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Abstract— Over the last two decades, myoelectric signals have been widely used in fields including rehabilitation devices and human-machine 

interfaces. This study aimed to develop an algorithm for surface electromyography (sEMG) data acquisition utilizing low-cost hardware and 

validate its performance using English vowels as silent speech content. The sEMG data were collected from the three facial muscles of one 

healthy subject. The sEMG signals were pre-processed, and various time-domain and statistical features were extracted in real time. The raw 

data and features were then used to train and test three customized machine learning classifiers: k-nearest neighbor (KNN), support vector 

machine (SVM), and artificial neural network (ANN). All customized classifiers achieved almost equivalent accuracy rates of 0.83 ± 0.01 in 

recognizing the English vowels with an improvement of 27.27% (KNN), 3.75% (SVM), and 51.85% (ANN) utilizing the same low-cost data 

acquisition hardware. Our findings are substantially closers to the results of commercial hardware setups, which raise the possibility of potential 

usage of low-cost sEMG data acquisition systems with the proposed algorithm in place of commercial hardware setups for rehabilitation devices 

and other related sectors of human-machine interaction. 
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I.  INTRODUCTION 

During the past two decades, rehabilitation devices, clinical 

prostheses, and human-machine interfaces (HMIs) have all 

made substantial use of myoelectric control signals to assist 

people with impairments in regaining the ability to manage 

items in their daily lives. Hand prostheses, deaf interpreters, 

silent voice interfaces, human-computer interfaces, and many 

more come under this category. Myoelectric is based on the 

physiological idea that when human muscle contracts or 

flexes, a small electrical signal is created from which 

signature-like information may be retrieved to identify the 

action [1, 2]. Electromyography (EMG) records electrical 

activity caused by muscle contractions acquired by putting 

electrodes on the skin's surface. This non-invasive recording of 

electromyograms is known as surface electromyography 

(sEMG) [3, 4]. Such myoelectric signals are sophisticated and 

non-stationary and can be expressed as equ (1) [5, 6]: 

𝑠(𝑡) = ∑ MUAP Tj(t) +  n(t)

𝑗

 

= ∑ ∑ kj 𝑓i (
𝑡 −  Ѳij

𝛼j

)

𝑖

+  n(t)

𝑗

            (1) 

where: kj is an amplitude factor for the jth motor unit, f(i) the 

shape of the action potential discharge, Ѳij the occurrence time 

of motor unit action potential (MUAP), αj a scaling factor, and 

n(t) represents the additive noise. 

sEMG signals can be measured in various ways, including 

single differential, bipolar, and common mode rejection. 

Single differential measurement involves placing two 

electrodes on the skin surface above the muscle, with one 

electrode recording the electrical potential and the other 

serving as a reference. Bipolar measurement involves placing 

two electrodes on the skin surface above the muscle, with one 

electrode measuring the electrical potential between the two 

electrodes. Common mode rejection is a technique that 

eliminates noise and interference from the sEMG signal by 

subtracting the electrical potential at one electrode from the 

electrical potential at the other. sEMG is commonly used in 

various fields, including medicine, sports science, 

rehabilitation, and ergonomics, to evaluate muscle function, 

diagnose muscle disorders, monitor muscle activity during 

physical activity, and design ergonomic equipment. Fig 1 

demonstrates the general approach for generating assistive 

devices utilizing sEMG signals. It is critical to consider the 

four primary cascade modules: identifying the exact muscle 
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pickup point, data acquisition followed by pre-processing, 

feature extraction, and classification.  

 
Figure. 1 Stage of sEMG signal processing 

 

In order to improve real-time data gathering and feature 

computation using commercial or low-cost hardware, several 

methods have been developed. The raw data or chosen 

features are the key kernels utilized in studying EMG signals 

to gain improved classification accuracy. The system's primary 

goal would be to quickly and precisely record data for all 

actions and respond accordingly. 

Regarding sEMG data acquisition, most research groups 

depended on various commercial products available for sEMG 

data acquisition, including MyoResearch XP Master Edition, 

Delsys Trigno wireless EMG system, Gtec g.USBamp, 

Bagnoli EMG system, the Noraxon, the Myon GmbH Myon 

wireless EMG system, and the TMSi wireless sEMG systems. 

