
International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

106

IJRITCC | February 2023, Available @ http://www.ijritcc.org

A Hyper-parameter Tuning based Novel Model for

Prediction of Software Maintainability

Rohit Yadav1,*, Raghuraj Singh2

1Research Scholor, Department of Computer Science and Engineering

Dr. A.P.J. Abdul Kalam Technical University

Lucknow, India
2Professor, Department of Computer Science and Engineering

Harcourt Butler Technical University

Kanpur, India

Corresponding Author*: Rohit Yadav (e-mail: rohitatknit@gmail.com)

Abstract—Software maintainability is regarded as one of the most important characteristics of any software system. In today's digital world,

the expanding significance of software maintenance is motivating the development of efficient software maintainability prediction (SMP)

models using statistical and machine learning methods. This study proposes a hyper-parameter optimizable Software Maintainability Prediction

(HPOSMP) model using the hybridized approach of data balancing and hyper-parameter optimization of Machine Learning (ML) approach

using software maintainability datasets. The training dataset has been created with object-oriented software namely UIMS and QUES. To

balance the dataset, Synthetic Minority Oversampling Technique (SMOTE) technology has been adopted. Further, Decision Tree, Gaussian

Naïve Bayes, K-Nearest neighbour, Logistic Regression, and Support Vector Machine are adopted as Machine Learning and Statistical

Regression Techniques for training of software maintainability dataset. Results demonstrate that the proposed HPOSMP model gives better

performance as compared to the base SMP models.

Keywords- Software Quality; Software Maintenance; Machine Learning; Classification; Object oriented metric; Data balancing; Hyper-

parameter Tuning; Accuracy;

I. INTRODUCTION

 Software systems are becoming increasingly complex with

time, and thus, software maintenance is gaining more attention

and importance to fulfil the increased need of high-quality

software in the software business [1]. Software Maintainability

Prediction (SMP) gauges ease of carrying out various software

maintenance tasks including adding or removing code or

modifying already-existing code [2]. The maintenance phase

accounts for nearly 60 to 70 percent of the overall cost of the

software development life cycle (SDLC) and therefore, SMP is

needed to reduce this cost [3] - [4]. Many SMP models have

been developed by the researchers using statistical and Machine

Learning (ML) approaches [5] - [7].

 The potential issue with SMP is producing bias in the

prediction models due to some infrequent and frequent extreme

values of the instances. Also, like other machine learning

training data, maintainability prediction dataset suffers from

data imbalance. For example, the categorical variable can be

treated as Low or High. Where Low refers to those object-

oriented classes which require more efforts in maintenance

phase and High refers to those object-oriented classes which

require lesser efforts during maintenance phase. Thus, prior

prediction of Low maintainable class aid to researchers or

practitioners in putting optimal effort to those classes with Low

maintenance and hence reducing the overall maintenance cost.

 Prior to training for software maintainability, hyper-

parameter tuning of statistical and machine learning approaches

is recommended in order to increase the accuracy of the

software maintainability prediction model [8]. In machine

learning there are two types of parameters; first the model

parameters which can be initialized and changed through the

data learning process such as neurons in neural networks

whereas hyper-parameters are the parameters that can be

changed or tuned before the training process [9]. The variables

known as hyper-parameters are parameters of machine learning

techniques that can be tuned to calibrate more accurate software

maintainability prediction models. This is also termed as Hyper-

parameter optimization (HPO) [10].

 Consequently, the novelty of our current investigation in

comparison to earlier studies is as follows:

• Designing of Software maintainability prediction models

using outliers’ detection and outliers’ replacements

scheme.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

107

IJRITCC | February 2023, Available @ http://www.ijritcc.org

• Forming categorical class variable of software

maintainability parameter through the mean approach

using the Change metric.

• Optimizing the SMP model by selecting the best

combination of optimizable hyper-parameters of

classification models.
On the basis of above proposed work, following research

questions have been formulated and answered.

RQ.1: What effect does data balancing have on the distribution

of classes in the software maintainability datasets?

RQ.2: How effective are the SMP models created using HPO

in comparison to the models created using basic machine

learning and logistic regression?

RQ.3: What is the Precision, Recall, and F1-Score ratings for

each SMP model?

