
Citation: Querebillo, C.J. A Review

on Nano Ti-Based Oxides for Dark

and Photocatalysis: From

Photoinduced Processes to

Bioimplant Applications.

Nanomaterials 2023, 13, 982. https://

doi.org/10.3390/nano13060982

Academic Editors: Wei Zhou and

Antonino Gulino

Received: 30 January 2023

Revised: 13 February 2023

Accepted: 24 February 2023

Published: 8 March 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

nanomaterials

Review

A Review on Nano Ti-Based Oxides for Dark and
Photocatalysis: From Photoinduced Processes to
Bioimplant Applications
Christine Joy Querebillo

Leibniz-Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstr. 20,
01069 Dresden, Germany; c.j.querebillo@ifw-dresden.de

Abstract: Catalysis on TiO2 nanomaterials in the presence of H2O and oxygen plays a crucial role in
the advancement of many different fields, such as clean energy technologies, catalysis, disinfection,
and bioimplants. Photocatalysis on TiO2 nanomaterials is well-established and has advanced in
the last decades in terms of the understanding of its underlying principles and improvement of its
efficiency. Meanwhile, the increasing complexity of modern scientific challenges in disinfection and
bioimplants requires a profound mechanistic understanding of both residual and dark catalysis. Here,
an overview of the progress made in TiO2 catalysis is given both in the presence and absence of light.
It begins with the mechanisms involving reactive oxygen species (ROS) in TiO2 photocatalysis. This
is followed by improvements in their photocatalytic efficiency due to their nanomorphology and
states by enhancing charge separation and increasing light harvesting. A subsection on black TiO2

nanomaterials and their interesting properties and physics is also included. Progress in residual
catalysis and dark catalysis on TiO2 are then presented. Safety, microbicidal effect, and studies on
Ti-oxides for bioimplants are also presented. Finally, conclusions and future perspectives in light of
disinfection and bioimplant application are given.

Keywords: reactive oxygen species; photocatalytic efficiency; charge separation; light harvesting;
black TiO2; titanium alloys; residual disinfection; dark catalysis; antibacterial; inflammation

1. Introduction

Titanium dioxide (TiO2), or titania, occurs naturally and forms spontaneously when
bare Ti is exposed to air [1,2]. At room temperature, TiO2 is commonly considered an
n-type semiconductor [3,4] with a bandgap (Eg) of around 3 eV (3.2 eV for anatase, 3 eV for
rutile) [2,4]. Since the discovery of its photoelectrochemical (PEC) water-splitting ability
by Fujishima and Honda [3,5], TiO2 remains today as the standard photocatalyst. The
excitation of its electrons from the valence band (VB) to the conduction band (CB) upon
exposure to light with energy E ≥ Eg, i.e., UV (to violet, 413 nm) light for the bulk form,
results in photogenerated charge carriers (electrons and holes) which can be utilized in
various processes, resulting in its photocatalytic activity. In addition, TiO2 exhibits desirable
material properties, such as its wide availability, biocompatibility, chemical stability in
an aqueous environment, and affordability [6–14], resulting in the application of TiO2 in
different fields, such as catalysis, alternative/clean energy technologies, environmental
cleaning, pollutant degradation, medicine, pharmaceuticals, disinfection, and biomedical
implants [1–4,6–21].

The mechanism of photocatalysis on TiO2 depends on the type of catalytic reaction that
is being investigated, though it primarily involves interfacial (and bulk) processes of the
photoinduced electrons and holes, which occur at different time scales (Figure 1) [22–26].
The faster charge carrier generation due to photon absorption (1) compared to electron–
hole recombination (2) enables the possibility of having CB electrons and VB holes that
can be tapped for reductive (3) and oxidative (4) processes, respectively. However, the
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recombination process lies at the same time scale as these interfacial charge transfer (CT)
processes, and therefore efforts to further delay the recombination process can improve the
photocatalytic efficiency of TiO2.
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Figure 1. The core steps in photocatalytic mechanism include (1) absorption of light which forms
charge carriers, (2) recombination of charge carriers, (3) reductive process with electrons in the
conduction band (CB), (4) oxidative pathway undertaken by a valence-band (VB) hole, (5) further
reactions (hydrolysis, reactions with reactive oxygen species (ROS), etc.), (6) trapping a VB hole at a
Ti-OH group on the surface, and (7) trapping of CB electron at a Ti(IV) site to produce Ti(III). Redrawn
from ref. [26] to include timescales obtained from [22–26]. The timescale in 3 and 4 are mainly from
nontrapped electrons and holes (i.e., directly from the CB and VB).

Furthermore, the VB holes can transport quickly to hole trap sites at the surface,
such as at surface Ti-OH groups (6), which is often the case for the photogenerated holes
because of the fast femtosecond process. Consequently, free VB holes are scarcely present
in TiO2 [24], and surface-trapped holes are usually responsible for the oxidation reaction
which can occur faster in the ps–ns range [22–26]. The electrons, on the other hand, can
get trapped at Ti(IV) sites (7) and form Ti(III), which can also participate in other redox
processes [22–26].

Direct recombination of the photogenerated carriers usually does not occur and instead
happens upon meeting trapped complementary charge carriers. For example, mobile
electrons can recombine with trapped holes, decreasing the former’s lifetime and reducing
the photocatalytic performance of TiO2. As such, anatase usually performs better as a
photocatalyst than rutile due to its longer electron lifetime (>few ms for anatase vs. ~24 ns
for rutile) and stronger band bending [27,28]. Further photocatalytic reactions on TiO2
occur on the surface involving reactive oxygen species (ROS) (Figure 1, (5)) [22].

In the past decades, most studies on TiO2 are focused on its photocatalytic activity
(both in the bulk and nanomaterial form), and the literature is overflowing with strategies
to improve its performance by addressing inherent deterrents, extending the spectral range
for which TiO2-based photocatalysis can be used, or enhancing the light utilization through
various geometries (nanotextures, structured arrays, etc.). These improvements are based
mainly on the key steps in photocatalysis, focusing on light absorption, generation of
charge carriers, their separation and transport, catalyst replenishment, and prevention of
back and side processes. With the goal and steps clarified, TiO2 photocatalysis still faces a
number of challenges considering that modern materials require multiple functionalities
and therefore a balance of its properties. Hence, the influence of different TiO2 properties
on its photocatalytic performance is also a major focus of research.

Almost overshadowed by the numerous works on photocatalysis but persisting mainly
due to the excellent biocompatibility and oxidative bleaching ability of TiO2, research on
TiO2 in the “dark” or in the absence of light has also been growing steadily over the
years. Titanium, from which TiO2 can be grown, exhibits excellent mechanical properties
which helped in establishing its place in the field of biomedical implants. For example,
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titanium and its alloys are standard materials used for bone implants, and strong research
in medicine and engineering is focused on continuously improving their physicochemical
properties, mechanical properties, and designability/processability [29–33], on top of added
functionalities desired in modern biomaterials, such as its antimicrobial and regenerative
properties [34–39]. The last two are also attributed to its catalytic ROS-forming ability, which
should then be considered in bioimplant applications. After implantation surgery, i.e., in
the postoperative phase, implant material surfaces are devoid of light. Understanding the
mechanism of “dark” catalysis on TiO2 in the physiological condition is therefore important
in addressing the current challenges and limitations not only for Ti and TiO2 but also for
more advanced Ti alloys and Ti-based materials and their oxides for implant application.

Considering the vast use of TiO2, it is not surprising that the published works on TiO2
catalysis come from many different disciplines of different perspectives. Modern scientific
and engineering challenges then often entail a multidisciplinary approach to answer the
increasingly becoming more complex questions. Yet, if we look at the literature, it seems
that there is still a need to consolidate this immense knowledge of TiO2 catalysis from a
multidisciplinary perspective.

The different knowledge and experiences we gain by working on different topics
involving titania can help us develop the skill of understanding catalysis on TiO2 nanoma-
terials from a more inclusive viewpoint. Different fields working on titania, for instance,
electromagnetic field enhancement on semiconductors [40–50], dye photodegradation (see
Section 2.2), and bioimplant applications [31,36,51–56] to name a few, may all involve cat-
alytic properties of TiO2 nanomaterials, yet they also need a nuanced understanding of TiO2
in light of specific, targeted applications. Such background and experience can certainly
help us easily understand the literature though regularly immersing oneself in various
literature on TiO2 catalysis easily available to us nowadays, and constantly discussing with
colleagues and peers can also help us be familiarized and updated with the progress on TiO2
catalysis. As such, despite the experience and background of the author, which certainly
helped in the reading and analysis of the literature for this review, the method of regularly
keeping up to date with the literature, engaging in scientific discussions, and a period of
intensive gathering and reading of the literature on TiO2 catalysis was therefore adapted in
preparing this review. Many excellent works and reviews helped in the preparation of a
general survey, with emphasis on certain points of interest—namely, the advancements in
photocatalytic enhancement, the photocatalytic and dark bactericidal activities, and the use
of Ti (and Ti-based) oxide nanomaterials for bioimplants. In some topics, the readers are
referred to excellent reviews available in the literature, and the scope is limited to oxides of
Ti (mainly TiO2). On the other hand, the preparation of this review was conducted with the
awareness that the answers to present-day complex scientific questions may still not be
available in the literature, and due to the multidisciplinary nature of these questions and
the explosion of the available literature on the internet, not all available review materials
on the internet and in print can be included in this review. Nevertheless, inspired by the
present challenges that the bioimplant community wishes to address, a review on photo-
and dark catalysis of TiO2 is presented here.

In this review, the catalysis of TiO2 nanomaterials, both in the presence of light
(photocatalysis) and in the dark, is presented to give a general overview of the full spectrum
of its catalytic activity. A section discussing the role of ROS in TiO2 photocatalysis, which
is crucial in photo- and dark catalysis on TiO2, is included. As the understanding of
the role of ROS in photocatalysis is more extensive, it is beneficial to look at it from a
mechanistic perspective without going into details, as excellent reviews and articles also
exist in the literature [22,57,58]. The influence of some properties of TiO2 on its performance
in photocatalysis will then be presented to understand the surface engineering that has
been carried out to advance the photocatalysis field. TiO2 nanoparticles (NPs), having
been extensively developed for photocatalysis, also pose some risks, and the safety of
using them will also be discussed. Together with this, the other side of the coin, the
photocatalytic antibacterial property afforded by TiO2 NPs, is presented. Then, highlights
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and advancements in the efforts to boost the photocatalytic efficiency of TiO2 mainly in
terms of charge separation enhancement and improvements in light harvesting will be
presented. Black TiO2 nanomaterials, a current hot topic in the field of TiO2 photocatalysis,
will also be presented in light of their physics and photocatalytic activity.

