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Abstract— The main factor affecting road performance is pavement damage. One of the difficulties in maintaining roads is pavement cracking. 

Credible and reliable inspection of heritage structural health relies heavily on crack detection on road surfaces. To achieve intelligent operation 

and maintenance, intelligent crack detection is essential to traffic safety. The detection of road pavement cracks using computer vision has 

gained popularity in recent years. Recent technological breakthroughs in general deep learning algorithms have resulted in improved results in 

the discipline of crack detection. In this paper, two techniques for object identification and segmentation are proposed. The EfficientNet with 

residual U-Net technique is suggested for segmentation, while the YOLO v5 algorithm is offered for crack detection. To correctly separate the 

pavement cracks, a crack segmentation network is used. Road crack identification and segmentation accuracy were enhanced by optimising the 

model's hyperparameters and increasing the feature extraction structure. The suggested algorithm's performance is compared to state-of-the-art 

algorithms. The suggested work achieves 99.35% accuracy. 

Keywords- Crack, Segmentation, Object detection, Deep learning, EfficientNet, U-Net, YOLO v5. 

 

 

I.  INTRODUCTION 

Detecting crack damage in industrial and civil 

constructions has long been an issue. Manual and machine 

detection methods are used in traditional crack detecting 

technologies. The consensus is that manual detection takes 

longer and is less reliable. In recent years, the technology for 

machine detection methods based on ultrasonic, microwaves, 

or other signals has improved rapidly [1-3]. Due to these 

restrictions, both commercial and academic institutions have 

been researching autonomous crack detection techniques [4]. 

Due to the widespread availability of smartphones and 

cameras, image-based approaches are deemed to be greatly 

cost-effective [5]. 

The effectiveness of computer vision methods has been 

demonstrated in automating the image-based crack detection 

approach, and their use has become a research problem in 

recent decades [6]. As a result, image-based crack localization 

investigations are broadly classified as manual or automatic 

feature extraction-based methodologies. A computer vision 

method for crack detection begins by identifying crack 

sensitive features, which can be accomplished using deep 

learning approaches or image processing techniques (IPTs). 

The employment of techniques like edge detectors, 

morphological processes, and thresholding was the subject of 

early study. 

In addition to noise, different illumination conditions can 

affect the techniques for manually identifying cracks based on 
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feature extraction. Due to this problem, deep architectures are 

now used for crack detection problems that don't require 

custom characteristics [7]. A deep architecture uses several 

deep layers to extract high-level properties from raw inputs, 

making it the "next generation" of neural networks. Objects of 

interest in images may be found by using bounding boxes in 

computer vision. The sliding window method was found to be 

less accurate when it came to localizing and recognizing items 

in images.  

In the crack detection section, bounding boxes are used to 

detect crack areas on input photographs [9]. Computer vision 

approaches used during implementation of OR include region-

based convolutional neural networks (R-CNNs) [9], you only 

look once (YOLO) [10], and single shot detectors (SSDs) [11]. 

Crack detection frequently uses members of the R-CNN 

family. SSD and YOLO designs have only been used once as 

primary frameworks for crack detection, according to the 

authors. Identifying cracks in photographs may be viewed as 

an object detection and classification issue. As a consequence, 

a deep learning-based model might be used to detect surface 

crack faults in pavement and bridges. To build up an automatic 

crack detection system, four steps must be completed: image 

collection, image pre-processing, image segmentation, and 

crack detection. The contribution of this research is, 

• For object detection, YOLOv5 model is used in this 

work. 

• An EfficientNet with residual U-Net is used to segment 

the cracks in the road images. 

The organization of the work is as follows. Section 2 

presents the related works, Section 3 describes the 

methodology, Section 4 discusses the results and Section 5 

concludes the work. 

II. RELATED WORKS 

Numerous studies have concentrated on using a multi-class 

classification strategy to solve the issue, taking both crack 

identification and crack type categorization into consideration 

[12–14]. According to Park et al. [14], this multi-class 

classification technique based on CNN was used to categorize 

road images into crack, intact regions and road markers. The 

study categorized crack types into five types which were 

influenced by the AlexNet and LeNet networks as well as 

assessed and compared four CNNs with varied depths. Using 

deep architectures and handcrafted features as the main criteria 

for crack investigation, [15,16] compared crack investigate 

techniques. Deep architectures were compared to the 

effectiveness of a number of edge detectors, including Sobel, 

Canny, Prewitt, Butterworth, and others. 

