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ABSTRACT 
Apart from diseases caused by the defect of a single gene, most diseases are highly complex 
and are usually caused by a combination of biological and environmental factors. In the 
biological context, cellular processes are often tightly connected across molecular layers of the 
central dogma of biology, and the examination of a single layer would not be sufficient to 
address disease pathology, therefore, conclusions drawn can be limited. Combining biological 
observations from multiple layers or angles would greatly broaden our perspectives on the 
disease in concern and may lead to novel discoveries which would not be possible to deduce 
from a single-omics perspective. In this thesis, we focused on the method development for 
single-cell transcriptomics to address the prime bias problem introduced by the new droplet-
based technologies; integrative omics discovery of genomic signatures specific to different 
brain regions in normal individuals; as well as the utilization of multiple omics to identify 
potential biomarkers specific to amyotrophic lateral sclerosis (ALS) disease prognosis and 
diagnosis. 

Research has been revolutionized with the advent of single-cell omics technologies in the past 
few decades and new methods and tools have also been developed to accommodate such 
scientific accelerations. These innovations however posed new challenges and could 
potentially introduce bias and unforeseeable circumstances if left unaddressed. Specifically, to 
resolve the prime-based problem introduced by the current popular droplet-based single-cell 
sequencing technologies which may lead to bias quantification, in Study I, we presented a novel 
transcript quantification tool for droplet-based single-cell RNA-Sequencing (scRNA-Seq) 
technologies and benchmarked our tool with other popular transcript and gene quantification 
tools. Our tool outperformed currently popular tools in terms of transcript- and gene-level 
quantifications. 

In Study II, we investigated the association of splicing variants with the genetic patterns from 
different regions of the brain in normal individuals to identify quantitative trait loci (QTL) 
associated with ratios of isoform expression in genes. We carried out genome-wide association 
studies (GWAS) on isoform ratios from 13 brain regions and identified isoform-ratio QTL 
(irQTL) specific to each brain region, and their associated traits which could have been missed 
by expression QTL derived from gene expressions. 

We further looked into the utilization of proteomics and genomics data for ALS disease in 
Study III to understand disease pathology from multiple perspectives, and to identify potential 
protein biomarkers and protein QTL (pQTL) specific to different stages of the disease and 
tissue sites. In terms of proteomics, for each tissue site, we identified potential protein 
biomarkers specific to disease prognosis, survival of ALS patients, the functional decline 
among ALS patients, and longitudinal changes after disease diagnosis. In terms of integrative 
omics, we performed GWAS of protein expressions with genotyping data and identified tissue-
site-specific pQTL signatures for ALS patients. 
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All in all, our studies showed efforts in developing a single-cell transcript quantification tool 
to address potential bias problems with improved performance; identifying novel irQTL 
signatures specific to various brain regions using an integrative omics approach; and also 
discovering potential protein and genetic signatures for different tissues sites and pathological 
stages in ALS disease using multiple omics. We hope our work could potentially enhance the 
research process in various omics in terms of methods development and the novel signatures 
could act as valuable resources for fostering further research ideas and potential experimental 
validations. 
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1 INTRODUCTION 
1.1 OMICS STUDIES 

The burgeoning of large-scale high-throughput biotechnologies in the past few decades has 
enabled us to observe complex molecular events with heightened dimensionalities and 
precisions. We are now able to capture snapshots of biological phenomena across multiple 
layers following the central dogma of biology3 with the aid of multiple omics technologies, 
such as genomics, epigenetics, transcriptomics, and proteomics. The suffix “-omics”, 
concatenated to the molecular terms in the central dogma, is defined as “a comprehensive or 
global assessment of a set of molecules”4,5, with each omics type unveiling a single layer of 
molecular information from a complex biological system. Biological measurements were 
further revolutionized and increased in dimensionalities in recent decades through the 
transformation of these technologies into single-cell technologies. As biological events are 
highly complex processes involving cellular interactions between molecules, cells, or tissues6, 
measuring a single molecular modality would not be able to comprehensively assess the entire 
spectrum of complex interactions in most human diseases7,8, especially for complex diseases 
when the cause of a disease is usually not attributed to the abnormality of a single effector 
gene8-10. Many underlying biological mechanisms of diseases are still largely unknown due to 
the complexity of the biological systems and the transformation of mainstream research into 
multi-omics perceptions is imminent. Adapting a multi-omics approach, by examining several 
omics at a time, would provide multiple perspectives for the same problem so that we could 
dissect, connect, and trace highly intertwined events across molecular layers to reveal 
underlying biological mechanisms missed by a single omics approach. 

1.2 POTENTIAL LIMITATIONS IN OMICS TECHNOLOGIES 

The accelerated progress in omics development has urged perpetual transformations and 
developments of methods for analyzing these new data forms with increased dimensionalities. 
Novel methods and tools have been developed quickly to acclimatize to such rapid changes. 
However, with new technologies come new challenges. Due to the nature of the new techniques 
which produced heterogeneous outputs with varying natures11, many challenges remained 
unresolved in both the technical and the analytical aspects of the omics studies6,11-14. In the area 
of single-cell transcriptomics, droplet-based technologies such as 10X Genomics, tend to 
produce libraries with strong biases of read distributions at the transcript prime ends (i.e., 3’ or 
5’ ends)15, generating highly-similar read statistics between similar isoforms, thus creating 
problems for the precise quantification of transcripts. Efforts have been made to quantify 
isoforms at the single-cell level16-19, yet precise quantification of transcripts for prime-bias 
single-cell droplet-based techniques remained a challenge. 

1.3 OPPORTUNITIES FOR IMPROVEMENTS 

This thesis aims to address potential problems introduced by the current omics technologies, 
especially in the attempt to quantify isoforms in single-cell droplet-based techniques and to 
validate existing and discover novel molecular signatures using multi-omics approaches in 
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normal brain tissues and complex diseases. In the later part of the thesis, we focus on ALS, 
which is a complex, fatal, and progressive neurodegenerative disease caused by the gradual 
deterioration of motor neurons with a mean survival period of three to five years after disease 
onset20. Due to its highly complex nature in disease pathways, ALS remains uncured and no 
effective treatment strategies have been discovered21. We aimed to discover novel biomarkers 
specific to the disease in terms of diagnosis, prognosis, survival, and patient functional 
declination. The overall goal of the thesis is to address the prime-biased problem in isoform 
quantification in single-cell transcriptomics and to utilize multiple omics to discover novel 
signatures and disease phenotypes that could potentially be used in the clinical research for 
diagnosis, prognosis, or drug-target design for ALS or other neuron-related diseases. 
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2 LITERATURE REVIEW 

In this review, we gave an overview of omics types and their current developments, 
specifically, in the area of genomics, transcriptomics, and proteomics. We have also looked 
into the current development of single-cell isoform quantification. In the end, we summarized 
biomarker discovery, and disease subtyping at different omics levels in ALS. 

2.1 OMICS TYPES AND THEIR DEVELOPMENTS 

To vividly depict the study of different layers in biology, the characterization of biosystems or 
organisms at different biomolecular levels is known as an omics cascade5,22. The history of 
omics cascade could be traced back to the first successful attempt to isolate DNA by Friedrich 
Miescher23 in 1869, and in 1953 when DNA double helix structure was first discovered by 
James Watson and Francis Crick24. Following the success of helix discovery, the ability to 
determine the sequence of genetic barcodes in the DNA came into realization with the 
development of the “PLUS AND MINUS” method by Sanger25 in 1975, as well as the parallel 
developments of the Maxam-Gilbert method26 and the chain-terminating Sanger method (or 
dideoxy method)27 in 1977. These are known as the first generation of sequencing methods28. 
First-generation sequencing methods opened doors to investigate genomic sequences of 
organisms, however, drawbacks such as low efficacy in volume have motivated scientists to 
seek further improvements in sequencing technologies. Improvements came via the 
development of second-generation sequencing, which is also known as the Next Generation 
Sequencing (NGS)23,29 in the 1990s. NGS allows simultaneous massively parallel sequencing 
of millions of DNA fragments at the same time, while maintaining cost-efficient characteristics 
and speed-wise being much faster than the first-generation technology. Despite NGS as a 
cutting-edge technology being widely used to study genome biology, there are issues such as 
polymerase chain reaction (PCR) errors during DNA amplification that might contribute to 
false discovery and interpretation in genetic analyses30. In that case, third-generation 
sequencing was initiated in 2008 to circumvent the hurdles by retaining higher integrity of 
DNA during sequencing without having to break them down into fragments before 
amplification23,29,31. The technology will significantly enhance the overall quality of genome 
assemblies32,33. These sequencing technologies serve as the basis of molecule sequencing and 
amplification for most omics. 