Many studies on dark catalysis are investigations on the influence of Ti-based implants
on the inflammatory response and vice versa. In addition, early studies on dark catalysis
are observations carried out mainly as a reference to photocatalytic works and the residual
effect after the removal of irradiation. These will be presented to serve as a bridge between
photo- and “dark catalysis” and will be followed by studies addressing and contributing to
the so-far understanding of the dark catalysis mechanism. Dark catalysis is important when
looking at the inflammatory response which yields ROS, resulting in some microbicidal
effect of TiO2 and improving the performance of biomedical implants. As there is a huge
scientific community working on biomedical implants who are looking at improving the
performance, regenerative ability, and other properties of Ti-based materials, discussions
on Ti and Ti-based oxides for biomedical applications, the safety of these materials, and the
inflammatory condition are also included. Finally, a conclusion/future perspective in terms
of photo- and dark catalysis on Ti-based oxides for disinfection and bioimplant application
is given.

2. TiO2 Photocatalysis

Since photocatalysis is mainly due to redox reactions of photogenerated charge carriers
producing reactive surface species and that they mostly occur in the presence of water
and/or oxygen, it is important to look at the role of reactive oxygen species (ROS).

2.1. Reactive Oxygen Species in TiO2 Photocatalysis

ROS can be considered primary intermediates of photocatalytic reactions with these
four recognized as the main ones: hydroxyl radical (·OH), superoxide anion radical (·O2

−),
hydrogen peroxide (H2O2), and singlet oxygen (1O2) [57,59]. ROS seem to form mainly
from the interaction of the VB hole with molecules (such as H2O) or species, oxidizing
the latter and typically resulting in ·OH centers [58,60,61]. This could also happen in hole-
trapping processes in TiO2, such as at bridging O2

−, resulting in the formation mainly of
·O− (“deprotonated ·OH”) [22,62,63]. Because of the high potential barrier of free ·OH for
desorption, adsorbed ·OH is considered more favorable and is usually equated to trapped
holes due to the adsorption–desorption equilibrium [22,57].

A detailed summary of generating the four major ROS on the TiO2 surface can be
viewed in terms of bridging and terminal OH sites (Figure 2) [58]. The reactions occurring
at the anatase and rutile are differentiated by the arrow lines (double lines are restricted
to anatase), whereas broken lines refer to adsorption/desorption. At the bridged OH site
(Figure 2a), a photogenerated hole attacks the O2− bridge (step a), forming Ti-O· and Ti-OH
(step b), which can be reversed by recombining with an electron from the CB. Some surface-
trapped holes at the anatase can be released as ·OH into the solution. At the rutile surface
with its suitable distance between adjacent Ti surface atoms, a different scenario occurs.
Once another hole is formed in the same trapped hole-containing particle, the hole could
migrate and interact with the existing hole resulting in a peroxo-bridged structure at the
surface (step c). Further reactions of these structures could then generate other ROS [57,58].

At the terminal OH site (Figure 2b), a photogenerated electron can interact and is
trapped at the Ti4+ site, transforming it to Ti3+ (step b) [64]. The trapped electron in the
Ti3+ could then reduce oxygen to form an ·O2

− (adsorbed) (step d) (which, with further
reduction, could become an adsorbed H2O2 or as (Ti)-OOH (step c)). The H2O2 that is
adsorbed could also be reoxidized to produce an adsorbed ·O2

−, which can be desorbed
to return to the initial state (step a). As the peroxo bond needs to be dissociated, the
production of ·OH is highly unlikely when the adsorbed H2O2 is being reduced [57,58].
These schemes (Figure 2) also show a sensible explanation for the influence of the adsorption
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of H2O2 in forming ROS, which has been well-considered for increasing the photocatalytic
performance of TiO2.
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Adsorbed ROS can also have a more direct impact on photocatalytic performance [57].
Anatase and rutile show different reactivity towards forming ·OH and ·O2

− [28,65], likely
due to their H2O2 adsorption [63] in addition to their band edge alignment. One-step
oxidation of H2O2 produces ·O2

−, which is more remarkable for anatase, whereas one-step
reduction produces ·OH, which is only observed for rutile or rutile-containing forms and is
believed to be due to the structure of the adsorbed H2O2 on rutile vs. anatase [66].

2.2. Nanomorphologies and Structural States of TiO2

Due to its wide applicability, TiO2 has been produced via different means, with
the resulting TiO2 structural polymorphs—i.e., anatase, rutile, or brookite, among oth-
ers [67]—and morphology being highly influenced by the preparation method. The dif-
ferent TiO2 morphologies add to the variety of properties and performance exhibited by
TiO2. In addition to bulk TiO2 [68–71], in recent decades, TiO2 nanomaterials of vari-
ous morphologies have also been developed, resulting in the current plethora of TiO2
nanomorphologies (Figure 3). These have been synthesized using different means for vari-
ous targeted applications, achieving a range of photocatalytic efficiencies (Table 1). Note
that some morphologies are preferably prepared using certain procedures (e.g., sol-gel
method for nanopowders and anodization for nanotubes), whereas some procedures (e.g.
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hydrothermal synthesis) can be used and modified to produce various morphologies (such
as nanospindles, nanorhombus, nanorods, or nanosheets).
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Figure 3. Plethora of TiO2 nanostructures. This includes free-standing nanomaterials, such as TiO2

dendritic nanospheres, nanospheres, nanoshells, nanofibers, and nanoflowers, and nanostructures
grown on bulk substrates, such as nanotubes, nanolace, and nanotrees. Nanomaterials present
increased catalytic activity due to their interesting properties (increased surface area, enhanced
charge separation, light absorption/harvesting), which are desirable in catalytic TiO2 applications.
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Table 1. Reported photocatalytic performance of some TiO2 nanomorphologies.

Morphology Material
Dimension

Crystal State Synthetic Procedure Photocatalytic Performance § Targeted
Applications

Ref.

Commercially available
Degussa P25 nanopowder

30–40 nm anatase + rutile either deposited as
film or used as
dispersion/colloid

Pseudo-first-order rate constant,
k = 0.0085–0.012 min−1 AO7 [72,73],
RhB [73,74] degradation; UV light,
100–200 mW HeCd laser with I = 60
or 100 mW cm−2, 254~325 nm

Dye-sensitized solar cells, etc. [72–74]

Quantum dots ~4.7 nm anatase autoclave method
(+heating)

~18% MO photodegradation* (Xe
lamp with a glass filter, 400 nm cut
off, 100 mW cm−2) [75]; *estimated
k = 0.0033 min−1

Energy and
environmental
applications

[75,76]

Nanocrystals/nanopowder/
nanoparticles (NPs)/
nanospheres

particle size: 8–10.2 nm
[77,78], 14–18 nm [79,80],
19–23 nm [81]

anatase sol-gel method + heat
treatment

k = 0.002–0.036 min−1 (MB
degradation) [78,79,81],
k = 0.090–0.105 min−1 (MR
degradation) [77] (UV light
250–625 W; max. ~250–368 nm);
20% (NOx degradation after 60 min;
UV light-20 W, 287.5 nm) [80],
*estimated k~0.0037 min−1 UV light
250–625 W; max. ~250–368 nm)

Pollutant
degradation
and self-cleaning
[77–79,81], exhaust gas
decomposition [80], energy
storage [78]

[77–81]

Nanoporous shell
(polyimide support)

2.7–2.8 nm pore size,
12~20 nm shell thickness,

anatase in situ complexation
hydrolysis

~80−95% degradation rate*
(365 nm, 30-W UV lamp)
*estimated k = 0.04–0.07 min−1

Air purification and water
disinfection

[82]

Nanospindles ~190 nm in length; growth
direction along [001]

anatase hydrothermal
synthesis

k = 0.0306 min−1 (RhB degradation;
UV illum.; sim. sunlight AM 1.5 G
filter, (100 mW/cm2))

Dye-sensitized solar cells, etc. [74]

Nanowires 100 nm diameter × 800 µm anatase hydrothermal reaction,
proton exchangem
calcination

k = 0.0154 h−1 (0 0.000256 min−1)
(phenol degradation in water; LED
UV lamp (18 W); ca. 12 mW cm−2)

Photocatalysis, gas sensors, etc. [83]

Nanowires/
nanobelts

15 nm diameter anatase hydrothermal growth +
heat treatment

51.96%* (MO degradation; 350-W
Xe lamp); *estimated
k~0.0066 min−1

Organic
pollutants
degradation

[84]
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Table 1. Cont.

Morphology Material
Dimension

Crystal State Synthetic Procedure Photocatalytic Performance § Targeted
Applications

Ref.

Nanobelts 800 µm × 400 nm × 20 nm anatase hydrothermal reaction,
proton exchange,
calcination

k = 0.0256 h−1 (0.000426 min)
(phenol degradation in water; LED
UV lamp (18 W); ca. 12 mW cm−2)

Photocatalysis, gas sensors, etc. [83]

Nanorods (NRs) ~1.5 nm diameter and
~8.3 nm in length

rutile solvothermal reaction k~0.068 min−1 (RhB degradation,
300 W Xe lamp; full spectrum)

Organic
pollutant
degradation

[85]

Nanofibers/core-shell
nanofibers

diameter < 100 nm anatase, rutile,
anatase + rutile

electrospinning/
hydrolysis or alkoxide
method

Estimated k = 0.027~0.1118 min−1

(lower values for rutile, higher
values for anatase, mixed/core-shell
have values in between, with values
closer to the shell structure) (RhB;
UV irradiation

Energy and
environmental applications

[86]

Nanotubes (bamboo-type) 2.5 µm in length, 100 nm
diameter

amorphous anodization k = 0.0045 min−1 (AO7
degradation), 0.0187 min−1 (MB
degradation) (UV light, 200 mW
HeCd laser with I = 60 mWcm−2,
325 nm)

Dye-sensitized solar cells, etc. [72]

20–60 nm diameter,
0.5–0.9 µm in length, and
~60 nm interpore distances

anatase + rutile dynamic anodization +
heat treatment

k = 0.0007−0.0013 min−1 (MB
degradation, 9W UV black-light
lamp (λ = 365 nm), 1 mW/cm2

radiation at surface)

Devices;
energy and environmental
applications

[87]

Nanotubes (smooth)
4.5 µm length, 45 nm
diameter

anatase anodization + heat
treatment

k = 0.0158 min−1 (AO7
degradation), 0.0213 min−1 (MB
degradation) (UV light, 200 mW
HeCd laser with I = 60 mWcm−2,
325 nm)

Dye-sensitized solar cells, etc. [72]

50–60 nm diameter,
1.7–2.2 µm in length, and
~60 nm interpore distances

anatase + rutile dynamic anodization +
heat treatment

k = 0.0024−0.0049 min−1 (MB
degradation, 9 W UV black-light
lamp (λ = 365 nm), 1 mW/cm2

radiation at surface)

Devices;
energy and environmental
applications

[87]
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Table 1. Cont.

