes the WMS 
conservative for heavy-tailed data with little to no censoring. Simulations showed that 

the WMS was also robust to non-proportional hazards, but is slightly less powerful that 
the Cox proportional hazards model when proportional hazards hold, which is a common 
theme with RMST-based analysis methods. Another method for estimating differences 
in RMST between groups based on weighting the KM survival estimate was developed 

by Roig and Melis, but the method does not allow for incorporation of covariates (2022). 

Methods of testing for differences in RMST specifically for use in the group sequential 
RCT setting have also been developed. The WMS method was eventually extended by Li 
for use in Group sequential RCTs by Li, but the method does not allow incorporating 

covariates (1999). The years of life saved (YLS), another name for RMST, statistic was 
developed for the group sequential RCT setting by Murray and Tsiatis (1999). They 
proved that standard group sequential procedures apply when the time point for 
calculation of RMST is fixed across all analyses within a trial. They also state that 
bootstrapping can be employed to estimate critical values for cases when the time 
point is not fixed. However, bootstrapping for critical values is not widely regarded as 

rigorous testing for approval of treatments and/or decision rules. It was this point that 



 

 17 

became the focus of the fifth paper. We wanted to evaluate various RMST estimation 

methods across multiple scenarios to assess whether the type 1 error rate can be 
inflated when the analysis time point is not fixed across analyses and compare those 

results to the performance of the logrank test and Cox proportional hazards. 
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3 Research aims 
1. Develop pooled testing methods to detect HIV treatment failure that 

successfully incorporate covariates in realistic scenarios with highly skewed viral 
load distributions and remain robust to incorrect predictions based on those 
covariates. 

2. Compare the novel pooled testing methods incorporating covariates to the 
current becnhmark methods of the mini pool + algorithm method and the 
modified simple search method in realistic scenarios usng both real and 
simulated data. 

3. Identify the most efficient RCT design able to evaluate the efficacy of 
prediction-driven decision rules, such as the pooled testing methods developed 

in the first research aim, in the comparative effectiveness treatment setting. 
4.  Evaluate the performance of the RCT design identified in research aim 3 in a 

variety of scenarios. 
5. Review methods of analyzing survival data. 
6. Identify or develop a method of analyzing survival data that utilizes the entire 

survival curve, allows for the incorporation of covariates, provides an easily 
interpretable estimate of differences between groups, and does not rely on 
survival modelling assumptions other than independent censoring. 

7. Implement methods of estimating differences in RMST between groups into an 
easily-used R function, including some methods that have not, to our knowledge, 

previously been implemented. 
8. Compare those implemented RMST-based methods in a variety of scenarios. 
9. Evaluate the use of those RMST estimation methods implemented in research 

aim 5 in group sequential RCT settings and compare their performance to the 
current benchmark methods, that is, the logrank test and the hazard ratio via the 

Cox proportional hazards model. 
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4 Methods 
This dissertation is concerned mainly with methods research, that is, reviewing, 
developing and evaluating statistical methods and their uses. In order to properly 
evaluate these methods, simulated data must be used, because it is only with simulated 
data that the truth is known. Therefore, simulated data comprises the great majority of 

the data used in this dissertation, and ethical considerations were deemed not relevant. 
In the first paper is the only place where we use real data, which was collected from an 
HIV clinic in Rakai, Uganda. The data that we obtained included no personal identifiers, 
and our use of it was not related to summarizing the data or reporting on the HIV 
situation in the region. We used the viral load data to simulate pooled testing results 
while using an actual distribution of HIV viral loads from a resource limited region. The 

HIV testing was performed on plasma using a Roche Amplicor 1.5 Monitor assay (Roche 
Diagnostics, Indiana, USA) and an Abbott real-time m2000 assay (Abbott Laboratories, 
Illinois, USA). An ethics board reviewed our data and its use and deemed that no ethical 
approval was required. All other research in this dissertation uses simulated data 

entirely. 

Because of the heavy use of simulated data, the methods of how that data was 
simulated is very important to the findings of this dissertation. In this section, we will 
describe the methods of simulation for each of the papers included in this dissertation 

along with the pooled testing methods we developed in the first paper, the methods of 
confidence band construction we reviewed in the third paper, and the restricted mean 

survival time (RMST) methods that were the subject of papers four and five. 

4.1 Novel methods of pooled testing for detecting HIV treatment 
failure 

The novel pooled testing methods developed for detecting HIV treatment failure that 
incorporate covariate information that may be predictive of HIV viral load (VL) are 
complex and difficult to describe. In Section 1 of the supplement of Brand (2021), Tables 
S1-S3 provide detailed step-by-step descriptions for each of the mini pool with 
prediction, linear regression and linear regression systems of equations methods. 
Because the methods are complex to describe let alone implement, we have also 

created an R Shiny app that is publicly available at 
https://adambrand.shinyapps.io/shiny_pooled_testing/. With this Shiny app a user can 
upload an Excel sheet with subject IDs and predicted VL for each subject, and the app 
will tell them which subjects to individually test. The user can enter the test results, and 
the app will tell them the next set of subjects to test and so on. The app allows for seed 

setting, so screenshots can be taken at each step to reproduce a set of subject testing 
without having to keep the app running while testing is conducted. A tutorial video on 
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how to use the app along with an example Excel sheet is available at 

https://github.com/Adam-Brand/Pooled_Testing_HIV.  