2.1.1 Genomics 

Genomics refers to a comprehensive assessment of the genome34. Investigations into genomics 
allow researchers to gain a deeper understanding of the genetic makeups of organisms, 
especially with the accomplishment of the assembly of the entire human genome, the Human 
Genome Project35,36 in 2003, which is one of the greatest scientific achievements in genomics. 
As the cost of sequencing has drastically decreased over the past decades37, population-based 
genotyping such as the UK Biobank38 (UKB) was constructed to enable the study of genetic 
variations across thousands of people. GWAS, a methodology developed to identify genetic 
variants contributing to the strong associations between certain genotypes and corresponding 
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phenotypes39, has produced an encyclopedia of genetic loci associated with specific phenotypes, 
including disease traits40. With the advent of other omics technologies, the association analysis 
can be done across the molecular layers of the central dogma40 to deduce casual gene-to-
transcript, gene-to-proteins, etc. relationships. These association studies across complex 
molecular events would not have been made possible with the use of only genomics. 

2.1.2 Transcriptomics 

Transcriptomics is the study of the transcriptional events present in a cell, tissue, or organism41 
using high-throughput sequencing technologies such as the RNA-Sequencing (RNA-Seq) 
technologies42. The utilization of RNA-Seq can provide an in-depth understanding of the 
fundamental mechanisms of the complex gene expression networks in highly-connected 
biological systems such as cancers43. In merely less than two decades, after the first single-cell 
sequenced by Tang et al.44,45 back in 2009, transcriptomics development transformed itself 
from bulk sequencing of cellular populations to single-cell transcriptomics and spatially-
resolved transcriptomics. We are now able to detect expression profiles of individual cells, 
reveal complex and novel cell populations that can never be imagined at the bulk level, uncover 
regulatory relationships between genes and cells, and carry out trajectory tracing of distinct cell 
lineages in cellular developments46. Cellular subtypes are now identifiable with high precisions 
via the cellular level transcript phenotyping with a wide range of single-cell transcriptomics 
technologies. As technologies are evolving, so are their downstream handling methods. Many 
conventional bioinformatics approaches used for handling bulk RNA-Seq data are no longer 
suitable to apply to single-cell data as the dimensionality of the data has evolved to higher 
dimensions, and the nature of these new data forms is different due to the variations in single-
cell sequencing techniques. This still poses challenges in scRNA-Seq analyses across a variety 
of RNA-Seq protocols, such as the prime-biased problem in droplet-based technologies, 
causing difficulties in isoform quantifications. In recent years, multi-modal experimental 
techniques have been invented to study multiple modalities on a single cell6. This has advanced 
single-cell omics to the next level, beyond the need for integrative analysis of omics data from 
different cells, and reduced cell-to-cell variations during integration between different 
modalities. There are also challenges in this advanced technology, including its high cost which 
limits large-scale multi-modal studies, low coverage, and limited choices of multi-modal 
layers6. 

2.1.3 Proteomics 

Proteomics aims to assess phenotypically, the diverse characteristics of proteins, including their 
structures, functions, interactions, etc47,48. Up-to-date, high-throughput profiling across a large 
number of protein types became possible with technologies such as OlinkTM at the bulk 
proteomics level, and antibodies using mass cytometry (CyTOF) at the single-cell level, with 
CyTOF developed based on the traditional mass spectrometry (MS) technique. Proteomics 
technological developments have helped in biomarker identifications for many diseases with 
promising clinical applications such as disease diagnosis or prognosis in many proteomics 
studies49-55. Of all tissues, many studies focused on plasma as the main discovery medium for 
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biomarkers due to its comprehensiveness in human proteome and the prioritization for an 
eventual blood test of biomarkers56. This created new complexities in biomarker discoveries as 
huge varieties of proteins are present in the blood plasma and protein products varies from cell 
to cell. The limitations of the current technologies in quantifying and identifying proteins 
specific to different diseases are still a challenge, especially for complex diseases. Some resort 
to the use of other sampling sites for biomarker identification, including cerebrospinal fluid 
(CSF), brain extracts, etc56,57. However, samples from such sampling sites are sparse, and 
difficult to procure large sample numbers for many studies. As proteins are translational 
products of genes, there are essentially complex linkages between the genotype and the 
phenotype (proteins). What determines the architecture of a protein depends on multiple 
genetic and environmental factors, and the co-existence of other omics technologies fosters 
strong support for multi-omics integration of proteomics with other omics. 

2.2 ISOFORM QUANTIFICATION IN SCRNA-SEQ 

The significant progress in the development of sequencing technology and computational 
methods has brought the exploration of RNA expression measurement and quantification from 
bulk to single-cell level. A critical question related to RNA expression is to investigate 
alternative splicing patterns, which is a regulation mechanism in most genes. The quick 
advancements in transcriptomics technologies have introduced varying technical protocols 
with considerable technical and causing-leading downstream analysis limitations42,45,58. 
Popular droplet-based technologies such as 10X Genomics, which focus on prime-end 
sequencing protocols, tend to have a non-uniform distribution of reads across the cDNA body, 
especially with reduced reads mapped to positions further away from the primed regions. This 
prime-bias phenomenon created further challenges in the estimation of isoforms at the single-
cell level. For full-length scRNA-Seq protocols which have no prime-bias limitations, several 
methods have been developed to estimate isoform expression17-19. Even though an attempt has 
been made to quantify splicing events in prime-based scRNA-Seq data16, the ability to quantify 
isoform expression while modeling the prime-bias problem in single-cell droplet-based 
technologies is still a challenge. Addressing such limitations would improve the accuracy of 
isoform quantifications in droplet-based technologies. 

2.3 GENETIC REGULATIONS IN THE MOST COMPLEX ORGAN OF THE 
HUMAN BODY – THE BRAIN 

Gene regulation is the basis of the entire biological activities. It is not restricted to a single or 
isolated gene but is controlled by comprehensive regulatory networks. With the increasing 
development in high-throughput biochemical assay and understanding of the complex gene 
regulation mechanisms, omics technology has become an extremely powerful tool for the 
investigation of QTL in complex human tissues, such as the most variable region of the human 
body, the brain. With the emergence of different omics, the discovery of QTL has been 
leveraged by the multi-omics approach. For instance, comparing gene expressions (here it acts 
as the phenotype) with genetic variants (the genotype) would give rise to expression QTL 
(eQTL), which are genomic loci with effects on gene expression phenotype59;  comparing 
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splicing patterns of genes (phenotype) with genetic variants would lead to the identification of 
splicing QTL (sQTL), which are genomic loci with effects on alternative splicing events60; 
comparing protein expression (phenotype) with genetic variants would determine pQTL, which 
are genomic loci with effects on protein expression61. Through multi-omics QTL analysis, we 
are now able to identify causal genotype-phenotype relationships between different molecular 
layers. The QTL analysis has also been extensively applied to study the most complex tissue 
in the human body, the brain tissue. The best example of its application in biological findings 
is the Genotype-Tissue Expression (GTEx) project60, which is a pioneering project to massively 
phenotype gene expression and discover tissue-specific QTL across various human tissues, 
including 13 regions across the brain tissue. As the largest human tissue transcriptome 
expression database to date, many studies rely on this database for further genomics and 
transcriptomics studies. Apart from GTEX, many other studies have also made outstanding 
contributions in revealing genetic variations among a diverse set of human tissues. In 2019, the 
largest eQTL and sQTL map specific to human prenatal brain development was published and 
unearthed many potential risk loci specific to neurodevelopmental and neuropsychiatric 
disorders62. Zhang et al. identified sQTL with regional-specificity across different brain regions, 
suggesting the importance of regional variation of genetic variants in controlling splicing 
patterns63. In a recent study, Wang et al. identified methylation QTL (mQTL) with substantial 
effects on disease progression for Alzhermier’s disease64. In addition, Jack H. et al. in 2021 
identified potential risk loci in ALS patients based on the spinal cord transcriptome profiles of 
the diseased patients65. The progress in brain-specific QTL discoveries in multi-omics settings 
provided potential guidance for further variant identifications in many other diseases. 