Morphology Material
Dimension

Crystal State Synthetic Procedure Photocatalytic Performance § Targeted
Applications

Ref.

Nanotubes (grown from
Ti-6Al-4V)

diameter increases with
anodizing potential;
thickness ~280 nm

anatase (+rutile) anodization + heat
treatment

~8–42% photodegradation efficiency
(depending on the anodization
voltage or tube diameter); estimated
k = 0.0005–0.003 min−1 (MB
degradation; UV-A lamp,
0.39 W/cm2)

Organic
pollutant
degradation

[88]

Nanoribbons 200–300 nm in width;
several microns in length

anatase (+rutile) alkaline hydrothermal
treatment

k~0.05342–0.08164 min−1 (RhB
degradation; simulated sunlight,
300 W 230 V E27)

Organic
pollutants
degradation

[89]

Nanoribbons
(nanopitted)

width 20~200 nm, length
of 1 µm–few µm with pits
of dia. 5–15 nm

TiO2-B alkaline hydrothermal
treatment

k ~ 0.0024–0.011 min−1 (MB
degradation) (natural sunlight)

Dye
degradation

[90]

2D nanogrid/
nanolaces/
inverse-opal-like structure

230–610 nm diameter of
holes

anatase opal-templated
sol-gel-based synthesis
+ heat treatment

k~0.022–0.058 min−1

(RhB degradation; 500 W Xe arc
lamp, 400 nm cutoff, 25 mW cm−2)

Degradation of various
environmental contaminants

[91]

~150 nm diameter holes,
lace thickness 10~20 nm

anatase (+rutile) alternating-voltage
anodization + heat
treatment/ 2-step
anodization

k = 0.003 min−1 (Cr (VI)
photocatalytic reduction; simulated
sunlight, 300 W xenon lamp with
100 W cm−2 irradiation)

Heavy metal (Cr(VI)) removal
from wastewater

[92,93]

~150 nm diameter holes,
lace thickness 10~20 nm

black TiO2 2-step anodization
process + heat-treat. in
reducing atmosphere

k = 0.0657 min−1 (Cr (VI)
photocatalytic reduction; simulated
sunlight, 300 W xenon lamp with
100 W cm−2 irradiation)

Heavy metal (Cr(VI)) removal
from wastewater

[93]

Nanosheets thickness < 7 nm anatase hydrothermal process k = 0.013 min−1 (RhB degradation,
mercury lamp (300 W, as UV light
source), 2.62 mW/cm2)

Renewable
energy;
environment

[75]

Nanoflowers 2–6 nm diameter with
~10 nm thin petals

anatase + rutile hydrothermal +
calcination

k = 0.03–0.12 min−1 (MB
degradation at diff. pH; highest k at
pH 4; UV lamp (100 W, 365 nm,
6.5 mW cm−2))

Effluent treatment [94]



Nanomaterials 2023, 13, 982 10 of 43

Table 1. Cont.

Morphology Material
Dimension

Crystal State Synthetic Procedure Photocatalytic Performance § Targeted
Applications

Ref.

Dendritic
nanospheres

2–3 µm diameter of entire
structure;
nanowire/nanoribbon
spikes: 500 nm–1.5 µm
long and dia. in nm

rutile low-temperature
hydrothermal method

k~0.018–0.024 min−1

(A07/RhB degradation; UVP
Mineralight lamp (254 nm,
40 mW cm−2))

Photocatalytic
membrane
water
purification

[73]

Nanotrees
130–180 nm nanowire
diameter; 10–20 nm
nanoparticle size

anatase hydrothermal method,
(1) proton exchange +
calcination, (2) TiO2
NP decoration;
sequence variation has
an effect

k = 0.021, 0.071 min−1 (depending
on the lattice parameter) (toluene
gas decomposition; UV lamp (PL-L
18W/10/4P, Philips; 365 nm;
8.7 mW cm−2)

Photocatalysis, gas sensors, etc. [95]

Sheet-on-belt (SOB): 800
µm × 400 nm × 20 nm
(trunk), up to 100 nm long
(branches). Sheet-on-wire
(SOW): 100 nm diameter ×
800 µm (trunk) with
branches up to 200 nm.
Branch thickness:
a few nm

mostly anatase
(+a bit of rutile)

hydrothermal reaction,
proton exchange,
calcination, solution
combustion synthesis +
calcination

Up to k = 0.346 h−1 (or 0.00576
min−1) (SOB photocatalytic); up to
k = 0.40 h−1 (or 0.0067 min−1)
(SOW photo-electrocatalytic)
(phenol degradation in water) (LED
UV lamp (18 W); ca. 12 mW cm−2)

Environmental remediation,
energy storage, green energy
production

[83]

branched nanowire; 1 µm
thick, branch: 10 nm thick,
45 nm long

anatase + rutile H2O2 oxidation,
intermediate
calcination, and H2SO4
treatment

k = 0.0007–0.0086 min−1

(UV + various organic compounds);
0.0057 min−1 (visible + RhB) (18 W
UV lamp, 5 mW/cm2; 500 W
Xe-lamp, 420 nm cut off,
200 mW/cm2)

Photocatalytic water-splitting,
environmental remediation

[96]

Nanosheet + quantum
dots
(QDs)

nanosheet:
thickness < 7 nm
quantum dot: 3–5.6 nm

anatase nanosheet,
hydrothermal; QD,
autoclave (+heating)
homojunction:
grinding

k = 0.027–0.064 min−1

(RhB degradation, mercury lamp
(300 W, as UV light source),
2.62 mW/cm2)

Renewable
energy technologies,
environmental protection

[75]
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Table 1. Cont.

Morphology Material
Dimension

Crystal State Synthetic Procedure Photocatalytic Performance § Targeted
Applications

Ref.

Nanoparticles, nanobucks,
and nanorods

15–25 nm NPs;
100–150 nm nanobuck;
15 nm × 150 nm nanorod

rutile + anatase (one-step)
hydrothermal
synthesis

k = 0.033 min−1 (RhB degradation)
(250 W Xe lamp–simulated solar
light source)

Wastewater
treatment

[97]

Nanorhombus
nanocuboids

nanorhombus: 55~80 nm
× 35~40 nm; nanocuboids:
20~30 nm × 30~50 nm

anatase hydrothermal
synthesis

k = 0.0134−0.0318 min−1

(RhB degradation; UV; simulated
sunlight AM 1.5 G filter,
(100 mW/cm2))

Dye-sensitized solar cells, etc. [74]

§ acid orange 7 (AO7), rhodamine B (RhB), methyl orange (MO), methylene blue (MB), methyl red (MR).
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The morphologies of nanosized titanium dioxide can be grouped according to their
dimension classifications: zero-dimensional (0D) includes nanopowders, nanocrystals, and
quantum dots (QD); one-dimensional (1D) includes nanowires, nanofibers, nanotubes, and
nanorods; two-dimensional (2D) includes nanosheets; and three-dimensional (3D) includes
nanotube arrays. Mixed morphologies, such as nanosheets with QDs, also exist.

Many studies on photocatalysis have been conducted on nanoparticle suspensions [98–100],
which are inconvenient and result in practical difficulties [8] because complete photo-
catalyst recovery is challenging. Therefore, studies have resorted to photocatalyst im-
mobilization [101–104], which, however, requires catalysts of high activity. TiO2 of dif-
ferent nanomorphologies were used, evaluated, and/or compared in terms of perfor-
mance [105–107], and some of these are in Table 1 to show the influence of morphology
on photocatalysis. The photocatalytic performance reported, usually measured by dye
degradation rate, varies and depends on the experimental setup/condition, such as the
illumination and probe used, though the typical pseudo-first-order rate constant k is within
the 10−3–10−1 min−1 range. Therefore, studies also sometimes include a reference TiO2,
such as commercially available P25 for benchmarking. Nevertheless, from this summary
(Table 1), one also sees that generally, some improvement in photocatalytic performance
is brought about by nanomorphology based on the obtained k values being mainly in the
10−1–10−2 min−1 range for systems with varied morphology, which are at least one order
of magnitude better than the usual for those with nanopowders (k~10−2–10−3 min−1).

Post-synthesis heat treatment (calcination/annealing) mainly dictates the structural
state. Heat treatment can be performed to transform the amorphous state to rutile (≥600 ◦C)
or anatase (300 ◦C to 500 ◦C) or to transform anatase to the more stable rutile [108]. The
crystalline state also influences photocatalytic activity. It is commonly agreed that anatase
is better than the other states (such as rutile) due to its higher surface affinity (i.e., better
adsorption and probably due to the ROS formation as discussed in Section 2.1) and slower
recombination rate. However, mixed states (such as the case of P25) also exhibit good
photocatalytic activity, though the surface crystalline state seems to play a more crucial role
in such cases of mixed states due to the fact that photocatalytic reactions take place at the
surface [86].

2.2.1. Safety of TiO2 Nanoparticles

Though TiO2 is considered a safe, biologically inert material [109,110], the develop-
ment of TiO2 NPs with novel properties and applications resulted in its increased use
and production. Hence, it has to be evaluated in terms of its toxicology. TiO2 NPs are
posed as possible carcinogens to humans, though TiO2 is allowed for use as an additive
(E171) in the food and pharmacy industry [111]. A sound basis of why TiO2 NPs have been
scrutinized is the observed appearance of their unique size-dependent properties when
inorganic NPs reach the limit of ≤30 nm in diameter. In this size range, drastic changes in
the behavior of the NPs can appear, enhancing their reactivity at the surface [112]. While
the increased reactivity at this size renders their enhanced catalytic effect, undesirable
reactivity could also occur. The main adverse effects caused by TiO2 NPs seem to be due to
their ability to induce oxidative stress, resulting in cellular dysfunction and inflammation,
among others [113]. At high levels of oxidative stress, cell-damage responses are observed,
whereas, at moderate levels, inflammatory responses may kick in due to the activation of
ROS-sensitive signaling pathways [114,115].

TiO2 NP-induced oxidative stress is therefore related to increased formation of ROS
and the resulting oxidized products and to the decrease in the cellular antioxidants. The
damage and extent caused depend on the physicochemical properties of the titania particles.
For instance, ·OH production depends on the TiO2 NP crystal structure and size and was
found to correlate with cytotoxicity, e.g., against hamster ovary cells [116], pointing to
·OH as the main damaging species for UV-irradiated TiO2 NPs [117]. There are conflicting
studies on whether it is the size or the irradiation of TiO2 that contributes to its ability
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to induce oxidative stress, and the readers are referred to extensive reviews, such as
Skocaj et al.’s [118], on this topic and other TiO2 toxicity related discussions.

