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Popular science summary of the thesis 
Metabolism is a set of processes in our body for creating energy and other biochemical 
compounds from food. Viruses are parasites that survive on the human body for energy 
and other genetic materials to replicate themselves. There are many viruses affecting 
public health and causing mild to severe infections. The study presented in the thesis 
investigates the changes in the human metabolism that occur because of infections from 

three viruses, namely, acute respiratory syndrome coronavirus 2 (SARS-CoV2), human 
immunodeficiency viruses (HIV-1), and Crimean–Congo hemorrhagic fever virus (CCHFV). 
Many previous studies published in reputed science journals reported changes in human 
metabolism caused by infections from SARS-CoV2 and HIV-1. The human metabolism 
comprises many pathways that perform a unique metabolic function, with many reactions 
in each pathway. A reaction represents an activity in a cell that produces, consumes, or 

transports one or more metabolic compounds. However, very few (or none) previously 
published studies have examined metabolism changes in terms of their associated 
reactions. Also, research on CCHFV infections is still in the infant stage. The study found 
that the three viruses cause changes in similar metabolic pathways, but changes in their 
associated reactions are different. The results obtained from my studies can aid novel 

antiviral strategies targeting the host immunometabolic system. It can thus allow a fruitful 
route to the computational guiding of experimental antiviral drug discovery and drug 

repurposing in infectious diseases. 



  



 

 

Abstract 
In recent decades, global health has been challenged by emerging and re-emerging 
viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), human 

immunodeficiency viruses (HIV-1), and Crimean–Congo hemorrhagic fever virus (CCHFV). 
Studies have shown dysregulations in the host metabolic processes against SARS-CoV2 
and HIV-1 infections, and the research on CCHFV infection is still in the infant stage. Hence, 
understanding the host metabolic re-programming on the reaction level in infectious 
disease has therapeutic importance. The thesis uses systems biology methods to 

investigate the host metabolic alterations in response to SARS-CoV2, HIV-1, and CCHFV 

infections. 

The three distinct viruses induce distinct effects on human metabolism that, 
nevertheless, show some commonalities. We have identified alterations in various 

immune cell types in patients during the infections of the three viruses. Further, 
differential expression analysis identified that COVID-19 causes disruptions in pathways 
related to antiviral response and metabolism (fructose mannose metabolism, oxidative 
phosphorylation (OXPHOS), and pentose phosphate pathway). Up-regulation of OXPHOS 
and ROS pathways with most changes in OXPHOS complexes I, III, and IV were identified 

in people living with HIV on treatment (PLWHART). The acute phase of CCHFV infection is 
found to be linked with OXPHOS, glycolysis, N-glycan biosynthesis, and NOD-like receptor 
signaling pathways. The dynamic nature of the metabolic process and adaptive immune 

response in CCHFV-pathogenesis are also observed. 

Further, we have identified different metabolic flux in reactions transporting TCA cycle 
intermediates from the cytosol to mitochondria in COVID-19 patients. Genes such as 
monocarboxylate transporter (SLC16A6) and nucleoside transporter (SLC29A1) and 
metabolites such as α-ketoglutarate, succinate, and malate were found to be linked with 
COVID-19 disease response. Metabolic reactions associated with amino acid, 

carbohydrate, and energy metabolism pathways and various transporter reactions were 
observed to be uniquely disrupted in PLWHART along with increased production of α-
ketoglutarate (αKG) and ATP molecules.  Changes in essential (leucine and threonine) and 
non-essential (arginine, alanine, and glutamine) amino acid transport were found to be 
caused by acute CCHFV infection. The altered flux of reactions involving TCA cycle 

compounds such as pyruvate, isocitrate, and alpha-ketoglutarate was also observed in 

CCHFV infection. 

The research described in the thesis displayed dysregulations in similar metabolic 
processes against the three viral Infections. But further downstream analysis unveiled 

unique alterations in several metabolic reactions specific to each virus in the same 
metabolic pathways showing the importance of increasing the resolution of knowledge 

about host metabolism in infectious diseases.   
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1 Introduction 
Viruses are obligatory parasites that can cause mild to severe illness upon infection in 
animals and humans. Viruses require energy and other biochemical materials to replicate 
and survive. Viruses enter a host and interfere with their metabolic system for replication 
and reproduction. Since metabolism is the central mechanism for properly functioning all 

biological processes, such viral-mediated disruptions in the host system can cause 
severe health conditions. Proper metabolic processes are fundamental for efficient 
immune system function in health and disease. Significant interlink between immunity and 
metabolism is observed based on the findings that cellular metabolism dramatically 
affects the immune response to infectious diseases, inflammation, and cancer [1]. The 
study on the association between metabolism and immunity, known as 

immunometabolism, is getting greater attention. An in-depth understanding of cellular 
metabolic re-programming during viral infection and the associated immune regulation is 
critical to understand the host immune response and therapeutic interventions. 
Applications of system-level analytical methods and mathematical modeling approaches 
using multi-layered omics data can derive information about metabolic reprogramming 

in a more profound resolution. It can open the development of novel metabolism-based 

treatment strategies. 

1.1 Emerging and re-emerging viruses 

In recent decades, public health has been challenged persistently and intensively by 
newly identified pathogens, majorly zoonotic and vector-borne infectious agents which 
can cause fatal outbreaks. Human and veterinary health is constantly threatened by 
emerging and re-emerging virus diseases, with frequent new incidents originating mainly 
from the animal host. According to World Health Organization, out of the ~1400 pathogens 
affecting humans, over 50% originate from animal species through a zoonotic 

transmission naturally transmitted between humans and vertebrates through viral 
adaptation [2]. The term emerging disease represents the surfacing of a previously known 
infection or an as-yet-unknown infection, often with alterations in the pathogenicity [2]. 
They mainly denote frequently evolving infections in response to instantaneous changes 
in the association between pathogen and host. Most emerging and re-emerging 
pathogens are zoonotic, and viruses are over-represented in the group [3]. Over one-third 

of all emerging and re-emerging infections are caused by RNA viruses. Their host range 

typically spans several types of organisms in mammals, including humans. 

Re-emergence has been observed for various viral diseases globally in recent years. 

Human mobility across national borders is helping the disease to spread very effectively 
and rapidly, causing any new viral disease to become a potential worldwide pandemic. 
The increase of emerging and re-emerging infectious diseases is correlated with several 
factors and is briefly categorized into three groups. The first factor is the change in human 
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and societal behavior concerning lifestyle. Secondly, environmental and ecosystem 

changes, and finally, the change in the biology of microorganisms through adaptation [4]. 
The risks for the emergence and transmission of pathogens and the opportunity for 
infection are considerably associated with the previously mentioned changes in nature. 
The most responsible factors for the emergence and spread of infectious diseases are 
the ones related to humans and society. The global population is overgrowing and is 

estimated to be over 7.5 billion, which is considered a population explosion. The 
population rise is more significant in southern regions of Asia and sub-Saharan Africa. Risk 
for human-to-human transmission of infectious diseases and infections due to poor 
hygienic conditions are significantly associated with high population and its density. 
Infectious agents spread worldwide effectively and efficiently because of the current 

development of airline networks. The previous outbreak of SARS (severe acute respiratory 

syndrome) in 2003 was linked with advancements in human mobility worldwide. 

Socio-economic issues, comprising civil wars, increased number of refugees, and natural 
calamities, are also indirectly linked with the spread of emerging viruses. Changes in the 

global environment and ecosystem due to climate change related to global warming are 
also possible reasons for the increase in zoonosis and vector-borne diseases. 
Additionally, vectors are favored by natural calamities like floods, heat increases, and 
drought caused by climate variations and the reduction of natural rivals of the vectors. 
Globally the significant infectious disease can be grouped as follows with features such 

as (i) greater worldwide frequency (diarrhea, respiratory infections, etc.), (ii) concern for 
pandemic (Ebola viral disease, etc.), (iii) associated with eradication (e.g., poliomyelitis), 

Figure 1: Pictorial illustration representing global occurrence of various emerging and re-emerging diseases. 
Red coloured bubbles show newly emerging diseases, blue coloured bubbles denote re-emerging/resurging 
diseases and black bubble represent a ‘deliberately emerging’ disease. Reproduced with permission from 
Springer Nature (Morens, David M et al, 2004). 
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and (iv) ignored tropical diseases (e.g., rabies) [4]. Figure 1 shows the worldwide incidents 

of emerging and re-emerging diseases caused by various pathogens [5]. The emergence 
of viral infections is practically challenging to predict, and it is near impossible to eradicate 
zoonosis because wild animals or vectors can also carry viral pathogens. But it can be 
efficiently controlled with the help of advanced therapeutic approaches. My thesis 
presented host immunometabolic research through systems biology studies on three 

emerging and re-emerging RNA viruses, namely, severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV2), human immunodeficiency virus type-1 (HIV-1), and Crimean-

Congo hemorrhagic fever virus (CCHFV). 

1.1.1 Severe acute respiratory syndrome coronavirus 2 

Severe acute respiratory syndrome coronavirus2 (SARS-CoV-2) is an emerging infectious 
virus with single-stranded and positive-sense RNA genetic material. It belongs to the β-
coronavirus genus of the coronaviridae family, the seventh coronavirus (CoV) known to 
infect humans. Four of the seven coronaviruses are human CoV, NL63 (HCoV-NL63), 

HCoV-229E, HCoV-OC43, and HCoV-HKU1, known to be endemic in humans, and majorly 
the infection shows common-cold symptoms by affecting the upper respiratory track [6]. 
Infections in humans have been observed in recent decades by the rest of the three 
zoonotic coronaviruses, namely, Middle East respiratory syndrome coronavirus (MERS-
CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), and SARS-CoV-2, 

primarily transmitted from animals through adaptation [7, 8]. In 2003, SARS-CoV caused 
an epidemic in China, and MERS-CoV outbreaks occurred in the Middle East in recent 
years [6]. The coronavirus disease 2019 (COVID-19) pandemic was first identified in 
Wuhan city of China, in late 2019, and the causative agent was SARS-CoV-2 [9]. Infection 
in the lower respiratory tract, which causes fatal acute respiratory distress syndrome 

(ARDS), is the main characteristic of the three viruses.  

Respiratory droplets and aerosols are the media of transmission of SARS-CoV-2, and it 
has a 4 to 5 days median incubation period [10, 11]. In most cases, asymptomatic infection 
is observed, but many patients develop mild to moderate respiratory disease showing 

cough, fever, headache, myalgia, and diarrhea [11]. Severe SARS-CoV-2 infection is 
commonly associated with dyspnoea (shortness of breath) as a result of the condition 
known as hypoxemia [12]. Progressive respiratory failure occurs immediately, followed by 
dyspnoea and hypoxemia in severe COVID-19. Often, severely infected patients develop 
the condition of ARDS [13, 14]. Systemic level hyperinflammation, including elevated 

concentrations of inflammatory markers, including D-dimer, ferritin, and C-reactive 
protein (CRP) and pro-inflammatory cytokines release such as interleukin-1 (IL-1), IL-6, IL-
8, and tumor necrosis factor (TNF) are observed in COVID-19 patients having hypoxic 
respiratory failure [15]. Development of COVID-19 severity is found to be significantly 
correlated with age, obesity, and gender [16, 17], and conditions such as kidney failure, 
chronic pulmonary disease, hypertension, cardiac arrhythmia, heart failure, and diabetes 
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are observed as common co-morbidities [18]. Disruptions in metabolic flux in host cells 

are commonly observed in viral diseases. Experimental evidence suggests that the 
changes in host metabolism are associated with cell-specific viral replication and 
production [19]. Changes in glycolysis rate and ATP production in host cells are known to 
occur in viral diseases [20]. Since corroborative information shows significant disruptions 
in the host metabolic system in response to viral infection, a system-level biological 

understanding of the host can provide crucial knowledge to decide clinical intervention. 