 In the current study, to achieve the objectives, first a class

variable is formed using the Change metric, which is the total

amount of editing of source code during the maintenance phase

of the software development. Further, outliers are detected and

replaced by the mean values of each object-oriented predictor

variable followed by standardize data. Prior to training of the

SMP model using MATLAB tool, the data balancing is

performed using Synthetic Minority Oversampling Technique

(SMOTE) technology and WEKA tool followed by tuning of

hyper-parameters. Finally, performance of each SMP is

evaluated using Accuracy, Precision, Recall, and F1-Score

measures calculated using confusion matrix.

 The rest of the paper is organized as follows: Section 2

describes the "related work," Section 3 covers the "research

methodology," Section 4 covers the "results and

discussion," and finally the "conclusion" part is covered in

Section 5.

II. RELATED WORK

 To accomplish our research, several works pertaining to the

prediction of software maintainability are explored. It is

discovered that Change metric is used as the maintainability of

object-oriented software for the training of SMP models. An

analysis of the techniques and maintainability metrics is

summarized in Table I.

TABLE I. Maintainability and Techniques

Year Technique Maintainability Reference

2014 SMPLearner

Code change

history

Average.

maintenance

Effort.

Zhang et al. [11]

2016
Support Vector

Machine

Web services

description

language

Kumar et al. [12]

2017

Search based

techniques and

Hybridized

techniques

Change

proneness

Malhotra and Khanna

[13]

2019

M5P regression

tree, multilayer

perceptron, multi

linear regression,

and support

vector regression

Maintainability

Index (MI)
Reddy and Ojha [14]

2020

14 Machine

Learning

Techniques

Change Metric Malhotra and Lata [15]

2020
Least Square

SVM
Change Metric Gupta and Chug [16]

2020 Random Forest Change Metric Gupta and Chug [17]

 According to Agrawal et al. 2021 [18] finding great settings,

by which fine-tuning parameters that can significantly boost the

accuracy of software analytics prediction, is always

advantageous in terms of hyper-parameter optimization. They

utilized the "DODGE" approach for hyper-parameter

optimization of 120 Software Engineering data sets for defect

prediction, often avoiding configurations that result in the same

findings. They found that the basic DODGE works best for data

sets with low intrinsic dimensionality.

 Shen et al. [19] in 2020 found that the majority of

developers are reluctant to invest time in looking for better

design solutions because of the demand of their programming

employment leading to design flaws known as "code smells"

that will increase maintenance costs in the future. Developers

need to be quick to spot code smells and re-factor as necessary

in order to improve software quality and lower maintenance

costs. They also found, based on empirical findings, that hyper-

parameter adjustment can significantly increase code smell

detection effectively.

 In 2017, Sara et al. [20] proposed the Grid search method

for tuning hyper-parameters, SMOTE technique for balancing

datasets and conducted an experimental study involving five

ML techniques: K-Nearest Neighbor (KNN), SVM, Decision

Trees (DT), Multilayer Perceptron (MLP), and Nave Bayes

(NB). The experimental results suggest that balanced data and

hyper-parameter tuning are crucial for the best performance of

ML algorithms.

 From the literature survey, it is clear that a very few

researches are published on application of SMOTE data

balancing and Hyper-parameter optimization in the area of

software maintainability prediction.

III. RESEARCH METHODOLOGY

 Here, we proposed an algorithm for SMP which includes the

formation of response variable prior to the training of SMP

model. The proposed SMP algorithm is as follows:

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

108

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Algorithm:

Input: RD[i][j] = raw dataset; Change = vector dependent metric; i =

index for instance; j = index for predictor variable; T = function of

SMP; T’ = function of HPOSMP; x = total machine learning methods

applied;

Begin

Step 1: Formation of Dependent variable “Class”:

 for each instance of Dataset set class value:

 if change value of the instance is greater than mean value of

Change vector, then set class as Low

 else High

 end loop

Step 2: Formation of Dataset:

 Removal of Change vector and addition of the Class vector

found in step 1.

Step 3: Training of dataset using basic ML

 Modelx=Tx (ND[i][j]);

Step 4: Outlier Detection and replacement

Step 5: Standardize the datasets using Z-score value.

Step 6: Data balancing using SMOTE technology

Step 7: Training of dataset using Hyperparameter optimized HPOSMP

 For each ML methods

• Selection of hyperparameters to optimize or tune.

• Selection of optimizer function and number of iterations

to train the model.