2.3. Photocatalytic Disinfection Using TiO2 Nanostructures

The photocatalytic ROS production on TiO2 NPs, while it may pose some health risks,
can also provide benefits. As early as 1985, the photocatalytic microbicidal effect of TiO2
has been reported by Matsunaga et al. [119]. More studies have then been carried out on
the bacteria-killing action of TiO2 [120–123]. Maness et al. [120] attribute this effect to the
lipid peroxidation in the microbe (in their case, in E. coli) due to the photocatalytic oxidative
property of TiO2 NPs. Upon initiation of lipid peroxidation by ROS, propagation can
happen via the generation of peroxy radical intermediates, which can also react with other
lipid molecules. Superoxide radical could also be involved, as it can also be photogenerated
on TiO2. This can react with an intermediate hydroperoxide to form new reaction chains
that can go through the damaged cell membrane. Once the cell wall is broken down, TiO2
NPs themselves could also possibly directly attack the cell membrane [120]. It is important
to remember though that the microbe’s response to photocatalytic disinfection action can
also be influenced by its level of protective enzymes against oxidative stress [122].

It is generally accepted that the photocatalytic antibacterial properties of TiO2 are due
to its ROS formation, whereby ·OH is thought to play a crucial role [122]. Yet, novel TiO2-
based materials also point to the role and use of other ROS. The development of different
TiO2 nanostructures paves the way for advancements in photocatalytic disinfection on
TiO2, and some examples, also in relation to the formation of ROS, are presented here.

Nanocomposites made from TiO2 NPs on Si nanostructured surfaces can be used as
antibacterial surfaces for dental and orthopedic implants, and the TiO2 NPs themselves can
be spray-coated to surfaces for disinfection of microbes upon irradiation [65] (Figure 4). The
nanostructures are said to rupture the bacterial cell wall, whereas the ROS from TiO2 NPs
can oxidize organic matter (such as bacteria) to prevent bacterial growth [124], which could
eventually form biofilms. On the other hand, the free radicals photogenerated on TiO2 can
also disrupt and destroy biofilms. This is important since killing bacteria within a biofilm is
quite challenging; the biofilm shields the bacteria from antibiotics, antibodies, and immune
cells [125,126]. Using TiO2 exposed to UVA, the biofilm formation of P. aerigunosa was
inhibited via ROS attack to disrupt the bacterial cell membrane (disabling bacteria to form
biofilm), and the ε-poly(L-lysine) of the cells already in the biofilm was weakened [65].
Through a plasma electrolytic oxidation process, Nagay and coworkers produced N- and
Bi-doped TiO2 coatings that kill bacteria because of the generation of ROS upon visible
light exposure [51,127].
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Efforts to extend photosensitization with TiO2 were performed by forming compos-
ites with materials such as MoS2 and l-arginine and/or doping with Yb and Er [51,128].
However, the broader spectral range or near-IR sensitization is usually brought about by
the additional component (and not by TiO2). On the other hand, other works utilize the
photogenerated charge carriers from TiO2 and enhance the catalytic effect by the addition of
other components for antibacterial purposes. For example, TiO2 combined with graphdiyne
(GDY) was synthesized into nanofibers by electrostatic force to produce ROS and prolong
the antibacterial effect. When exposed to light, electrons and holes are generated on the
TiO2 and GDY surface, with the photogenerated electrons of TiO2 being easily transferrable
to the GDY surface. There, ·OH and ·O2− are formed because they can react easily with
water and O2. The extended lifetimes of the charge carriers enhance ROS generation and
the resulting bactericidal effect. Overall, these processes inhibit the methicillin-resistant S.
aureus (MRSA) biofilm formation and promote the regeneration of bone tissues [51,65,129].

In general, the photocatalytic disinfection by TiO2 nanocomposite antimicrobial coat-
ings entails the incorporation of inorganic metals/nonmetals (such as Ag, Cu, Mn, P, Ca,
and F) and/or 2D materials (graphydiyne, MXenes, and metal–organic frameworks, etc.)
into TiO2 to control the porosity of the surface, crystallinity, charge transfer, and disinfecting
property against critical pathogens, such as S. aureus and E. coli but also H1N1, vesicular
stomatitis virus (the safe surrogate virus for SARS-CoV-2), and the human coronavirus
HCoV-NL63 [65]. Such light-catalyzed coatings could prevent microbes from reactivating
to completely destroy them, and with the high mobility of ROS in the air, airborne microbes
could also be targeted [130]. The high interest in the inactivation and disinfection of coron-
aviruses emerged recently due to the recent pandemic. Some of these studies were on the
photocatalytic disinfection of coronavirus using TiO2 NP coatings, with the mechanism
attributed to their generation of ROS [65,131,132]. For interest in antimicrobial coatings,
readers are referred to Kumaravel et al. [65].

2.4. Efforts to Improve the Photocatalytic Efficiency of TiO2 Nanomaterials

As seen in Section 2.2, the photocatalytic activity of TiO2 nanomaterials improves
by resorting to different morphologies. Their nanosize alone increases the surface area,
providing more active sites. Additionally, due to the interesting properties afforded by
its size, the use of nanomaterials also improves photocatalytic efficiency by enhancing
charge separation and light harvesting and increasing the surface-to-bulk ratio. These
improvements are presented in this section.

2.4.1. Enhanced Charge Separation

The increased photocatalytic performance of TiO2 nanoparticles cannot be attributed to
the increased specific surface area alone but also to the increase in the surface-to-bulk ratio
with decreasing particle size. The latter results in shorter diffusion pathways that the charge
carriers have to traverse to reach the surface, which is the photocatalytic reaction site [133].
Adding adsorbed species further provides electron/hole scavengers that could also improve
the charge separation [133–135]. The decrease in the size though also blueshifts the TiO2
absorption edge [136] and could result in unstable NPs [137]. Therefore, an optimized size
is needed to balance the properties in terms of charge separation, light absorption, and
stability. During thermal treatment, which is typically needed for good crystallinity and
increased photocatalytic performance, aggregation could occur, and this can be prevented
by preparing highly-dispersed TiO2 clusters (such as those synthesized with zeolites [138]),
which also shows high photocatalytic activity. These spatially separated TiO2 species
were also prepared as single-site catalysts that also show high photocatalytic electron–hole
pair reactivity and selectivity [22]. The high photocatalytic reactivity observed for highly
dispersed TiO2 species is attributed to the highly selective formation of a longer-lived (up
to µs), localized charge-transfer excited state compared to that of bulk TiO2 (ns) [133].

The aggregate formation is not always disadvantageous. The mechanisms portrayed
for a single semiconductor NP (e.g., Figures 1, 4 and 5) are simplified, and a more accurate
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representation would consider that TiO2 NPs have the tendency to self-aggregate in aqueous
solution to form a 3D framework. This happens by aligning their atomic planes with each
other, allowing for efficient charge carrier transport without interfacial trap interferences in
a so-called “antenna effect”. Through this, the photogenerated excitons in a nanoparticle
will be transported throughout the network until they get trapped individually in a suitable
site (e.g., via a redox reaction with an adsorbed electron acceptor/donor on one particle
in the network). Charge carriers that are not trapped continue to traverse through the
network until they themselves react. Therefore, through forming 3D aggregates, better
electron mobility is achieved for TiO2 particles [22,139].

When the aggregates align, they act as if they are an array of nanowires that facilitate
efficient CT throughout the network. In fact, 1D morphologies, such as TiO2 nanowires, nan-
otubes, and nanorods, are hailed for their efficient electron transport since the photoexcited
charge carriers could move along the length, increasing delocalization and resulting in long
diffusion lengths (>200 nm), which delays the charge recombination and prevents electrons
from residing in traps [140–145]. For example, using TiO2 nanotube arrays (TNAs) for PEC
water splitting can improve the photocatalytic efficiency and result in a photocurrent of
up to 10 times since loss of photogenerated electrons is prevented with the electrons being
able to diffuse along the tube towards the collecting substrate. The improved performance
using TNA is said to not only come from enhanced charge separation and better electron
transport due to the orderly arrangement [140,146–148] of this 3D structure but also due to
better light harvesting [133,140], which is discussed in the next section.

Meanwhile, from Table 1, the photocatalytic activity of pure TiO2 nanomaterials is
considerably small and requires mostly UV light due to its bandgap. Hence, various at-
tempts were conducted to improve its efficiency and increase its absorption range. Doping
is one widely used approach, and this has been performed with transition metal ions, such
as Fe3+, which increased the efficiency for pollutant photodecomposition likely due to the
fact that it decreases the Eg and broadens the absorption range to the visible region [22,149].
Oxygen doping in TiO2 interstices can also improve photocatalytic performance by enhanc-
ing charge separation efficiency. For the photodegradation of methyl orange, O-doped
or oxidative TiO2 showed a 2~3.7 times higher rate than pristine TiO2, with the former
fabricated using KMnO4 to create trap sites to separate charges via bandgap impurity
states [150].

Depositing other catalysts has also been another approach. For example, a noble
metal, such as Pt, Au, and Ru, can be deposited to increase the photocatalytic activity of TiO2
towards the decomposition of organics and photocatalytic water splitting [22,135,151–153].
This enhanced activity is likely due to improved charge separation as bulk electrons
transfer to the metal and therefore to the surface of TiO2 [22,151–154]. Though not all
photogenerated electrons transfer from the titania to the metal, the enhanced separation
of photogenerated charge carriers increases the electron lifetime in TiO2. The separation
is likely enhanced by the surface plasmon resonance (SPR) of the metal and the resulting
increased localized EM field caused by the exposure of the metal to light. This induces
charge carrier formation near the TiO2 surface, with which carriers can easily reach surface
sites and improve charge separation. Loading TiO2 with gold instead of platinum also
extends the absorption of TiO2 to the visible range up to near-infrared [22,155–158]. Using
gold cores with TiO2 shells also exhibits remarkable photocatalytic activity compared to
TiO2 due to enhanced separation of photogenerated charge carriers with the gold core
serving as an electron trap [159].

In addition to metals, metal oxides can also be deposited on TiO2 to help improve
charge separation and photocatalysis. For example, a Pd-NiO/TiO2 catalyst has been
prepared to improve photocatalytic CO2 reduction. Due to the high electron density
needed to drive this multielectron reduction, a p–n junction formed by introducing NiO to
TiO2 helps to drive hole transport to NiO, whereas the Pd forming a Schottky junction with
TiO2 facilitates semiconductor-to-metal electron transfer. These migrations towards NiO
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and Pd enhance the charge separation and result in high electron density around Pd, which
can be used to transform CO2 efficiently and selectively to CH4 by reduction [160].