1.1.2 Human immunodeficiency virus type-1 (HIV-1) 

HIV is another emerging virus of greater importance. Over the last four decades, the world 
has been suffering a terrible epidemic of the human immunodeficiency virus (HIV). 
Infection of HIV prompts progressive immunodeficiency in humans, and it can result in 
acquired immune deficiency syndrome (AIDS) [21]. If left untreated, AIDS can cause other 
opportunistic infections and, in the worst case, premature death. HIV is a single-stranded, 
enveloped RNA virus. HIV belongs to the genus Lentivirus in the family of Retroviridae (in 

the order of Ortervirales). Two strains of HIV have been identified so far, namely HIV type 
1 (HIV-1) and HIV type 2 (HIV-2). HIV-1 strains cause most infections. In some countries, 
such as Guinea-Bissau and Portugal, HIV-2 is present as a significant minority. The most 
relevant differences between HIV-1 and HIV-2 are more homogeneity of HIV-2 than HIV-1 
and more immune control over the HIV-2 infection [22]. There were several HIV-1 

subtypes, and recombinant forms were identified in HIV-1 than in HIV-2 [23]. The HIV 
infection is generally characterized by (1) inefficient viral transmission, (2) an acute phase 
that involves active viral replication and spreading to lymphoid tissues, (3) a chronic 
phase which is usually an asymptomatic phase with viral replication and sustained 
immune activation (4) an advanced phase with the exhaustion of CD4+ T cells leading to 

acquired immune deficiency syndrome (AIDS) [24]. 

The most critical barriers to successfully treating HIV-1 infection are the quick 
establishment and perseverance of various HIV-1 reservoirs. HIV-1 reservoirs can be 
grouped into two main categories. The first category is lymphoid tissue, which facilitates 

the plenitude of target cells to HIV-1, efficient propagation among cells, and inefficient 
penetration of drugs. The second category is cellular reservoirs that include mainly CD4+ 
T cells which are more vulnerable to HIV replication when activated and it can also bear 
latent virus. HIV targets significant elements of the immune system. It demolishes and 
dysregulates CD4+ T cells. HIV also causes reduced immunologic functions of natural killer 

cells (NK cells), B cells, CD8+ T cells, and nonlymphoid cells through mechanisms that 

come with activation, high cell turnover, homeostatic responses, and differentiation [24]. 

HIV infection causes long-term consequences in infected individuals. In most untreated 
HIV-infected individuals, progressive destruction of CD4+ T cells can occur, also found in 

individuals taking antiretroviral therapy (ART). Treatment can lead to an increase in CD4+ 
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T cells, but there is evidence of no increment in some individuals called immunological 

non-responders. Incomplete virologic suppression, as indicated by ongoing immune 
activation, can cause insufficient refurbishment of CD4+ T cell counts [25]. There is a high 
risk of developing a catastrophic complication named immune reconstitution 
inflammatory syndrome (IRIS) in individuals who start ART when CD4+ T cell counts are 
low and/or in the presence of other opportunistic infections [26]. Initialization of ART in 

heavily immunosuppressed individuals may lead to sudden activation of the immune 
response against the secondary pathogen, which triggers the specific inflammatory 

response, but that can cause significant damage to the tissue [27].  

Studies have identified that a rare group of HIV-1 seropositive individuals called elite 
controllers (EC) can maintain very low virus levels in their bloodstream without ART [28]. 
Specifically, ECs are individuals with HIV-1 RNA levels below the detection limit (typically 
less than 50 copies/mL) on at least two separate occasions without receiving ART. It is 
estimated that only about 1% of people living with HIV-1 are EC. These individuals have a 
unique immune response that allows them to control the virus without developing AIDS. 

Research into EC is ongoing, as scientists are interested in understanding how these 
individuals can control the virus without medication. This knowledge could potentially 
lead to new treatments or a cure for HIV-1. Studies have shown that EC has higher levels 
of glucose uptake in their CD8+ T cells compared to individuals with progressive HIV-1 
infection. This increased glucose metabolism appears necessary for CD8+ T cells to 

maintain their function in controlling the virus. In addition, studies from our group have 
shown the role of other metabolic pathways, such as lipid metabolism and mitochondrial 
function, in the immune response to HIV-1 [29]. These studies are helping to shed light on 
the complex interplay between metabolism and the immune system and how alterations 

in metabolic pathways can impact immune function.  

1.1.3 Crimean-Congo hemorrhagic fever virus (CCHFV) 

CCHFV is declared a critical emerging and re-emerging pathogen of interest by the World 
Health Organization for Animal Health and the World Health Organization [30]. The CCHFV 

belongs to the genus Nairovirus of the Bunyaviridae family. Viruses in the Nairovirus genus 
are tick-born in nature, and large L segments in their genome distinguish them from other 
bunyaviruses. They are primarily grouped into seven serogroups, and CCHFV and Hazara 
virus (HAZV) represent the CCHF serogroup. The Crimean–Congo hemorrhagic fever 
(CCHF) is a tick-born viral disease affecting humans, which is considered one of the most 

widespread infections globally. The primary geographic locations of the viral outbreaks 
include the Middle East to southeastern Europe, western China through southern Asia, 
and a majority of Africa. CCHFV is the causative agent of the disease, and it is transmitted 
through vertical and horizontal transmission through ticks belonging to the Ixodidae 
family. The ticks spread the virus to different kinds of wild and domestic mammals. 
Exposures to infected animals' blood, other body fluids, or direct tick bites are the reasons 
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for infection in humans. The primary source of human infection is the bite from ticks 

belonging to the genus Hyalomma. Nonspecific febrile syndrome through the vascular 
leak, multi-organ failure, shock, and hemorrhage are the main characteristics of CCHFV 
infection in humans [31]. Cases of CCHFV incidents have been recently reported since 
2000 in Iran, Turkey, Greece, the Republic of Georgia, India, and some Balkan countries. 
Also, viral RNA was detected in Hyalomma ticks isolated from a deer in Spain. From the 

first case in Turkey reported in 2002, the total number of cases increased to over 6000 

in ten years. Iran has also faced a large increase in cases since 1999 [32]. 

There are four phases in the CCHF course (1) incubation, (2) pre-hemorrhagic, (3) 

hemorrhagic, and (4) convalescent [33]. The mode of acquisition of the virus decides the 
incubation period length. The incubation usually spans 1-5 days after the tick bite, 
whereas in the case of exposure to infected blood or tissue, the period is mostly 5-7 days 
with a maximum of 13 days [34]. Lassitude, fever, and various nonspecific signs and 
symptoms are characteristics of the pre-hemorrhagic phase of CCHF, and it usually starts 
at 3-5 days of illness [34]. In the hemorrhage phase, which is fatal, death commonly 

happens on days 5-14 due to hemorrhage, multi-organ failure, and shock. Vaginal and 
abdominal bleeding and cerebral hemorrhage are common symptoms. Full recovery from 
the disease may take up to a year in surviving patients [34]. The recovery is often 
associated with health problems, including hair loss, poor appetite, weakness,  hearing 

loss, polyneuritis, impaired vision and memory, and hepatorenal insufficiency [35]. 

We lack in-depth knowledge about the host-virus interactions and pathogenesis of the 
acute phase of CCHF disease and related health conditions after recovery because of 
inadequate availability of systematic studies, lack of infrastructure, and sporadic nature 
of CCHF outbreaks. Designing efficient therapeutic and containment strategies for CCHF 

is only possible with thorough knowledge of host response against CCHFV. The disease 
pathogenesis and host immune response mechanisms can be effectively derived from a 
system biology approach to omics data generated from patient material and infected 

cells [36]. 

1.2 Virus: A metabolic re-programmer 

Viruses need the host’s cellular metabolism to survive. A significant availability of host 
resources is required for the viral proliferation in the infected body, including nucleic 
acids, proteins, membranes, and energy required for viral synthesis. Many transcriptome-
wide and metabolism studies identified a consequential shift in the metabolic system of 

infected cells. Cellular mechanisms such as replication and macromolecular synthesis are 
found to be inhibited by viral infection to use valuable resources for mass production of 
the virus [37]. Earlier studies on infection caused by various viruses have shown alterations 
in the glycolysis pathway. Increased level of glycolysis was identified in infections from 
viruses such as Rous sarcoma virus [38], feline leukemia virus [39], and poliomyelitis virus 
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[40]. In contradiction, inhibition of glycolysis was found in response to influenza infection 

by blocking the glucose-6-phosphate isomerase (GPI) reaction [41], but later studies 
found that early phases of influenza were associated with an increase in glycolysis [42]. 
Other aspects of metabolism are also identified to be dysregulated upon viral infection. 
Studies have shown that apart from increased glycolysis, redirection of cellular resources 
in favor of viral replication also occurs in the infection stage. Dysregulation in cellular 

metabolism by the increased rate of RNA breakdown to enlarge the nucleotide pool 
availability by the secretion of ribonuclease is observed in the poliomyelitis virus infection 
[43]. Similarly, a rapid decrease in available ATP was identified in the Rubella infection [44]. 
Invasion of mitochondria for the production of virus-specific compounds was identified 
in other viral infections as well [45]. My thesis is to identify various aspects of metabolic 

reprogramming of host cells in response to infections by SARS-CoV-2, HIV-1, and CCHF 

viruses. 

Although, no systematic studies have fully characterized the effect of CCHFV infection in 
host metabolism, substantial characterizations have been employed in SARS-CoV2 and 

HIV-1. The SARS-CoV2 infection causes prominent host metabolic shifts (Figure 2) [46]. 
Regulation of immune responses and the assembly of progeny virus is mainly 
orchestrated by the amino acid metabolism [47]. Studies have identified significant roles 
of the kynurenine [48], arginine [49, 50], and glutamine [51] in COVID-19 disease response. 
The enhanced glycolysis pathway is a primary characteristic of many virus infections, 

which helps with viral replication by rapidly producing energy and other necessary 

Figure 2: Illustration of host metabolic shift due to SARS-CoV2 viral replication and associated cellular 
dysregulation. Adapted from Jamison, David A Jr et al, 2022. 
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substrates [52]. Further, several studies have reported increased levels of metabolites or 

enzymes of glycolysis, such as pyruvate, pyruvate kinase, and lactate dehydrogenase 
(LDH) in COVID-19 [53]. Glycolysis is also crucial for SARS-CoV-2 to replicate [54]. 
Additionally, studies have also reported the importance of cholesterol [55] and fatty acid 

biosynthesis [56] [57] in the host response against COVID-19.  

Several studies suggest that HIV-1 pathogenesis is driven by immunometabolism, where 
metabolic disruptions may cause an immune malfunction that leads to persistent 
inflammation, resulting in AIDS-associated comorbidities [58]. A significant association 
between HIV-1 pathogenesis and T-cell metabolic reprogramming is proposed since HIV-

1 mainly infects CD4+ T-cells [59]. HIV-1 associated metabolic reprogramming in adaptive 
and innate immune cells is characterized by two major features: (1) upregulation of 
glycolysis pathway and downregulation of oxidative phosphorylation to favor more rapid 
ATP generation and biosynthesis for defense response and damage repair and (2) 
epigenetic reprogramming due to reduction in DNA methylation and increased histone 
acetylation [60]. The most abundant circulating amino acid, glutamine, which can also be 

converted to α-ketoglutarate, has a crucial role in the immune response. Glucose 
metabolism and glutamine are interlinked. Further, another study shows that 
glutaminolysis is the crucial pathway feeding the oxidative phosphorylation and TCA 
cycle in T-cell receptor-stimulated naïve and memory CD4 subsets essential for optimal 
HIV-1 infection [61]. It is evident from the literature that it holds therapeutic importance to 

accurately elucidate metabolic changes in the resolution of metabolic reactions 

associated with HIV-1 infection.  