Instead of repeating the method description that is already in the supplement of the 
paper, I will provide a description along with pictures on how the app is used. The best 

way to understand the methods is to use the app to try out different pooled testing 
methods for oneself. Figure 1 shows a screenshot of the pooled testing tool app being 
used to upload an Excel sheet with subject ID and VL predictions. This can be done from 

any browser and a local Excel file. 

Figure 1: Pooled testing tool app data upload 

 

Figure 2 shows the next step of the app, which is choosing the pooled testing method, 
the threshold for defining treatment failure and the lower limit of detection for the assay 

being used. Then a user sets a seed to ensure that identical results can be recovered in 

future uses of this data and clicks on the generate matrix button. 

Figure 2: Pooled testing tool app method selection 
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Next, the app arranges the subject samples into a 10 x 10 matrix by subject ID and asks 

for each of the row and column pooled test results. The reason seed setting and tracking 
is so important is to ensure that the same matrix arrangement of subject IDs can be 

recreated. Figure 3 depicts a matrix of subject IDs. 

Figure 3: Pooled testing tool app matrix generation 

 

In order to enter the pooled results, the user simply clicks each cell corresponding to 
the pooled result. When selecting the mini pool with prediction method, only the row 

results can be entered, reflecting 10 independent mini pools. 

Figure 4 depicts the matrix generated in Figure 3 with the user input pooled test results 
for the row and column pools along with the testing matrix. Note that the sum of row 
results does not need to equal the sum of the column results, and due to measurement 
error, we do not expect them to be equal. The pooled testing methods are designed to 
handle this well in a way that attempts to maximize efficiency, defined as the number of 

tests saved versus individual testing, while not losing sensitivity, defined as the 
proportion of treatment failures detected compared to individual testing. The bottom 
matrix depicts the testing matrix. The row and column results have been altered 
automatically according to the method to classify as many subjects as possible based 
on the initial pool results. The subject IDs in grey have been classified and do not need 

individual testing. The subject IDs in black have been selected by the method algorithm 
for testing in this round. The user simply clicks on a subject ID and enters their test 
result. The app will not allow a user to enter a test result for a classified subject nor an 

empty cell. 

Figure 4: Pooled testing tool app pooled results 
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Figure 5 depicts the updated testing matrix with the individual test results. The user 
then clicks the update button. The app runs through the next step of the method 
algorithm and selects the next group of individuals to be tested, depicted in Figure 6. 
This continues until all subjects have been classified. Once all subjects have been 
classified, the entire testing matrix will be grey, depicted in Figure 7, in which case the 

subject clicks the ‘Download’ button at the bottom and receives an Excel sheet identical 
to the uploaded Excel sheet with the addition of a third column which depicts the 

results of the testing. A sample of such an Excel sheet is shown in Figure 8. 

Figure 5: Pooled testing tool app individual results, 1st round 
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Figure 6: Pooled testing tool app individual results, 2nd round 

 

Figure 7: Pooled testing tool app individual results, fully classified 

 

Figure 8: Example results Excel sheet after classification 

 

When the ‘vl ‘ column reads ‘< cutoff’ it means that the subject was classified without 
individual testing as having not experienced a treatment failure. Depending on the 
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prevalence of treatment failure in the population, this could include most of the 

subjects. If the individual was tested individually, their numeric result will be shown. 

The hybrid prediction class of methods classifies subjects based on their predicted VL, 
and each of the classes can receive a different pooling method or individual testing. For 

one to implement this method, a population of subjects would be classified into tiers, 
and then the pooled testing tool app can be used on each tier of subjects separately, 
utilizing the method selected for that tier. In the first paper, this is implemented as the 
I10HyPred90-HyPred method which means that the subjects with predicted VL in the 
top 10% are tested individually while the remaining 90% are tested via the mini pool with 

prediction (MiniPred) method. 

Although the pooled testing methods can be difficult to explain and implement, the 
pooled testing tool should make it easy to implement in practice. The tool can also help 

to understand the different methods and how they work. 

4.2 Simulation methods for evaluating pooled testing methods 

As with the pooled testing method description in the previous section, a detailed 
mathematical description of the method simulation is included in the first paper, Section 
3. Here we will provide a more heuristic description of the simulation method used and 

the reasons behind it.  

We attempted to simulate the data and methods in a way that mimics as closely as 
possible an actual HIV treatment monitoring situation in a resource-limited region. To 
this end, there are a number of choices we made with regards to how we simulated the 

data and evaluated the pooled testing methods. One of the important factors was the 
highly-skewed distribution of HIV viral loads (VL) that are commonly found in subjects 
receiving treatment. When the treatment works, VL is controlled at or below levels of 
detection. When treatment has failed, VL increases exponentially and can be in the 
millions. To mimic the distribution as well as possible, we used the VL distribution in May 

et al. (2010) which was based on a natural history cohort of HIV-infected individuals as a 
baseline to compare with our simulated VL distribution. We wrote an R Shiny 
distribution-fitting app that visually compared via bar graphs our simulated distribution 
based on the log10(VL) model to the distribution in May et al. This is how we arrived at 
the distributions of X1 and X2 in our simulated data as well as the model coefficients. The 

resulting prevalence of treatment failure was approximately 6%, which is higher than one 

would expect in a resource-rich region, but could be likely in a resource-limited region. 