• Model’x=T’x (ND[i][j]);

 End loop

Step 8: Performance evaluation:

 Calculation and Comparison of performance measures of Tx

and T’x built in Step 3 and Step 7.

end

A. Dataset

 User Interface System (UIMS) and Quality Evaluation

System (QUES) are two object oriented commercial software

that we utilized to conduct the research work. Both UIMS and

QUES software are written in Classic-Ada programming

language [21].

B. Predictor Variable

 For the training of proposed SMP models, different metrics

of OO software like Depth of Inheritance tree (DIT), Lack of

cohesion of methods (LCOM), Number of Children (NOC),

Response for class (RFC), Data Abstraction Coupling (DAC),

Message Passing Coupling (MPC), Weighted Methods per

Class (WMC), Number of Methods (NOM), and two other size

related metrics namely SIZE1 and SIZE2bare used as input

variables in this study. The description of these object-oriented

based predictor variables is given in Table II. These selected

predictor metrics explain several elements such as cohesion,

coupling, inheritance, size, encapsulation, and composition of

OO systems.

TABLE II. Description of Input Variables

Metric

Name
Abbreviation

Metric

Suit
Description

DIT
Depth in the

Inheritance Tree

C
h
id

am
b

er
 a

n
d

 K
em

er
er

 [
2

2
]

Determines the level of a class

in the hierarchy of the

inheritance.

LCOM
Lack of Cohesion

of Methods

Count of independent local

methods of a class.

NOC
Number of

Children

Total number of immediate

subclasses of a class

RFC
Response for

Class

Count of local methods and the

methods called by local

methods

WMC
Weighted method

complexity

Summation of all local

method’s McCabe’s

cyclomatic complexities

DAC
Data Abstraction

Coupling

L
i

an
d

 H
en

ry
 [

2
1

]

The metric that measures the

coupling complexity

caused by Abstract data types

MPC
Message-Passing

Coupling

Count of statements sent by a

class

NOM
Number of

Methods

Total number methods defined

in a class

SIZE1 -
Number of Semicolons Per

Class

SIZE2 -
Number of Attributes +

Number of Methods

C. Response variable

 We have considered the change metric for the formation of

dependent or response variable. Change metric describes the

total number of changes made during the maintenance phase of

the software development life cycle. Change metric is the count

of total number of source code added, deleted and modified

[11]-[17]. Class is a binary variable whose values can be either

High or Low. “High” label of class variable represents the high

maintainability class which requires less effort in maintenance

whereas “Low” label of class variable represents the low

maintainable class which requires more effort in maintenance

phase. Classes for which the values of independent variables are

not found were discarded.

D. Data Preprocessing

 Since the model approach depends on the performance of

the prediction model per dataset and response variable, this

research may involve data pre-processing to detect outliers in

all datasets and then replace each outlier instance with the mean

value. Further, data are standardized using z-scores and data

balancing is applied as per (1).

 Z − score =
D– mean(D)

std(D)
 (1)

 Here in (1), D represents the instance, mean () determines

the mean value of the data vector and std is the standard

deviation.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

109

IJRITCC | February 2023, Available @ http://www.ijritcc.org

 SMOTE: Malhotra and Lata [23] affirmed that in case of

oversampling, minority class sample is increased in such a

manner that it matches with the majority class sample and

resolves the issue of data imbalance in the software

maintainability prediction dataset. In the current study, SMOTE

technique is used to perform the oversampling of software

maintainability dataset. In SMOTE, artificial sample of

minority classes from software maintainability prediction

dataset is produced. For example, if the minority class instances

are 100 as compared to the 1000 majority class instances, the

training of the SMP model may get biased towards majority

class and predict the instance as High maintainable most of the

time. To overcome this problem SMOTE uses nearest neighbor

approach. It first finds the minority class instances or data point

and then uses the K-nearest neighbor approach to join the data

points of minority class sample. To increase the minority class

SMOTE creates new artificial data points at the middle of the

line joining two minority class data points. This process goes on

for the set number of iterations. Here, SMOTE has been applied

to both the dataset QUES and UIMS using the WEKA tool.

E. Machine Learning

 For statistics and machine learning total five techniques,

whose compatibility is provided in the systematic literature

review by Alsoli and Roper [24], have been used. A brief

description of these machine learning techniques is given

below:

 Decision Tree (DT): A decision tree is a tree structured

classifier that has two types of nodes namely decision nodes and

leaf nodes. A decision node performs the test on the basis of

which the next branches are formed. Thus, decision nodes are

responsible for giving the direction to go from. Leaf nodes of

the decision tree are categorical classes or the final result. The

Gini Index is a metric that quantifies how precisely a split exists

between categorized groups. The Gini index assesses a score

between 0 and 1.