 A comparison between Hessian matrix and Haar wavelet 

accelerated robust features technique and convolutional neural 

network extraction for crack recognition was conducted by 

Kim et al. [17].  In [18], features were learned using pretrained 

VGG-16 and AlexNet models on the ImageNet dataset. As an 

alternative to conventional machine learning approaches, we 

used fully connected layers and soft-max layers for classifying 

the attributes. According to Li et al. [19], a multiscale defect 

region proposal network (RPN) generates candidate bounding 

boxes at various levels to increase detection accuracy. The 

authors used a second deep architecture and a geotagged 

picture database to perform geolocalization. It is pertinent to 

note that the geo-localization module and the crack detection 

network are part of the same network.  

An improved version of the fast R-CNN has been proposed 

for crack detection. To speed up training, a CNN is combined 

with a sensitivity detection network to extract deep features. 

On the other hand, Deng et al. [21] evaluated the dataset of 

concrete that included pictures with handwritten typescripts. 

They concluded that handwritten characters may be considered 

excessive noise in solid images. An OR setup was used by 

Maeda et al. [22] to find cracks in a big data set built using an 

SDD architecture. MobileNet and Inception V2 form the 

backbone of the SSD framework's feature extraction. It is 

important to emphasise that the data set was obtained and 

annotated by researchers.  

The algorithms used by Ni et al. [23] o identify crack 

repairs were GoogleNet and ResNet. To partition the observed 

crack locations, Otsu's thresholding was utilised, accompanied 

by median filtering and Hessian matrices. These methods are 

performed to reduce the impact of brightness and to enhance 

crack structures. [24] used transfer learning with a pre-trained 

framework on the ImageNet data set to identify crack patches. 

Quick blockwise segmentation and vector voting curve 

detection techniques were then used to produce the crack mask 

and increase crack localization accuracy. GoogLeNet was used 

in [25] to anticipate crack fixes. To segment the cracks, the 

discovered patches were passed through a feature fusion 

component and a number of convolution layers. Zhang et al. 

[26] proposed a computationally more efficient Sobel-edge 

adaptive sliding window strategy for obtaining crack patch 

than the traditional sliding window method. 

III. METHODOLOGY 

A crack detecting approach based on a deep learning 

approach is proposed in this research. The image database is 

first organised, and image noise in the dataset is filtered away 

to improve the contrast between road cracks and backgrounds. 

Following that, the filtered photos are sent into a crack 

prediction model for training. Figure 1 depicts the flow of the 

proposed work.  

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 4s 

DOI: https://doi.org/10.17762/ijritcc.v11i4s.6310 

Article Received: 24 December 2022 Revised: 26 January 2023 Accepted: 02 February 2023 

___________________________________________________________________________________________________________________ 

 

86 

IJRITCC | March 2023, Available @ http://www.ijritcc.org 

 
Figure 1. Flow of the proposed road crack detection 

3.1  CFD Data Set  

The CFD dataset was gathered and made available to the 

public [27]. The data collection, according to the authors, 

usually represents the status of the urban road surface in 

Beijing, China. The photos have been carefully labelled down 

to the pixel level. The CFD comprises 118, 480 × 320 pixel 

RGB road photos with noise like shadows, water stains, and 

oil patches as well as various lighting circumstances. The 

images were captured with an iPhone 5 with a focus of 4mm, 

an exposure of f/2.4, and an exposure duration of 1/134 s. The 

image's width, which varies from 1 to 3 mm, should be noted. 

Figure. 2 displays a few photos of road cracks. 

 
Figure 2. Road crack images 

3.2 Image preprocessing 

Three-channel colour photographs of road cracks were 

used. Red, green, and blue made up each of the three colours 

that make up a colour pixel. These three colours each had a 

connection to a colour image at a particular spatial location, 

which led to the creation of a vector to depict the image. Two 

colour augmentation techniques (contrast and sharpness) were 

utilised to process colour photographs. Contrast augmentation 

was employed to expand the gray-level range and enhance 

image clarity to address the low contrast issue brought on by 

the crack picture's constrained gray-level range. The 

probability approach was used to smooth the intensity and 

saturation components of the hue-saturation-intensity (HSI) 

colour model, resulting in a uniform distribution. Eqs. (1) and 

(2) illustrate the computation procedures for the brightness and 

saturation components, respectively.  