2.4 AMYOTROPHIC LATERAL SCLEROSIS 

ALS is a non-curable neurogenerative disease involving the gradual degeneration of motor 
neurons in the central nervous system (CNS) with a median survival of 2-4 years after disease 
onset20,21. The disease is often highly complicated with genetic, environmental, lifestyle, and 
time factors, with heterogeneous clinical representations and disease phenotypes overlapping 
with that of other diseases, complicating our overall understanding of the disease, as well as 
subsequent strategies to the diagnosis, prognosis, and effective treatments for the disease.  

2.4.1 Epidemiology 

ALS is considered a rare disease with a standardized global incidence rate of only 1.68 per 
100,000 person-years with varying regional statistics21. The incidence rate is higher in Europe 
and North America with a range of 1.71 to 1.89 per 100,000 person-years, and lower in Asia 
with a range of 0.83 to 0.94 per 100,000 person-years21. In terms of age, ALS incidence 
increases with age21 and peaks at the age of 60 to 79 years21. The incidence happened to 
demonstrate an upward trend in recent decades which could have been a cause of social 
advancements such as improved diagnosis in the clinical settings21. Age, sex, and genetic 
factors contributing to disease incidence are often intertwined. For sex, the standardized 
incidence rate is 1.35 for the male-to-female ratio, with higher disease inheritance from mother 
to daughter, and lower disease onset age for men with C9orf72 mutant gene compared to 
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women21. In terms of disease phenotypes, women above 60 years are more prone to bulbar 
disease onset than men, whereas men with age less than 60 years often possess classical disease 
phenotypes, which is the weakening of muscles starting from the limbs with degenerations in 
both upper and lower motor neurons (MNs)21. 

2.4.2 Disease Causes 

Even though the causes of ALS are often highly complex, the causes could still be generally 
classified into two classes. Around 15% of ALS patients are caused by familial genetic 
inheritance (hence termed familial ALS) and the rest of the 85% are sporadic with unknown 
causes21,66. Genetic components causing ALS are at large, attributed to the inheritance of 
single-gene mutations21,67. Up-to-date, over 40 ALS-related genes have been discovered, with 
the most common gain-of-function mutation, C9orf72 expansions, which paralyzes RNA 
metabolism21,68. Mutations in these genes increased the toxicity of the relevant biological 
environments by producing or lost-to-produce protein products destructing or maintaining the 
normal molecular pathways in the system through the gain-of-function or loss-of-function 
mutations21. Even though these ALS-related genes have been discovered, some of the mutation 
patterns of these genes were also found in other diseases, thus complicating the overall ALS 
diagnosis21,69-71. For sporadic ALS with no family history of ALS, genetic risk variants could 
also be found in these patients and can be oligogenic or polygenic72 with earlier disease onset 
compared to those with a single or no such variants21,72. This may be due to the misclassification 
of these patients into sporadic cases due to limited family history information21. Other than 
genetics itself, environmental, lifestyle, and time factors, as well as the interactions between 
them, are also critical in contributing to the onset of the disease20,21,73.  

2.4.3 Clinical Representations and Disease Phenotypes 

ALS is highly heterogeneous in terms of clinical representations and outcome phenotypes due 
to the combination of disease-causing factors and their corresponding combined outcomes. The 
disease at large often caused dysfunction in the MNs and could be in either-or or both upper 
and lower MNs21,74. This degeneration cascaded into chain reactions depending on the affected 
zones and will lead to muscles involved in voluntary movements with diverse clinical 
representations21,74. Cognitive and behavioral changes could also show up in 35-50% of ALS 
patients21. Symptoms include and not limited to speech difficulties, memory deficits, irritations 
in behaviors, depression, sleeping disorders, etc21,74. Some of these representations fulfilled the 
diagnostic criteria for other similar diseases such as frontotemporal dementia21 and further 
complicated the process of understanding the disease.  

2.4.4 Potential Genetic Therapies and Protein Biomarkers 

New clinical trials have been designed to target ALS-associated genes with gain-of-function 
mutations21. Just like the famous genetically-modified Flavr Savr tomato75, one of the strategies 
is to design antisense RNAs to target and complementary bind to the RNA molecules (pre- or 
matured-RNAs) to prevent further translating these mutant RNAs into toxic protein products 
hijacking its targeted molecular environments21. Potential prognostic and diagnostic 
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biomarkers are also one of the targeted approaches for clinical use. The neurofilaments76 were 
robustly been reported in many studies as potential biomarkers for survival, disease diagnosis, 
phenotypes, etc21,66,77,78. As proteins are ubiquitously present in most body tissues with the need 
for normal tissue functioning and communications with other body components, more proteins 
could be investigated and targeted to assess their relevance in disease diagnosis, prognosis, 
etc66.  

2.4.5 Status-Quo 

Up to today, there is no cure or effective treatment for ALS. However, the advancements in 
technologies and social infrastructures with better healthcare systems and more complete 
patient information have greatly facilitated our research into forging better understandings of 
the underlying disease mechanisms and greater improvements in the clinical settings with 
enhanced diagnostic criteria. Even though most of the research discoveries have not been 
implemented in actual clinical practice, compiled insights have been drafted with a deepened 
understanding of the genetic components, their effects, and interactions, as well as other factors 
such as environmental factors. In the past decades, ALS-associated genes have been 
discovered, and disease biomarkers such as neurofilaments have demonstrated great clinical 
relevance with supporting clinical trials21,77. Due to the overall heterogeneous causes and 
disease outcomes, and the short survival time after disease onset21 with wide survival 
variations, there is still much more effort that is needed to be done. In terms of genetic factors, 
utilizing the current advancements in biotechnologies and also combining different omics to 
understand the complex interplays between different molecular layers (using complexity to 
fight complexity), would greatly speed up the research process in the genetic components 
contributing to understanding the disease. 
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3 RESEARCH AIMS 
 
The overall aim of this thesis is to discover novel omics signatures of complex diseases by 
analyzing various types of high-throughput high-dimensional molecular data. In detail, the 
thesis aims to: 
 

1. Construct a single cell-level transcript quantification tool; 

2. Discover existing or novel irQTL across different brain regions; 

3. Determine phenotypic differences between ALS patients and controls to identify 
unique disease signatures through multi-omics data analysis. 
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4 MATERIALS AND METHODS 
4.1 MATERIALS 

4.1.1 ScRNA-Seq Data 
 
Study I focused on the development of a transcript quantification method in a form of a 
stand-alone Linux-based tool for single-cell transcriptomics data. To measure 
quantification accuracy and benchmark real datasets, simulated scRNA-Seq data was used 
for accuracy assessment based on true counts followed by further validations based on real 
scRNA-Seq data. For all datasets, mapping was done based on the human reference 
genome hg38. 

4.1.1.1 Simulated Dataset 
 
We simulated a scRNA-Seq dataset to mimic the output from 10X Genomics 3’ sequencing 
(v3.1). Polyster79 v1.24.0 was used to generate fastq reads with a positional bias model to 
produce reads with highly skewed read distribution near the 3’ end. The mean fragment 
length and its standard deviation were also modeled and fitted into Polyester before reads 
generation. To infer transcript-count ratios at the single-cell level with better accuracy, we 
made observations for each gene using a full-length Smart-Seq2 dataset11 to avoid any 
quantification bias introduced by prime-sequencing. Sequencing depth was modeled using 
a PBMC sample from a healthy human donor, Single Cell Gene Expression Dataset using 
Single Cell 3’ v3, Chromium Connect Channel 1, 10x Genomics (2020, February 28). The 
above procedure accounted for the simulation of paired-end fragments. For 10X Genomics, 
read 1 is mainly made up of cell barcode sequence and unique molecular identifier (UMI) 
sequence for each RNA molecule of each cell, and read 2 contains the actual RNA 
sequences. Therefore, read 1 generated from Polyester was further modified to a fixed 
length containing both the barcode and UMI sequences. Barcodes are selected at random 
for inclusion based on the barcode list from 10X Genomics, which contains around 3 
million unique barcode sequences iteratively used by the technology for their experiments 
under the same protocol version (v3.1) and are 16 base pairs (bps) in length. The UMI 
sequences are usually 12bps long for the same version (v3.1) and were modeled using 
random nucleotide sequences. In a real sequencing setting, PCR errors will be observed 
and corrected, and therefore we did not consider such modeling. In total, 3,995 cells were 
produced for the simulated dataset. 