 Logistic Regression (LR): Logistic regression is mainly

used for classification problems. It works as linear regression

and performs binary classification or multi class classification

of continuous data. Logistic regression uses sigmoid function

and fits an S-shaped curve with the range of the curve from 0 to

1. The likelihood of an event occurrence is determined through

logistic regression using a set of independent variables in the

data.

 Gaussian Naïve Bayes (GNB): A Gaussian naïve bayes

model is based on continuous variables that are assumed to have

a Gaussian (or normal) distribution. Since the variables or

features are independent hence the name “naïve”. For software

maintainability prediction, if it has to predict High or Low

maintainable classes, it assumes all OO metrics as independent

i.e., RFC does not depend on NOC.

 Support Vector machine (SVM): Support vector machines

are classifiers that locate a hyper-plane classifying the data

points in an N-dimensional space (where N is the number of

characteristics). The two groups of data points may be divided

using a variety of different hyper-planes. It finds a plane with

the maximum distance between data points from both classes.

Support vector machines maximize the margin distance, which

boosts the accuracy of class value predictions.

 k-nearest neighbors (KNN): The k-nearest neighbors’

algorithm is a supervised learning classifier that makes

predictions or classifications about how a single data point will

be grouped. Although it can be used to solve classification or

regression problems, it is frequently used as a classification

technique as it is predicated on the notion that similar points can

be found nearby.

F. Hyperparameter Tunning

 Hyper-parameter optimization can produce substantial

results [25]. This study employs tuning of hyper-parameters to

maximize the performance of SMP system in terms of

Accuracy, Precision, Recall, and F1-Score. Hyper-parameter is

used in cross-validation of SMP models because basic machine

learning models are created using training data whereas their

performance is evaluated using test data. Model parameters are

the intrinsic configuration to the software maintainability

prediction model where the values of these parameters can be

determined by the dataset. For example, Gaussian naïve bayes

is based on the parameters mean and standard deviation, K-

Nearest Neighbor uses K as number of neighbors and weight

values, Support vector machine uses support vector and

standard deviations as model parameters, and in logistic

regression coefficients are the model parameters. In contrast the

hyper-parameter is the configuration external to the SMP model

where the values of hyper-parameters cannot be determined by

the dataset used for training of the model. Hyper-parameters

deal with three aspects: they are set by the practitioner or data

analysts, utilized to derive the model parameter, and can be

derived from heuristic approach which is self-discovery of the

value. In other words, the model parameters act as hyper-

parameter when set by data analyst or practitioner manually.

IV. PERFORMANCE EVALUATION

 In this investigation, confusion matrix [26] is used for the

performance evaluation of proposed SMP models as depicted in

Figure 1.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

110

IJRITCC | February 2023, Available @ http://www.ijritcc.org

Figure 1. Confusion Matrix

 Form Figure 1, it is clear that the components of a confusion

matrix are True Positive (TP), False Positive (FP), True

Negative (TN), and False Negative (FN). For performance

evaluation this study utilizes Accuracy, Precision, Recall and

F1-score to compare the performance of built SMP models. The

accuracy of SMP models can be calculated using (2), Precision

can be calculated using (3), Recall can be calculated using (4),

and F1score can be calculated using precision and recall as

described in (5).

 Accuracy = (
TP+TN

TP+FP+TN+FN
) ∗ 100 (2)

 Precision =
TP

TP+FP
 (3)

 Recall =
TP

TP+FN
 (4)

 F1 − score = 2 ∗
Precision∗recall

(Precision + Recall)
 (5)

V. RESULT AND DISSCUSSION

 Based on the proposed algorithm, we performed an

empirical investigation and developed and analyzed a total of

20 SMP models. Three research questions formed to achieve

the objectives of our study have been responded in the following

part of this section.

RQ1. What effect does data balancing have on the distribution

of classes in the software maintainability datasets?

 If the binary class distribution is not evenly distributed in

many of the dataset, the trained SMP models can go biased

towards majority class and accuracy may be degraded. We used

SMOTE data balancing technique to balance the datasets. The

impact of SMOTE data balancing technique is represented in

Figure 2 and Figure 3 for the QUES and UIMS datasets

respectively. To achieve this objective WEKA tool is utilized.