𝑦1𝑘 = 𝐹(𝑥1𝑘) = 𝑃{𝑥𝐼 ≤ 𝑥𝐼𝐾} = ∑ 𝑓(𝑥𝐼𝑚
𝑘
𝑚=0 ) =

∑ 𝑃{𝑘
𝑚=0 𝑥𝐼 ≤ 𝑥𝐼𝐾}                    (1) 

𝑦𝑠𝑡 = 𝐹(𝑥1𝑘|𝑥𝐼𝐾) = ∑ 𝑓(𝑥𝑆𝑚
𝑡
𝑚=0 |𝑥𝐼𝐾) =

∑
𝑃{𝑥𝐼=𝑥𝐼𝐾,𝑥𝑠=𝑥𝑆𝑚}

𝑃{𝑥𝐼=𝑥𝐼𝑘}

𝑡
𝑚=0                        (2) 

where k = 0, 1, . . . , L-1 and t = 0, 1, . . . , M-1; L and M 

denote discrete levels of intensity and saturation, respectively. 

X = (xH, xS, xI)T is a vector of color pixels representing each 

image. F(.) is a probability function, and F(Z) = F(xI, xS) = 

P{xI ≤ xI, xS ≤ xS}. 

By boosting the contrast of the surrounding pixels, 

sharpness reduces the blurring of the picture's object and 

defines it. For the crack image, Laplace sharpness produces 

gradient values (Laplace operator). Eq.(3) illustrates the 

enhancement technique based on the Laplace operator. 

𝑝(𝑎, 𝑏) = 𝑞(𝑎, 𝑏) − [

∇2𝑅(𝑎, 𝑏)

∇2𝐺(𝑎, 𝑏)

∇2𝐵(𝑎, 𝑏)

]   (3) 

where p (a,b) represents the sharpened crack picture and q 

(a,b) depicts the original crack picture, and ∇2𝑅(𝑎, 𝑏) , 

∇2𝐺(𝑎, 𝑏) , and ∇2𝐵(𝑎, 𝑏)  are the red, green, and blue 

components' respective Laplace operators in colour pictures. 

3.3 Segmentation using EfficientNet with residual U-Net 

Architecture 

A proposed Efficient-U-Net network consists of an 

encoder and decoder, as illustrated in Figure 4. Due to limited 

resources, we utilize a modified EfficientNetB4 encoder. 

There are 9 stages in the encoder: 3x3 convolutional layers, 32 

mobile reverse bottleneck convolutional structures, and 11 

convolutional layers. There are five upsampling processes and 

a sequence of convolutions in the decoder. In order to 

determine the segmentation results, the encoder restores the 

original picture size based on the retrieved features. We limit 

the noise response and concentrate on specific properties of 

the segmented crack by adding an attention gate to the skip 

connection. The network may be expanded by including the 

residual structure. After each convolution, the residual block 

applies batch normalization (BN) and ReLU activation. Batch 

normalization reduces gradient propagation and vanishment 

and accelerates network convergence. Non-linear processing 

using ReLU can be used to expand the network's capability to 

express itself non-linearly. Figure 3 displays the segmented 

image. 
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Figure 3. Original and segmented images 

The dropout layer, 1x1 convolutions for dimension 

reduction, SE modules, depthwise convolutions, and 1x1 

convolutions are all incorporated in the MBConv structure. 

BN and Swish activation processes are carried out after the 

first 1x1 convolution and Depthwise convolution, whereas BN 

operations are only carried out in the second 1x1 convolution. 

A shortcut link is combined with additional feature 

information. The shortcut link will appear if the output and 

input MBConv structure feature matrices are identical. The 

accuracy of target recognition, picture segmentation, and 

image classification have all been greatly enhanced by the SE 

module. A Sigmoid activation function, a global average 

pooling, and two fully connected layers were all used in this 

investigation. Swish activation is introduced between two 

layers that are completely connected. Stretch an image with 

HWC compression into a 1x1xC format utilising global 

pooling and fully connected layers, then multiply the resulting 

image by the input image to give each channel weight. In this 

method, the SE module allows the network to learn more 

about crack-related features. An attention gate is a type of 

attention device that may automatically focus on a certain 

area, muffle the response of unnecessary regions, and enhance 

feature data that is essential to a certain task.  