We applied an error term to the true model, so we could introduce noise and vary the 
ideal predictive accuracy of any predictive model. The error term was applied on the log 

scale in order to represent that fact that greater VLs had the potential for greater error. 
In the presented simulations we compared the pooled testing methods when there was 
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no error and when the error was sufficiently large enough to produce only a weak 

correlation between the resulting VLs and the true model. In this way we are able to 
compare methods in scenarios that have perfect predictive accuracy and in scenarios 
where even using the true predictive model (the ‘AGAIG’ scenario), predictive accuracy 

is much less strong.  

When simulating the prediction model, we applied ridge regression to a sample of size 
5,000 generated from the true data generation model in the ‘AGAIG’ scenario. We chose 
a smaller sample size, because we didn’t want the predictive model to be too close to 
the truth and a center implementing this method may only have 5,000 subjects of 

previous data. Ridge regression is a prediction method that can be used in the field to 
narrow down from a list of possible factors related to VL while producing estimated 

coefficients.  

We also generated a training set for a ‘Reverse’ scenario in which we reversed the 

association between VL and the covariates X1 and X2 in the training set. In this scenario, 
we wanted the highest VLs to be predicted as the lowest VLs and vice-versa. This was 
intended to be a sort of sensitivity analysis where we wanted to evaluate how the 
pooled testing methods performed when predictions were made to be harmful, worse 

than anything expected to be encountered in reality. 

In simulating each of the methods in each scenario, we also introduced measurement 
error, again applied on the log scale to represent greater measurement error for greater 
VLs. We varied this in each scenario to provide a sweeping estimate of method 
performance across a variety of measurement errors. For each method, each scenario 

and each combination of measurement error and noise error, we simulated 50,000 
subjects, or 500 10 x 10 matrices of subjects. We compared methods with respect to 
efficiency, percentage of tests saved versus individual testing, sensitivity, proportion of 

treatment failures detected versus individual testing, and number of rounds of testing.  

When simulating method performance using the actual VL data from the clinic in Rakai, 
Uganda, we had to simulate the pooled test results, because we only had information on 
individual viral loads. When simulating the pooled test results, we applied measurement 
errors to the true average of each pool of subjects and varied those errors to provide 

estimates of method performance across a variety of measurement accuracy. 

We also created an R Shiny application that implements these methods and was 
designed to be user-friendly. The application was somewhat difficult to write with a 
user-friendly design, but it should allow these methods to be implemented easily 

anywhere there is an internet connection and a way of deriving predicted VLs.  
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4.3 Simulation methods for evaluating prediction-driven RCT designs 

A detailed mathematical description of how we simulated the performance of 
prediction-driven RCT designs is provided in the Supplement to the second paper 

(Brand et al., 2023). Here, we will provide the considerations choices we made regarding 

those simulations. 

In the main text of the second paper, we only provide one simulation scenario, and it 
does not compare between RCT designs but rather compares estimands. This may 

seem strange considering the paper is titled, “Confirmatory prediction-driven RCTs in 
comparative effectiveness settings for cancer treatment.” However, we identified early 
on that our main point was that the estimand for clinical utility was poorly defined in the 
current literature, and we wanted to provide a simulation to show a scenario where the 
currently-used definition of clinical utility could vastly bias the true clinical utility. 

Therefore, we created a simulation scenario where physicians prescribed treatment 
perfectly according to the prediction-driven decision rule which maximizes treatment 
outcomes. This could indeed occur in reality, or something close to it. A physician could 
have information about the subject, not the biomarker status itself, but information 
highly correlated with the biomarker that greatly influences their treatment prescription. 

In this case, a prediction-driven decision rule based on that unknown biomarker status 
would have no clinical utility, even though it maximizes the treatment outcome. This is 

the scenario that is simulated and presented in the main text of the paper.  

In this scenario, the experimental estimand for estimating clinical utility is an arm using 

the prediction-driven decision rule versus an arm receiving randomized treatment. The 
comparative effectiveness estimand is an arm using the prediction-driven decision rule 
versus an arm using physician’s choice of treatment. Again, this is meant to show how 
different the results can be from the two different estimands and the importance of 
well-defining the contrast of interest for the setting. We chose to use the cancer 

treatment setting, because that is the setting where most of the literature regarding 

prediction-driven RCT designs resides. 