4.1.1.2 Real Dataset 

We utilized a bone-marrow CITE-Seq scRNA-Seq sample from Stuart et al.80 for 
benchmarking our method against other quantification methods. To ensure fair comparisons, 
the same number of cells (n = 20,840 cells) containing matching barcodes across these 
comparing methods were used. Homogenous cell type annotations were applied to all post-
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quantification outputs. To validate our findings, 15 human fetal bone-marrow samples 
containing 3,055 cells81 from Smart-Seq2 were used. 

4.1.2 Dataset from the GTEx Project 

For Study II, raw RNA-Seq samples (n = 1,191) from 172 individuals across 13 human brain 
regions were obtained from the GTEx project (dbGaP Accession phs000424.v7.p2.c1)82. 
Samples were collected from disease-free sites and individuals with infectious diseases such as 
the human immunodeficiency virus (HIV) infection and metastatic cancer, or therapeutically 
treated with chemotherapy or radiotherapy were exempted82. The age group of the donors 
ranged from 21 to 70 years. Apart from the RNA-Seq samples, whole-genome sequencing 
(WGS, phs000424.v7.p2.c1) data from these donors were also included in our study. In total, 
the WGS dataset consists of 5,987,177 105 single-nucleotide polymorphisms (SNPs) and 
509,531 insertions and deletions (Indels). We compared systematically our irQTL findings 
with the brain eQTL (phs000424.v7.p2.c1) and sQTL (phs000424.v8.p2) results from the 
GTEx project. 

4.1.3 Human Genotype-Phenotype Associations from PhenoScannerV2 

We used publicly available PhenoScanner V2, a database containing over 65 billion genotype-
phenotype association results, including diseases-trait associations of mQTL, eQTL, pQTL, 
and DNA methQTL83. Association results for eQTL were used to find relevant associations of 
irQTL with phenotypic traits. 

4.1.4 ALSrisc Cohort 

Study III is based on the ALSrisc study 
which stands for Biomarkers and Risk 
Factors for Amyotrophic Lateral 
Sclerosis. The ALSrisc cohort includes 
all newly diagnosed ALS patients (cases) 
from 2016 onwards in Stockholm 
county, as well as two control groups, 
namely disease-free full siblings and 
spouses of the ALS patients. ALS 
patients are recruited at the ALS Clinical 
Research Centre of Karolinska 
University Hospital, which is the only 
tertiary center for ALS in Stockholm. All 
patients received a diagnosis of 
probable, possible, or definite ALS, 
according to the El Escorial criteria. 
ALS patients, sibling controls, and 
spouse controls are all enrolled at the 

Figure 1. Study participants, sample 
preparation, and experimental procedures for 
Study III. Adapted from Lu P. et al., manuscript 
in preparation2. 
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time of ALS diagnosis or shortly thereafter. For Study III, we included a total of 198 ALS 
patients, 78 sibling controls, and 47 spouse controls (Figure 1). 

4.1.4.1 ALS Plasma and CSF Proteomics 

Study III aims to discover protein biomarkers associated with ALS diagnosis, prognosis, 
functional declination, etc., based on the assessment of CSF and plasma samples of the ALS 
patients and normal controls from the ALSrisc cohort. For ALS patients, 179 plasma samples 
and 165 CSF samples were collected. For the controls, 77 plasma and 6 CSF samples were 
acquired for the spouse controls, and 47 plasma, as well as 8 CSF samples, were obtained from 
the sibling controls (Figure 1). All samples have undergone proteomics profiling with the 
Olink proteomics technology (www.olink.com). 

4.2 EXPERIMENTS 

4.2.1 Sample Collection and Processing 

Blood and CSF biopsies were collected from all ALS patients either at the time of diagnosis or 
within three months thereafter, and annually thereafter. The collection was carried out via 
lumbar puncture. Blood samples from the sibling and spouse controls were collected at the time 
of diagnosis of their corresponding ALS sibling or partner. CSF samples were also collected 
among the controls recruited in the pilot phase of the ALSrisc study in 2015 during their blood 
sample collections. To isolate plasma, blood samples were centrifuged at room temperature at 
2000g for 10 min. CSF samples were centrifuged at 400g for 10 min at 4oC. Samples were 
stored as approximal 800µl - 1000µl aliquots at -80oC directly after collection. Both blood and 
CSF samples were thawed one time to prepare 70µl aliquots each for further sequencing using 
the Olink Proteomics platform. 

4.2.2 Genotyping and C9 Typing 

Genotyping was performed using Illumina Infinium Global Screening Array (GSAMD-24v3-
0-EA_20034606_A1) on the PLUS strand of DNA, which characterizes approximately 
730,000 SNPs, using the SNP&SEQ Technology Platform in Uppsala, Sweden. Sanger 
Imputation Service was used for genotype imputation. Quality control filters were applied 
before and after the imputation. Hexanucleotide repeat expansion (G4C2) mutation in intron 1 
of the C9ORF72 gene is associated with familial ALS. We identified homozygote carriers 
using fluorescent PCR as previously described by DeJesus-Hernandez et al.84. In the case of 
homozygote carriers, we used triplet primer PCR to quantify the expansion of the repeats. 

4.2.3 Olink Proximity Extension Assay (PEA) 

We profiled over 300 unique proteins for both the CSF and plasma samples using the proximity 
extension assay technology, a high-throughput immunoassay from the Olink Proteomics AB, 
Uppsala, Sweden (www.olink.com). The proteins were sequenced across four panels, namely, 
1) Olink Target 96 Inflammation, 2) Olink Target 96 Neurology, 3) Olink Neuro Exploratory, 
and 4) Olink Target 96 Cardiovascular III panels, with each channeling 92 proteins per panel. 
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4.2.4 Study I 

We utilized mainly the concept of equivalence class85,86 and the use of alternating expectation-
maximization (AEM) algorithm87,88 in Study I. Equivalence classes85,86 (eqClass) are clusters 
of highly-similar transcripts and reads mapped similarly to a set of transcripts within each 
cluster constituted an aggregated read count known as the transcript compatibility count 
(TCC)85,86. The TCC of each eqClass served as a basis for the tabulation of transcript abundance 
using the AEM algorithm. 

4.2.4.1 Modeling Single-Cell Transcript Counts using the AEM Algorithm 

Quantifying transcript abundance in Study I revolves around the estimation of transcript 
abundance using the AEM algorithm88. For each cell, we constructed a vector y, summarizing 
read counts ri of TCCs of all the eqClasses of the cell. The vector y can be derived from the 
read alignment of raw fastq files using Alevin89, and could alternatively be done using other 
methods such as Kallisto-bustools90 as these tools produce read counts in the form of eqClasses, 
which can be served as inputs to the quantification of isoforms in our algorithm (Figure 2). 
The presumption here is that y follows a Poisson distribution with mean 𝜇, in which, vector 𝜇 
is the expected read counts mapped to all eqClasses in a cell, and 𝜇 follows the bilinear model, 

𝜇 = 𝑋𝛽, 

such that 𝛽 models the expression counts for each isoform and 𝑋 matrix summarizes the read 
sharing between the isoforms in each eqClass. To optimize algorithmic efficiency, transcripts 
from the same eqClass were grouped under the same transcript cluster (TC) and the estimation 
of transcript abundance was done independently for each TC. As AEM is an iterative algorithm 
that alternates and updates the values of 𝑋  and 𝛽  between the expectation (E) and 
maximization (M) steps, given 𝑌, a starting matrix for 𝑋 is needed to compute the first set of 
𝛽 values. The initial guess of 𝑋 matrix was constructed by first, constructing a simulated set of 
scRNA-Seq data, modeling the prime-bias problem introduced by the droplet-based method 
(here we focused on 10X Single Cell 3’ protocol) based on the same criteria for generating the 
simulated data mentioned in Section 4.1.1.1. Similarly, this was followed by the mapping 
procedure and transcripts from the same eqClass were grouped under the same TC and will be 
normalized and used as an initial 𝑋 matrix independently for each TC in the AEM algorithm 
(Figure 2). For the 𝑋  matrix, a threshold was set to merge isoforms with highly similar 
sequences that are statistically unidentifiable from each other (here we called them isoform 
paralogs). Given 𝑋  and 𝑌 , for each cell and each TC, the E step estimates the transcript 
abundance 𝛽. Once 𝛽 is estimated with an initial set of transcript abundance values, given 𝛽 
and 𝑌, the values in the 𝑋 matrix get updated with a new set of TCC values in the M step. The 
updates to the values of 𝛽 and 𝑌 reiterates between E and M steps until 𝛽 converges. 
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Figure 2. Algorithmic workflow for Scasa, the tool developed in Study I to estimate 
transcript abundance at the single-cell level. Adapted from Lu P. et al., 202191. 