 From Figure 2(a) it is evident that before data balancing the

QUES dataset suffered from uneven class distribution problem.

The total number of instances in QUES dataset is 71 out of

which 30 and 41 classes belong to Low-class and High-class

maintainability classes respectively. Figure 2(b) shows that data

imbalance is removed by using SMOTE techniques whereby

low majority class variables in QUES is increased to 60

resulting into a total 101 instances.

Figure 2. Class distribution before and after SMOTE on QUES

Figure 3. Class distribution before and after SMOTE on UIMS

 Similarly, from Fig. 3(a) it is evident that before data

balancing the UIMS dataset suffered from uneven class

distribution problem. The total number of instances in UIMS

dataset is 39 out of which 30 and 9 classes belong to Low and

High maintainability classes respectively. Fig. 3(b) shows that

data imbalance is removed by using SMOTE techniques

whereby low majority class variables in QUES is increased to

18 resulting into a total 48 instances.

RQ.2: How effective are the SMP models created using HPO

in comparison to the models created using basic machine

learning and logistic regression?

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

111

IJRITCC | February 2023, Available @ http://www.ijritcc.org

 To evaluate the SMP models, we use the confusion matrix.

Table 3 gives the details of the confusion matrix obtained for all

the base ML techniques used for QUES and UIMS datasets.

Whereas Table 4 shows the details of confusion matrix of 5

machine learning techniques after applying the hyper-parameter

tuning for UIMS and QUES datasets respectively.

TABLE III. Confusion Matrix of base SMP models

Machine Learning

QUES UIMS

TP FN FP TN TP FN FP TN

Decision Tree 32 9 5 25 24 6 3 6

Logistic Regression 36 5 6 24 23 7 5 4

Gaussian Naïve Bayes 36 5 17 13 26 4 4 5

SVM 35 6 14 16 26 4 5 4

KNN 39 2 4 26 26 4 4 5

TABLE IV. Confusion Matrix of HPOSMP models

Machine Learning

QUES UIMS

TP FN FP TN TP FN FP TN

Decision Tree 35 6 6 24 27 3 5 4

Logistic Regression 36 5 6 24 23 7 5 4

Gaussian Naïve Bayes 34 7 12 18 27 3 4 5

SVM 39 2 7 23 30 0 6 3

KNN 39 2 4 26 29 1 6 3

 Table 5 shows the accuracy measure of each SMP models

including base ML models as well as HPOSMP models

calculated using the equation (2). From the Table 5, it is evident

that, in case of both the dataset i.e., QUES and UIMS, accuracy

of the SMP models is substantially increased by using the

proposed approach which includes a combination of SMOTE

and HPO.

TABLE V. Comparison of Accuracy Measure

RQ.3: What is the Precision, Recall, and F1-Score ratings for

each SMP model?

 The number of positive class forecasts that really fall within

the positive class is measured by precision. Recall measures

how many correct class predictions were produced using all of

the successful cases in the dataset. Precision and recall issues

are balanced in a single number by F-single Measure's score.

Therefore, the performance of each SMP Model is evaluated in

terms of these factors and described in Fig. 4 and Fig. 5

respectively.

Figure 4. comparison of performance measures of UIMS dataset

 Fig. 4(a), Fig. 4(b) and Fig. 4(c) represent the comparison

of Precision, Recall, and F1-Score measures respectively for the

UIMS dataset. It is clearly evident from the figures that the

performance of each HOPSMP models is better as compared to

the base SMP machine learning models. Detailed performance

improvement is also shown in the Table VI.

TABLE VI. Increments in performance measures for proposed SMP using

UIMS

Machine

Learning

Precision Recall F1-Score

DT same 12.50% 03.57%

LR 01.22% 12.99% 10.13%

GNB same 03.45% same

SVM same 14.94% 04.71%

KNN 04.82% 11.49% 02.30%

Figure 5. Comparison of performance measures of QUES dataset

Machine Learning

UIMS QUES

BASE

SMP
HPOSMP

BASE

SMP
HPOSMP

Decision Tree 76.9 79.5 80.3 83.1

Logistic Regression 69.2 71.5 84.5 84.5

Gaussian Naïve Bayes 79.5 82.1 69 73.2

SVM 76.9 84.6 71.8 87.3

KNN 79.5 82.1 91.5 91.5

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

112

IJRITCC | February 2023, Available @ http://www.ijritcc.org

 Similarly, Fig. 5(a), Fig. 5(b) and Fig. 5(c) represent the

comparison of Precision, Recall, and F1-Score measures

respectively for the QUES dataset. It is clearly evident from the

figures that the performance of each HOPSMP models is better

as compared to the base SMP machine learning models.