1.3 Systems biology to unveil the complexity 

The scientific community has witnessed incredible technological advancement in the 
past decades that generate high-depth, multidimensional omics data and the evolution 
of advanced informatics approaches to analyze them. The multi-dimensional biological 
data include transcriptomics, proteomics, metabolomics, lipidomics, and microbiome. 
Integrative analysis of such multilayered data can generate a meaningful system-level 
understanding of the disease understudy. Network analysis and machine learning 
strategies are a few of the many techniques that can be applied to analyze complex and 

multi-layered data, but careful attention is required on the purpose of the method and 

the biological problem needed to be solved. 

System biology is an applied science discipline that deals with the integrative analysis of 

multilayered data to understand complex biological mechanisms. Biological systems are 
often considered 'complex systems'. A complex system is usually represented by many 
simple and identical components interacting to give rise to complex behaviors. But the 
biological systems are rather different in reality. In the case of a biological system, many 
functionally divergent, often multifunctional sets of components interact among them 
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nonlinearly and selectively to generate coherent instead of complex behaviors. In a 

complex system formed by simple components, the functions are derived from the 
properties of the network and not from any specific components of the system. In 
contrast, biological systems depend on the combination of the network and its 
constituting components, which leads to the notion that biological systems are better 
considered symbiotic systems [62]. Another study performed on interactions data of 

yeast by Ideker, Trey et al. showed the possibility of formulating robust hypotheses for 
the fundamental mechanisms controlling the observed changes in gene expression by 
integrating the interactions data with mRNA expression data [63]. The availability of novel 
high-throughput data acquisition methods enables us to efficiently investigate the status 
of components of a cell and to identify the nature of interactions among these 

components. Understanding the topological and dynamical characteristics of the 
divergent networks that govern the cell's behavior is a major challenge in modern biology 

[64].  

An explanation of biology in terms of its interacting components is the core philosophy 

of system biology [65]. For example, if an enzyme's action on a compound is considered 
a system, studying its interaction is crucial to understand the system. Now the 
advancement in technologies enables us to measure many distinct components of a 
system, making the system of study very complex; analyzing such a system requires great 
computational effort based on mathematics and statistics. Such a requirement paved the 

way for developing the discipline of systems biology. One of the important aspects of 
systems biology is the analysis of network forms by interacting with various biological 
components of the system under consideration. Apart from standard single-layer omics 
analysis, two different methodologies of systems biology, namely, genome-scale 
metabolic modeling (to study the metabolic network of a system based on the 

association between metabolites and genes) and co-expression network analysis (to 
analyze the coordinated functional response to stress in a system) are employed in the 

thesis to investigate the metabolic reprogramming aspects of three RNA viruses. 

1.3.1 Genome-scale metabolic modeling 

Metabolism in humans is an integral part of cellular function, and disruptions in 
metabolism are associated with adverse health conditions such as cancer, obesity, 
diabetes, etc. Studies have shown that viral diseases cause significant alterations in host 
metabolism by hijacking and reprograming host metabolic mechanisms to favor viral 

replications. An in-depth understanding of human metabolism in a holistic fashion in cells 
remains challenging despite the importance of metabolism and the availability of 
techniques to measure thousands of metabolites [66]. One of the possible reasons for 
this difficulty is that metabolism needs to be defined by metabolic fluxes through each 
reaction and not by the concentrations of biomolecules themselves (such as proteins, 
metabolites, or mRNAs). The concentrations of biomolecules should only be considered 
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as indirect proxies for biological activity [67]. Genome-scale metabolic models (GEMs) 

are mathematical representations of the metabolic system of a cell, tissue, or an entire 
organism. It represents the pool of total metabolic reactions as a series of stochiometric 
equations which can be used to study the phenotype of the biological entity in response 
to metabolic stress. Over the past decade, researchers have successfully developed and 
improved many GEMs for human metabolism. The development of GEMs has begun with 

the creation of Recon1 [68] and the Edinburgh Human Metabolic Network (EHMN) [69]. 
The Recon1 and EHMN became the commencement of two parallel model series: the 
Recon series (Recon1, 2, and 3D) [68, 70, 71] and the Human Metabolic Reaction series 
(HMR1 and 2) [72, 73]. These two models have been used to study diseases such as cancer, 
dysbiosis, fatty liver disease, and diabetes [74, 75], and they influenced each other during 

development and rectification. Many challenges persist in the development of a human 
GEM. Using non-standard identifiers for reactions, genes, and metabolites in GEM is one 
of them. Other problems include continuous use of errors from previous models, effort 
divided among multiple model lineages, delay in model rectification, non-transparent 

development, and difficulties in coordination among the scientific community [76].  

1.3.2 Human 1 (Human-GEM) 

Robinson et al. developed Human 1, the first version of an integrated model of human GEM 
lineages (Human-GEM) [76]. The human-GEM was created by extensively curating the 

Recon and HMR model lineages and unifying them. Integration of the information and 
components from HMR2, iHsa [77], and Recon3D yielded the Human-GEM containing 
13,417 reactions, 10,138 metabolites (4,164 unique), and 3,625 genes. Version-controlled 
Git repository was efficiently used in the entire development process to make each of 
the modifications and changes publicly visible and thereby favor collaboration with the 

research community. While curating the model, the developers removed 8,185 duplicated 
reactions and 3,215 duplicated metabolites. Further, 2,016 metabolite formulas were 
revised, rebalanced 3,226 reaction equations based on stoichiometry, the reversibility of 
83 reactions was corrected, and 576 inconsistent reactions that violated the conservation 
mass law were removed. A new, updated generic human biomass reaction was created 
based on different tissue and cell composition data to favor flux simulations. The 

metabolic model testing (Memote), a community-maintained platform for testing GEMs, 
was used to assess the quality of the Human-GEM [78]. While testing using Memote, 
Human 1 showed excellent performance with 100% stoichiometric consistency, 98.2% 

charge-balanced reactions, and 99.4% mass-balanced reactions. 
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Using Human 1, it is possible to integrate various molecular datatypes to facilitate better 
interpretation within the context of the metabolism [79]. The comprehensive resource of 
mammalian protein complexes database (CORUM [80]), iHsa, and enzyme complex 

information from Recon3D were combined and integrated with gene-reaction 
associations from HMR2, Recon3D, and iHsa to derive gene-reaction rules for Human 1. 
Direct integration of protein- or transcript-level data into the model is also possible due 
to the incorporation of transcript- and protein-reaction rules in the model [81]. The 
overview of the steps involved in the development process of Human 1 is illustrated in 

Figure 3 [76]. 

1.3.3 Contextualized/Context-specific GEM 

The Human-GEM consists of metabolic reactions known to occur in any human cell, so it 
is a generic model of human metabolism. However, it does not represent a metabolic 
model of any one tissue or cell type in which only a subset of reactions is active. Therefore, 
the GEM extraction or contextualization process needs to be performed to create a GEM 
that represents any tissue or cell type of interest. The resultant model is called extracted 
or contextualized/context-specific GEM. The extraction process requires the integration 
of the corresponding dataset of interest, such as transcriptomics, proteomics, 

metabolomics, etc., on the metabolic reference model. The generic metabolic networks 

Figure 3: A pictorial illustration of the main steps involved in the creation of Human1 from HMR2, Recon3D, and 
iHsa. Reprinted with permission from AAAS (Robinson, Jonathan L et al, 2020). 
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such as Recon1, EHMN, and HumanCyc [82] are not tissue-specific, so they cannot be 

used to study particular human cell types or diseases. Earlier attempts have been made 
to generate models specific for ten different human tissues using tissue-specific 
transcription profiles [83], again subsets of Recon1. But these models can study the 
metabolic states of the tissues subject to different genetic and physiological conditions 
only on appropriate approximations [84]. Another approach was later published, which 

uses transcriptomic and proteomic data combinedly and Recon1 as a template to create 

a more flexible liver-specific metabolic model [84]. 

Integration of the data about the absence or presence of metabolic enzymes in a specific 

cell type while maintaining a well-connected network is the aim of the computational 
algorithm to construct a cell, type-specific metabolic model. A well-connected network 
assumes that metabolites consumed in one reaction must be generated in another 
reaction or consumed from the cell environment [85]. The mRNA expression differences 
are comparative to a reference state and not absolute; the transcriptome data are often 
noisy. Moreover, in most cases, enzyme levels do not correlate with the transcript 

expression levels [86]. Agren, Rasmus, et al. developed an automated computational 
pipeline for identifying expressed cell type-specific genome-scale metabolic networks 
[85]. The algorithm Integrative Network Inference for Tissues (INIT) forms a vital part of the 
pipeline, which uses information from the Human Protein Atlas (HPA) [87] about the 
presence or absence of metabolic enzymes in each human cell type. The INIT algorithm 

uses tissue-specific transcriptome expression [88] data as an additional source of 
information. INIT further constraint the model so that if a metabolite has been identified 
in a specific tissue, the resulting tissue-specific metabolic network should be able to 
produce this metabolite from the precursors using the metabolomics data derived from 

Human 

Metabolome 
Database 

(HMDB) [89]. 

Figure 4 here 

illustrates the 
main concepts 
of the INIT 
algorithm [85]. 
The gene-

transcript-
protein-

reaction (GTPR) 
associations 

are the main 
Figure 4 : The concepts and main steps of the INIT algorithm. Adapted from Agren, 
Rasmus et al., 2012. 
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characteristic of the hierarchical structure of GEMs. One or more enzymes are associated 

with each metabolic reaction in the model, and they are also associated with transcripts 
and genes. The algorithm computes a score for each reaction catalyzed by an enzyme 
based on the knowledge of the presence or absence of the given enzyme or gene 
expression in a cell type. The HPA evidence scores are represented in figure 4. 
Components in red, light green, medium green, and dark green show negative, weak, 

moderate, and strong evidence scores. The gene expression evidence scores are 
represented as red, light blue, medium blue, and dark blue, respectively, representing zero, 
low, medium, and high expression. Metabolomics data are available for some metabolites 
to prove their presence in the cell types, and they are described as yellow circles. The 
algorithm then tries to identify the sub-network from the model, which consists of genes 

or proteins with strong evidence for their presence in the cell type under study. The 
algorithm does the extraction by maximizing the sum of evidence scores. Additionally, the 
algorithm ensures that all the reactions included in the extracted sub-network should be 
able to carry a flux, and all the metabolites identified experimentally should be generated 
from the precursors the cell is known to consume. The bold lines in figure 4 denote the 

resultant network. 

Recently, a modification of the INIT algorithm named task-driven Integrative Network 
Inference for Tissues (tINIT) is proposed because the model generated by INIT is not a 
functional model which could be directly used for simulations; instead, they are just 

snapshots of functioning metabolism in a given tissue [90]. The algorithm tINIT facilitates 
the direct reconstruction of functional GEMs. Also, the algorithm provides the 
functionality to define metabolic tasks the extracted model must carry out. There are 
mainly two additional improvements in the tINIT over the INIT algorithm. Firstly, by 
constraining the solution, the algorithm does not let the reversible reactions have flux in 

both directions simultaneously. Secondly, it enables the user to decide whether net 
production of all metabolites should be allowed. A list of metabolic reactions known to 
occur in all cell types is used for applying constraints on the functionality of the 

reconstructed models. 