These systems typically include the sEMG sensors and 

amplifiers and may also include data analysis and visualization 

software [5, 6]. However, several Arduino-based/ Raspberry 

Pi-based low-cost products are available for sEMG data 

acquisition systems. Software packages like EMG Works, 

OpenViBE, and MyoLua can use low-cost sEMG sensors and 

amplifiers to create a low-cost data acquisition system. It is 

worth noting that the cost of the system is not the only factor 

to consider when choosing an sEMG data acquisition system; 

the quality of the data obtained and the required features of the 

system should also be taken into account. Improved sEMG 

pattern recognition classification performance relies on feature 

extraction for sEMG analysis. This requires converting the raw 

EMG signals into a feature vector. The three principal kinds of 

features utilized in the analysis of sEMG data are time-domain 

(TD) features, frequency-domain (FrD) features, and time-

frequency-domain (TFD) features. In the case of TD features, 

feature assessment is based on the amplitude of a time-varying 

signal. The signal amplitude during analysis is affected by 

muscle states and types. Furthermore, no further signal 

alteration is necessary to use these features. FrD features, 

unlike TD features, are created using parametric approaches or 

a periodogram and contain the power spectrum density (PSD) 

of the signals being analyzed. In contrast, TFD characteristics 

are described as a combination of time and frequency data. 

Because of their capacity to represent information at varied 

frequencies across multiple time locations, TFD features may 

characterize a richness of non-stationary data in the analyzed 

signals [6]. Various research groups have investigated the 

complicated structure of sEMG signals using commercial or 

low-cost setups. Witman et al. [7, 8] examined it for 

recognizing finger movement and interpreting the alphabet of 

sign language; Kumar et al. [9], Arjunan et al. [10, 11], Naik et 

al. [12], Meltzner et al. [13], Larraz et al. [14], Agnihotri et al. 

[15],  Vyas et al. [16], Kachhwaha et al. [17], and 

Chandrashekhar [18] explored it for silent speech content 

recognition; Russo et al. [19] studied it for a prosthetic robotic 

hand; Sidik et al. [20] and Kareem et al. [21] probed it to 

acquire lower arm motion, and Crawford et al. [22] used it to 

capture facial expressions. Due to its non-invasive, safe, and 

effective method for measuring muscle activity, sEMG is a 

valuable tool for evaluating muscle function, diagnosing 

muscle disorders, monitoring muscle activity during physical 

activity, and designing ergonomic equipment. Several studies 

have been conducted on low-cost sEMG data acquisition 

systems, focusing on various aspects such as data collection, 

sensor design, signal processing, feature extraction, and data 

analysis. According to research findings presented by [16, 20, 

21], authors recommend that complex algorithms capable of 

performing many jobs concurrently were required to gather 

accurate data in low-cost setups. According to [7, 8, 16], 

individuals have difficulty computing features and their 

storage in real-time as data is captured utilizing low-cost 

equipment. This real-time feature vector computation task 

encourages us to develop an algorithm utilizing low-cost 

hardware for sEMG data acquisition. This allows us to capture 

sEMG data, compute customized features as soon as data is 

acquired, and store the computed features and raw data in a 

CSV(comma-separated values) file to disk for further 

classification. In addition to the low-cost option for collecting 

sEMG data, we looked at MyoWare Muscle (MWM) sensor 

from Advancer Technologies [23-25] to help the general 

public. The MWM sensor is a small, low-cost, and flexible 

sensor that can be placed directly on the skin to detect the 

electrical activity of a muscle. Several research findings [7, 8, 

18-22] have shown the MWM sensor's dependability and 

suitability for usage in sEMG data acquisition. The MWM 

sensor has the added benefit of being far less expensive than 

the commercial sEMG recording setup. To showcase the 

efficacy of our proposed solution, we picked the field of silent 

speech recognition (SSR) since it is the most natural and 

powerful form of human communication, and there is a 

significant amount of research on the topic. The field of study 

known as SSR examines what happens when subjects do not 

use their spoken voices while completing tasks designed to test 

their comprehension of a particular language. This 

phenomenon has been studied in recent years as a way to 
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improve communication, particularly in noisy environments or 

for people with speech impairments. The detection of silent 

speech is typically accomplished using sEMG and studied by 

various research groups, including [9-18]. The primary 

muscles involved in silent speech are the submental muscles, 

which are located under the chin. These muscles include the 

genioglossus, which elevates the tongue, and the hyoglossus, 

which depresses the tongue. Other muscles involved in silent 

speech include the orbicularis oris, which controls the 

movement of the lips, and the mentalis, which controls the 

movement of the lower lip. In addition, the larynx muscles, 

such as the cricothyroid muscle and the thyroarytenoid muscle, 

are also involved in silent speech. These muscles control the 

vocal cords' tension and the larynx's position, which are 

essential for speech production. Fig 2 depicts typical muscle 

locations of a human face [3].  