Detailed performance improvement is also shown in the Table

VI.

TABLE VII. Increments in performance measures for proposed SMP using

QUES

Machine

Learning

Precision Recall F1-Score

DT same 19.23% 08.54%

LR same same same

GNB 8.82% 06.02% 01.30%

SVM 19.72% 11.76% 15.38%

KNN same same same

 It is also concluded that Decision tree, Support Vector

Machine and KNN combined with SMOTE data balancing

techniques give more substantial increase in the values of

performance measures in terms of Accuracy, Precision, Recall,

and F1-Score as compared to Gaussian Naive bayes and

Logistic Regression.

VI. CONCLUSION

 In this research work, an algorithm (HPOSMP) for the

development of effective SMP model using data balancing and

hyper-parameter tuning of machine learning approach has been

proposed. Datasets for software maintainability have been

formed using two object-oriented software namely QUES and

UIMS written in Ada-classic programming language. SMOTE

technique has been used for data balancing and Decision Tree,

Gaussian Naïve Bayes, K-Nearest neighbor, Logistic

Regression, and Support Vector Machine are adopted as

Machine Learning approaches. Initially, a response variable

called Change metric is selected and then outliers are detected

and dataset is standardized through SMOTE procedure for

further processing. Finally, both the datasets are trained and

tested using various machine learning techniques. Experimental

and implementation work the research has been done using

MATLAB and WEKA tools. A total of 20 SMP Models are

built and analyzed.

 Results were compared for performance evaluation in terms

of Accuracy, Precision, Recall, and F1-Score measures for both

UIMS and QUES datasets and it is found that the performance

of each HOPSMP models is better as compared to the base SMP

machine learning models. Further, KNN outperforms the other

machine learning techniques and produces 91.5% of accuracy

of SMP model. It is also concluded that Decision tree, Support

Vector Machine and KNN combined with SMOTE data

balancing techniques show better performance as compared to

Gaussian Naive bayes and Logistic Regression techniques.

Thus, the proposed HPOSMP algorithm is a great alternative for

base SMP models.

 This research is based on specific datasets of software

written in a specific object-oriented language. Therefore, it can

be further extended to explore feature selection and additional

datasets supporting other programming languages like JAVA,

C++ etc. Additionally, HPOSMP models can be further

modified and tested using other techniques like ensembles,

novel re-sampling and techniques like Boosting and Bagging.

REFERENCES

[1] G. Issac, C. Rajendran, and R. N. Anantharaman,

“Determinants of software quality: customer’s perspective,”

Total Qual. Manag. Bus. Excell., vol. 14, no. 9, pp. 1053–

1070, 2003.

[2] S.-H. Li, D. C. Yen, W.-H. Lu, T.-Y. Chen, “The

characteristics of information system maintenance: an

empirical analysis,” Total Qual. Manag. Bus. Excell., vol.

25, no. 3–4, pp. 280–295, 2014.

[3] “IEEE Standard for Software Maintenance,” IEEE Std 1219-

1993, 1993.

[4] D. Houston, J. Bert Keats, “Cost of software quality: a means

of promoting software process improvement,” Qual. Eng.,

vol. 10, no. 3, pp. 563–573, 1998.

[5] A. Kaur, K. Kaur, “Statistical comparison of modelling

methods for software maintainability prediction,” Int. J.

Softw. Eng. Knowl. Eng., vol. 23, no. 6, pp. 743–774, 2013.

[6] R. Malhotra, A. Chug, “Application of evolutionary

algorithms for software maintainability prediction using

object-oriented met- rics,” in Proceedings of the 8th

International Conference on Bioinspired Information and

Communications Technologies, 2014, pp. 348–351.

[7] R. Malhotra, A. Chug, “Software Maintainability Prediction

us- ing Machine Learning Algorithms,” Softw. Eng. an Int.

J., vol. 2, no. 2, pp. 19–36, 2012.

[8] R.E. Shawi, M. Maher, S. Sakr, “Automated machine

learning: State-of-the-art and open challenges”, arXiv

preprint arXiv:1906.02287, (2019). http://arxiv.

org/abs/1906.02287.