 
Figure 4. The architecture of the proposed EfficientNet-U-Net 

3.4  Object detection using YOLOv5 

There are four versions of YOLOv5, each with varying 

detection methods: YOLOv5s, YOLOv5m, YOLOv5l, and 

YOLOv5x. With a weight of 13.7 M, and a parameter of 7.0 

M, YOLOv5s is the fastest and smallest model. A framework 

of the algorithm is illustrated in Figure 5, which consists of 

three parts: the bottleneck, the backbone, and detection part. 

Four modules make up the backbone network: the focus 

module (Focus), the standard convolution module (Conv), the 

C3 module, and the spatial pyramid pooling module (SPP). As 

part of the YOLOv5 network structure adjustment, two 

parameters are adjusted: depth factor and width factor. 

Because it is a one-stage network with multilayer feature map 

prediction, the YOLOv5s approach provides great accuracy 

and detection speed. It may be utilised effectively in industry 

and satisfies the criteria for pavement crack detecting 

operations, especially in terms of speed. YOLOv5s model 

performance is improved, model size is reduced, and detection 

accuracy is increased with a lightweight network structure 

based on accuracy, parameter number, and computational cost.  

A convolutional neural network called Backbone is created 

by combining visual input with different particle sizes. Head 

processes box and class prediction procedures by 

incorporating features from Neck (PAnet) and Feature 

Pyramid Network (FPN). Neck is a layer sequence that 

combines and integrates picture characteristics to 

provide prediction. The FPN structure improves detection of 

multi-scale items while providing an effective trade-off 

between identification speed and accuracy. Focus and Cross-

http://www.ijritcc.org/
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Stage Partial Connections (CSP) are the most important 

features of YOLOv5. The focus layer was developed to 

improve forward and backward performance, lessen the effect 

of mAP, and minimize the number of layers, parameters, 

FLOPS, and CUDA memory. 

The latest YOLOv5 version and its predecessor have two 

key changes. First, swap out the Focus layer for a 6 x 6 

Conv2d layer. It has the same properties as a conventional 2D 

convolution layer, despite lacking space-to-depth 

functionality. Convolution layers with kernel sizes of six and 

stride two. Focus layers with kernel sizes of three. The second 

change was to replace the SPP layer with the SPPF layer. 

These actions nearly triple computer performance. This 

alternative is therefore quicker and more effective. The main 

layer of the original YOLOv5 structure, the Conv layer, was 

analyzed and changed. In the first Conv layer, an activation 

function called SiLU (Sigmoid-Weighted Linear Units) was 

used. 

The Conv layer frequently employs ReLU as an activation 

function (Rectified Linear Unit). Due to the minimal 

processing required, learning occurs quickly, and 

implementation is straightforward. The ReLU activation 

function has the drawback that if it produces a value less than 

zero, the gradient and weight will presumably remain at zero 

during learning. As a consequence, we altered a structure 

of the Conv layer. As a result, there is also the negative aspect 

of ineffective learning. A variation of the ReLU activation 

function is the ELU activation function. This shortens training 

time and improves the performance of neural network test 

datasets. 

𝐸𝐿𝑈(𝑥) = {
𝑥

𝛼 exp(𝑥) − 1,      
𝑖𝑓 𝑥>0
𝑖𝑓 𝑥≤0

   (4) 

𝐸𝐿𝑈′(𝑥) = {
1

f(𝑥) + 𝛼,           
𝑖𝑓 𝑥>0
𝑖𝑓 𝑥≤0

   (5) 

 

 
Figure 5. Structure of YOLOv5 network 

IV. EXPERIMENTAL RESULT AND DISCUSSION 

Simulation tests were carried out on the CFD dataset using 

an NVIDIA TESLA P100 GPU and 16 GB RAM in this study. 

The suggested method was created using Pytorch and 

Tensorflow in a Python environment on a Linux platform. To 

test the suggested models, five performance measures were 

generated using Equations (6) to (11), namely Jaccard 

coefficient, Dice coincidence index (Sorensen similarity 

coefficient), accuracy, precision, recall, and IoU. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃 + 𝐹𝑃+𝑇𝑁+𝐹𝑁
    (6) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
                                            (7) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
                                                   (8) 

𝐷𝑖𝑐𝑒𝑖𝑛𝑑𝑒𝑥 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
    (9) 

𝐼𝑜𝑈 =
𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ∩𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ∪𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
    (10) 

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 =
𝑇𝑃

𝑇𝑃+𝐹𝑃+𝐹𝑁
                                           (11) 