 

 
Figure 2: Facial muscles location for Humans [3] 

 

For the initial investigation, we collected silent speech sEMG 

signal of English vowels from a single muscle Orbicularis Oris 

(M1), which is further extended for two other muscles, i.e., the 

Masseter (M2) and the Digastric (M3). To summarise the rest 

of the paper's structure, here it is: in section 2, we describe the 

detailed methodology, which includes details about the sensor, 

validation vocabulary, details of muscles under observation, 

data collection technique, the process of dataset preparation, 

and employed customized classification techniques. Section 3 

presents the observations and results. Finally, section 4 

presents our conclusions. 

II. METHODOLOGY 

A. Sensor Details 

We utilize an MWM sensor with an Arduino Uno R3 

Microcontroller to develop our initial single-channel (extended 

to three-channel) sEMG data acquisition to meet the objective 

of ease of availability, accessibility, low cost, and 

experimentation on the human face and neck. Fig 3 depicts the 

MWM sensor's details [22, 23]. We selected the MWM sensor 

(AT-04-001), a wearable sensor with a single supply (+2.9V to 

+5.7V), two output modes, and an adjustable gain; such 

features are helpful for a prosthetic, orthosis, and other control 

systems. It may be expanded using a sensor cable and cable 

shield (with a 3.5mm TRS jack connector), eliminating the 

need to physically join the sensor pads to the MWM Sensor. 

When the MWM sensor is connected to the human body, it 

produces a value between 0 to 1023 based on the amount of 

muscle contraction, which is then supplied to Arduino's analog 

pins (A0, A1, and A2). The Arduino normalizes these values 

between 0 to 5 and sends the result via serial port to the 

software. For this work, we used disposable Ag/Agcl electrodes 

shaped rectangle dimensions 40mm x 32mm, gel area of 201 

mm2, and sensor area of 80 mm2 to pick sEMG signals from 

facial muscles. 

 

 
(a)                                             (b)                                                                                 

Figure 3: (a) Actual sensor image (b) Details of pin layout [23] 

 

B. Validation Vocabulary 

For validation, the proposed sEMG data acquisition system 

was subject to testing by acquiring the English language's silent 

speech data of five vowels < A, E, I, O, U >. Along with these 

five vowels, we recorded the "Silence" samples when the 

subject did not speak. That makes six different samples 

investigated during this study. To uniquely identify a category 

of each recorded instance inside the collection, each class is 

automatically represented by an integer number during 

recordings and presented in Table 1. 

 

Table 1: Vocabulary codes 

Syllabus Silence A E I O U 

Unique 

Number 
0 1 2 3 4 5 

 

C. Muscles Under Observation 

As shown in Fig 2, different facial muscles have been used 

to obtain sEMG data for silent speech. For the initial 

investigation, we collected silent speech sEMG data by 

placing sensors over Orbicularis Oris (M1) facial muscle, 

which is circular around human lips. Over this single muscle, 

data acquisition and validation were carried out for five 

vowels of the English language. After that, it was performed 

for two other muscles used in speech generation, i.e., the 

Masseter (M2) and the Digastric (M3), a muscle on the neck 
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area. The Masseter muscle comes from the zygomatic arch and 

connects to the mandibular ramus' angle and lateral surface. In 

the neck, the Digastric muscle pushes the mandible downward 

to open the jaw and lifts the hyoid bone for stability. The 

digastric muscle was selected to establish the involvement of 

the neck muscle in silent speech generation. Figure 4 depicts 

actual electrode placements on the subject's left side of the 

face. 