1.3.4 Flux Balance Analysis (FBA) 

Flux balance analysis can be defined as a mathematical methodology for analyzing the 
flow of metabolites through a metabolic network [91], and metabolic flux is defined as the 
rate of turnover of metabolites in a metabolic reaction. It is possible to predict an 

organism's growth rate or the production rate of biotechnologically important metabolites 
by using FBA, as it computes the flow of metabolites through a metabolic network. The 
mathematical representation of metabolic reactions is the first step in FBA. The 
representation is done in a tabulated structure containing a numerical matrix representing 
each reaction's stoichiometric coefficients. The stoichiometries of the reaction constrain 

the flow of each metabolite through the network. 
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Figure 5 shows each step involved in the flux balance analysis [91]. Each metabolic 

reaction in a network is denoted as stoichiometric matric (S) of dimension m*n where 
row (m) represents each metabolite and column (n) represents each reaction. 
Stoichiometric coefficients of the metabolites in each reaction are the values in the 
matrix. Metabolite consumption is expressed as a negative stoichiometric coefficient, 
whereas a positive coefficient means metabolite production by the corresponding 

reaction. The coefficient will be zero if any metabolite is not participating in a reaction. 
Most metabolic reactions consist of only a few different metabolites, due to which S will 
be a sparse matrix. A vector, v of length n is used to denote the flux through all the 
reactions in a network, whereas a vector, x of length m represents concentrations of all 
metabolites. Further, the system is assumed to be in a steady state (dx/dt=0) which gives 

S*v = 0. Any v that satisfies the equation is considered to be in the null space of S. In any 
large-scale model, there are always more reactions than compounds (n>m) which means 
more unknown variables than equations so that no unique solution is available to this 
system of equations. The constrain define a solution range, and it is possible to find and 
analyze single points within the solution space. FBA aims to compute such optimal points 

inside the constrained space. Conceptually, when there are no constraints applied, the 
flux distribution of the metabolic network falls at any point inside the solution space, and 
when the mass balance constraints by stoichiometric matrix (S) and capacity constraints 
by lower and upper bounds are applied, the network may get flux distribution within the 
constraint space. The FBA then optimizes an objective function and computes a single 

optimal flux distribution on the edge of the constraint solution space. 



 

 15 

 

An objective function Z=cTv is getting maximized or minimized in FBA. The objective 

function is a linear combination of fluxes where c is a vector of weights that shows the 
contribution of each reaction to the objective function. If there is only one reaction is 
needed to maximize or minimize, then c is a vector of zeros with one at the position of the 
reaction of interest. During FBA, optimization of the system of equations is carried out by 
using linear programming, which is a mathematical approach to computing the best 
possible outcome from a mathematical model whose requirements are denoted by linear 

relationships. Given a set of upper and lower bounds on v and a linear combination of 

Figure 5 : Steps involved in flux balance analysis. Reproduced with permission from Springer Nature (Orth, 
Jeffrey D et al., 2010) 
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fluxes as an objective function, the FBA tries to solve the equation Sv=0 using linear 

programming. Defining an objective biological function relevant to the problem is the 
primary step in FBA. The objective function represents how much reach reactions 
contribute to the studied phenotype. Flux balance analysis uses various objective 
functions depending on the phenotype of the study to analyze. The objective of the study 
decides the choice of the objective function. Maximization of growth or biomass 

production is the most used objective function, which facilitates a variety of flux 
predictions consistent with study observations [92]. Examples of other objective 
functions include (1) minimization of ATP production, which allows predicting conditions 
of optimal metabolic energy efficiency (2) nutrient uptake minimization (3) Metabolite 
production maximization to predict the production abilities of the cell (4) biomass and 

metabolite production maximization (5) minimization of absolute norm of the flux vector 
to study optimal channeling of the metabolite [93]. Quality reconstruction of metabolic 
networks and selection of constraints are essential processes in FBA. A study on P.putida 
has shown that the metabolic network structure is the crucial factor in deciding the 
accuracy of FBA results, and the objective function has a lesser impact [94]. Incomplete 

protein annotation in the genome has a negative effect on FBA despite the fact that it can 
give hints to increase the current knowledge. A subset of the genome, which constitutes 
mainly the enzymes that catalyze different metabolic reactions in a cell, is the main focus 
of FBA. The incomplete nature of genome annotation has a severe impact on FBA. For 
example many reactions can be predicted to have zero fluxes only because of the non-
characterization of the downstream or upstream reactions of them [93].  There are other 

types of flux balance analysis to study the reaction flux through a metabolic network. Flux 
variability analysis (FVA) and parsimonious flux balance analysis (pFBA) are two of them. 
The FVA can be applied to measure the minimum and maximum flux for each reaction in 
the metabolic network while conserving the state of the network [95]. A few applications 
of FVA include the investigation of alternative optima [95], exploring the distribution of 

flux under suboptimal growth [96], studying the flexibility and redundancy of network [97], 
process formulation optimization for antibiotic production [98], and optimal strain design 
process as a pre-processing step [99, 100]. Whereas pFBA seeks to minimize the 
metabolic flux of each reaction in the model while conserving the optimum flux through 

the objective function [101]. 
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1.3.5 Weighted network analysis 

In many systems-biology investigations, networks are used to model the experiment 
system computationally [102]. A network, in an organized manner, quantitatively 
represents information about complex biological systems. There are two primary 
components in any network, namely, nodes and edges. Figure 6 illustrates the visualization 
of essential components of a network [65]. In the network (Figure 6), the circles are nodes 
that denote the system's components (genes, proteins, metabolites, etc.). The lines 

connecting two nodes are called edges. Each edge represents the relationship between 
the components 
(nodes). Edges can 
also use to define 
the strength, type, 

and direction of the 
association 

between the nodes. 
The strength of an 
edge is called the 

edge weight in 
network analysis, 
and the edge weight 

can be derived from experimental data. For example, in a network representing a 
correlation between genes in response to external stress, the genes will be nodes, the 
correlation between genes will define the edge, and the correlation coefficient can be 

used to define the edge weight. Since in correlation, it is not possible the define the 
direction, the resultant network will be un-directed that means edge direction cannot be 

defined. 

Network science assigns properties for the nodes that define their importance for the 
existence of the corresponding network. One of 
the main properties of the node is centrality. 
Calculation of the centrality of nodes means the 
identification of which nodes are more "central" 
than others; in other words, central nodes are 

the nodes that sit "in the thick of things" or the 
focal points of the network [103]. The network 
shown in Figure 7 shows five nodes and 
associated connections (edges). In the network, 
the node in the middle (Node 1) has three 

advantages over the other nodes (1) the middle 
node has more connections, (2) it can get to 
other nodes more rapidly, and (3) it also governs 

Figure 6: Representation of network showing its components and node centrality 
measures. Reproduced with permission from Springer Nature (Joshi, Abhishek et al, 
2021) 

Figure 7 : A basic network of 5 nodes. Node size 
is relative to degree centrality. Created in 
Cytoscape 
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the flow among the other nodes. These three features formed the basic rules used by 

Freeman to define three various measures of node centrality [103]: degree, closeness, and 
betweenness. The number of nodes a node in focus is connected to defines the degree 
of centrality. The degree of a node implies how much the node is involved in the formation 
of the network. The advantage of degree is that it is simple to compute if the structure 
around the node is known. But the degree is not considering the global structure of the 

network, which is one of its limitations. If a node has a high degree, it is connected to many 
others, but it might not be able to access other nodes rapidly to gain resources such as 
knowledge or information [104]. Closeness centrality was introduced to overcome this 
limitation of degree. The closeness is defined as the inverse sum of the shortest distances 
to all other nodes from a node in focus. But the closeness centrality does not apply to 

networks with disconnected components, where components are a portion of the 
network that is disconnected from the main network. (there is no finite distance between 
two nodes belonging to two different components). Generally, the most significant 
component of the network is used to compute closeness. The betweenness centrality 
whereas defines as the degree to which a node falls on the closest path between two 

other nodes and can channel the flow through a network. The betweenness of a node also 
shows the control of information flows through the network. The global structure of the 
network is considered in the computation of betweenness, and it can also be used in 

networks with disconnected components [105]. 

The centrality measures defined by Freeman are explicitly defined for binary networks, 
and there were many attempts to generalize the three centrality measures in the context 
of weighted networks [106, 107]. Edge weight was the sole focus of all those attempts for 
generalization and not on the number of edges as in the original definition. The definition 
of degree was extended by Barrat et al., and they defined it as the sum of the weights 

attached to the edges connected to a node [108]. This means that a degree of 5 could 
mean that either the node has five edges with weight 1 or 1 edge with weight 5; a 
combination of both also could be possible in some cases. Next, the definition of 
closeness and betweenness were modified by Newman [109] and Brandes [107], 
respectively, by using Dijkstra’s shortest path algorithm [110]. This Dijkstra algorithm 
defines the shortest path between two nodes as the least costly. The improvement of 

closeness and betweenness propose costs only depend on edge weights. 
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Table 1. Table shows definition of different centrality measurements 

Centrality Definition 

Degree The number of nodes a node in focus is connected to. 

Closeness The inverse sum of the shortest distances to all other nodes from a 
node in focus. 

Betweenness The degree to which a node lies on the closest path between two other 

nodes and can channel the flow through a network 

1.3.6 Community detection 

A cluster of nodes in many networks forms dense groups, which is often called 
communities [111]. The modular structure of the network which forms the community is 
often unknown beforehand. Therefore, the identification of network communities is a 
crucial problem, and it can help to derive valuable information about the network. 
Modularity is one of the best methods to detect community [112]. The modularity-based 

method maximizes the difference between the expected number of edges and the actual 
number of edges in a community. The expected number of edges can be denoted as 
Kc

2/2m where Kc is the sum of the degree of the nodes in a community c, and the total 
number of edges in the network is m. So the modularity can be given by, 𝐻 =

1

2𝑚
∑ (𝑒𝑐 − 𝛾

𝐾𝑐
2

2𝑚
)𝑐  where γ > 0 is a resolution parameter [113]. The lower resolution gives 

fewer communities, and the higher resolution gives rise to more communities. The most 
widely used and cited algorithm for modularity optimization was the Louvain algorithm 

[114]. Later, Traag, V A et al. showed that the Louvain algorithm is not efficient [115]. As per 
their observations, the issue known as resolution limit [116] may cause the algorithm to 
lead to badly connected communities. The identified communities even may be 

disconnected internally. In 
order to overcome these 

issues, Traag V A et al. 
proposed a new algorithm 
named Leiden which is 
faster and identifies 
better partitions and gives 
explicit guarantees and 

bounds [115]. 

The Leiden algorithm 
partly uses the smart local 

move algorithm [117]. The 
algorithm contains three 
steps, (1) local movement 
of nodes, (2) modification 

Figure 8 : Illustration of the steps involved in Leiden algorithm. The steps 
will be repeated until no further improvement is possible. Adapted from 
Traag, V A et al, 2019 
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of the partition, and (3) assembly of the network based on the modified partition, using 

the non-modified partition to create an initial partition for the assembled network. Figure 
8 shows the steps involved in the algorithm pictorially. The weighted network analysis 
combined with centrality computation and community detection can provide valuable 

information about the biological network under study.
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2 Research aims 
The project's overall aim was to investigate the metabolic re-programming that occurs in 
humans in response to viral infections caused by three different viruses, namely, SARS-

CoV2, HIV-1, and CCHFV using systems biology approaches. 