Along with the mathematical description of our simulations in the supplement is also an 
evaluation of each RCT design’s performance of estimating their appropriate contrast of 

interest. The enrichment design is simulated to detect a treatment effect in a single 
subgroup, the biomarker stratified design is simulated to detect a differential treatment 
effect, and the biomarker strategy design is simulated to detect clinical utility. We also 
provide a guide for RCT simulation in the supplement for researchers as a tool for 

designing such RCTs. 
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4.4 Simulation methods for comparing KM confidence bands 

The full R code for reproducing the simulations is included in the supplement for the 
third paper (Sachs et al., 2022). Included in the code, along with the code for 

reproducing figures 2 and 3 in the paper, is code to implement the likelihood ratio 
confidence bands, code simulating actual coverage probabilities for each of the 
confidence band methods, code to reproduce the approximations for critical values in 
Hall and Wellner (1980), and code to approximate the critical values for the EP bands of 

Nair (1984). 

Figures 2 and 3 are based on a subset of the colon data, only 200 subjects, to illustrate 
the difference in confidence band estimation methods. Each of the confidence band 
methods was plotted on the same figure to compare the performance of each using the 
same sample data. Figure 2 compares the estimated bands while Figure 3 compares the 

width of the bands over time.  

The coverage probabilities are based on 1000 replications of sample sizes of 200 using 
an exponential distribution for survival times and a uniform distribution of censoring 

times.  A method was considered to have failed coverage if the true survival curve fell 

outside of the confidence band at any time.  

4.5 Restricted mean survival time (RMST) estimation methods 

Restricted mean survival time (RMST) analysis methods estimate the average time a 
subject survives up to a specified time point. For example, the average subject on a 

certain treatment may survive 3.2 years of the next 5 years. The specified upper time 
limit is important, because it allows us to estimate RMST even when the estimated 
survival does not drop to zero, as is necessary if estimating the overall mean survival. 
RMST is typically estimated as the area under an estimated survival curve up to the 
specified time point. Therefore, there are as many ways to estimate RMST as there are 

to estimate survival. In the fourth paper, we chose five promising methods of estimating 
RMST and compared them in realistic simulations. In the fifth paper, we evaluated how 
those methods of estimating RMST performed in group sequential RCT settings and 
compared their performance to the current benchmark methods in such settings, the 
logrank test and the hazard ratio via the Cox proportional hazards model. Mathematical 

descriptions of the methods themselves and how they are used are described in detail 
in Section 2 of the fourth and fifth papers, so here we will focus on a heuristic 
explanation of the methods and why we chose those five to include in the RMSTdiff R 

function. 

The first method we chose to include in our evaluations is the Kaplan-Meier (KM) 
method. This method is simple and was chosen as a baseline to compare to the more 
complex methods. The KM method simply calculates the area under the KM survival 
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estimate up to the specified time point. In this most simple form, no covariates can be 

included. The KM estimated survival curves are estimated for each comparison group 
separately and the areas under each curve are compared. As we know from the third 
paper, when the KM estimate is centered by the true survival and scaled by its standard 
error, it is approximately standard normal. This fact along with the analytical standard 
error in the book by Miller (1981) is used to derive the inference for the difference in 

RMST. This method was implemented in R by Uno et al. (2022). 

The next method we chose to include is the Tian method, developed by Tian et al. 
(2014). The Tian method is a covariate-adjusted RMST estimate, and as we have 

included it, it must have additional covariates to adjust for along with treatment arm in 
order to estimate differences in RMST between those arms. The Tian method models 
RMST directly using linear regression and an inverse probability censoring weighted 
estimating function to estimate the model coefficients. The estimated coefficient value 
and standard error corresponding to the treatment arm model term are used to provide 
the estimated difference and inference for differences between the arms. This method 

was also implemented in R by Uno et al. (2022). 

We also chose to include a method developed by Andersen et al. (2003) and 
implemented by Klein et al. (2008) based on pseudo-observations. This method 

calculates each subject’s contribution to their group’s RMST estimate. It is this 
contribution then that is regressed on using a linear function on the covariates including 
treatment arm. This method is implemented to allow for additional covariates or no 
additional covariates. The estimated model coefficients are obtained using the ‘geepack’ 
R package by Højsgaard et al. (2006). The estimated difference in RMST and inference is 

then provided by the corresponding estimated model coefficient. 

The fourth method we chose to include is the Chen method developed by Chen and 
Tsiatis (2001). The Chen method uses the interesting approach of utilizing the Cox 
proportional hazards model, but does not assume proportional hazards between the two 

groups being compared. It does this by estimating separate Cox models, one for each of 
the treatment arms. The cumulative hazard for each group is obtained using the Breslow 
estimator, and the survival estimate for each subject for each treatment arm is then 
recovered using the cumulative hazard and the Cox models’ coefficients. The survival 
estimates for each group are then averaged over every subject’s estimated survival for 

that group. The group survival estimates are integrated up to the specified time point to 
provide the RMST estimate for that group. Chen and Tsiatis (2001) developed the 

analytical standard error for the difference in these RMST estimates.  

Implementing this method in R is complex and difficult. Two authors of the fourth paper 

coded it independently and reconciled differences to ensure accuracy. As with the Tian 
method, the Chen method needs to include covariates in addition to the treatment arm 
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covariate, because the treatment group covariate is not included in either model. When 

no covariates are included, the model reduces to the Breslow estimator for cumulative 

hazard, which is identical to using the KM method discussed above.  