To compare the performance several state-of-the-art 

algorithms are used to evaluate the proposed work. All models 

were trained for a total of 100 epochs. For the CrackNet, Deep 

Crack, Deep ResU-Net, and ResU-Net++ models, as well as 

the proposed Efficient-U-Net model, training began with a 

batch size of 32. 
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Figure 6. Accuracy comparison of the algorithms 

 

 
 

Figure 7. Precision comparison of the algorithms 

 
Figure 8. Recall comparison of the algorithms 

 

 

Figure 9. Dice score comparison of the algorithms 

 

 

Figure 10. IoU score comparison of the algorithms 

 
Figure 11. Jaccard score comparison of the algorithms 
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The accuracy of the algorithms are compared as shown in 

Figure. 6, for analyzing the performance of the proposed 

system in crack detection. The accuracy obtained by the 

proposed Efficient-U-Net is 99.35% which is 0.97% higher 

than ResU-Net++, 1.6% higher than Deep ResU-Net, 2.42% 

higher than Deep Crack, and 2.97% higher than CrackNet. The 

ResU-Net++ obtained the accuracy of 98.38%, Deep ResU-

Net obtains 97.75%, Deep Crack obtains 96.93% and 

CrackNet obtains 96.38%. The residual unit improves 

performance because feature accumulation with recurrent 

residual convolutional layers offers improved feature 

representation for segmentation tasks. It enables the creation 

of a superior U-Net architecture with the same amount of 

network parameters and improved picture segmentation 

performance. The precision of the algorithms are presented in 

the Figure.7. It is observed that the proposed Efficient-U-Net 

obtained the maximum precision of 95.47% and CrackNet, 

Deep Crack, Deep ResU-Net, and ResU-Net++ obtained 

87.37%, 88.78%, 92.28%, and 94.76% respectively. Figure. 8 

shows the recall obtained by the different algorithms. The 

recall score obtained by CrackNet, Deep Crack, Deep ResU-

Net, ResU-Net++, and Efficient-U-Net is 88.91%, 89.83%, 

93.49%, 95.28%, and 96.97% respectively. 

However, it is shown that preprocessing enhances the 

efficiency of the suggested approach while dealing with 

blurred pictures, raising the Efficient-U-Net's Dice score to 

96.97%. The dice score of other algorithms are 87.47%, 

88.32%, 91.78%, 93.26% by CrackNet, Deep Crack, Deep 

ResU-Net, and ResU-Net++ respectively. The capacity to 

identify small cracks and unlabeled cracks is the key benefit of 

utilising the Efficient-U-Net model for crack segmentation. 

Additionally, the Efficient-U-Net model outperforms other 

models in terms of detecting cracks in images that are blurry 

and cracks on edges. The model also has the ability to 

recognise shadow-producing picture cracks caused by shifting 

lighting conditions. The IoU score of CrackNet, Deep Crack, 

Deep ResU-Net, ResU-Net++, and Efficient-U-Net is  88.34%, 

89.71%, 92.53%, 94.32%, and 95.87% respectively. The 

Jaccard score obtained by the CrackNet, Deep Crack, Deep 

ResU-Net, ResU-Net++, and Efficient-U-Net is 87.39%, 

88.48%, 89.16%, 91.67%, and 93.88% respectively. The 

investigation shows that the suggested approach operates more 

effectively and has increased efficiency across the board. The 

segmentation outcomes have been greatly enhanced by the 

usage of two concatenated encoder-decoder designs. 

V. CONCLUSION 

The need for intelligent monitoring technology is growing 

as a result of the rapidly rising road mileage, which makes it 

impossible for the conventional road crack monitoring 

approach to keep up with demand. In this work, segmentation 

and object detection are used to evaluate deep learning 

techniques for crack detection on roads. This research presents 

a segmentation network that can identify road cracks using an 

EfficientNet with residual attention based U-Net architecture. 

The Efficient-U-Net network is used as the segmentation 

model and the YOLO v5 network is utilised as the detection 

model to identify cracks accurately while simultaneously 

segmenting the cracks in the roads. The issue of inaccurate 

crack localization in the road crack detection network is 

resolved by combining the segmentation model with the 

detection model. Results from the experiments show that the 

suggested model not only performs better than the other 

models, but also achieves superior accuracy, precision, and 

recall. The suggested system's accuracy is 99.35%, which is 

more than that of any existing methods. 
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