4.2.5 Study II 

4.2.5.1 Isoform Quantification and Ratio Estimation 

We acquired demultiplexed RNA-Seq fastq files of the brain samples from the GTEx 
project60,82 and carried out mapping and isoform quantification using XAEM v0.1.088 and 
human genome reference hg19. To identify genetic regulation of isoform expression, we 
considered only isoforms from multi-isoform genes, which retained a total of 31,482 isoforms 
from 9,401 genes out of a total of 46,719 isoforms from 24,629 genes. Out of which, around 
90% of the isoforms are from the protein-coding genes, and the rest include long non-coding 
RNAs (lncRNAs), anti-sense RNAs, etc. To reduce redundancy, samples with half or more 
than half of the isoforms having zero counts were removed. Raw isoform counts were 
normalized to transcript per million (TPM) counts and isoform ratios were estimated for each 
isoform, by dividing the TPM of each isoform by their respective gene-level TPM. These TPM 
isoform ratios served as the phenotypes for the estimation of irQTL in GWAS analysis in the 
next step. 

4.2.5.2 irQTL Discovery 

Before the GWAS analysis, we examined the genomic kinship using PLINK v1.992 and used 
the first three principal components (PCs) as the covariates to correct the isoform ratios using 
linear regression. Apart from the PCs, age, and sex were also considered in the regression 
model. Using the covariates-corrected isoform ratios as phenotypes, we performed the GWAS 
analysis on their corresponding genotype data using RegScan v0.593 which enables fast analysis 
for large datasets. We considered only cis-regulatory loci and each cis-region locus was defined 
as ± 1Mb up- and down-stream around the corresponding gene. SNPs with the lowest p within 
each locus were selected as the lead variant and associations having 𝑝 < 5	 × 	10-.  were 
retained for subsequent analyses. To identify splicing regulation-specific QTL, we compared 
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the association results with the cis-eQTL from the GTEx project60,82, and retained irQTL with 
eQTL 𝑝 > 0.05 as the final set of irQTL1. 

4.2.5.3 Stratified linkage disequilibrium score regression (S-LDSC) 

We utilized S-LDSC v1.0.0 to examine if the annotated genetic regions are enriched for 
heritability of a certain trait based on the GWAS summary statistics from the LG-Hub94. 
Harmonizing of the summary statistics was carried out using the same software. The 
heritability enrichment score was defined as the proportion of heritability captured divided by 
the proportion of annotated SNPs. To increase the sensitivity of our estimation, we controlled 
for residual variance recommended by LDSC95,96, to fit the LDSC-v1.2 baseline annotations as 
covariates. The whole process was done separately for each brain tissue to avoid any possible 
multi-collinearity introduced by the similarities between the brain tissues. 

4.2.5.4 Mendelian Randomization (MR) analysis 

Neuro-related traits from the LD-Hub94 and GWAS results of the UK Biobank (UKB) diseases 
from Neale’s lab38 were retrieved and duplicated traits as well as highly correlated traits after 
comparison between the data sources, were removed. MR analysis was carried out between the 
normalized isoform ratios and the phenotypic traits using the standard inverse-variance 
weighted (IVW) method for all cis-irQTL.  

4.2.6 Study III 

Demographically, we compared the sex, age, BMI, smoking, hypertension, etc. of ALS patients 
to the controls, as well as the clinical characteristics of study participants to all ALS patients in 
Stockholm during the study period using the Motor Neuron Disease (MND) Quality Registry97 
to assess study population representativeness. 

4.2.6.1 Proteins between cases and controls 

We utilized the generalized estimating equation (GEE) model98 to compare protein 
concentrations between ALS patients and controls while accounting for possible clustering 
effects between individuals from the same family. To avoid potential false positives due to 
multiple testing, we applied the Benjamin-Hochberg (BH) False-Discovery Rate (FDR) to 
adjust p-values. Differential expression was determined if a protein showed a concentration 
difference of normalized protein expression (NPX) > 0.25 between cases and controls at FDR 
< 0.05. We analyzed plasma and CSF separately and compared proteins in plasma between 
ALS patients and their siblings as well as spouse controls. Correlations between plasma-based 
and CSF-based concentration differences of each protein were calculated to understand 
potentially different behaviors of proteins in the periphery and intracranial compartment. 
Multivariable adjustments were made, including age, sex, technical factors, and factors related 
to both the risk of ALS and protein concentrations. Missing values in BMI, smoking, and 
hypertension were imputed before all analyses using simple or multiple imputation methods. 
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4.2.6.2 Proteins and risk of death and survival among ALS patients 

We aimed to identify potential protein biomarkers in plasma or CSF samples that could serve 
as prognostic indicators of disease in ALS patients. To achieve this, we performed several 
analyses on ALS patients, all of whom were followed up through the MND Quality Registry 
from the time of diagnosis until death or January 31st, 2022, whichever occurred first. During 
this period, 161 out of 198 ALS patients died, with a median survival of 506 days from 
diagnosis (911 days from symptom onset).  We used a Cox proportional hazards model to 
assess the risk of death per NPX increase of each protein in plasma and CSF, both with 
unadjusted and multivariable models. The multivariable model was adjusted for covariates 
such as age, sex, number of freezing days, sequencing plate identity, body mass index (BMI), 
smoking, and hypertension, as well as other known prognostic indicators for ALS, including 
the site of onset, revised ALS functional rating scale ALSFRS-R99 score at diagnosis, and 
diagnostic delay (the time interval between symptom onset and diagnosis).  In the secondary 
analysis, we categorized ALS patients into high or low levels of specific proteins and used 
maximally selected rank statistics100 to determine the optimal NPX cut-off value for each 
protein. This allowed us to determine the best separation between the two groups of ALS 
patients in terms of survival. Kaplan-Meier survival curves were then plotted for patients with 
high or low levels of each protein, and the difference between the survival curves of the two 
groups was assessed using a log-rank test to determine its statistical significance. 

We conducted a secondary analysis to determine the summary effect of proteins that were 
significantly associated with the risk of death following an ALS diagnosis. We computed a 
poly-protein risk score (PRS) by summing the NPX values of each protein, weighted by their 
estimated 𝛽1  coefficients derived from the corresponding Cox model. Mathematically, this PRS 
can be modeled as: 

𝑃𝑅𝑆56 = 	7𝛽168𝑥68

:

8

 

where 𝛽168  is the estimated coefficient of Cox model for a protein k in setting i for sample j 
whereas 𝑥 is the NPX value of protein k for sample j. We only included proteins that were 
significantly associated with the risk of death in the multivariable Cox models, and we 
calculated PRS values in plasma and CSF separately. ALS patients were then classified using 
maximally selected rank statistics as having either high or low PRS, and were done 
independently for plasma and CSF samples. 

4.2.6.3 Proteins and functional decline among ALS patients 

Apart from analyzing the risk of death and survival, we also investigated the relationship 
between proteins and the rate of functional decline, as measured by the ALSFRS-R score 
against time since diagnosis. The analysis was conducted separately for plasma and CSF. For 
each protein, ALS patients were divided into high or low-protein-level groups based on their 
NPX values using maximally selected rank statistics as previously described. Differences in 
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the rate of ALSFRS-R decline between the two patient groups were assessed using a 
generalized additive model. ALSFRS-R scores were treated as the response variable, and the 
patient group was treated as the predictor variable, with thin plate smooth splines. To account 
for individual patient differences in the analysis, patient identity was modeled as a random 
effect, with an interaction term between patient identity and time.     

4.2.6.4 Longitudinal protein profiles among ALS patients 

We also investigated the longitudinal profiles of proteins in plasma and CSF after ALS 
diagnosis. Linear mixed-effects models were used, with NPX values of each protein as the 
response variable, and time after diagnosis as the predictor variable, adjusted for the same set 
of covariates mentioned in the previous analyses. Sample identity was included as a random 
effect in the model. FDR correction was applied to adjust for multiple testing, and a significance 
level of FDR < 0.15 was used due to the smaller sample size as compared to the analysis of 
ALS cases and controls. Yet, a final threshold of FDR < 0.05 was still used to filter for 
significance owing to the larger number of proteins showing statistically significant trends over 
time. 