The coupling of the semiconductor to TiO2 can also be achieved by coupling it with
another TiO2 phase. As mentioned before, mixed-phase TiO2 of anatase and rutile demon-
strates improved photocatalytic performance than by using only pure anatase or rutile. This
could be due to the formation of heterojunction when their valence and conduction band
edges come into contact [65,161]. Several models were proposed to explain this synergistic
effect in mixed phases (Figure 5). First was the model proposed by Bickley et al. based
on the positions of the CBs of anatase and rutile in relation to each other [162]. Figure 5a
(A) shows the model in which the electron transfer is from anatase to rutile. Separation of
charges then happens in anatase and trapping of an electron occurs in the rutile phase. In
another “spatial charge-separation model,” Hurum and coworkers (Figure 5a(B)) propose
that the opposite is happening such that electrons are transferred from the rutile CB to a
trapping site in anatase [163].
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Nanomaterials 2023, 13, 982 17 of 43

Meanwhile, the “interfacial model” proposed by Nair et al. looks at the band bending
at the interface between anatase and rutile. The electron transfer should occur from the
anatase to the rutile upon UV illumination due to the CB energy of the anatase being more
negative than that of the rutile. When the illumination is with λ > 380 nm, the rutile is
activated, and its CB shifts upward due to accumulated photoinduced electrons enabling
the electrons in the rutile to reach the CB of anatase [133]. Thus, the “interfacial model”
presents a directional movement of the electrons depending on whether the irradiation is ≤
or >380 nm and upon consideration of the interfacial band bending (Figure 5b) [164]. One
can expect that the interfacial nanostructure plays a role in the electron transfer between the
components and therefore in the overall photocatalytic performance. Further discussion on
the advantages of mixed-phase TiO2 for photocatalysis can be found in the literature [133].

Fe2O3 has also been combined with TiO2 via photodeposition to enhance charge sepa-
ration for contaminant decomposition and PEC water splitting. The achieved enhancement
of more than 200% in complete mineralization kinetics was ascribed to the transfer of pho-
toelectrons from the TiO2 to the Fe2O3, which in turn favors the rate-determining step of
oxygen reduction [165]. Graphitic nanocarbon has also been added to TiO2 nanomaterials
to improve charge separation. By covering short single-wall carbon nanotubes (SWCNT)
(~125 nm) around TiO2 NPs (100 nm) using a hydration-condensation technique, longer
lifetimes of photogenerated charge carrier and improved photocatalytic activity for the
degradation of an aldehyde was achieved. This was better than nanographene and longer
SWCNT hybrid systems. The shorter SWCNT provides greater interfacial contact with each
TiO2 NP, more electron transport channels, and more efficient shuttling of electrons from
TiO2 NP to SWCNT, delaying charge recombination. Improved SWCNT debundling with
the short ones also affords these advantages to a larger portion of the composite [166].

The semiconductor junction can also be quite complex, involving materials such
as MXenes. For example, Biswal and coworkers designed a Ti3C2/N, S-TiO2/g-C3N4
heterojunction to boost the spatial separation of charges and their transport in light of
a photocatalytic water-splitting application [166]. This heterostructure was produced
by thermal annealing and ultrasonic-assisted impregnation for H2 production that is up
to ~4-fold higher than pristine S-doped titania. The dual heterojunction formed (a n–n
heterojunction with a Schottky junction) likely not only enables effective charge carrier
separation as CT channels [166] but also reduces the band gap due to the adjustment of the
energy bands. In(OH)3-TiO2 heterostructures were also formed for enhanced photocatalytic
H2 evolution. The band-gap tuning and improved charge separation resulted in up to a
>15-fold increase in activity compared to commercial P25 [167].

2.4.2. Enhanced Light Harvesting

The morphology or nanostructure of TiO2 also improves photocatalytic efficiency due
to enhanced light harvesting. As mentioned above, nanoparticle aggregation (~500 nm) can
improve light harvesting due to its high scattering effect, resulting in photon reabsorption.
This increased visible-range absorption in turn increases the number of excited charges as
seen in the increased current density. Such aggregates display unsmooth surfaces, resulting
in better molecule adsorption in large surface areas and pore sizes [168].

Nanotextured TiO2 substrate produced by nanomolding also displays efficient light
harvesting. The hierarchical nanopattern of dual-scale nanoscale craters featuring smaller
bumps couples both the longer and shorter wavelengths of light resulting in a light trapping
effect for efficient light utilization and at a wide angular range [169]. Similarly, cicada-wing-
like structures were used as imprints to form nanohole structures of TiO2 decorated with
Ag NPs (10−25 nm) for methylene blue (MB) photocatalytic degradation. The structure did
not only exhibit extended absorption to the visible range but also greater light absorption,
likely due to the SPR effect from Ag and the nanotexture of TiO2. This is based on the
photocatalytic decomposition rate obtained for the Ag-TiO2 nanotexture being 2.7 times
higher than the nanotextured TiO2 alone but more than 7 times higher than P25. This
shows that even with just nanotextured TiO2, improved photocatalytic performance can be
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seen. As discussed in the previous section, the Schottky barrier formed between Ag and
TiO2 could also improve the charge separation [170]. Hollow particles of TiO2 decorated
with Au@Ag core–shell NPs also display enhanced light harvesting due to the combined
strengths of the components of having a strong, broadened localized SPR, large specific
surface area, and favorable light scattering properties [171].

Orderly arrays of nanostructures, such as TNA, serve as effective light scattering
layers according to the Mie scattering theory. The Mie scattering effect displayed by
anodized TNA or NPs has been used in solar cells to harvest more sunlight and enhance
charge conduction [172]. Mie scattering is important in explaining particle size-dependent
Raman enhancement observed with semiconductors [173,174] and is brought about by the
plasmon resonance at the surface of the sphere causing signal enhancement that depends on
the size as one comes closer to the lowest transverse electric mode of NPs. In addition to the
Mie effect, size quantization also affects the Raman intensity obtained on TiO2 NPs [175].

The surface-enhanced Raman (SER) effect on semiconductors has also been well-
observed [40,41,43–45], and the influence of nanostructuring on SER scattering, in particu-
lar on TiO2, has been investigated. Whereas CT and chemical contribution can provide an
enhancement factor (EF) of ~103 [46,47], EM enhancement is also afforded in TiO2 nanos-
tructures of a high aspect ratio, such as nanotubes and nanofibers [42,48–50]. Han et al. [49]
showed concrete evidence of morphology-dependent EM enhancement using cyt b5 heme
as an indirectly-attached SER probe to reduce the chemical contribution to the Raman
signals. Using EM field calculations, the particle’s aspect ratio was shown to increase the
“hot spots” (regions of enhanced EM field) at the TiO2-water interface [49], improving the
structure’s light-harvesting ability. Hence, other morphologies of higher anisotropy, such as
TiO2 nanotubes, were further studied, showing a similar morphology-dependent EM field
enhancement [42,50] (Figure 6). TNAs were shown to exhibit different Raman enhance-
ments depending on the tube length, which fits the EM field calculation showing hot spots
along the nanotube length [42,50] (Figure 6a). The TNA of high EM field enhancement
was shown to perform better as a photocatalyst for visible-light-degradation of an azo dye
pollutant immobilized on TNA (Figure 6b). Interestingly, the TNA’s optical response (i.e.,
its EM field enhancement) correlates with the photocatalytic degradation rate occurring on
it [176].
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Figure 6. Electromagnetic (EM) field enhancement studies on Ti-based nanotubular arrays: (a) cal-
culated EM field enhancement for the high aspect-ratio TiO2 nanotube array (TNA). The side and
top view of the calculation show the distribution of the localized field hot spots for 3 and 2 tubes,
respectively. The enhancement factor (EF) scale bar is shown at the left of the side view image.
Adapted with permission from [50]. Copyright 2018 Wiley-VCH Verlag GmbH and Co. KGaA,
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Weinheim. (b) Photocatalytic azo-dye degradation on TNA correlates with EM enhancement. The
inset shows the surface-enhanced resonance Raman (SERR) spectra of the adsorbed azo dye on TNA
of high EM field enhancement and the corresponding exponential fit of the decay rate of the SERR
intensity of the dye peak (marked by *). Adapted with permission from ref. [176]. Copyright 2019,
the authors. Published by Wiley-VCH Verlag GmbH and Co. KGaA. Open access article. CC BY 4.0
license (https://creativecommons.org/licenses/by/4.0/); (c) EM field enhancement calculations for
the partially-collapsed nanotube structure of TiN from nitridated TNA. The side and top view of the
calculation show the distribution of the localized field hot spots for 3 and 4 tubes, respectively. The
EF scale bars are shown at the left of the images. Adapted with permission from [177]. Copyright
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open-access article
distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/).

Similar to other TiO2 nanostructures (see above), incorporating other components
to form nanocomposites with TiO2 nanotubes can further improve not only the charge
separation but also the light-harvesting ability. For example, S-doping or the addition of
CdS NPs to TiO2 nanotubes resulted in enhanced visible-light water splitting [178–180].
Ultrafine Pt NPs were also added into TiO2 nanotubes for the efficient photocatalytic
formation of methane from carbon dioxide and water. The nanotubes allowed for a
homogeneous distribution of Pt NPs, which accept electrons and become sites for reduction,
thereby also allowing efficient separation of charges [133]. Furthermore, even structures
obtained from TNA somehow retain the light enhancement afforded by the 2D periodic
arrangement of the nanotubes (Figure 6c). For example, nitridation of the TNA resulting in
a partially collapsed nanotube structure of TiN also shows wavelength-dependent EM field
enhancement and corresponding light enhancement [177].

The 2D periodic arrangement in TNAs enables them to behave as photonic crystals—
with photonic lattices reflecting the light of certain wavelengths—bringing about localized
EM field enhancement [42,50,181–184]. Interestingly, this photonic crystal-like character
has also been observed in inverse-opal (IO) structures, which also achieved SER EF of
around 104 (though likely due to both chemical and EM contributions) [42,50,181], and
which can also be made from TiO2. IO TiO2 also shows promising performance as pho-
tocatalysts [185–188], with their light harvesting extended to the visible range [187,188]
and their ability to generate slow photons [188–190]. The slow photons have been shown
to significantly increase the interaction of TiO2 with light and can work synergistically to
amplify the chemical enhancement in the catalyst [186].

2.4.3. Black TiO2

The photocatalytic efficiency of TiO2 nanomaterials can be improved by enhancing
the separation of their charge carriers and improving their light harvesting and absorption
properties (Sections 2.4.1 and 2.4.2). Therefore, having a material that encompasses both
is an ultimate surface-engineering achievement in this regard. Black TiO2 ticks both
requirements and reasonably has then become a hot topic in TiO2 photocatalysis in the last
decade or so.