The last method we chose to implement is based on a class of flexible parametric 

models (FPM) developed by Royston and Parmar (2002) and implemented by Royston 
and Lambert (2011) in Stata. This method estimates a fully parametric function that 
attempts to fit the true survival curve as closely as possible by modelling the log 
cumulative hazard as a function of log time and the covariates. The Royston Parmar 
models use restricted splines to provide flexibility in model fitting while also ensuring 

that the first two derivatives of the log cumulative hazard model are defined at all times. 
This allows for estimation of the standard error using standard techniques. This method 
was implemented in R by Clements et al. (2018). However, the Stata and R 
implementations used the delta method to derive the standard error for the difference 
in RMST between the two groups. This derivation treats the covariates as fixed, which 
may not be ideal in many cases. We derived the standard error for the difference in 

RMST using M-estimation, which incorporates the variability in the covariates. To our 
knowledge, this was the first such implementation of this estimation of the standard 

error for the difference in RMST. 

We chose these five methods as they were the most used and/or promising methods 
for estimating differences in RMST. The KM method is certainly the most obvious, non-
parametric method for estimating differences in RMST. The Pseudo-observation method 
is a clever non-parametric method that allows for both including covariates and not 
including them while providing estimates and inference based on standard statistical 
packages. The FPM method also allows for covariates and no covariates while applying 

estimating a fully parameterized estimate of survival. The Chen and Tian methods, while 
only estimable as implemented when including additional covariates, provide two more 

competing versions of modelling that showed promise due to their original approaches. 

4.6 Simulation methods for comparing restricted mean survival time 
(RMST) methods 

Simulating the evaluation and comparison of restricted mean survival time (RMST) 
methods in the fourth and fifth papers followed similar structure and were constructed 
to mimic real treatment evaluation scenarios. In the fourth paper, simulation details are 
given in Section 4. In the fifth paper, the method of simulation is shown mathematically 
in Section 3 and the specific simulation scenarios are given in Section 4. The code for all 

simulation is made publicly available at github.com/Adam-
Brand/RMST_Pseudo_Ealuation and github.com/Adam-Brand/RMST_grp_seq_comp for 
the fourth and fifth papers, respectively. Instead of repeating what is already in the 

papers, we will provide explanation for why we chose to simulate as we did. 
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The main concept that guided all of the simulation was that they be as realistic as 

possible. To us that meant that they accounted for rolling recruitment, that is, not all 
subjects were recruited at once, but rather by a random process over time. This paired 
with random survival times produced random trial stop times and random amount of 
information at those trial stop times. We chose a Poisson process for recruitment to 
reflect that the average recruitment was constant across time. We also recruited up 

until the time of final analysis, that is, when the planned number of events had been 
observed. We did this to mimic an industry trial where time to completion can be more 
important than limiting the number of enrolled subjects, especially when survival times 
are short. We chose relatively short survival times as that is what is common in the 
cancer setting for experimental treatment. Baseline survival times were around 9 

months and a clinically meaningful benefit was defined as around 3 months extension of 
life. When covariates were introduced these were not exact, but that was the 

approximate averages in each treatment arm.  

In order to model survival dependent on covariates, we chose to model median survival 

by a linear model in the covariates. We included in the model one continuous covariate 
(age) and one binary covariate (sex) along with the treatment group term. When 
proportional hazards held, each subject’s survival was drawn from an exponential 
distribution where the rate term was determined by the modelled median survival. In 
this way, it is possible that each subject’s survival time was drawn from a different 

distribution, which may be likely in reality. When proportional hazards did not hold, one 
treatment group was drawn from an exponential and the other drawn from a Weibull 
distribution with a set shape parameter and the rate parameter again determined from 
the modelled median survival and the set shape parameter. We were able to change the 
way proportional hazards deviated by changing the shape parameter of the Weibull in 

the fifth paper. This is how we simulated the delayed treatment effect and the early 

treatment effect.  

Another important aspect of trial simulation is censoring. In order to simulate censoring, 
we differentiated between administrative censoring and censoring due to loss to follow-

up. Simulating administrative censoring was rather straight forward. Accrual time and 
trial stop time were already realistically simulated, so administrative censoring occurred 
for any subject whose enrollment time added to survival time was longer than the trial 
stop time. Such subjects were censored and their observed survival time was their 
enrollment time subtracted from the trial stop time. Censoring due to loss to follow-up 

was simulated first as a draw from a Bernoulli to produce the desired proportion 
(approximately in any finite sample) of subjects lost to follow-up. Then, a subject’s 
censoring time was drawn from a Uniform distribution from just after enrollment to their 
original event time. This is not a standard way to simulate censoring. Typically, survival 
and censoring time distributions are drawn independently for each subject and the 
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minimum of the times are used and the subject is either censored if the censoring time 

is the minimum or observed to have an event if the survival time is the minimum. The 
survival and censoring distributions are chosen to produce, on average, a desired 

proportion of censored subjects.  