 
Figure 4: Actual placement of disposable Ag/Agcl electrodes on human face 

during experimental sessions 

 

The subject was made aware of the recording process and 

technique. Data recordings were made by making the subject 

sit over an isolated chair in front of a computer screen. Care 

was taken to maintain room temperature between 24-26 °C to 

avoid perspiration. Initially, data from individual muscles on 

the face of the subject were collected. After that, signals were 

picked simultaneously on all three muscles, corresponding to 

five quietly spoken vowels and one for silence (subject sitting 

silence, i.e., no speaking). Each vowel was pronounced 

independently, and our software captured and recorded sEMG 

signals over muscles under test.  

D. Data Processing Technique 

We collectively gathered sEMG data from face muscles using 

the proposed data processing technique after estimated muscle 

identification. We placed the electrodes on the facial and neck 

muscles and connected them with microcontroller hardware & 

a computer. After that, with due appropriate settings & 

initialization, the recording was started via the python-based 

application. The obtained data with defined features were 

instantly attached to the CSV file. The overall schematic 

diagram of our approach is presented in Fig 5. 

 

 
Figure 5: Schematic diagram of our approach: Muscle activities from a healthy 

man were captured from various muscles using an MWM sensor. The signal is 

collected, pre-processed, feature computed, and directly written into a CSV 

file. Machine learning classifiers utilized raw data and features individually 

for silent speech recognition. 

 

Before starting, we need to set a few constants, such as gender 

(the subject's gender) to' M' (male) and age (the subject's age) 

to 39 (years). The parameters under measurement were 

initialized as per Table 2 during the software run. 

 

Table 2: Measurement parameters with default values & range 

Parameter Description Initialized  

Value 

Range 

port  At which hardware gets 

connected                   

COM4 COM1 to 

COM4 

brate Baud rate at which serial 

communication performed 

9600 bps    9600/ 

19200/ 

38400 

frame_size Length of each sample 

that we want to record 

300 

samples  

300 to 1000   

offset   Length of an offset left 

before and after the actual 

sample 

06  

samples 

6 to 20 

muscle  Name of the muscle                                    ‘M1M2M3’ M1/M2/M3/ 

M1M2M3 

sensors   Number of sensors 

connected as per 'muscle' 

3 1 or 3 

sample_no Number of samples to be 

recorded         

5 5 or 10 or 

20 

sample_count  The number of samples 

recorded 

0 5 or 10 or 

20 

master_list  Keep captured data Empty As per  

frame_size 

y Target class 0 0 to 5 

 

In our data collection approach, we kept appending sEMG 

data we received from port to master_list till its length was not 

becoming equal to frame_size. We kept a provision to consider 

offset before and after a silent speech by subject. During the 

software run, when the length of master_list became equal to 

frame_size, we kept appending the datetime, gender, and age 

along with master_list, feature_vector, and y as a row to a 

CSV file. Our algorithm is presented below: 
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Algorithm: 

1 Start 

2 Initialize path to file location to save results 

3 Initialize port ← 'COM4', brate ← 9600, gender ← 'M', age ← 40       

▷ gender can be F, M 

4 Initialize sample_no ← 5, muscle ← ‘M1M2M3’      

▷ muscle can be M1, M2, M3, M1M2M3 

5 Initialize sensors ← int(len(muscle)/2) 

6 Initialize frame_size ← 300 ∗ sensors, offset ← int(frame_size ∗ 0.02) 

7 Initialize statements ← {0: 'Silence',1: 'A',2: 'E',3: 'I',4: 'O',5: 'U'} 

8 Initialize fname as sequence of path, datetime, gender, age and muscle. 

9 if (Hardware is connected at port) then 

10 for y in statements do                                                

 ▷ Iterate over each value in statements 

11 sample_count ← 0 

12 while sample_count ≤ sample_no do                                                 

▷ check record count 

13               Initialize master_list ← [ ] 

14 while len(master_list) ≠ frame_size do  

15                        if len(master_list) == 0 then 

16                            Display 'Ready to Speak' 

17                         end if 

18 Read a line from port, decode it and append decoded 

content to master_list 

19 if len(master_list) == offset then 

20                             Display 'Speak Now' 

21 end if 

22  if len(master_list)== frame_size − offset then 

23                              Display 'Stop' 

24  end if 

25                    end while 

26 data ← [datetime, gender, age]                          

▷ Create a list of datetime, gender, age 

27 Transpose master_list and add to the end of data. 

28 Compute feature_vector for each master_list 

29 Add feature_vector to the end of data. 

30 Add value of y as target class to the end of data. 

31 Append data as a row to CSV file fname and Do 

sample_count ← sample_count + 1 

32             end while 

33 end for 

34 Display a message 'Thanks' 

35 else 

36 Display a message 'Hardware not connected' 

37 end if 

38 Stop 

 

We focused on a few TD and statistical features and their 

horizontal fusion used as feature vectors to reduce 

computational complexity. The mathematical representation of 

these features is presented in Table 3. 