Though previous studies already describe a similar material, as indicated in re-
views [191–193], all papers seem to point to the work of Chen et al. [194] for introducing
(and coining the term) “black TiO2” to describe the partially hydrogenated titania nanocrys-
tals which exhibit a reduced bandgap due to a disordered layer at the surface of its crystals.
This material exhibited a redshifted absorption onset to near-infrared (compared to the
starting TiO2 nanomaterial), which was not surprising considering its visible color change.
That is, due to the hydrogenation process, the crystals changed from white to black (hence
the name). Consequently, this also results in a decreased bandgap of ~2.18 eV, making
black TiO2 a good catalyst for visible-light irradiation. Additionally, it also exhibits good
stability, making it an ideal catalyst for use under continued irradiation. From calculations,
it also presents localized photogenerated charge carriers, indicative of slowed-down recom-
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bination, which is beneficial for photocatalysis. This makes the work of Chen et al. the first
reported use of black titania for photocatalytic purposes [192].

From then on, many studies have been carried out to synthesize, characterize, and
evaluate the photocatalytic performance of black TiO2 nanomaterials. Different methods
have been developed to reduce TiO2 without the use of high pressure, as was conducted
in the work of Chen et al. [194]. These include (electro-)chemical reduction [195,196],
solvothermal hydrogenation [197], thermal reduction [198], reduction at the solid phase
(reductant + heat) [199], anodization (and annealing) [200], ultrasonication [201] plasma
treatment [202], gel combustion [203], or a combination of these [204]. Most of these
strategies are similar to the synthesis of TiO2 nanomaterials presented in Table 1, with a
reductant source/ reducing condition (either chemical, thermal, hydrogen, or reducing
gases, such as hydrogen, nitrogen, and argon) added. Since black TiO2 is formed by the
reduction of TiO2, it is also called “reduced TiO2” [205–207] or “hydrogenated TiO2” [208]
and represented with the formula TiO2−x, the −x indicating the formation of oxygen
vacancies [205,206].

What is interesting then is the concept of forming a novel material due to the intro-
duction of surface defects, and yet, as this is also a TiO2 nanomaterial, it can also exist in
different morphologies and structural states, resulting in a plethora of black TiO2 of various
properties and photocatalytic performance. Table 2 gives examples of these materials and
their photocatalytic performance in terms of organic compound degradation and hydro-
gen generation, with the latter being an important solar-driven application of black TiO2.
Chen et al. [193] give a comprehensive review of black TiO2 nanomaterials, including their
properties and examples of application, whereas Naldoni et al. [192] give a good summary
of the photocatalytic H2 generation on black TiO2. The readers are encouraged to take a
look at these reviews.
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Table 2. Examples of black (and colored) TiO2 nanomaterials and their photocatalytic performance in terms of degradation of organic compounds or hydrogen evolution.

Material Degradation/Removal of Organics H2 Generation Reference Material/Comparison Ref.

Black TiO2 nanocrystals/NPs ~7.5× faster MB degradation, solar
illumination

0.1 ± 0.02 mmol h−1 g−1 (2 orders higher
(solar simulator or visible IR light))

Degradation: pristine TiO2 nanocrystals
H2 generation: most semiconductor
photocatalysts

[194]

Up to k = 0.68 min−1 MO degradation,
2.4× faster (simulated sunlight)

Up to 5.2 mmol h−1g−1, 1.7× faster
(simulated sunlight)

Pristine P25
degradation: k = 0.28 min−1

H2 generation: 5.2 mmol h−1 g−1

[199]

Up to apparent k (kapp) = 0.998 h−1 or
0.0166 min−1 acetaminophen removal,
1.9× faster than P25 and 4.9× faster than
sintered P25 (solar illum. AM 1.5G)

P25: k = 0.527 h−1 or 0.00878 min−1

Sintered P25: 0.203 h−1 or 0.00338 min−1
[209]

Estimate: ~15 µmol h−1 g−1

~5−7× higher (AM 1.5 illum.;
100 mW cm−2)

Anatase nanopowders; estimate:
~2−3 µmol h−1 g−1

[210]

Anatase; ~1.5× faster, MB degradation
finished in 18 min (solar illumination)

Degussa-P25: MB degradation finished in
18 min. (solar illumination)

[203]

Black hydroxylated TiO2 (ultrasonic.) 5.8× (solar illumination) and 7.2×
(visible light) faster acid fuchsin
decomposition; amorphous state

Original sol TiO2
(non-ultrasonically processed)

[201]

Black TiO2 nanotube array (TNA) Estimate: 10~15% (3–4×) better
photocatalytic degradation (brilliant blue
KN-R dye; 175 W Xe lamp)

Pristine TNA [196]

Ordered mesoporous black TiO2 136.2 µmol h−1, ~2× higher (solar) Pristine mesoporous TiO2: 76 µmol h−1 [198]

Mesoporous black TiO2 hollow spheres 241 µmol h−1 (0.1) g−1, ~2× higher (solar) Black TiO2 NPs: 118 µmol h−1 (0.1) g−1

Mesoporous TiO2 hollow spheres:
81 µmol h−1 (0.1) g−1

[197]

Defective black TiO2 (dimpled
morphology, anodization)

High oxygen vacancy concentration (CVo):
up to ~80% RhB degradation (after 4 h),
~1.3× better than low CVo and ~4× better
than TNA.

Low CVo: up to 60% RhB degradation
(after 4 h)
TNA: ~20% RhB degradation (after 4 h)

[200]
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Table 2. Cont.

Material Degradation/Removal of Organics H2 Generation Reference Material/Comparison Ref.

Grey TiO2 nanoparticles (flow furnace) Estimate: ~75 µmol h−1 g−1

~25−37× higher (AM 1.5 illum.;
100 mW cm−2)

Anatase nanopowders: estimate:
~2−3 µmol h−1 g−1

[210]

Grey TiO2 nanoparticles (hydrogen. at
high P)

Estimate: ~80−85 µmol h−1 g−1

~27−42× higher (AM 1.5 illum.;
100 mW cm−2)

Anatase nanopowders: estimate:
~2−3 µmol h−1 g−1

[210]

Colored TiO2
(dark blue)

Up to C/C0 = 0.14 (estimated
k = 0.197 min−1), 1.4× faster MO
degradation (300 W, Xe lamp
UV–vis light)

Up to max. prod. of 6.5 mmol h−1 g−1,
7.2× higher (UV-vis light);
~180 µmol h−1 g−1 (vis-IR)

Pristine P25
Degradation: C/C0 = 0.24 (estimated
k = 0.143 min−1)
H2 generation: 0.9 mmol h−1 g−1

[195]

Blue TiO2(B) single-crystal nanorods k = 0.0146 min−1; 97.01% RhB
degradation (after 150 min), 6.9× and
2.1× better than TiO2 NPs and TiO2 NRs,
respectively (vis light); 98.56% deg. RhB
(solar light), 99.12% deg. Phenol (solar);
reaction constant (krxn) = 0.0250 (RhB)
and 0.0366 (phenol), 8.8× higher than
TiO2 NPs

Up to 149. µmol h−1 g−1 (AM 1.5
illumination), ~26.6× higher than TiO2 NPs

Degradation:
TiO2 NPs: k = 0.0016 min−1; 14.06% RhB
degradation (after 150 min, vis light)
TiO2 NRs: k = 0.0053 min−1; 46.44% RhB
degradation (after 150 min, vis light)
H2 evolution:
TiO2 NPs: 5.6 µmol h−1 g−1

(AM 1.5 illumination)
TiO2 NRs: 40.8 µmol h−1 g−1

(AM 1.5 illumination)

[211]
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Some examples included in Table 2 are of different color naming (termed “colored
TiO2”), such as green, grey, and blue TiO2 [192,195,208,210,211]. This is based on the
understanding that the visual colors exhibited by TiO2 are brought about by intrinsic
defects, such as due to the presence of Ti3+ and/or oxygen vacancies [192,195,200,208,211]
or by doping with impurities [192,202]. Such defects create extra electronic states in the
TiO2 bandgap, i.e., intraband gap states, which alters the optoelectronic properties of
TiO2 [192]. Whether this is also the case for the color of black TiO2 is still a controversy.
While some reports claim that the formation of these color-inducing intrinsic defects in TiO2
results from the hydrogenation [205], with the color depending on the extent of reduction
and reducing condition [208], others propose that the black color is due to the disordered
surface [194,202]. The disordered surface is caused by hydrogen and allows hydrogen to
swiftly navigate around and induce electronic structural changes [212]. Midgap band states
are formed because of the changes in the structure [203] brought about by the excessive
lattice disorder. They can form an extended energy state by overlapping with the edge of
the conduction band and also possibly combining with the valence band [202].

An effort to further unravel the relationship between the defect nature and photo-
catalytic activity of reduced TiO2 was performed by Will et al. [208] by considering that
the intrinsic defects created on the surface are pertinent to the photocatalytic process and
the location of the defect depends on the structural state and reducing conditions. They
found that the introduction of Ti3+ at the surface results in a surface with substoichiometry,
which activates the surface for photocatalysis. However, too long hydrogenation or too
much Ti3+ is detrimental to its activity, as these provide additional recombination sites or
prevent efficient interfacial CT. Surface roughness and strain were also not important for
the activation of photocatalysis.

The photocatalytic activity of black TiO2 nanomaterial can be further enhanced by
forming appropriate heterojunctions with other materials [208], a similar strategy used
with TiO2 nanomaterials. Further, amorphous black TiO2 can also be synthesized and used
for photocatalysis [201], which is important for applications such as for bone implants.
Black TiO2 was shown to exhibit biocompatibility [213], regenerative properties [214],
photothermal properties [213–215], and microbicidal action [213,215–217], among others.
As such, black TiO2 shows promise for cancer treatment [214,215], as a bone implant coating,
and for disinfection purposes [213,215–217]. Similar to TiO2, the photo(electro)catalytic
disinfection with black TiO2 nanomaterials is also claimed to occur due to ROS, in particular,
superoxide and/or hydroxyl radicals [216,217]. Nevertheless, the biosafety of black TiO2
needs to be further studied to intensify its application in the biomedical field.

3. Dark Catalysis on Ti-Based Oxides

In addition to photocatalysis, TiO2, and Ti-based oxides also manifest “dark catalysis”.
Here, we refer to dark catalysis in the context of the catalytic activity observed in the
absence of irradiation. Early works on dark catalysis on TiO2 seem to have stemmed from
the wide use of Ti alloys for biomedical applications. Due to the superb biocompatibility
and good mechanical strength of Ti and Ti-based alloys, they are used as bone and dental
implants. Thus, an interest in understanding the influence of Ti implants on the inflamma-
tory response led to studies that looked at the Ti-H2O2 system in the dark. Ambiguities in
the results of photocatalytic studies on whether the observed catalytic effect was brought
about by light irradiation or by nanoparticle size also contribute to the catalytic effect
observed in the dark.