Notice that our way of simulating censoring due to loss to follow-up is directly 
dependent on survival time as the subject’s survival time serves as the upper support of 
the censoring time distribution. This is done intentionally in that we think it more closely 
reflects reality. We are saying that each subject has an equal chance of dropping out of 
the trial and they are equally likely to drop out at all times throughout the trial. Of course, 

they cannot drop out after they’ve experienced an event. This violates the independent 
censoring assumption, but in a way that we would expect to see in an actual trial. The 
classic version of simulating censoring, however, also violates independent censoring, 
albeit indirectly. The censoring time distribution is chosen based on the survival time 
distribution to produce the desired proportion of censored subjects. Thus, the 
censoring times are dependent on survival times. In order for true independence, the 

censoring time distribution must be chosen without regard to the survival times, 
producing any proportion of censoring from 0 to 1.0. And typically, all censoring is 
simulated this way, not differentiating between administrative censoring (the bulk of the 
censored subjects in a well-run trial with a survival endpoint) and censoring due to loss 
to follow-up. We think that our version of simulating censoring is more realistic and 

transparent with regards to violation of the independent censoring assumption. 

When simulating a group sequential RCT, we implemented formal interim analyses for 
efficacy and futility at 30% and 70% of the planned total number of events. We chose 
these cutoffs as they have been used in cancer trials for experimental treatments and 

they are slightly different from the even spacing of 1/3 and 2/3. Two formal interim 
analyses are common in such settings, and adding a futility boundary is intended to 
lessen the average sample size when no meaningful treatment effect exists. We used 
O’Brien-Fleming monitoring boundaries for both efficacy and futility, as is also common 

in these settings.  

The intention of the fourth paper was to illustrate the RMSTdiff function with a simple 
comparison of the different RMST-based methods, so only two scenarios were explored, 
one with and one without dependent covariates. The main purpose of the fifth paper 

was to compare RMST-based methods to the logrank test and the Cox proportional 
hazards model in realistic trial scenarios. To this end, four scenarios were simulated, two 
where proportional hazards held and two where it did not, with different deviations. The 
main goal was to see if any of the RMST-based methods inflated the type 1 error beyond 

the logrank test and Cox model while also comparing power. 
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5 Results 

5.1 Evaluating prediction-driven pooled testing methods for 
detecting HIV treatment failure 

Tables 1 and 2 in the first paper show the full results of the simulation evaluation of the 
prediction-driven pooled testing methods for detecting HIV treatment failure in the 
‘AGAIG’ and ‘Reverse’ scenarios. The supplement of the first paper also provides 

additional results including scenarios not included in the main text of the paper.  

In the ‘AGAIG’ scenario, the minipool with prediction (MiniPred) method had a higher 
efficiency and lower number of testing rounds over the benchmark minipool method, 
Mini+alg, while maintaining similar sensitivity. The superior efficiency erodes somewhat 
when increasing the measurement error and the noise in the predictions, but is still 
present over Mini+alg. The best performing matrix-based pooled testing method in this 

scenario is the linear regression systems of equations (LRSOE) method and is superior 
to the modified simple search (MSS), the benchmark matrix-based method) in almost 
every combination of measurement error and prediction noise, having both superior 
efficiency and lower number of testing rounds while maintaining similar sensitivity. The 
best performing method overall in the ‘AGAIG’ scenario is the I10MiniPred90-HyPred 

method. The I10MiniPred90-HyPred method has the highest sensitivity in all 
combinations of measurement error and prediction noise while maintaining superior or 
similar efficiency. When the prediction noise is high, it takes more rounds of testing than 
the other methods, but takes the lowest number of rounds of testing with no prediction 

noise. 

In the ‘Reverse’ scenario, the least efficient methods are the MiniPred and 
I10MiniPred90-HyPred methods. Their sensitivity remains the highest, but it comes at 
the cost of efficiency loss of up to 20% over the Mini+alg and matrix-based methods. 
The linear regression method (Linreg) and LRSOE method remain robust to the poor 

predictions in the ‘Reverse’ method. The Linreg method maintains similar efficiency and 
sensitivity as the MSS method while the LRSOE method has slightly more sensitivity and 
slightly less efficiency. Linreg has higher number of testing rounds than both the MSS 

and MRSOE methods. 

Table 3 in Section 4 of the first paper presents the results of applying the prediction-
driven pooled testing methods on actual VL data with simulated pooling that includes 
measurement error. The mini pool and HyPred methods have the highest sensitivity with 
the prediction-driven MiniPred and HyPred methods having higher efficiency and lower 
number of testing rounds. The LRSOE method has higher sensitivity and lower number of 

testing rounds compared to the other matrix-based methods while maintaining similar 

efficiency until measurement error increases. 
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5.2 Comparing clinical utility contrasts 

Table 2 in the Results Section of the second paper presents the results of comparing the 
definitions of the contrast of clinical utility in a scenario where the true clinical utility is 

zero. In each of the six scenarios by median survival and proportion of marker positive 
subjects, each analysis method rejects the null hypothesis that clinical utility is zero at a 
rate much higher than the nominal level of 0.05 when using the experimental definition 
of clinical utility. Also, the mean treatment effect estimates for all methods except the 
logrank test, which cannot provide a treatment effect estimate, are biased away from 

there true value using the experimental definition. For example, When the true RMST 
measuring clinical utility is zero, using the experimental definition results in an estimated 
RMST of 3-4+. When the true hazard ratio is 1, the experimental definition of clinical 
utility results in an HR of 1.2-1.3. The logrank test rejects the null of zero clinical utility 
77%-99% of the time when the null is true. This is evidence that using the improper 
definition of clinical utility can heavily bias the results using any standard method of 

analysis. 