The specific aims of each of the paper are written below, 

Paper I: The clinical outcome and disease severity in COVID-19 are heterogeneous, and a 
single factor like age, ethnicity or co-morbidities cannot explain the progression or fatality 

of the disease. In this study, we aim to stratify patient groups solely based on multi-omics 
data signatures and to identify the Metabo-transcriptomics mechanisms associated with 

COVID-19 severity at personalized and group levels. 

Paper II: During HIV-1 infection, cellular metabolic activity is significantly altered. After 

initiation of combination antiretroviral therapy (cART), virus-induced short-term 
metabolic changes do not restore the transient metabolic modulation caused by the 
infection. Here we sought to study the Metabo-transcriptomics changes in response to 
HIV-1 infection at the system level by comparing people living with HIV on prolonged cART 
(PLWHART) with the HIV-seropositive Elite Controllers (PLWHEC) and HIV-negative controls 

using system biology methodologies. 

Paper III: The pathogenesis and host-viral interactions of the CCHFV are complicated and 
poorly evaluated. The multi-omics system biology approaches, including biological 

network analysis, were used to derive knowledge about the complex host-viral response 
and viral pathogenesis. The study aimed to fingerprint the system-level alterations during 
acute CCHFV infection and the cellular immune responses during productive CCHFV 

replication in vitro. 

Paper IV: The trajectory of system-level host response against infection provides a 
comprehensive host immune response, which is unknown in CCHFV infection. In the study, 
we aim to identify the impact of CCHF viral infection in the metabolic process and 
rearrangement of intracellular metabolic fluxes during progressive infection using system 

biology methods. 
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3 Materials and methods 

3.1 Cohort descriptions and ethical considerations 

All the papers presented in the thesis used data generated from patient samples. 
Descriptions of the cohort used and associated ethical details for each paper are written 

below. 

3.1.1 Paper I 

The patients were recruited from the South Hospital, Stockholm, and they were COVID-
19 PCR positive (n=37) and were hospitalized in May 2020. The patients were grouped into 
hospitalized—mild (O2 consumption <4 l/min, n=26) and hospitalized—severe (O2 

consumption ≥4 l/min, n=11) based on their oxygen requirement. COVID-19 PCR negative 
(n=31) patients were also recruited as the control group, of which ten patients were SARS-
CoV-2 Ab positive. The regional ethics committees of Stockholm (DNR 2020-01865) 

approved the study and abided by the Declaration of Helsinki principles. 

3.1.2 Paper II 

The study was conducted on the Swedish InfCareHIV cohort established by Prof. Anders 
Sonnerborg in 2004, and by 2008 all HIV-1 clinics in Sweden jointly. There were four 
groups of patients in the study population (1) people living with HIV on cART 

(PLWHART)(n=19), (2) HIV Elite Controllers (PLWHEC)(n=19), (3) people living with HIV with 
detectable viremia (PLWHVP, n=19) (4) HIV negative controls (n=19). The study was 
authorized by the regional ethics committees of Stockholm (2013/1944-31/4 and 
2009/1485-31) and amendment (2019-05585 and 2019-05584, respectively) and 

performed following the Declaration of Helsinki. 

3.1.3 Paper III 

The patients were diagnosed with CCHF and followed up by the Infectious Diseases and 
Clinical Microbiology clinical service of Sivas Cumhuriyet University Hospital, Sivas, Turkey. 

The samples were collected from 18 patients on the day they were admitted to the 
hospital (acute stage) and one year after their recovery. This study was authorized by the 
Local Research Ethics Committee of the Ankara Numune Education and Research 
Hospital, Turkey (Protocol # 17-1338) and the Regional Ethics Committee, Stockholm (Dnr. 

2017-/1712-31/2). 

3.1.4 Paper IV 

There were 30 patients diagnosed and hospitalized with CCHFV infections in the study 
cohort. Data were generated from samples collected at the onset of symptoms (n=22), 

day of discharge (n=23), and post symptoms onset (n=24). The data was also generated 
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from CCHFV-seronegative patients as healthy controls (n=22). This study was approved 

by the Regional Ethics Committee, Stockholm (Dnr. 2017-/1712-31/2) and the Sivas 
Cumhuriyet University, Turkey. The study design and the sample collection are given in 

Figure 9. 

 

Figure 9: The study design and sample collection details of Paper IV. Adapted from Paper IV and created in R.  

3.2 Transcriptomics data analysis 

3.2.1 Data generation 

In papers I and IV, total RNA was extracted from whole blood samples using TempusTM 
Spin RNA Isolation Kit (ThermoFisher, USA), followed by library preparation using 
SMARTer® Stranded Total RNA Sample Prep Kit. Illumina NovaSeq6000 platform in paired-
end mode was used for the RNA sequencing. The Peripheral blood mononuclear cells 
(PBMC) were used as starting material to extract RNA in papers II and III, and the 

sequencing was performed using Illumina HiSeq2500 or NovaSeq6000. 

3.2.2 Raw data processing 

In Papers II and III, the quality of the raw sequence data was first assessed by the FastQC 
tool kit. Based on the FastQC results, low-quality bases and Illumina adapter sequences 

were removed using Trim Galore version 0.6.1. Low-quality bases were removed using a 
Phred score of 30 as the cut-off. The cleaned reads were aligned against the human 
reference genome (Ensembl build) using the aligner STAR version 2.7.3a [118]. Read 
counting was performed using the module featureCounts from the software subread 
version 2.0.0 [119]. A nextflow-based nf-core pipeline rnaseq v3.3 [120] was used to 
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process raw RNASeq reads in Paper I and IV. Gene-level estimated read counts and 

transcript per million (TPM) normalized count data were used for further downstream 

analysis. 

3.2.3 Digital cell quantification (DCQ) 

The transcriptomics data used in papers I, III, and IV were generated from whole blood, 
and in Paper II was from PBMC. In such cases, the tissue samples contain a mixture of cell 
types and possess different gene expression profiles unique to each cell type. Information 
about various cell type proportions in the sample is crucial as they are essential 

determinants of response to the disease condition. The aforementioned features make 
the proportion of cell types across samples a vital confounding factor in downstream 
gene expression data analyses such as differential expression and correlative analysis [121, 
122]. We have used a deconvolution-based algorithm adapted from Estimating the 
Proportions of Immune and Cancer cells (EPIC) method [123] to computationally estimate 
the cell type proportions from gene expression data generated from bulk tissue samples. 

We denoted the method as digital cell quantification (DCQ) in the manuscript.  

The algorithm of DCQ uses information from cell type-specific reference gene expression 
profiles for the different cell types to deconvolve. We have used reference cell type-

specific gene expression profiles obtained from Human Protein Atlas (HPA) [124]. The 
reference data consists of all human genes' experimentally determined expression 
pattern in 18 different blood cell types. Online repositories such as CellMarker [125] and 
PanglaoDB [126] were used as a reference to derive signature genes corresponding to 18 
blood cell types in the reference data. The method then uses normalized gene expression 
(Transcript per million, TPM) data of each sample as input to estimate the proportion of 

18 different blood cell types based on a given reference gene expression profile and list 
of signature genes corresponding to the cell types. The estimated values were then 

adjusted while performing differential gene expression analysis. 

3.2.4 Differential gene expression and pathway enrichment analysis 

Differentially regulated genes were identified using R package DESeq2 v1.26.0 28 [127]. 
Confounding factors such as age, gender, cell type proportion, and other possible factors 
were adjusted while performing the analysis. R package RUVSeq v1.28.029 [128] was used 
to compute unwanted and hidden variation factors in the data. In Papers, I, III, and IV, the 

pathway enrichment analysis with directionality consideration were performed using 
R/Bioconductor package PIANO v2.2.030 [129]. KEGG pathway gene sets belonging to 
metabolism, environmental information processing, and organismal systems categories 
were chosen as the reference. Pathway enrichment without directionality was executed 
using the enrichr module from gseapy v0.10.5 [129, 130]. In Paper II, the GSEA v4.1.0 

software [131] was used for pathway enrichment analysis, and MSigDB hallmark gene set 

v7.4 was used as the reference. 
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3.3 Metabolomics and Proteomics data analysis 

Metabolomics data was generated using the Metabolon HD4 (Metabolon Inc, NC, US) 
platform. Olink Immuno-Oncology Panel (Olink, Sweden) generated the proteomics data. 

The metabolomics data were log2 scaled, and proteomics data were quantile normalized 
before analysis. The univariate statistical method Mann-Whitney U test and R package 
limma [132] were used to study the protein and metabolites enrichment differences 

wherever appropriate. 

3.4 Network-based system biology analysis 

3.4.1 Patient re-stratification using multi-omics data 

Oxygen consumption rate was used to categorize COVID-19 patients in Paper I. However, 
we have observed from the previous study that oxygen requirement at hospitalization did 
not predict mortality [133]. Such single factorial phenotypic characterization may fail to 
capture molecular signatures, which leads to inaccurate cohort definition. We have used 
transcriptomics and metabolomics profiles of the patients to re-stratify them and 

thereby improve the cohort classification. Similarity Network Fusion (SNF) methodology 

was employed for the multi-omics patient classification.    

Similarity network fusion (SNF) works by generating networks of samples based on each 

available data type and then systematically merging these networks into one that 
captures the full signatures of the inputted data [134]. The similarity network fusion 
method used metabolomics and transcriptomics generated from the samples. A 
preprocessing step was performed on the data before applying SNF. In the pre-
processing, features with TPM < 5 (lowly expressed genes) and features having variance 

less than 0.01 from both transcriptomics and metabolomics data were removed. Further, 
similarity matrices were generated using the features followed by the application SNF 

method on the data with settings K=6, T=20, and alpha=0.7. 

3.4.2 Weighted network analysis 

A weighted gene-metabolite association network was generated in Paper I, and analyzed 
its structure to find node centralities and communities of interest. Genes and metabolites 
were the nodes in the network, and association computed using spearman’s correlation 
metric was used to define the edges. A global network was created by associating the 

features among all the samples. Communities were further detected, and cohort-specific 
communities were identified by checking the expression of features in the corresponding 
cohort. TPM normalized transcriptomics data and quantitative metabolomics data were 
used as inputs. Transcriptomics and metabolomics features were first filtered based on 
their variance (row variance<0.1) and the expression level (row median TPM<1). Spearman’s 
correlation coefficient was then computed, and the top 10% of the significant positive 

correlations (FDR<0.00005) were considered to make the network. The correlation 
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coefficient was used to define the edge weight. Further, the network was analyzed in 

igraph (https://igraph.org), and degree and betweenness centralities were computed. The 
modularity maximization by Leiden algorithm [115] was used to detect the communities. 
Finally, communities were analyzed based on size, centrality (average centralities of the 

features), and biological function of the features. 

In Paper III, a weighted gene co-expression network was created and analyzed. Significant 
Spearman’s correlation between genes was used to define the co-expression. Network 
was created using genes as nodes and correlation between genes as edges. FPKM 
normalized transcriptomics data was used as input. The correlation coefficient was used 

to apply weight to the edges. Firstly, lowly expressed (row median FPKM<1) and lowly 
varying (row variance<0.1) genes were filtered out from the data. Spearman’s correlation 
was further calculated using the filtered data, and significant positive correlations 
(adjusted p<0.001) were used to generate the data. The network was then analyzed in 
igraph (https://igraph.org), and degree centrality was computed. The modularity 
maximization by the Leiden algorithm [115] was used to detect the communities. Finally, 

communities were analyzed based on size, centrality (average centralities of the features), 

and biological function of the features. 