As early as 1989, there was an interest in the influence of implants on the inflammatory
response [218,219]. The role of Ti in Fenton-type reactions was examined [219,220] and
thought to occur during the inflammatory condition. Ellipsometry studies showed that
in the presence of H2O2, metals such as Ti readily oxidize to form metal hydroxides
or metal oxides such that the body mainly interacts with the oxidized Ti instead of the
bare metal [219]. Further, in the dark, TiO2 is found to catalyze the H2O2 decomposition
based on observed oxygen evolution, though it is thought to unlikely occur through
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·OH radicals [218]. The latter is based on ESR and spectroscopic results showing low
·OH formation for the Ti-H2O2 system in the dark [219]. When a Ti(IV)-H2O2 complex
coordinates to a H2O2, a TiOOH matrix can be formed on the surface. This matrix can trap
superoxide radicals, making the Ti(III) (reduced from Ti(IV)) likely inaccessible [218,219].

The addition of H2O2 could also effectively promote the catalytic activity of TiO2 [220–227].
In Section 2, H2O2 and peroxides play a role in the photocatalysis of TiO2 (in the presence of
UV, water, and oxygen). Once produced, peroxides and H2O2 can perform dark catalysis on
TiO2. Such were the findings of Krishnan et al. in their investigation of the changes in the
surface of photocatalytic bulk TiO2 powder in terms of UV exposure, as well as the presence
of water vapor and O2 [228]. Using advanced XPS, changes in Ti 2p, O 1s, and the bridging
and terminal OH were investigated. Maintaining the TiO2 activation state for a certain
period in the dark was found to require the presence of water vapor and oxygen. The
prolonged oxidative capacity of the TiO2 powder in the dark was ascribed to the appearance
of peroxides and dissolved H2O2. Though the highest catalytic activity was observed in the
combined presence of UV, water vapor, and oxygen, the nonreversal behavior of the XPS
spectra upon UV light removal (Figure 7, Phase 5) points to continued TiO2 activity and
indicates that the presence of H2O and O2 is enough to retain the dark catalytic activity
for a time period (of around 1/3 of the duration when all three factors were present) [228].
Though this may seem to be only due to the residual effect from photocatalysis, the fact
that prolonged and sustained catalysis even after removal of the light source continued
and produced ROS points to the need to understand what is happening during this time.
Understanding the continued catalysis in the dark will enable us to further exploit the
advantages of this process.
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Parallel to inflammation studies for biomedical implants, dye decomposition using
TiO2 for purposes such as water treatment also continued to develop to extend the light
beyond the UV range—towards visible light, ambient light, and even in the dark. Hence,
from this field, an interest in dark catalysis on TiO2 has also developed. One of these works
is on the bleaching of MB in the presence of TiO2 and H2O2 by Randorn et al. [220]. Even
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in the absence of light, they observed that catalytic degradation on TiO2 could occur, which
was better on hydrated TiO2 (a hydrated amorphous TiO2 with a high surface area) than on
Degussa P25. They noted that the mechanism could be different from photocatalysis with
photogenerated charge carriers and instead must involve Ti3+/Ti4+ in a Fenton-reaction-like
superoxide-driven process, whereby H2O2 is consumed directly:

Ti3+(s) + H2O2 → ·OH + OH− + Ti4+(s) (1)

where (s) indicates that the metal ions are from dangling bonds at the solid surface [220].
However, the catalytic effect in the dark observed in this work cannot be unambiguously
distinguished from the surface adsorption effect in bleaching.

Sanchez et al. used a suspension of TiO2 and H2O2 to degrade MB in the dark and
found that the TiO2 surface area and the concentration of H2O2 are crucial in catalysis.
Using ESR, they found that free radicals are present in the mixture in the dark and attributed
the observed catalysis mainly to ·OH and hydroperoxyl radicals (HO2·) [224]. The presence
of the HO2·, together with other ROS (superoxide and hydroxyl radicals), was also detected
by ESR in the work of Wiedmer et al. [226] in which MB degradation was performed
nonirradiated on TiO2 (micro- and) nanoparticles with (3 vol.%) H2O2. The ·O2

−/·OOH
radicals seem to play a significant role in the dye degradation, as these radicals are present
for those that show high dye degradation even if ·OH is more energetically favorable
on anatase and is the most reactive among these oxygen-centered radicals. On the other
hand, Zhang et al. [225] attribute the improved performance of the TiO2-H2O2 mainly
to ·OH formation. In their work, ·OH (E0 = 2.80 eV) radicals can be formed by using
facet- and defect-engineered TiO2 to heterogeneously activate H2O2 (E0 = 1.78 eV) into a
defect-centered mechanism for Fenton-like catalysis. This involves surface Ti3+. The Ti3+

donates electrons to the H2O2 and generates ·O2
−/·OOH and ·OH in the process [221,225].

Facets also have an influence on (photo-) and dark catalysis on TiO2. For example,
(001) is considered the most reactive facet in anatase, likely due to its very high anisotropic
stress. The surface reconstructs to reduce this stress by forming ridged atoms in every
fourth unit cell and likely by the creation of ridge atom vacancies [229], which can interact
with charge carriers and ROS.

Wei et al. showed that TiO2 (B) nanosheets and H2O2 can degrade dye molecules in
the dark, though the process is accelerated in the presence of visible light or heat. They
attributed this catalytic activity to the reaction of the nanosheets with H2O2 which can
generate superoxide radicals [223]. Jose et al. attributed the dark catalytic H2O2 decompo-
sition with hydrogen titanate nanotubes to occur primarily by generating and attacking
·O2
− rather than the hydroxyl radical [230]. Using (delaminated) titanate nanosheets,

efficient removal of high concentrations of dyes at a wide range of pH can be achieved.
The mechanism of this non-light-driven catalytic degradation involves the formation of the
yellow complex surface Ti-OOH, the key species to strongly oxidize and degrade organic
dyes into smaller molecules. Initially, H2O2 adsorbs and is followed by an exchange with
Ti-OH groups at the surface [227]. In effect, the active species observed in the said work
can be thought of as a Ti-coordinated hydroperoxyl unit.

The enhancement of the TiO2 catalysis in the dark upon H2O2 addition is due to the
formation of ROS on the surface, including ·OH and ·O2

−/·OOH. Wu et al. investigated the
mechanism of this process by using TiO2 NPs with single-electron-trapped oxygen vacancy
(SETOV). SETOVs are common TiO2 intrinsic defects. In the presence of H2O2, TiO2 with
SETOVs can efficiently degrade organic dyes catalytically in the dark [221]. Using XPS and
ESR, they found that SETOV mainly activates H2O2 in the dark by a direct contribution of
electrons, which, in the process, forms both ·O2

−/·OOH and ·OH to enhance the system’s
catalytic activity. The steps in the mechanism for the dark catalytic ROS generation are
given in Table 3.
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Table 3. Steps in the mechanism for the catalytic ROS generation in the dark. Activation of H2O2

performed on TiO2 with single-electron-trapped oxygen vacancies (SETOVs) is proposed in ref. [221].

Reaction *

1 H2O2 + Ti–OH→ Ti–OOH + H2O
2 V·O + Ti–OOH→ Ti–·OOH
3 V·O + Ti–·OOH→ Ti–OH + 1

2 O2
4 V·O + O2 → ·O2

−

5 V·O + H2O2 → ·OH + OH−

6 H2O2 + ·OH→ ·OOH + H2O
* V·O pertains to the single electron in SETOVs.

Oxygen vacancies in general are said to play a pertinent role in dark catalysis. Such
is the case for the decomposition of N2O on anatase (001) and (101), which, during the
reaction, involves filling the vacancy [192,229]. The concentration of oxygen vacancies can
be increased by calcination at a higher temperature. The oxygen vacancies reductively
interact with oxygen to form O2

−, which can increase the current density (for Hg2+ reactions,
for example) on TiO2 [229,231].

In terms of biomedical applications, there is also growing evidence that ROS formation
and its adverse effects are induced in the presence of TiO2 even in the absence of light.
Unexposed anatase NPs induced higher levels of ROS within human hepatoma cells
compared to unexposed rutile, with the former causing oxidative DNA damage [118,223].
DNA oxidative damage seems to be only brought about by nanoparticles as with ordinary
TiO2 particles, without irradiation, cell survival was not affected (though the number of
DNA strand breaks was also increased) [118,232].

Microbicidal Effect of TiO2 in the Dark

A similar discussion to Section 2.3 is presented here but for the disinfection with
TiO2 nanostructures in the dark. This is useful for certain TiO2 applications, such as
with implants that will be in the dark after surgery. To prevent inflammation, strategies
include ensuring the implant material surface has antimicrobial properties. As titanium
naturally grows oxide and may be induced to grow thicker and more stable oxide films (see
below), some natural bactericidal effect is also already afforded on Ti and its alloys. This is
important since it is almost impossible to achieve a completely bacteria-free environment
for surgery as most operating rooms are contaminated quickly and easily [36,37,233]. To
highlight the catalytic effect of TiO2 on antibacterial action for biomedical implants, the
discussion here is limited to the bactericidal effect of TiO2. Therefore, readers interested in
strategies to improve antibacterial properties on Ti implants are referred to other reviews
which have already summarized such strategies [234–237].

The microbial-killing action of TiO2 in the dark has been observed and recognized for a
long time. Matsunaga et al. [119] observed that even in the absence of irradiation, ~10−12%
of the S. cerevisiae cells were killed. A decrease in the colony-forming units of S. sobrinus
with TiO2 in the dark was also seen by Saito et al. [121]. Other works then followed, mainly
on photocatalytic disinfection with TiO2, in which the bactericidal effect of TiO2 in the dark
was observed and recognized [120,122]. However, these works point to the disinfection
effect in the dark that is residual from the bactericidal phototreatment. This effect is similar
to and has been pointed out in the work of Krishnan et al. (see Section 3) [228]. They
pointed out that the long-lived reactivity of TiO2 in the dark could explain the observed
extended bactericidal effect of TiO2 in the dark. Indeed, Rincón and Pulgarin [238] also
attribute this “residual disinfection effect” to the photoinduced generation of ROS that
damaged and continued to kill bacteria in the dark [122,238]. These studies point to the fact
that light may be needed for initiation but may not be continuously necessary for various
applications [37,228], which is a beneficial finding for TiO2-based biomedical applications
in relation to presurgical irradiated disinfection. In addition to ROS generation, TiO2 is
also claimed to display bactericidal and self-sterilizing effects by altering the material’s
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surface free energy and electrostatic interaction with the microbial cell wall [65]. Moreover,
as discussed in the previous section, ROS generation seems to occur not only due to
photocatalysis but also in the absence of light.

Black TiO2, on the other hand, shows an electrochemical (EC) microbicidal effect
which could be of the same disinfection rate as the photocatalytic effect [213]. Though
radicals were not seen in ESR in the dark on black TiO2, in comparison to PEC treatment,
the EC microbicidal result indicates that light is not necessary for black TiO2 to display
microbicidal action.