 

 

 

 

Table 3: Mathematical representation of features 

Feature No Extracted Feature Mathematical Equation 

F1 
Maximum of EMG 

(MAX) 
𝑀𝐴𝑋 = max (𝑥1, 𝑥2, … . 𝑥𝑁) 

F2 
Minimum of EMG 

(MIN) 
𝑀𝐼𝑁 = min (𝑥1, 𝑥2, … . 𝑥𝑁) 

F3 
Mean Absolute 

Value (MAV) 
𝑀𝐴𝑉 =

1

𝑁
∑|𝑥𝑛|

𝑁

𝑛=1

 

F4 
Median of EMG 

(MED) 
𝑀𝐸𝐷 = median (𝑥1, 𝑥2, … . 𝑥𝑁) 

F5 

Standard Deviation 

of EMG  

(STD) 

𝑆𝑇𝐷 = √
1

𝑁 − 1
∑ 𝑥𝑛

2

𝑁

𝑛=1

 

F6 
Variance of EMG 

(VAR) 
𝑉𝐴𝑅 =

1

𝑁 − 1
∑ 𝑥𝑛

2

𝑁

𝑛=1

 

F7 
Skewness of EMG 

(SKW) 
𝑆𝐾𝑊 = skewness (𝑥1, 𝑥2, … . 𝑥𝑁) 

F8 
Kurtosis of EMG 

(KUR) 
𝐾𝑈𝑅 = Kurtosis (𝑥1, 𝑥2, … . 𝑥𝑁) 

F9 
Root Mean Square 

(RMS) 
𝑅𝑀𝑆 = √

1

𝑁
∑ 𝑥𝑛

2

𝑁

𝑛=1

 

F10 Energy (ENG) 𝐸𝑁𝐺 =
1

𝑁
∑ 𝑥𝑛

2

𝑁

𝑛=1

 

 

E. Dataset Preparation 

Using the suggested data collection approach, at least 55 

recordings for each vocabulary letter were gathered during 

experimental sessions, using either a single muscle (M1 or 

M2, or M3) or all three muscles combined (M1+M2+M3). 

This procedure yielded four master datasets, including raw 

sEMG data with calculated features (F1 to F10) and other 

attributes. Each channel's sEMG data length was restricted to a 

minimum of 300 samples, resulting in 900 sample values for 

three channels. The whole recording was saved as a CSV file. 

We developed the application to allow sample length 

customization for easy testing and expansion. We chose a 

dataset comprising recordings of all three muscles 

(M1+M2+M3) and ten calculated features (F1 to F10) with the 

desired value (output class) for this investigation. Table 4 

describes the datasets' properties. 

 

Table 4: Dataset characteristics 

Feature Description 

Date Date time at which the sample gets recorded 

Gender Gender of subject 

Age Age of subject 

c1-c900 Sample values of length 900  

(for three muscles) 

F1-F10 Computed features 

Target The output class 
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To detect content from sEMG recordings, we selected 50 rows 

from the gathered datasets for (i) the raw dataset (RD) of 901 

columns [(c1-c900), Target] and (ii) the feature dataset (FD) 

of 11 columns [(F1-F10), Target]. 

 

F. Classification Techniques 

The recorded sample from each dataset is immediately fed into 

our bespoke classifier (with 80% - 20% as training-testing data) 

to discover patterns in the recorded sEMG. Individually, we 

studied the RD and FD using modified versions of k-nearest 

neighbors (KNN), support vector machines (SVM), and 

artificial neural networks (ANN). The KNN classifier is a non-

parametric approach, making no assumptions about the data's 

underlying probability distribution. The main principle 

underlying KNN is to categorize a new observation based on its 

k closest neighbors' majority class. SVM, on the other hand, is 

a supervised machine-learning technique that finds a 

hyperplane in the feature space that best separates the distinct 

classes. ANN is a non-linear statistical technique inspired by 

the structure and function of the human brain. ANNs are made 

up of linked nodes known as artificial neurons that are grouped 

into layers. ANNs work by altering the weights of the 

connections between neurons to learn a mapping from input to 

output data. Many studies have emphasized the ANN classifier 

in sEMG classification because it can represent linear and non-

linear connections derived from the sEMG data under 

consideration. Table 5 summarizes the customization 

information for deployed classifiers. 