A metabolic network consisting of metabolites and associated genes were created and 

analyzed in both Paper I and Paper II. Metabolite – gene association was derived from the 
gene-protein-reaction rule depicted in Human-GEM [76]. Metabolic reactions found to 
have varying flux among the samples (or groups) were chosen for the network creation. 
Metabolites and genes were used as nodes, and edges were drawn between genes and 
metabolites in the same reaction. Non-expressed genes (TPM < 1) and currency 
metabolites were omitted. Metabolic flux value calculated using flux balance analysis was 

first scaled (-1 to 1) and used as edge weight. The network was then analyzed in igraph 
(https://igraph.org), and degree and betweenness centrality was computed. Metabolites 
and genes were further ranked based on their centrality to define their biological 
importance. The modularity maximization by the Leiden algorithm [115] was used to detect 
the communities. Finally, communities were analyzed based on size and centrality 

(average centralities of the features).  

3.4.3 Genome-scale metabolic modeling and flux balance analysis 

Context-specific genome-scale metabolic models were generated, and flux balance 
analysis was performed in papers I, II, and IV. TPM normalized data was used to generate 
the models. Personalized and (or) group-specific metabolic models were contextualized 
by incorporating transcriptomics data into a human generic metabolic model (Human 1) 
obtained from the Metabolic Atlas [76]. Individual samples' gene expression data was 
used to create personal models, and group-specific models were extracted using average 

gene-expression data. Context-specific metabolic model reconstruction was performed 

https://igraph.org/
https://igraph.org/
https://igraph.org/
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by applying the Task-driven Integrative Network Inference for Tissues (tINIT) algorithm 

[85, 90]. An expression threshold of TPM=1 was used in the procedure. The model's 
biological feasibility was tested after each model's reconstruction. The feasibility was 
tested by checking the model's ability to perform 57 essential metabolic tasks [90] known 
to occur in any cell type. The entire analysis was performed using Matlab implementation 
of the tINIT algorithm (https://github.com/SysBioChalmers/Human-GEM). Since literature 

evidence suggests the presence of SARS-CoV2 in blood cells, in Paper 1, a viral biomass 
objective function (VBOF) (developed by Renz, Alina et al.) was added in the model 
created for SARS-CoV2 samples to emulate the energy demands required by the virus 
growth [135, 136]. For models created for SARS-CoV2 positive samples, a unidirectional 
pseudo-reaction consisting of the products of VBOF and ATP hydrolysis as reactants was 

used as the objective function for flux balance analysis. For models created for the rest 
of the samples (and for papers II and IV), ATP hydrolysis was used as the objective 
function. FBA was performed using solveLP function from the RAVEN toolbox v2.4.0 [137]. 
Constraining of the exchange reaction of the model was performed using plasma 
metabolomics data as reference. We assumed that the extracellular metabolite 

availability impacts the fluxes of exchange reactions, i.e., transport reactions are limited 
by metabolite abundance, effectively approaching first-order kinetics concerning 
extracellular metabolites. Log2 fold change values of metabolites in each group compared 
to the control group were calculated and were used proportionally to constrain the 

reaction bounds.
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4 Results and Discussion 
As viruses require energy and other biochemical materials to replicate and survive, they 
try to interfere with the metabolic system of the host to steal the metabolic compounds 
and energy molecules for their growth and reproduction. Therefore, it has great biological 
and therapeutic importance for studying host metabolic alterations in response to viral 

infections. In the thesis, we attempted to unveil the mechanisms associated with the 
metabolic re-programming in human cells resulting from infections from three different 
viruses, namely SARS-CoV2, HIV-1, and CCHFV. Advanced network-based system biology 
approaches were employed to investigate the metabolic system changes at the 
resolution of metabolic reactions. Studies on each virus were performed in each paper, 
and the resulting outcomes are explained and discussed here. Results are categorized 

into three sections as follows, 

4.1 Infection-mediated changes in immune cell type abundance 

Since the transcriptomics data was generated from bulk tissue samples, the gene 
expression differences we observe may be because of the differences in gene regulation 

in each cell type, whose abundances vary between patient groups. This can bias the 
differential gene expression analysis. Thus, using the digital cell quantification (DCQ) 
method, we have computationally estimated the abundances of 18 different immune cell 
types using their marker gene expression level in the input bulk transcriptomics data. The 
results were used as confounding factors while performing differential expression 

analysis. The DCQ results can also be used to study the distinct changes in immune cell 

types caused by infections.  

Analysis in Paper-I identified, based on Krushkal-Wall's test, statistically significant (adj. 
p<0.05) differences among SARS-CoV2 positive patient cohorts and SARS-CoV2 

negative patients in cell types such as classical monocytes (CM), gamma-delta T cells, 
neutrophils, and mucosa-associated invariant T (MAIT) cells (Figure 2A, Paper I). The 
neutrophils and classical monocytes were found to be displayed an increased abundance 
in SARS-CoV2+ hospitalized-mild and hospitalized severe patient cohorts compared with 
SARS-CoV2- healthy control cohort. Further, a decreased abundance (adj. p < 0.05) was 

identified in hospitalize-severe patients compared to healthy controls for cell types such 
as memory B cells, MAIT cells, and gamma-delta T-cells (Figure 2B, Paper I). Additionally, 
we have checked the pair-wise co-expression landscape of marker genes of specific cell 
types in all the study cohorts to check the communication disruptions between the cell 
types due to the viral infection. The analysis found that in the healthy control cohort, the 

cell types seemed to hold well the association among cell types. But in the case of 
convalescent, hospitalized-mild, and hospitalized severe patients, the communications 
were found to be greatly disrupted (Figure 2C, D, E, F, Paper I). Deeper analysis of the co-
expression landscape revealed that, during SARS-CoV2 infection, the association 
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between marker genes of T cells and dendritic cells (DC) and between granulocytes 

(neutrophils/eosinophils) and DC or T cells are specifically disrupted. This suggests a 
system-level dysregulation in communication between these cell types due to COVID-
19. This may cause failure in efficient adaptive immune response in severe COVID-19 
patients by innate immune cells. Further, significant changes in the chemokine signaling 
pathway, NF-kB, MAPK, and PI3K-Akt signaling pathways were observed in the functional 

analysis of marker genes that lost associations in COVID-19. 

Earlier studies have corroborated the DCQ-predicted increase in neutrophils and 
classical monocytes in COVID-19 [138]. An increased number of both mature and 

immature neutrophils was previously identified in the nasopharyngeal epithelium [139], 
lung [140], and blood [141, 142] in SARS-CoV2 infection. The neutrophil increase can 
potentially cause hyperinflammation in COVID-19 patients. It was also identified that 
classical proinflammatory monocytes and neutrophils could mediate myeloid-driven 
atypical cytokine storm, which can drive to the severity stage [143]. Additionally, the loss 
of communication between cell types identified in DCQ is indicative of disrupted 

interaction between T cells and DCs [144] and granulocytes with other immune cells [142], 
which could explain the improper control of the viral replication [145] causing severity in 

COVID-19. 

In paper II, we checked the differences in cell type abundance associated with HIV-1 
infections in people living with HIV with suppressed viremia (PLWHEC and PLWHART) and 
detectable viremia (PLWHVP) in their bodies. We also checked the same in healthy controls 
for comparisons with negative infection states. Statistical analysis showed several cell 
types significantly differ in PLWHVP compared to other groups (Figure 1A & S1, Paper II). 
PLWHEC and HC showed similar levels of cell type proportions in them, while regulatory T-

cells (Tregs) were found to be different between PLWHEC and PLWHART (p < 0.05). In 
conclusion, DCQ results showed the expected results in Paper II. Significant alterations in 
cell type abundances are found in PLWHVP, and PLWHEC PLWHART and HC showed almost 

similar profiles, which indicates the healthy-like status because of treatment efficiency.   

Dynamic changes in immune cell populations in response to progressive CCHFV infection 
are studied in Paper IV. The analysis showed extreme changes in cell type abundances at 
the acute infection stage. The disruptions were then observed to be coming to normal 
(similar to HC) at the T2 time point (Figure 1D, Paper IV). The myeloid cells, neutrophils, NK 

cells, and to some extent, T-cells were most affected during the infection. The co-
expression profile of marker genes of specific cell types (Figure 1F, Paper IV) showed 
disrupted correlations between the signature genes in the immune cells during the acute 
and early convalescent phase (T0 and T1) and normalized to the level of HC (Figure 1F, 
Paper IV) at the convalescent phase (T2). This data shows the disrupted immune cell 
dynamics and dysregulated interaction between these cell types during CCHFV acute 

infection but repaired back when the infection was cleared.  
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Such a longitudinal study on CCHFV is not reported earlier in humans. A previous study 
on Ebola virus infection showed a reduction in the monocytes and CD4 T-cells and an 
increase in memory CD8 T-cells and NK cells during the acute phase of infection [146]. In 

contrast, an increase in neutrophil and blood monocyte populations (CM and IM) was 
observed in SARS-CoV-2 (Paper I). While the early acute phase (T0) of CCHFV infection 
did not change in classical monocytes, T1 and T2 phases showed an increase. An increase 
in both pDCs and mDCs is observed at the acute phase (T0) and hospital discharge (T1) 
but normalized at HC-level at the T2 time point. This suggests the role of DCs during the 

early acute phase of CCHF infection. At the same time, classical monocytes played the 

role of effective control and clearance of the CCHFV infection during the recovery phase. 

4.2 Virus-specific omics signatures 

The main objective of the papers in the thesis was to investigate the system-wide host 
responses following infections from three different viruses. For this purpose, genome-

wide bulk transcriptomics data was generated from patent samples and analyzed. 
Standard pipelines for transcriptomics data analysis were employed and identified 
differentially expressed genes and pathways linked with the three viruses. Additionally, 

weighted network analysis was also performed to identify virus-specific omics signatures. 