5.3 Comparing KM confidence bands 

Figure 2 in the Results Section of the third paper shows the results comparing the 
different confidence band constructions. Figure 3 plots the width of those construction 

over time. The narrowest confidence bands are the point-wise confidence intervals, but 
those do not have the desired coverage probability. Of the properly constructed 
confidence bands that have nominal coverage rates, the likelihood ratio bands seem to 
perform the best, that is, they have a consistently tight band width across time. The log 
transformed Hall-Wellner bands have tight bandwidth at later times, but very wide 

bands at earlier times. The log transformed equal precision bands track the likelihood 

ratio bands with a slightly wider band width. 

5.4 Comparing RMST estimation methods 

Tables 1 and 2 in Section 5 of the fourth paper present the results comparing the RMST-
based estimation methods, estimating the difference in RMST by treatment group. Table 
1 presents the results from Scenario 1, where the covariates are generated independent 
of the survival outcome. In this scenario, when covariates are not included in the 
estimating model, the pseudo-observation (P-o) method has the lowest bias, but also 
have the lowest power. The flexible parametric models (FPM) method has the highest 
power while maintaining a relatively small bias. The KM method has the highest bias, but 

it maintains high power and close to nominal type 1 error. The type 1 error of all methods 
are controlled at nominal levels when not including the independent covariates in the 

estimation models.  
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When covariates are included in the estimation models in Scenario 1, both bias and 

power decreases slightly for the P-o and FPM methods. Also, for the FPM method, the 
type 1 error increases slightly above the nominal level. The Chen method has the 
smallest bias of all the methods and similar power and type 1 error to the P-o method. 

The Tian method has high bias, low power and controlled type 1 error. 

In Scenario 2, where the covariates are predictive of the survival outcome, but when 
those covariates are not included in the estimation models, the P-o and FPM methods 
still have the smallest bias while maintaining power. The KM method has the highest bias 
and all three methods have inflated type 1 error. However, the type 1 error is inflated the 

most with the FPM and KM methods. When the predictive covariates are included in the 
model, The Tian, Chen and P- methods all had small bias. The Tian method had the best 
control of type 1 error, but it also had the lowest power. The FPM method had very high 
bias comparatively, the highest power and slightly inflated type 1 error. The Chen and P-
o methods performed similarly. The different variance estimation methods within the P-

o method and the FPM methods performed very similarly across all simulation scenarios. 

5.5 Evaluating RMST estimation methods in group sequential trial 
settings 

Section 5 of the fifth paper contains Tables 1-4, presenting the results comparing the 
RMST-based methods to the logrank test and hazard ratio (HR) via the Cox proportional 

hazards model in group sequential trial settings in four scenarios.  

Table 1 presents the results from Scenario 1 where proportional hazards held and 
covariates were not predictive of the survival outcome. When no covariates were 
included in the estimation model, the RMST-based estimation methods had slightly 

lower power than the logrank test and HR. The logrank test had the lowest average 
sample size. All methods had below the nominal .025 one-sided type 1 error. When the 
independent covariates were included in the estimation models, the results were similar. 

The Tian method had the lowest power and highest average sample size. 

Table 2 presents results from Scenario 2, where proportional hazards still held, but now 
covariates are predictive of the survival outcome. When the covariates were not 
included in the estimation models, the results were similar to Scenario 1. When those 
estimation models included the predictive covariates, the power of the HR, P-o and FPM 
methods increased, with the HR having the highest power. The FPM method also had 

high power and the lowest average sample size. The Tian method again had the lowest 

power. All methods had type 1 errors well below the nominal rate. 

Table 3 presents results from Scenario 3, where covariates are predictive and there is a 
delayed treatment effect, meaning proportional hazards does not hold true. When the 

predictive covariates are not included in the estimation model, the KM method has the 
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highest power, followed by the P-o method. The FPM and HR methods have the lowest 

power. All methods control type 1 error below nominal rates. When the predictive 
covariates are included in the estimation models, the Chen method has the highest 
power, followed closely by the P-o method. The FPM method has the lowest power. All 
methods control type 1 error. The HR method increases in power when including the 
predictive covariates, but it still trails the other methods in this scenario where 

proportional hazards does not hold. 