 

Table 5: Classifiers customization details 

Classifier Hyper-parameters 

KNN n_neighbors=6, weights=’uniform’, p=2, algorithm=’auto’, 

metric=’minkowski’, leaf_size=30 

SVM C=100.0, kernel=’rbf’, degree=3, random_ state=7 

ANN  

(100) 

hidden_layer_sizes=(100), max_iter=500, solver=’adam’, 

activation=’relu’, learning_rate_init=0.001, random_state=7 

ANN 

(100,100) 

hidden_layer_sizes=(100,100), max_iter=500,  solver=’adam’, 

activation=’relu’, learning_rate_init=0.001, random state=7 

 

To evaluate how well the gathered datasets were able to be 

classified, we used accuracy as an assessment parameter. The 

proportion of properly identified samples relative to the total 

number of samples is accuracy, and it is defined as (2): 

 

Accuracy =
Number of correct classified samples

Number of total samples
           (2) 

 

III. OBSERVATIONS & RESULTS 

This section describes the classification results of 50 syllables 

using defined customized classifiers. Fig 6 (a), (b) illustrates a 

few screenshots of our sEMG data acquisition process. It 

shows the port at which the hardware is connected and the 

gender and age of the subject. A message corresponding to the 

recording sample (with sample_no) is shown to the user to 

inform when to start and when to stop indication. By 

displaying 'Frame recorded….and..Appended', the subject is 

also informed about that particular sample with defined 

features gets appended to a file. In one iteration, the program 

records a total of samples equal to sample_no for each 

vocabulary content. 

 

 

 

(a) (b) 

Figure 6: Screenshots of the data acquisition process 

 

Following recording sessions, the RD and TD datasets were 

separated from the master dataset and fed into deployed 

classifiers independently. Table 6 shows the categorization 

results in terms of accuracy for RD and FD. Except for one 

example (0.67) of RD, all customized classifiers had 

accuracies equal to or better than 0.72 for each vocabulary 

content with RD and FD. Each classifier's mean recognition 

rates are 0.828, 0.827, 0.825, and 0.837, respectively. 

 

Table 6: Accuracy for each classifier utilizing RD and FD 

Vocabulary 
Dataset 

Type 

Customized Classifiers 

KNN SVM 
ANN 

(100) 

ANN 

(100, 100) 

Silence 
RD 0.95 0.93 0.97 0.97 

FD 1.0 0.98 0.93 0.95 

A 
RD 0.67 0.73 0.72 0.82 

FD 0.77 0.77 0.78 0.77 

E 
RD 0.77 0.78 0.82 0.87 

FD 0.87 0.83 0.88 0.82 

I 
RD 0.88 0.90 0.78 0.82 

FD 0.80 0.78 0.77 0.80 

O 
RD 0.80 0.77 0.83 0.80 

FD 0.77 0.77 0.72 0.75 

U 
RD 0.83 0.82 0.82 0.83 

FD 0.83 0.87 0.88 0.85 

http://www.ijritcc.org/


International Journal on Recent and Innovation Trends in Computing and Communication 

ISSN: 2321-8169 Volume: 11 Issue: 2 

DOI: https://doi.org/10.17762/ijritcc.v11i2.6109 

Article Received: 12 December 2022 Revised: 17 January 2023 Accepted: 24 January 2023 

___________________________________________________________________________________________________________________ 

 

54 

IJRITCC | February 2023, Available @ http://www.ijritcc.org 

The confusion matrices derived by each classifier are shown in 

Fig 7 and 8 for RD and FD, respectively, to highlight the 

outcomes of each classifier further. We received higher values 

along the diagonal in these matrices for successful recognition 

and lower numbers for poor recognition. This value is also 

connected to a color map (from lower to higher range) for 

better display. 