In Paper I, firstly, the spatial distribution of the samples based on their gene expression 
profile was checked. UMAP-based distribution showed a clear separation of the COVID-
19+ patients from HC and convalescent controls, but no clear separation was observed 
between hospitalized-mild and -severe patients (Figure 4 A, Paper I). Further, differentially 

expressed genes were identified. A threshold of adj. p < 0.05 and |log2-fold change| >=1.5 
were applied to define significantly expressed genes. Analysis between HC and COVID-
19 identified 581 genes significantly expressed, while analysis between hospitalized-mild 
and hospitalize-severe groups identified 154 genes expressed (Figure 4B, Paper I). 
Comparison between HC and hospitalized-mild and severe groups also identified 445 and 
1,068 genes significantly expressed. Sample to samples similarities based on the gene 

expression pattern of significantly expressed genes was also accessed by computing 
Euclidean distance metric and performing hierarchical clustering. The procedure also 
showed a distinct pattern in the groups and heterogeneity among the COVID-19 patients 
(Figure 4D, Paper I). Functions of the significantly expressed genes were investigated by 
performing gene-set enrichment analysis. The analysis identified upregulations of 

pathways related to antiviral response (e.g., NOD-like receptor signaling, RIG-I-like 
signaling, and TNF signaling pathways), metabolism (e.g., fructose mannose metabolism, 
oxidative phosphorylation (OXPHOS), and pentose phosphate pathway), and pathways 
like C-type lectin receptor signaling pathway, complement, and coagulation cascades 
that are related to thromboembolism in COVID-19 patients compared to HC (Figure 4E, 
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Paper I). Interestingly, pathways such as PI3K-Akt, mTOR, AMPK, and HIF-1 signaling were 

found to be upregulated in severe patients compared to mild (Figure 4E, Paper I). These 
pathways are the key regulators of central carbon and energy metabolism (e.g., TCA cycle, 
OXPHOS, and pyruvate metabolism) and are regulated by the SARS-CoV-2 replication 
[57, 147, 148]. In the study, we have additionally re-stratified the patient groups exclusively 
based on metabolomics and transcriptomics signatures by applying similarity network 

fusion (SNF) methodologies. The process gave rise to four clusters and named them SNF 
1,2,3,4 (Figure 5C and D, Paper I). we defined SNF-1 as COVID-19 mild/moderate, SNF-3 as 
COVID-19 severe, and SNF-4 as HC based on the number of samples using their original 
clinical definition. SNF-2 was found to be containing mixed types of samples, and thus 
omitted from the analysis. Weighted metabolite-gene association network analysis 

identified nine communities (c1–c9) (Figure 5G, Paper I). The community 1 (c1) was found 
to be specific to the severity group (SNF-3). Gene-set enrichment analysis of c1 found 
that it was associated with NOD-like receptor signaling, chemokine signaling, Fc gamma 
R-mediated phagocytosis, and platelet activation pathways, and other pathways such as 
NF-κ B, Notch, RIG-I, HIF-1, and FoxO signaling (Figure 5H, Paper I). Upregulation of 

pathways related to the antiviral response and metabolism in the COVID-19 patients and 
upregulation of pathways that are master regulators of central carbon and energy 
metabolism (e.g., TCA cycle, OXPHOS, pyruvate metabolism, etc.), the PI3K-Akt, mTOR, 
AMPK, and HIF-1 signaling in severe COVID-19 patients were shown in previous studies [57, 

148]. 

Differential gene expression and pathway enrichment analysis were performed in Paper II 
to understand host response mechanisms associated with HIV-1 infection. The analysis 
was performed between each pair of the total four cohorts. The comparison between 
PLWHEC and HC did not show any genes significantly expressed (adj. p<0.05), whereas 

the comparison between PLWHART and HC identified 949 genes significantly expressed. 
The study's main aim was to investigate the immune signatures during suppressive 
viremia that is naturally controlled or induced by cART. For this purpose, we performed 
differential expression analysis between PLWHEC and PLWHART. The analysis found 1,061 
genes significantly expressed, out of which 400 genes were up-regulated and 661 genes 
were down-regulated in PLWHART compared to PLWHEC (Figure 2B, Paper II). Additionally, 

hierarchical clustering based on the similarity between the samples showed distinct 
expression patterns in the two cohorts (Figure 2C, Paper II). Further, gene-set enrichment 
analysis showed that oxidative phosphorylation (OXPHOS) and reactive oxygen species 
(ROS) pathways are up-regulated in PLWHART (Figure 2D, Paper II). The analysis did not find 
any pathways significantly downregulated. mTORC1 signaling and glycolysis pathways 

were also identified as upregulated in PLWHART but without passing the significance 
threshold. The OXPHOS pathway was further looked at more deeply by checking the 
expression level of individual genes in the pathway. This identified that genes in 
complexes I III, and IV are mostly upregulated in PLWHART compared with PLWHEC. In 
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addition to the pair-wise differential expression analysis, we have also derived list of 

genes dysregulated uniquely in PLWHART by applying basic set operation in the set of 
differential analysis results of all comparisons. The analysis provided 1037 genes as cART-
specific, and gene-set enrichment analysis on them also identified OXPHOS and ROS 
pathways as top significantly enriched. A previous study has shown that OXPHOS is 
positively correlated with higher HIV-1 viral set point in untreated patients during acute 

HIV-1 infection, and viral replication was suppressed by in vitro pharmacological inhibition 
of complex I (by rotenone or metformin) and complex III (by antimycin A) [149]. Further, 
another study has observed that cell death in lymphocytic and pre-monocytic HIV-1 
latent cell models was increased by blocking glycolysis with 2-deoxyglucose (2-DG) [149-
151]. The studies also displayed a significant role of glycolysis and OXPHOS during HIV-1 

pathogenesis. Several other studies have also indicated the crucial role of OXPHOS 
complex I, III, and IV in ATP generation for cellular energy requirement and the role of 
complex I and III n ROS production that leads to lymphocyte activation, proliferation, and 

differentiation of inflammatory macrophages and T helper 17 (Th17) cells [152]. 

Papers III and IV dealt with CCHFV infection, and transcriptomics data was generated from 
longitudinal samples and analyzed to understand the temporal dynamics of the CCHFV 
infection. In Paper III, differential expression analysis was performed between the acute 
stage of infection and 1-year post-recovery. The analysis found 2,891 genes upregulated 
and 2738 genes downregulated (adj. p < 0.05) at the acute phase compared to the 

recovered phase. Pathway enrichment analysis further identified the up-regulation of 
metabolic pathways such as one carbon pool by folate, oxidative phosphorylation 
(OXPHOS), glycolysis, N-glycan biosynthesis, and antiviral pathways like the NOD-like 
receptor signaling pathway (Figure 1B, Paper III) and downregulation of antiviral defense 
mechanism-associated pathways including innate immune responses like Th1, Th2, and 

Th17 cell differentiation, the NF-kB pathways, chemokine signaling pathway, etc. (Figure 1B, 
Paper III) in the acute phase. The study also performed reporter metabolite (The 
metabolites around which the majority of transcriptional changes are happening) analysis 
which identified the up-regulation of metabolites that are associated with OXPHOS, TCA-
cycle, nucleotide metabolism, N-glycan metabolism, and amino acid-related pathways 
(Figure 1C, Paper III). To specifically study the association of disease severity with gene 

expression, analysis was performed using samples in severity group 1 (SG-1) and severity 
group 2 (SG-2) + severity group 3 (SG-3) in the acute phase. The analysis found 12 genes 
(ERG, PROM1, HP, HBD, AHSP, CTSG, PPARG, TIMP4, SMIM10, RNASE1, VSIG4, CMBL, MT1G) 
significantly upregulated in patients in the SG-2 and SG-3 combination group compared 
to SG-1. But no obvious association among these genes was observed. However, a distinct 

differential expression profile was found when analyzing the acute phase with the 
recovered phase in SG-1 and SG-2 separately. Functional analysis showed upregulation 
of the IFN-I signaling pathway (GO:0060337) and the regulation of viral genome 
replication (GO:0045069) (Figure 1F), which showed that the disease severity impacted 
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the gene expression of the interferon signaling pathway profiling during the acute phase, 

whereas it was comparable when they recovered. Additionally, weighted co-expression 
analysis in acute phase samples identified seven communities (c1-7). The most central 
community (c1) was found to be significantly associated with pyruvate metabolism, TCA-
cycle, and to a smaller extent to, glycolysis. The analysis further showed negative 
correlations between community (c1) and those associated with Notch, mechanistic 

target of rapamycin (mTOR) and Forehead box protein O (FoxO) signaling (c5), and 
hypoxia inducing factor-1 (HIF-1) signaling (c7). The OXPHOS-associated community (c3) 
was also found to be negatively correlated with those involved in Notch/mTOR/FoxO 

signaling (c5) and HIF-1 signaling (c7) (Figure 3B and C, Paper III).  

In Paper IV, the temporal dynamics of CCHFV infection were studied using longitudinal 
data generated from three-time points of infection, at acute phase (T0), at discharge (T1), 
and 30 days post symptom onset (T2). The transcriptomics time-series analysis 
identified 2,504 genes significantly expressed across the three-time points.  To 
understand their temporal expression dynamics, the time series clustering of the 2,504 

genes identified four expression trajectory modules (M1-M4) (Figure 2b, and Extended 
Data Table 2, Paper IV). The expression of the genes (n=879) in M1 initially decreased 
slowly between T0 and T1 time points and then decreased rapidly (Figure 2b, Paper IV). 
For genes (n=531) in M4, the expressions decreased drastically at the beginning and then 
slowly decreased until point T2. In contrast, the genes in M2 (n=634) gradually increased 

over time, while in M3 (n=460), the gene expression was first increased at the T1 while 
decreasing at the T2 (Figure 2b, Paper IV). Gene-set enrichment analysis of modules 
identified that M1 was associated mainly with metabolic pathways such as one carbon 
pool by folate and pyruvate metabolism, and M3 was found to be linked with metabolic 
pathways like OXPHOS, glucagon signaling pathways and adaptive immune response 

pathways like Th1 and Th2 receptor signaling processes indicate a dynamic nature of the 
metabolic process and adaptive immune response in CCHFV-pathogenesis. Further, M4 
showed an association with innate antiviral response pathways like RIG-I-like receptor, 
NOD-like receptor, TNF signaling, and chemokine signaling, NF-kB signaling was highly 
exertive at the acute phase of the disease (T0). Their demand decreased rapidly as the 

adaptive immunity came into play (T1), and after that, a slight decrease to the normal level. 

Our earlier study showed system-level host metabolic reprogramming towards central 
carbon metabolism with upregulation of oxidative phosphorylation (OXPHOS) during 
acute CCHFV infection [Paper I]. This is supported by the transcriptomics or proteomics 

study performed in-vitro infection models in cancer cell lines [153] and in vivo infection 
studies in non-human primates [154] and mice [155], displaying changes of the antiviral 
response, upregulation in the interferon (IFN) pathways, and disruptions of the metabolic 
process. While temporal quantitative proteomics analysis in the human hepatocellular 
carcinoma cell line, Huh7 infection model reported by us showed dynamic changes in the 
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interferon stimulating genes (ISGs) and metabolic process during the progressive 

replication [Paper I], to our knowledge to date, no study has investigated a longitudinal 
immune response against CCHFV pathogenesis in patients. The cumulative information 
obtained from both in vitro and patients can provide details on the viral pathogenesis and 

the cellular response during different phases of infection. 

4.3 Metabolic dysregulations in infections 

Transcriptomics analysis of all four papers identified severe disruption in response to the 
viral infection. Therefore, we further performed flux balance analysis on context (disease) 
specific genome-scale metabolic models that represent metabolic networks of cells in 
the blood (or PBMC) to find the specific metabolic reactions in the metabolic pathways 

which are altered upon virus entry. We also performed centrality-based prioritization 
using the metabolic networks created to find the top genes and metabolites which are 

contributing to the metabolic re-programming against the disease. 