Table 4 presents the results from Scenario 4, where covariates are predictive and there 
is an early treatment effect. When covariates are not included in the model, all methods 

have 100% or 99% power. However, the logrank test has inflated type 1 error rate of .036 
compared to the nominal rate of .025. The other methods control type 1 error rate while 
the RMST-based methods have lower average sample sizes than the HR. When 
covariates are included in the estimation models, the power of all methods is again at or 
close to 100%. The type 1 error rate is controlled for all methods close to the nominal 

rate while the Chen and P-o methods have the lowest average sample size. 
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6 Conclusions 
Incorporating covariates that are even somewhat predictive of HIV treatment failure can 
potentially improve upon existing pooled testing methods. In the first paper, the 
MiniPred and HyPred methods showed that they could vastly improve upon the 
performance of the benchmark pooled testing methods when predictive accuracy was 

great to somewhat good and measurement error was relatively small. The matrix-based 
Linreg and LRSOE methods showed that covariates could be incorporated and remain 
robust to scenarios where predictions were actually harmful, shown in a scenario where 
predictions were worse than they would be expected to be in reality. When predictive 
accuracy is expected to be somewhat good and measurement error is relatively small, 
the MiniPred or a HyPred method with heavy MiniPred use are recommended. If the 

prediction accuracy level is unsure, than perhaps the Linreg or LRSOE method is the 
best option, sacrificing some efficiency for better average efficiency across prediction 
accuracy levels and high sensitivity. If the measurement error is too high, even individual 
testing can miss a high proportion of treatment failures and pooled testing may not be 
recommended. Although these methods show much promise, they should be rigorously 

evaluated for efficacy and safety before being implemented for all subjects in resource-

limited regions. 

When evaluating clinical utility, the setting is important. In the comparative effectiveness 

setting, defining clinical utility is relatively straight forward, because the standard of care 
is what a physician would have prescribed without a prediction-driven decision rule. In 
the experimental setting, the appropriate definition of clinical utility is still unclear to 
these authors. During the course of a trial, and new standard of care could be identified, 
meaning whatever definition used during the course of the trial may be obsolete. The 
only current RCT design able to directly identify the appropriate definition of clinical 

utility is the biomarker strategy design. Using another definition of clinical utility and/or 
another design to identify it can lead to large bias as seen in Table 2 in the second 
paper. Identifying the contrast of interest and its proper definition  for the setting it is 

being used is essential for obtaining a rigorous answer to the scientific question. 

Although automatically generated by multiple statistical software languages, the KM 
confidence bands typically presented are misleading. Visually they represent the 
variability of the entire KM curve, however, their coverage rate can be much less than 
95%, or whatever the nominal rate is. When presenting confidence bands, they should 
reflect the true variability of the entire curve, and these are available in current 

statistical software packages. Hopefully our third paper will increase their use. 

RMST-based analysis methods are a viable analysis method along with the logrank test 
and the hazard ratio via Cox proportional hazards, and they should be used more 

especially if the proportional hazards assumption may be in doubt. Although they lose a 
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little power to the two benchmark methods when proportional hazards is true, they have 

better power when proportional hazards is not true, and they are better at preserving 

the type 1 error rate even in group sequential RCT settings. 
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7 Discussion 
We’ve developed prediction-driven decision rules in the form of pooled testing 
methods for detecting HIV treatment failure that incorporate predictions via covariates. 
We’ve shown through simulation with simulated data and real VL data from an HIV clinic 
in Rakai, Uganda that the novel pooled testing methods show promise in reducing the 

resource burden of regular VL testing for all infected subjects, perhaps leading to the 
eradication of the disease. We have researched RCT designs that would be able to 
properly and rigorously evaluate the efficacy of these prediction-driven decision rules 
and have identified the appropriate setting and specific RCT design that can do this. We 
have discussed proper techniques for constructing a KM confidence band with nominal 
coverage, have compared these techniques and have provided R code for 

implementation of the likelihood ratio technique. We have also studied various methods 
of analyzing based on the restricted mean survival time (RMST), implemented a new 
method in R along with some new variance estimators, compared these methods to 
each other, and compared these methods with the logrank test and the hazard ratio via 

the Cox model in group sequential RCT settings. 

This dissertation began with the concept of developing novel pooled testing methods 
for detecting HIV treatment failure, and the following projects grew out of the eventual 
necessity of testing those pooled testing methods in order to implement them in the 

field. Any time new treatments or methods are introduced which can alter a subject’s 
treatment, and therefore outcome, it is essential to rigorously prove a benefit before 
implementing them for all subjects. This dissertation stops short of rigorously proving 
the benefit of the HIV pooled testing methods for all subjects in resource-limited 
regions. However, through the five projects comprising this dissertation, a clear path for 
how to rigorously test those methods has been laid. The proper RCT design has been 

identified, any analysis methods that work without the common assumptions made by 

the benchmark methods have been shown to work in a variety of scenarios.  

The next step is to design an RCT to compare the pooled testing methods introduced 

here to the standard method of testing in each resource-limited region using the 
biomarker strategy RCT design with a primary analysis of the RMST-based pseudo-
observation method. Of course, the standard logrank test and HR via the Cox model 

would likely serve as supporting evidence, as could additional RMST-based methods. 

We hope that this dissertation has furthered statistical science and understanding in 

even a small way, and we welcome questions, comments and concerns.  
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