4.3 ETHICAL CONSIDERATIONS 

Study I used published datasets, as well as simulated datasets, and therefore there was no 
handling of sensitive data. For the RNA-Seq and WGS datasets from the GTEx project used in 
Study II, permission was granted to access the data and no sensitive data leading to the 
identification of individuals was used. Study III was approved by the Ethical Review Board in 
Stockholm, Sweden (DNRs 2014/1815-31/4 and 2018-1065/31). Oral and written informed 
consent was granted from all study participants. 
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5 RESULTS 
5.1 STUDY I 

We developed a tool named Scasa91, with the method to estimate isoform abundance for single-
cell droplet-based transcriptomics technologies. For this study, we addressed the prime-bias 
problem introduced by these droplet-based protocols and benchmarked Scasa quantification 
results with other existing isoform and gene quantification software. Scasa outperforms other 
methods based on simulated data and quantifying isoform expression for a bone marrow 
dataset80 revealed a novel CD14 monocyte subtype missed by gene expression quantifications. 

5.1.1 Addressing the Prime-Bias Problem Introduced by Droplet-Based 
Technologies 

Based on the hg38 transcriptome reference, 52,046 (73.3%) of the isoforms are separately 
quantifiable (such that they do not form isoform paralogs, and are of paralogs size = 1) for bulk 
RNA-Seq data, and the remaining contains paralogs. The prime bias problem in the scRNA-
Seq data reduced the number of separately quantifiable isoforms to 21,287 (30.0%)91. The cost 
to such a problematic event is in turn the high similarities in their 𝑋	matrix distributions, and 
created estimation problem as they are statistically indistinguishable. Not accounting for these 
paralogs could result in bias estimates in addition to the prime-bias phenomenon, which 
violates the read-sharing symmetry assumption presumed by bulk RNA-Seq methods. Scasa 
identified and quantified the paralogs present in the data and can provide more accurate 
quantification by modeling the prime-bias effect. 

5.1.2 Scasa Outperforms Other Quantification Methods 

We benchmarked Scasa v1.0.091, using the simulated dataset, against both the isoform-level 
(IL) and gene-level (GL) quantification methods to evaluate its quantification performance. 
These included (i) single-cell GL quantification tools, Kallisto-bustools90,101 (Kallisto v0.46.1 
and bustools v0.39.3),   Alevin (v1.4.089), Cellranger (v3.1.0102),  STARsolo(v2.7.2b16); (ii) 
bulk IL and GL quantification tools, Kallisto v0.46.1101, Salmon v1.4.0103; and (iii) bulk IL 
quantification tool, Terminus v0.1.0104. To compute comparative GL values for the IL methods, 
we summed the component isoforms based on human genome reference hg38. Scasa has 
demonstrated its superior performance in both isoform and gene expression quantification 
settings, with Salmon being the closest competitor at the IL level. Among the gene-level 
quantification methods, Alevin and STARsolo also performed well compared to Scasa (Figure 
2). 

5.1.3 Novel CD14 Monocyte Subtype Revealed by Scasa 

We used publicly-available bone marrow mononuclear dataset80 with measured antibodies with 
well-defined cell-type identification and annotations. At IL quantification, Scasa (isoform) 
detected a distinct CD14 monocyte subgroup which was not discoverable by gene-level 
quantification using Scasa-gene, Cellranger, and Alevin (Figure 2A). Notably, among the 
statistically significant differentially-expressed (DE) isoforms of this monocyte population, the 
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top four DE isoforms came from the TYROBP gene91 and they displayed unique isoform 
expression signatures within the specific population of cells. The phenomenon was diluted at 
the GL expression quantification (Figure 2B). 

 

Figure 2. Comparison of Scasa against competing methods for both IL and GL 
quantifications. Simulated data with true counts were used for the comparison, where the x-
axis represents the true counts and the y-axis denotes the estimated counts by the software. 
Adapted from Lu P. et al., 202191. 

5.2 STUDY II 

5.2.1 Cis-irQTL Discovery 

Study II identified splicing-specific 4,241 cis-irQTL across the 13 brain regions, as compared 
to the eQTL gene-level result from GTEx (𝑝5;<=> < 5 × 10-. and 𝑝?<=> > 0.05). We cross-
referenced the cis-irQTL with the sQTL discovered by sQTLseekeR105 from the GTEx 
project and overlapping of 1,126 QTL were found in sQTL a𝑝 < 5 × 10-. significance. We 
have also compared cis-irQTL with the THISTLE106 sQTL results, in which THISTLE 
employ a gene-wise heterogeneity test for sQTL discovery, i.e., splicing genes (sGenes). A 
total of 96 sGenes were found to be associated with the cis-irQTL sGenes (n = 874). 
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Figure 3. The novel CD14 monocyte subtype revealed by Scasa. (A) Cells highlighted in 
red are the cells from the new CD14 monocyte population discovered by Scasa. These cells 
diffused back into the main CD14 monocyte cluster at GL quantification. (B) Isoform 
expression levels for one of the top DE-isoform-associated genes, TYROBP. A distinct 
expression pattern was observed, within the new CD14 monocyte sub-cluster. Adapted from 
Lu P. et al., 202191. 

In terms of the cis-irQTL, similar to the 
cis-eQTL results from GTEx, most of 
them are found near the transcription 
start sites (TSS) and exhibited a wider 
distribution around TSS as compared to 
that of the cis-eQTL (Figure 3). The 
difference could be a complication of 
differential splicing patterns across 
isoforms from the same gene as well as 
lower statistical power compared to 
gene expression QTL due to the 
ambiguity arising from read-sharing 
between isoforms. 

A 

B 

Figure 3. Distribution of the cis-irQTL and cis-
eQTL around TSS regions across 13 brain tissues. 
Adapted from Lu P. et al. (in press)1. 
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5.2.2 Heritability Enrichment and MR Analyses 

A total of 1,482 enrichment tests were carried out to test for heritability enrichment of 
phenotypic traits across the 13 brain tissues. In terms of neuro-related, three brain tissues 
were found to possess significant associations, including Alzheimer’s or dementia, mood 
swings, nervous feelings, sensitivity or hurt feelings, sleep duration, alcohol intake, and 
contraceptive pill intake with the frontal cortex (BA9); educational attainment, alcohol 
intake, intelligence, and knee pain with the cortex; and anxiety or depression with the cervical 
spinal cord. 

The MR analysis found 250 isoform-disease pairs with causal relationships at FDR < 0.05. 
Traits enriched include educational attainment, sleep, psychiatric disorders, feelings, and 
alcohol intake. Gene MMAB, with the most MR discoveries, includes traits such as sleep 
duration, insomnia, neuroticism, miserableness, and schizophrenia. This was in line with the 
literature as Vitamin B12 is involved in the production of sleep-regulating neurotransmitter 
melatonin107,108, and the protein product of MMAB was reported to catalyze the conversion 
of vitamin B12 into its final product adenosylcobalamin109. 

5.3 STUDY III 

5.3.1 Demographics and the Representativeness of the ALSrisc Cohort 

Comparing the ALS patients and the controls, the ALS patients were on average, slightly older 
in age, had lower BMI, and showed a higher prevalence of C9orf72 mutation compared to the 
controls (Table 1). Comparing the ALSrisc cohort to the Stockholm population, the 
characteristics of the ALS patients in the present study are comparable and representative of 
the entire ALS population in Stockholm during the study period in terms of site of onset, 
ALSFRS-R score, diagnostic delay, and mutation status (Table 2). 

5.3.2 Protein Biomarkers Discovery 

For all comparisons, plasma and CSF samples were assessed independently. We discovered (i) 
potential protein biomarkers that differ significantly between ALS cases and controls; (ii) 
biomarkers related to the risk of death and survival among ALS patients; (iii) biomarkers with 
significant association with ALS functional decline; and (iv) longitudinal proteins that changed 
significant overtime after diagnosis. Among the top proteins, neurofilament light chain 
(NEFL), showed the strongest association across (i), (ii), and (iii) in both plasma and CSF 
samples. Longitudinally, however, NEFL did not demonstrate highly varying expression levels 
after disease diagnosis. Other than NEFL, varying top protein biomarkers were observed, 
Higher plasma protein levels such as EDA2R, TNFRSF12A, and MB as well as higher CSF 
levels of GDF-15 were associated with a higher risk of ALS, whereas higher plasma levels of 
RGMA, GDF-8, and MMP-3 were associated with a lower risk of ALS. Higher plasma levels 
of EDA2R, TNFRSF12A, and GDF-15 were associated with a faster functional decline whereas 
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higher plasma levels of ITGB2 and GCP5 were associated with a slower functional decline, 
after ALS diagnosis. Higher CSF levels of MB were associated with a higher risk of death. 
After the ALS diagnosis, EDA2R and GDF-15 showed an increment in concentration whereas 
RGMA, GDF-8, MMP-3, ITGB2, and GCP5 showed a decreasing concentration in plasma over 
time since ALS diagnosis. 