[9] M. Kuhn, K. Johnson, “Applied Predictive Modeling”,

Springer, 2013, ISBN: 9781461468493.

[10] G.I. Diaz, A. Fokoue-Nkoutche, G. Nannicini, H.

Samulowitz, “An effective algorithm for hyperparameter

optimization of neural networks”, IBM J. Res. Dev. Vol. 61

pp. 1–20, 2017. https://doi.org/10.1147/JRD.2017.2709578.

[11] Zhang, W., Huang, L., Ng, V., Ge, J., “SMPLearner: learning

to predict software maintainability”, Automated Software

Engineering, vol. 22, pp. 111-14, 2015..

[12] Kumar, L., Krishna, A., Rath, S. K., “The impact of feature

selection on maintainability prediction of service-oriented

applications”, Service Oriented Computing and

Applications, vol. 11, pp. 137-161, 2017.

http://www.ijritcc.org/

International Journal on Recent and Innovation Trends in Computing and Communication

ISSN: 2321-8169 Volume: 11 Issue: 2

DOI: https://doi.org/10.17762/ijritcc.v11i2.6134

Article Received: 26 December 2022 Revised: 16 January 2023 Accepted: 28 January 2023

113

IJRITCC | February 2023, Available @ http://www.ijritcc.org

[13] Malhotra, R., & Khanna, M., “An exploratory study for

software change prediction in object-oriented systems using

hybridized techniques”. Automated Software Engineering,

vol. 24, pp. 673-717, 2017.

[14] Reddy, B. R., Ojha, A., “Performance of Maintainability

Index prediction models: a feature selection based study”,

Evolving Systems, vol. 10(2), pp. 179-204, 2019.

[15] Malhotra, R., Lata, K., “An empirical study to investigate the

impact of data resampling techniques on the performance of

class maintainability prediction models”, Neurocomputing,

vol. 459, pp. 432-453, 2021.

[16] Gupta, S., Chug, A., “Software maintainability prediction of

open source datasets using least squares support vector

machine”,. Journal of Statistics and Management Systems,

vol. 23(6), pp. 1011-1021, 2020.

[17] Gupta, S., Chug, A., “Software maintainability prediction

using an enhanced random forest algorithm”, Journal of

Discrete Mathematical Sciences and Cryptography, vol.

23(2), pp. 441-449, 2020.

[18] Agrawal, X. Yang, R. Agrawal, R. Yedida, X. Shen, , and T.

Menzies, “Simpler hyperparameter optimization for

software analytics: why, how, when”, IEEE Transactions on

Software Engineering, vol. 48, pp. 2939 - 2954, Apr 2021.

[19] L. Shen, W. Liu, X. Chen, Q. Gu, and X. Liu, “Improving

machine learning-based code smell detection via hyper-

parameter optimization,” In 2020 27th Asia-Pacific Software

Engineering Conference (APSEC),IEEE, Dec 2020, pp.

276-285, doi: 10.1109/APSEC51365.2020.00036.

[20] E. Sara, C. Laila, I. Ali, “The Impact of SMOTE and Grid

Search on Maintainability Prediction Models,” In 2019

IEEE/ACS 16th International Conference on Computer

Systems and Applications (AICCSA), IEEE, Nov 2019, pp.

1-8, doi: 10.1109/AICCSA47632.2019.9035342.

[21] Li, W., Henry, S., “Object-oriented metrics that predict

maintainability”, Journal of systems and software, vol.

23(2), pp. 111-122, 1993.

[22] Chidamber, S. R., Kemerer, C. F., ”A metrics suite for object

oriented design”, IEEE Transactions on software

engineering, vol. 20(6), pp. 476-493, 1994.

[23] Malhotra, R., Lata, K., “An empirical study on predictability

of software maintainability using imbalanced data”,

Software Quality Journal, vol. 28, pp. 1581-1614, 2020.

[24] Alsolai, H., Roper, M., “A systematic literature review of

machine learning techniques for software maintainability

prediction.”, Information and Software Technology, vol.

119, pp. 106214, 2020.

[25] Feurer, M., Hutter, F., Hyperparameter optimization.

Automated machine learning: Methods, systems, challenges,

3-33, 2019

[26] Singh, P., Singh, N., Singh, K. K., & Singh, A., Diagnosing

of disease using machine learning. In Machine learning and

the internet of medical things in healthcare (pp. 89-111).

Academic Press, 2021

http://www.ijritcc.org/