In Paper I, we have generated context-specific metabolic models for each SNF cluster 

(group-specific modeling) and for individual samples (personalized modeling). Flux 
balance analysis on SNF cluster-specific models identified 100 reactions with divergent 
flux among the SNF clusters. Also found 15 transporter reactions with distinct flux in SNF-
1 (mild/moderate) and SNF-3 (severe) compared with SNF-4 (HC). The transporter 
reactions consisted of the transport of TCA-cycle intermediates such as cis-aconitate, 

α-ketoglutarate, succinate, malate, and fumarate between cytosol and mitochondria. 
Most of the transporter reactions had flux only in SNF-1 (mild/moderate) and SNF-3 
(severe), displaying efficient transport of the metabolites in COVID-19 patients, which 
then possibly feed the TCA-cycle pathway (Figure 6 A, Paper I). We further checked the 
expression of transporter genes of TCA cycle intermediates in different cell types in 

COVID-19 using publicly available scRNASeq data. The analysis found that the transporter 
genes are mainly expressed in monocytes. These results were further corroborated by 
the results given by analyzing sctMetabolomics data targeting TCA-cycle intermediates 
in monocytes. FBA on personalized models found 274 metabolic reactions with unique 
fluxes across patients (Figure 6D, Paper I); most of them recapitulated the observations 
from group-specific FBA. Further, metabolic network topology-based analysis was 

performed to rank the genes and metabolites to measure their importance in the COVID-
19 disease response. Betweenness centrality was used for the ranking. The analysis found 
genes and metabolites, namely monocarboxylate transporter SLC16A6 and nucleoside 
transporter SLC29A1 and metabolites such as α-ketoglutarate in the cytosol, succinate, 
and malate in mitochondria and cytosol, and butyrate in the cytosol and extracellular 

space as top-ranked features in COVID-19 disease response. 

In addition to group-specific FBA, the study enabled us to identify and prioritize genes 
and metabolites at personal level as well. Here we performed an extensive 
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characterization of COVID-19 at a personalized level using transcriptomic data combining 

information from biologically meaningful metabolic flux predictions and topological 
network analysis. Our results showed disrupted flux in mitochondrial TCA cycle 
intermediates that display the altered central metabolic pathways in COVID-19 and could 
possibly be associated with the glycolytic modulation by mTOR/HIF-1 signaling and 
mitochondrial dysfunction [148]. We also showed that, viral replication and production are 

inhibited by blocking glycolysis and glutaminolysis pathways [148]. 

Genome-scale metabolic model contextualization and FBA were performed in Paper II to 
identify the metabolic reactions altered followed by HIV-1 infection. Also, metabolic 

network analysis was employed to prioritize the genes and metabolites for their 
importance in the existence of metabolic network coordination towards the HIV-1 
infection. Here, we performed group-specific metabolic modeling and FBA, and the 
analysis found 80 reactions uniquely disrupted in PLWHART compared with PLWHEC and 
HC cohorts. Those reactions were associated with amino acid, carbohydrate, and energy 
metabolism pathways and various transporter reactions. The energy metabolism 

pathways involving the tricarboxylic acid (TCA) cycle, glycolysis, glutaminolysis, and 
OXPHOS, were altered in PLWHART (Figure 3C, Paper II). The OXPHOS reaction converting 
ADP to ATP showed positive flux in PLWHART, whereas no flux was identified in PLWHEC and 
HC, which shows a higher energy requirement in PLWHART. Increased production of α-
ketoglutarate (αKG) in the cytoplasm and glutamate production was also observed in 

PLWHART. Two other reactions were also found to be active in PLWHART, which increased 
the production of αKG in the cytoplasm and that can potentially feed the TCA cycle in 
mitochondria. Feature ranking (based on centrality) in the metabolic network further 
identified fructose-6-phosphate, OAA, glutamate, and pyruvate as top features in 
PLWHART, showing the role of the TCA cycle and glycolysis in differentiating PLWHART from 

PLWHEC and HC. 

It is observed from the FBA that there is a change in metabolic flux in pyruvate, glutamate, 
and αKG in the PLWHART compared with PLWHEC and HC. A higher level of glutamate in 
PLWHART in several cohorts compared with HC was found by us recently [150]. Another 

study also suggested an increased level of glutamate in PLWH with dementia [156]. The 
interlink between glutamate and pyruvate and its neuroprotective role in chronic HIV-1 
infected patients on therapy needs further studies to understand neurological 

complications in HIV-1 infection after successful treatment. 

Context-specific genome-scale modeling and FBA were employed in Paper IV to study 
the temporal metabolic re-programming against CCHFV infection at the resolution of 
individual reactions. The FBA found 546 metabolic reactions altered during infection and 
in HC (Figure 3A, Paper IV). The reactions were associated with central carbon metabolism 
(CCM) and the transport of the metabolites related to the CCM. High demand for the 

amino acids (AA) during the acute phase of infection was indicated by the altered flux of 
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essential (leucine and threonine) and non-essential amino acids (arginine, alanine, and 

glutamine) in T0 compared to T1, T2, and HC (Figure 3B, Paper IV). The transportation of 
TCA cycle compounds such as pyruvate, isocitrate, and alpha-ketoglutarate was also 
found to be altered (Figure 3C, Paper IV). Disrupted pentose phosphate pathway (PPP) 
and metabolic shift towards fatty acid oxidation were also identified during the T0 phase 
(Figure 3C, Paper IV). The mitochondrial TCA cycle was also changed, including the 

additional ATP creation using OXPHOS (Figure 3C, Paper IV), and the transports of amino 
acids were also significantly associated (adjusted p<0.05) with metabolic reactions 
(Figure 3d). The results altogether suggest a high transportation of essential and non-
essential amino acids, a shift towards fatty acid oxidation, and extra ATP production 
through OXPHOS as the hallmark during the acute phase of infection that normalized to a 

certain extent during the recovery phase. 

The study reports a robust metabolic change towards the central carbon metabolisms 
(e.g., pyruvate metabolism, OXPHOS) and its connection with the antiviral response. The 
severely affected transports of amino acids and the key TCA cycle intermediates during 

the acute phase of infection show a hypermetabolic state during the infection. 
Interestingly, the altered pentose phosphate pathway and metabolic shift towards fatty 
acid oxidation and the extra ATP production through OXPHOS during the T0 phase 
indicate dysregulated energy metabolism to give more energy to the cells to suppress 
the infection. This hypermetabolic state during the acute phase causes metabolic 

insufficiency with altered signaling cascades at the convalescent phase despite restoring 
the metabolic process. The observation corroborates that the essential metabolic 
processes (e.g., glycolysis, TCA cycle, and OXPHOS) and the regulatory signaling cascades 

(Akt/mTOR/HIF-1 signaling) were downregulated at T2 than HC. 
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4.4 Host metabolic reaction changes in acute SARS-CoV2 and CCHF 
infection  

Additionally, the metabolic reactions altered specifically at acute stages of SARS-CoV2 
and CCHF infections were compared to investigate the similarities and dissimilarities in 

the host metabolic reprogramming. Figure 10 shows the metabolic reactions part of 
central carbon metabolism pathways and transport reactions that are found to be 
changed. It is observed that acute COVID-19 activates several reactions that transport 
metabolites part of TCA cycle from the cytoplasm to mitochondria.  Whereas in acute 
CCHF, few of those reactions are inactive; instead, it showed activation of oxalacetic acid 

(OAA) to malate conversion in the TCA cycle and OAA production in pyruvate 
metabolism. Also, several of the reactions of fatty acid oxidation and pentose phosphate 

pathways were uniquely active in acute CCHF. 

 These results show the strength of network-based systems biology analysis in deducing 
the metabolic responses at the stage of individual reactions. Standard transcriptomics 
can provide only general information about the metabolic pathways being disrupted but 
cannot pinpoint the exact reaction of the affected pathways. This information is vital to 

therapeutically target them for treating the disease.  

 

Figure 10: Metabolic reactions and associated flux computed from FBA at the acute stage of SARS-CoV2 and 
CCHFV infections and at corresponding negative controls. Created in R. 
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5 Conclusions and Future Directions 
We have successfully performed advanced network-based system biology analysis and 
conventional single-layer omics analysis to identify biologically and therapeutically 
important information associated with viral infections. Paper, I utilized a combination of 
multi-modal systems-wide transcriptomics, DCQ, and immunophenotyping of MNPs. We 
observed the crucial role of the coordination of immune cells in COVID-19 severity. The 
novel data-driven patient stratification recapitulated many previously known clinical 

properties and enabled us to unveil the critical mechanical consequences of COVID-19 
infection in immune cells. A progressive dysregulation of the central metabolic pathway 
(TCA cycle) concomitant with COVID-19 disease severity was identified by system 
biology methodologies such as network topology analysis and personalized GEMs, 
sctMetabolomics of monocytes, and gene expression mapping using published scRNA-

seq data. COVID-19 disease severity at individual and group levels was associated with 
alterations in central carbon and energy metabolism, TCA-cycle intermediates like malate 
and α-ketoglutarate, and expression of metabolite transporters in monocytes. These 
observations suggest the metabolic reprogramming in monocytes in specific COVID-19 

patient groups and potentiate personalized targets for treatment in severe patients. 

A system-level up-regulation of OXPHOS and, to a certain extent, glycolysis in PLWHART 
compared with the PLWHEC were observed in the study on HIV-1 infection. We further 
displayed how the dynamics of latent reservoir and immunosenescence in HIV-1–infected 
individuals with long-term successful therapy were impacted by the upregulation of 

OXPHOS. The study also showed the role of pharmacological inhibition of the OXPHOS 
complexes in latency reversal, apoptotic properties, and immunosenescence in latently 
infected cells. We concluded Paper II by warranting further studies investigating the 
molecular mechanisms underlying the observed shift in OXPHOS in PLWHART and how its 
association with glutaminolysis can cause immune dysregulation during successful 

therapy. 

Paper III concludes that the extensive transcriptomics analysis explains the host-immune 
response against CCHFV that can describe viral pathogenesis. Further, the study shows 
that efficient options for therapeutic intervention of CCHF could be provided by the 

interplay of the metabolic reprogramming toward the central carbon and energy 
metabolism and its negative association with biological signaling pathways like 
Notch/FoxO and PI3K/mTOR/HIF-1 and the IFN-mediated host antiviral mechanisms. More 
investigations on the role of mitochondrial biogenesis and dynamics in CCHFV infection, 
replication, and pathogenesis will increase our understanding of host-virus interactions, 

which can lead to the development of new antiviral strategies. 
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The analysis in Paper IV precisely identified the temporal antiviral response following the 

CCHFV infection and metabolic rearrangement. The study shows that the exhausted 
phenotype upon recovery can be promoted by dysregulation and hyperactivity of the 
critical metabolic process of the central carbon and energy metabolism and metabolic 
flux related to the amino acid metabolism during the acute progressive phases of CCHFV 
infection. Early recovery from the infection and quality of life improvement can be 

achieved by reprogramming the impaired metabolic pathways to improve the antiviral 

mechanism by harnessing immuno-metabolic regulations. 

Though we have performed novel system biology methodologies and identified important 

host-viral entanglement and immunopathogenesis that can lead to therapeutic 
information, there is still room for improvement. All the studies presented here used bulk 
transcriptomics data representing the gene expression corresponding to a mixture of 
cells in the tissue. This could bias the analysis as they can significantly impact the 
expression change we see from the analysis. The application of single-cell 
transcriptomics technology can successfully overcome this issue. Moreover, the 

genome-scale metabolic model generated in the studies used bulk transcriptomics data, 
representing a metabolic model of a mixture of cells. This could be biased because 
metabolism is different in various cell types. Metabolic modeling using single-cell 
transcriptomics data is more advisable to generate biologically more meaningful models 
accurately. Another issue regarding flux balance analysis for models representing virus-

infected tissues is the possible presence of viruses in the material. If the virus presence 
is detected in the material, incorporating viral biomass function in the model is necessary 
to adjust the metabolic requirement of the virus. In Paper I, we have used previously 
developed viral biomass function and development for other viruses recommended in 
future studies. Proper constraining of nutrient availability is also a crucial factor in flux 

balance analysis. Ideally, this should be done using temporal metabolomics data as a 
reference. Methodological advancement is required to accurately measure time-

dependent metabolite concentration to be used for better analysis.  
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