Table 1. Baseline characteristics of patients with ALS and their spouse and sibling 
controls. M represents the number of individuals and N represents the number of samples. 
§Numbers are rounded off to 1 decimal place (d.p.). *BMI is expressed in the unit of kg/m2. 
Imputed values for missing data are included for BMI, hypertension, and smoking. Adapted 
from Lu P. et al., manuscript in preparation2. 

Characteristics ALS patients (M = 198) Spouse controls (M = 78) Sibling controls (M = 47) 

Plasma 
(N = 179) 

CSF 
(N = 165) 

Plasma 
(N = 77) 

CSF 
(N = 6) 

Plasma 
(N = 47) 

CSF 
(N = 8) 

Sex, N (%,1d.p.§) 
      

Female 89 (49.7%) 79 (47.9%) 46 (59.7%) 4 (66.7%) 25 (53.2%) 2 (25.0%) 

Male 90 (50.3%) 86 (52.1%) 31 (40.3%) 2 (33.3%) 22 (46.8%) 6 (75.0%) 

Age (mean±SD, 
1d.p.), year 65.2±11.1 65.1±11.4 63.9±10.1 55.0±10.9 61.2±8.3 59.8±7.6 

BMI (mean±SD, 
1d.p.)* 23.9±3.9 23.9±4.0 25.7±3.6 25.4±2.3 25.4±4.4 25.7±3.6 

Hypertension, N (%,1d.p.) 
     

No 80 (44.7%) 71 (43.0%) 47 (61.0%) 3 (50.0%) 31 (66.0%) 4 (50.0%) 

Yes 60 (33.5%) 47 (28.5%) 20 (26.0%) 3 (50.0%) 15 (32.0%) 4 (50.0%) 

Unknown 39 (21.8%) 47 (28.5%) 10 (13.0%) 0 (0.0%) 1 (2.1%) 0 (0.0%) 

Smoking, N 
(%,1d.p.)       

Never smoker 61 (34.1%) 54 (32.7%) 26 (33.8%) 4 (66.7%) 23 (48.9%) 3 (37.5%) 

Former smoker 70 (39.1%) 60 (36.4%) 38 (49.4%) 2 (33.3%) 19 (40.4%) 4 (50.0%) 

Current smoker    12 (6.7%) 7 (4.2%)        5 (6.5%) 0 (0.0%) 4 (8.5%) 1 (12.5%) 

Unknown 36 (20.1%) 44 (26.7%)        8 (10.4%) 0 (0.0%) 1 (2.1%) 0 (0.0%) 

Sample freezing 
days (mean±SD, 
0d.p.) 

979±406 1001±385 976±395 1267±248 986±367 1101±301 
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Characteristics 

                 ALS patients in study (M = 198) 
Stockholm ALS 

population (M = 504) Plasma 
(M = 179) 

CSF 
(M = 165) 

Onset type, N (%,1d.p.§) 
   

Spinal 107 (59.8%) 95 (57.6%) 304 (60.3%) 

Bulbar / Neck 66 (36.9%) 65 (39.4%) 149 (29.6%) 

Other 6 (3.4%) 5 (3.0%) 30 (6.0%) 

Unknown 0 (0.0%) 0 (0.0%) 21 (4.2%) 

Disease progression at 
diagnosis, N (%,1d.p.)*    

Slow 29 (16.2%) 22 (13.3%) 93 (18.5%) 

Intermediate 69 (38.5%) 56 (33.9%) 97 (19.2%) 

Fast 80 (44.7%) 83 (50.3%) 136 (27.0%) 

Unknown 1 (0.6%) 4 (2.4%) 178 (35.3%) 

ALSFRS-R score at diagnosis 
(mean±SD,1d.p.) 37.2±7.5 37.8±7.4 34.2±10.4 

Diagnostic delay 
(mean±SD,1d.p.), months 16.8±16.4 15.6±15.6 18.0±19.8 

Gene mutation status, N 
(%,1d.p.)+    

SOD1 3 (1.7%) 3 (1.8%) 3 (0.6%) 

C9ORF72 20 (11.2%) 16 (9.7%) 21 (4.2%) 

OPTN 1 (0.6%) 1 (0.6%) 1 (0.2%) 

ATXN8 1 (0.6%) 1 (0.6%) 1 (0.2%) 

Table 2. Comparison of characteristics between ALS patients included in the study and 
the entire ALS population in Stockholm. M represents the number of ALS patients. 
§Numbers are rounded off to 1 decimal place (d.p.). *Slow progression means a decline of <0.5 
ALSFRS-R score per month, intermediate progression means a decline of 0.5 to 1.1 ALSFRS-
R score per month, and fast progression means a decline of >1.1 ALSFRS-R score per month.  
+Number of patients tested for mutation status of the listed genes is 161 in the present study 
and 197 in the entire ALS population in Stockholm. Adapted from Lu P. et al., manuscript in 
preparation2. 
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6 DISCUSSION AND CONCLUSION 
6.1 STUDY I 

The purpose of alternative splicing is to generate isoforms with alternative biological functions. 
Bulk RNA-Seq methods are not effective for quantifying isoforms in scRNA-Seq datasets due 
to the 3’ bias in the droplet-based sequencing protocols. We developed Scasa to accurately 
quantify isoform expression in 10X 3’ scRNA-Seq data by addressing this bias while utilizing 
the concept of transcription clusters and isoform paralogs. Scasa outperformed other popular 
methods and identified isoform-specific cellular subsets in a case study of bone marrow cells. 
Scasa has the potential to identify biomarkers and cellular subsets not detectable at the gene 
level. 

Even though Scasa is constructed based on the Chromium Single Cell 3’ 10X Genomics 
technology, the tool can be extended to work on other technologies which also use prime 
tagging techniques. In addition, Scasa can be easily used as the downstream quantification tool 
for gene-level post-alignment outputs from Alevin and Kallisto-bustools. On the other hand, 
due to shared high similarities in certain isoforms, not all isoforms can be estimated 
individually and were grouped into isoform paralogs by Scasa. This however in term limits the 
number of identifiable isoforms. Characterizing the isoform members of a paralog requires 
additional information and possibly experimental validation, which is beyond the scope of our 
study. 

6.2 STUDY II 

In Study II, we used GWAS analysis on isoform ratio normalized TPMs to identify irQTL, 
which could not be detected by analyzing gene-level expressions alone. By studying the genetic 
architecture of irQTL, we discovered that isoform ratios are involved in regulating educational 
attainment in multiple tissues, including the frontal cortex, cortex, cervical spinal cord, and 
hippocampus, which are also associated with various neuro-related traits and diseases. Our MR 
analysis identified 1,139 pairs of isoforms and neuro-related traits with plausible causal 
relationships, indicating that investigating overall gene expressions could miss critical 
transcript-level biomarkers in the human brain for neuro-related complex traits and diseases. 
The study focused on brain tissue due to its abundant alternative splicing events and specific 
functions linked to brain-related phenotypes. While assessing more tissue samples from the 
GTEx project could be valuable, it would require significant computational resources. Future 
studies could incorporate more tissues into investigating and discovering other tissue-specific 
irQTL. Additionally, since whole-blood RNA sequencing data are available in multiple human 
cohorts, we foresee a consortium-based investigation of irQTL associated with various human 
complex traits and diseases. 

We discovered brain cis-irQTL that controls isoform proportions which is different from eQTL. 
Genes of these irQTL are enriched for heritability in neuro-related traits. Our analysis 
demonstrated the importance of quantifying isoform expressions, as some genetically regulated 
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functional transcripts may only be detected by utilizing the splicing information, and have 
downstream effects on phenotypes via MR analysis. We utilized XAEM for isoform 
quantification which allows for accurate quantification of isoform expression for multi-isoform 
genes88. The genome references such as the Ensembl110 and the GENCODE111, contain much 
more non-curated isoforms, and many of the isoforms from the same gene only by a few bases 
in sequencing, accentuating the difficulties in isoform quantification. Therefore, using curated 
isoforms from RefSeq is more suitable for the study. 