 

  

(a) For KNN (b) For SVM 

  

  

(c) For ANN (100) (d) For ANN (100, 100) 

Figure 7: Confusion matrix obtained for RD utilizing deployed classifiers 

 

  

(a) For KNN (b) For SVM 

  

  

(c) For ANN (100) (d) For ANN (100, 100) 

Figure 8: Confusion matrix obtained for FD utilizing deployed classifiers 

 

Furthermore, the accuracies for each word item and classifier 

using RD and FD are displayed in Fig 9. The RD has a broad 

range of accuracies ranging from 0.67 to 0.97 for each lexical 

content with various classifiers. At the same time, FD shows a 

more steady and promising range of accuracies from 0.72 to 

1.0 with less variance. 

 

 
Figure 9: Accuracy scores obtained 

 

In addition, we compare our RD and FD findings to those of 

Larraz et al. [14]. Larraz et al. employed English vowels RD 

and FD and found mean accuracies of 0.53 and 0.75, 

respectively [14]. Our mean accuracies for RD and FD are 

0.82 and 0.83, respectively, with RD being 54.71% and FD 

being 10.6% improved. We also compare our findings 

acquired using FD to comparable work performed with 

commercial or low-cost setups employing feature datasets. 

Table 7 compares the accuracies achieved for sEMG English 

vowels FD in terms of hardware type, hardware utilized, and 

classifier applied. 

 

Table 7: Comparison of accuracies for FD with commercial and low-cost 

setups 

Ref 
Hardware 

Type 

Hardware 

Used 

Classifiers employed 

KNN SVM ANN 

[9] Commercial MEGAWIN - - 
0.88  

(↓ 6.82) 

[10] Commercial MEGAWIN - - 
0.92 

(↓ 10.87) 

[11] Commercial MEGAWIN - - 
0.86 

(↓ 4.65) 

[12] Commercial MEGAWIN - - 
0.60 

(↑36.67) 

[14] Commercial 
Gtec  

g.USBamp 
- - 

0.75 

(↑ 9.33) 

[15] Commercial BIOPAC - - 
0.84 

(↓ 2.38) 

[18] Low-cost MWM Sensor 
0.66 

(↑ 27.27) 

0.80 

(↑ 3.75) 

0.54 

(↑ 51.85) 

Our Low-cost MWM Sensor 0.84 0.83 0.82 

 

The percentage up or down is denoted by the up or down 

arrow with previous findings in Table 7. We improved 27.27% 

in KNN, 3.75% in SVM, and 51.85% in ANN compared to 

low-cost hardware type [18] and denoted by an up arrow with 

percentage improvement. Compared to previous work done 

with commercial hardware sets by [9-12, 14, 15], our 

identification rate using the ANN classifier is closer to the 
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recognition rates of commercial hardware. The percentage up 

or down is denoted by the up or down arrow with previous 

findings in the ANN column of Table 7. This indicates the 

feasibility of using low-cost sEMG data-collecting devices 

with the proposed algorithm instead of commercial hardware 

configurations for silent speech recognition and other human-

machine interaction-related applications. 

IV. CONCLUSION 

In conclusion, this work effectively designed and validated 

an algorithm for sEMG data collecting using low-cost hardware 

employing English vowels as speech content. The sEMG data 

were acquired from three face muscles of one healthy person 

and pre-processed to extract different characteristics. The raw 

and feature datasets were individually used to train and 

evaluate three machine learning classifiers: KNN, SVM, and 

ANN. The findings demonstrated that the devised sEMG data 

collection technique performed well. Using the same low-cost 

data-collecting hardware, all customized classifiers obtained 

almost comparable accuracy rates of 0.83 ± 0.01 in detecting 

English vowels, with improvements of 27.27% (KNN), 3.75% 

(SVM) and 51.85% (ANN) from existing available work. Our 

results are significantly closer to those of commercial hardware 

setups, raising the possibility of using low-cost sEMG data 

acquisition systems with the proposed algorithm instead of 

commercial hardware setups for silent speech recognition, 

rehabilitation, and other human-machine interaction-related 

fields. However, this research has numerous limitations, 

including incorrectly muttered data and just one form of speech 

content (English vowels) for validation. A GUI-based data 

collection system with real-time display of produced sEMG 

signals may be included as a future scope during data collecting 

with the record or discard option. More research with diverse 

forms of speech material is required to generalize the findings 

and enhance the system's performance. Furthermore, deep 

learning approaches may increase the system's performance 

and versatility. 
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