The discovery of irQTL and its associated traits indicated that it is important to explore the 
effect introduced by alternative splicing rather than looking at the overall gene expression 
phenotypes. Besides, it is important to differentiate between sQTL and irQTL. sQTL is 
investigating the direct alternative splicing events while isoform expression itself can be 
treated as splicing phenotypes. Studying isoform expressions as phenotypes could provide 
direct downstream information on sQTL.  

6.3 STUDY II 

Our results on NEFL indicated that NEFL is a notable biomarker for disease risk, functional 
decline, and risk of death after ALS diagnosis in both plasma and CSF. The comparable 
findings between the two sample types support the notion that NEFL measured in the periphery 
can serve as a reliable surrogate for the intracranial compartment112. However, NEFL is not a 
highly specific biomarker for ALS, as it has also been observed in other neurodegenerative 
diseases113-116. NEFL does not show clear temporal trends over time since ALS diagnosis, in 
agreement with existing literature112,117,118, limiting its use as a biomarker for clinical trials. 

The study discovered EDA2R, TNFRSF12, MB, and GDF-15 as potential risk proteins that 
higher plasma levels of these proteins are associated with a higher risk of ALS and functional 
decline. EDA2R has been shown to increase with age119,120 and is linked to loss of neuronal 
functions. Its upregulation in ALS suggests a role in muscle cell survival and catabolism. 
EDA2R may be a biomarker for muscle degeneration in ALS. TNFRSF12, also known as 
TWEAK, is a cytokine that promotes apoptosis, chronic inflammation, and cell-specific 
angiogenesis. It is involved in adult neurogenesis, synaptic functions, and skeletal muscle 
atrophy and regeneration121,122, and is expressed in the central nervous system. Although 
TWEAK was elevated in ALS patients compared to controls, no clear temporal trend was 
observed after diagnosis and no significant difference was found in CSF. Myoglobin, MB, has 
not been studied before as a diagnostic biomarker for ALS, and further studies are required to 
confirm the specificity of MB in diagnosing ALS. The association between higher CSF MB 
levels and a higher risk of death after ALS diagnosis suggests MB is a new prognostic indicator 
for ALS. However, more studies are needed to confirm this finding and to understand the 
relationship between MB levels in circulation and CSF. GDF-15 belongs to the transforming 
growth factor TGF-β superfamily and is a macrophage inhibitory cytokine123,124. Our study 
revealed the potential of GDF-15 as a CSF biomarker for ALS diagnosis and a plasma 
biomarker for predicting functional decline following ALS diagnosis. The increasing plasma 
level of GDF-15 over time since ALS diagnosis suggests its involvement in chronic 
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inflammatory pathways in ALS progression125. The findings of GDF-15 may also be linked to 
altered metabolism and weight loss in ALS, as GDF-15 has previously been implicated in these 
processes126-129. 

Besides the potential risk proteins, the study also revealed potential protective proteins 
including RGMA, GDF-8, MMP-3, IL32, CDH6, ITGB2, and GCP5 that a lower level of 
protein plasma was associated with a higher risk of death after ALS diagnosis and ALS patients 
demonstrated a decreasing level of these proteins in plasma by time since diagnosis. RGMA or 
repulsive guidance molecule bone morphogenetic protein co-receptor A has been shown to 
inhibit neuronal regeneration and neuroprotection in multiple sclerosis130-133 and has been 
implicated in Parkinson’s disease as RGMA over-expression might induce progressive 
movement disorders134. In contrast to RGMA, which is seldom investigated in ALS, several 
studies have suggested the role of GDF-8 (also known as myostatin) in muscle atrophy in ALS 
and other diseases135-143. IL32 or interleukin-32 is a proinflammatory cytokine 144 that induces 
cytokine production such as TNF-α (involved in p38 MAPK pathway) and IL8 from 
macrophages121,145. Studies have also shown that IL32 expression was down-regulated in spinal 
muscular atrophy (SMA) patients146 and IL32 could activate NF-kB signaling via the p38 
MAPK pathway147,148. CDH6, cadherin-6, is a cell-cell adhesion molecule149,150 to maintain 
extracellular domain integrity and was previously shown to be enriched in spinal motor neurons 
151. Our finding of a lower risk of death in ALS patients with a higher level of CDH6 suggests 
that higher expression of cadherin may promote cell-cell adhesion in the extracellular domain, 
leading to the integrity and maintenance of the blood-brain barrier (BBB)152. Adversely, 
decreasing levels of CDH6 over time after ALS diagnosis might indicate a continued loss of 
BBB integrity. ITGB2 or integrin beta 2 is essential for cell adhesion, leukocyte trafficking, T-
cell activation, phagocytosis, etc.153. GCP5, tubulin gamma complex associated protein 5, is 
on the other hand required for microtubule nucleation154 and is highly expressed in skeletal 
muscles and brain155. The reorganization of microtubule nucleation is essential for muscle 
differentiation156. Therefore, the link between GCP5 and functional decline could potentially 
indicate a lower degree of muscle differentiation and thus a lower functional ability in ALS 
patients when compared to controls and over time since diagnosis.  

Other proteins including FGF-21, CHIT1, and GPNMB were also indicative of ALS risk. ALS 
patients exhibited a higher level of FGF-21 in plasma compared to controls. Mitochondrial 
dysfunction is an early pathophysiological event in ALS157, and in response to this, neurons 
may release FGF-21158. While it is unclear why the elevated level was only observed in plasma 
and not CSF, research has shown that there is a higher level of FGF-21 in plasma than in CSF 
in healthy individuals159. Additionally, ALS patients showed higher levels of CHIT1 and 
GPNMB in CSF compared to the controls. CHIT1 in CSF has previously been shown to have 
high specificity in separating ALS patients from healthy controls and those with other 
neurodegenerative diseases160-163 and is involved in macrophage activation160 which in turn 
influences the function of microglial and decelerates ALS disease progression164. 
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For Study III, the study population is representative of the Stockholm ALS population during 
the conduct of the ALSrisc study and has considered the assessment of both plasma and CSF 
samples from the ALS patients as well as the controls. The use of proteomics profiling by Olink 
Proteomics technology allows for high sensitivity and detection of low protein concentrations. 
Additionally, this study is the first to examine longitudinal trajectories of protein biomarkers 
in both plasma and CSF in ALS patients. On the other hand, the small number of patients with 
C9orf72 mutations made it challenging to stratify and analyze this group separately, and it is 
unclear if there are specific protein biomarkers for C9orf72-related ALS. We used sibling and 
spouse controls to compare with ALS patients but did not have access to population-based 
controls, which may have led to an underestimation of the differences between ALS patients 
and disease-free individuals. However, similar results observed when using sibling and spouse 
controls provided some reassurance. As ALS is a rapidly progressing disease and our study 
included mostly incident patients, caution should be taken when interpreting the results from 
the longitudinal trajectories analyses of the proteins. Finally, it is uncertain if our findings are 
generalizable to ALS patients outside of Sweden.
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7 POINTS OF PERSPECTIVE 
The vibrant development of bulk and single-cell omics technologies left limitations that create 
opportunities for improvements. The thesis forged to understand some of the limitations in the 
technologies, and discovered novel genetic and proteomics signatures specific to brain regions 
and ALS respectively. 

Study I focused on the development of an isoform quantification method for droplet-based 
scRNA-Seq technologies to enhance accuracies in isoform quantification by addressing the 
prime-bias problem introduced by these technologies. The method could be further assessed 
and applied to a wider range of sequencing methods. Isoform-specific downstream analyses 
could also be incorporated into the software to expand beyond the current quantification step.  

Study II aimed to examine and discover novel cis-splicing variants based on the isoform-ratio 
patterns within each gene. Further studies could be done to examine the downstream effects of 
the irQTL in other omics types. 

Study III identified novel protein biomarkers specific to ALS diagnosis, prognosis, functional 
decline, and longitudinal proteins associated with disease progression. Further studies are 
needed to validate such findings, especially if these biomarkers are specific to the ALS disease, 
or rather they are also commonly found in other neurodegenerative diseases. 
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