4. Ti and Ti-Based Oxides for Biomedical Implants

In the field of bioimplant application, one should also consider other aspects of the
material for targeted implant usage. Ti and TiO2, for example, find applications in dental
and bone implants due to their excellent biocompatibility and good mechanical strength.
For bone implant application, for example, the material’s mechanical properties have an
influence on the postimplantation healing of the affected bone area and the performance
of the implant. When the material’s stiffness (Young’s modulus) is too high compared to
the bone, the distribution of the postsurgical physiological load on the periprosthetic bone
changes such that the implant handles more of the load, and the bone receives insufficient
stress that it needs, i.e., “stress-shielding” occurs. This results in bone resorption, loss
of density, and eventual atrophy, resulting in aseptic loosening causing implant failure
(Figure 8a) [51,239–241]. Studies show that aseptic loosening accounts for at least 20–33%
of orthopedic revisions due to implant failure [51,239,242].
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host cells do not strongly attach to the implant, microbes can colonize the surface, leading to biofilm
formation and inflammation. Reprinted (adapted) from ref. [38]. Copyright 2022, The Author(s).
Published by Springer Nature. This is an open-access article distributed under the terms of the
Creative Commons CC BY license (https://creativecommons.org/licenses/by/4.0/).

Titanium and its commonly available alloys have a Young’s modulus of 100−150 GPa,
which is still higher than that of bone (10−30 GPa) [1,243–245]. As such, efforts to reduce
the alloys’ stiffness have been investigated. For example, β-type Ti alloys (which can
be formed by adding stabilizers, such as Nb, Ta, V, or Mo) [243,246] can have a Young’s
modulus of ~50−80 GPa and can even reach as low as 40 GPa when subjected to severe
cold-working [1,29,30,243,244,247]. Ti displays nontoxicity high strength [245,248], which
also has to be considered together with stiffness [1,29,31,244–247] (opposing in nature)
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when designing alloys for implant application. Together with these two, the corrosion
properties should also be considered [1,29,31,243,245,249].

Corrosion response determines how the material behaves when exposed to the physio-
logical electrolyte and environment during and post-implantation [29–31]. Ti and Ti-based
alloys were developed mainly to improve the mechanical properties of implant materials,
especially for load-bearing purposes by increasing the fatigue properties. Due to the thin,
passive TiO2 film that develops on the surface, Ti and its alloys also display good corrosion
properties. This thin TiO2 film is stable in natural and artificial physiological fluids [243],
and elements added for alloying should therefore not disrupt the oxide layer formation. Nb
and Zr, for example, can be added as alloying elements to Ti because their (mixed) oxides
remain passive and contribute to corrosion resistance. A challenge alongside the oxide
formation in alloys is in the case of uneven distribution of the elements in the different
phases, unstable formation of the passive oxide film could occur and would lower the ma-
terial’s resistance to corrosion [1,29,30,250]. All these aforementioned properties of Ti and
its alloys, therefore, have to be considered for their advancement in use as modern implant
materials. Further, when improving processability, such as in additive manufacturing or by
adding components to achieve other functionalities, the influence of such modifications on
the aforementioned properties has to be considered [1,29,30].

A critical functionality for bone implants is the formation of a robust and lasting
attachment between the implant and the bone [251]. Therefore, efforts to increase the
success rate of implants also entail improving bone adhesion and growth on the implant
surface. This is an advantage for Ti alloys which are known to exhibit osseointegration,
allowing for direct anchoring of the implant to the bone even though Ti is considered inert.
Nowadays, the understanding of osseointegration considers the implant as a foreign body
from which the body tries to defend and shield itself by forming bone tissues to surround
the implant [39,243]. Effective implant osseointegration will not only promote healing but
also prevent infection by not allowing pathogens and microbes to colonize the implant
surface. This so-called race for the surface [34–37] determines whether the implant will
succeed or fail, especially after surgery and during wound healing [34]. This depends on
whether the host cells can attach to the implant irreversibly before bacterial cells do so in
the irreversible phase of biofilm formation (Figure 8b) [38]. To further improve the interface
between bone and the implant, biocompatible oxides, such as TiO2, are used to facilitate this
bridging. The roughness of the surface contributes to the attachment dynamics displayed by
the bacteria and the host cells towards the implant, making nanostructured TiO2 beneficial
for such cases [36]. For further interest, the readers are referred to more extensive reviews
on the surface modification for biomedical and antibacterial properties [51,52].

While the implant surface is quite important for its successful osseointegration, the
bioinert native TiO2 layer (2−5 nm) [53], however, does not allow the implant to bind easily
and strongly with bone tissues. Further, this layer can be disrupted due to tribological
factors (e.g., fretting) in the presence of fluoride (as for dental implants) or caused by
oxidative stress brought about by highly aggressive ROS, such as when inflammation
occurs due to the implantation process or during implant degradation (see Section 4.1).
Because of the debilitating effect of the disruption of the thin native oxide film on Ti-
based implants, efforts were done to produce thicker and more stable layers of Ti-based
oxides to improve the materials’ surface bioactivity [53–55], favoring bone cell adhesion
and proliferation and matrix mineralization promotion [31,56]. Direct oxidation of Ti
implants by treatment with H2O2 or NaOH to induce the formation of a TiO2 layer can
be performed to enhance the bioactive fixation of Ti-based implants [252]. Other efforts
also include growing Ti-based nanoporous oxides [33] and nanotubular oxide layers [53]
on glass-forming alloys, such as Ti-Y-Al-Co for the former and Ti-Zr-Si(-Nb) for the latter
(Figure 9). Similar to other alloys, while the alloying elements are needed for the desired
mechanical and corrosion properties for certain biomedical applications, mixed metal
oxides could form. With the prospect of growing nanotubular layers, for example, the
effect of the alloying elements on the tube dimensions should also be considered. These
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alloying elements can have different electrochemical oxidation rates and stabilities in the
electrolyte [53]. Nb2O5, for instance, is more resistant in F−- induced dissolution compared
to TiO2 [253]. Thus, Nb could slow down (or accelerate) the nanotube growth depending
on the anodization electrolyte used, whereas Zr usually increases the nanotube length at the
expense of the diameter growth. Such effects could result in two- (or multi-) scale diameters
of the nanotubes [53]. Titanium alloys, such as Ti6Al4V, that were pretreated with H2O2 can
also develop a relatively thick and porous surface layer, which could promote precipitation
of hydroxycarbonate apatite to achieve a seamless transition between the peri-implant bone
region and the implant materials, improving osseointegration [243].
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4.1. Safety of Ti-Based Implants and Inflammation

In addition to the safety concern regarding titanium dioxide NPs [254] (also see Section 2.2.1),
Ti-based materials, while generally considered safe, have also been increasingly scrutinized
regarding their toxicity [114]. Extensive reviews on this, such as Kim et al.’s [114] exist, and when
interested, the readers are encouraged to read them. The main concern regarding Ti as an implant
material is the possibility of its degradation-induced debris formation and chronic accumulation.
This can cause inflammation [118,255], such as perimucositis or peri-implantitis [118]. Further,
these debris can also accumulate in the spleen, bone marrow, and liver and may result in systemic
diseases and other health issues [114].

The degradation of Ti-based materials due to implantation results in the formation
of a thick layer of TiO2 on the surface of the implant (initially determined from color
change [256]), indicative of the occurrence of corrosion processes [243,256,257]. Evidence
of material dissolution is also present. Such is the case for the β-phase of Ti6Al4V [258] in
which its selective dissolution could originate from the attack of H2O2. Other evidences
of Ti degradation including oxide growth within, oxide-induced stress corrosion cracking,
and the presence of much-concerning periprosthetic debris have also been observed [243].
Alloys such as Ti-Al-V can also cause inflammation by inducing the release of mediators
(prostaglandin E2, tumor necrosis factor, etc.) and may affect the periprosthetic tissues to
cause osteolysis [114,255,259]. While the degradation of Ti-based materials could happen
due to inflammation, implant deterioration could also be due to other factors which may
be electrochemical, chemical, biological, and/or mechanical in nature [243].

Inflammation is the immune system’s response to detrimental stimuli involving white
blood cells (leukocytes). This occurs, for instance, due to the wound or the presence of
infectious species or foreign debris. The leukocytes respond by either engulfing the invaders
(phagocytosis) or by increasing their O2 consumption to produce ROS [243,260,261]. Cell-
signaling proteins are also produced by leukocytes to recruit more leukocytes, amplifying
the process. When phagocytosis could not occur due to the size of the target (e.g., large
implant debris), macrophages merge together to produce foreign body giant cells [243,262].
In the case of bones, these foreign body giant cells can be the osteoclasts (bone resorption
cells), which can also form phagocytosis and produce ROS [243,263].

At different phases of inflammation, ROS can be produced by specific enzymes, and
the biochemical reactions involved are depicted in Figure 10 [243,261]. As H2O2 plays a key
role in the inflammation process involving the immune system, it has been used extensively
for in vitro corrosion studies in simulated inflammatory conditions. Based on the observed
effects of inflammation, inflammatory studies are therefore carried out and evaluated by
looking at the metal release, phase dissolution, and oxide formation on the material under
evaluation [243]. Electrolytes closer to the physiological condition have also been used,
whereby it was observed that a synergetic effect could occur with the presence of H2O2
and albumin in terms of metal release and material implant dissolution but not oxide layer
growth (at least for Ti6Al4V) [114,243].

While inflammation can be useful, such as at the early stage (acute) needed to heal
the wound and prevent peri-implant infection (duration ~1 week), inflammation that lasts
for weeks or months (chronic) results in health issues and can generate pain, irreversible
cell degradation or DNA damage, and implant damage [243]. Periprosthetic inflamma-
tion has been found to correlate with the increased level of Ti (whether dissolved or as
particles) and could result in bone resorption of the surrounding region (in the case of
peri-implantitis) [114,262]. Additionally, Ti exposure has also been related to the occurrence
of yellow nail syndrome, wherein the person’s nail exhibits discoloration associated with
sinus inflammation and coughing, among other symptoms [114,264–266]. In addition to Ti,
considering its alloys, the other constituents could also result in health issues pertaining to
those elements (Co, Cr, and Ni for instance have higher toxicity) [114,243].
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5. Conclusions and Future Perspectives

Catalysis on TiO2 is mainly used and is more effective in the presence of light of
sufficient energy (i.e., with E≥ Eg). Nowadays, with many modern forms of TiO2, including
black TiO2, and advanced structures incorporating them, this can be extended to visible
and IR light. This strategy (extending the absorption range or tuning Eg) and other means
to improve TiO2 photocatalysis remain relevant in furthering the applications which benefit
from this field. Extensive knowledge of TiO2 photocatalytic mechanisms can be compared
and contrasted to what is thus far understood regarding dark TiO2 catalysis. Both processes
involve ROS generation; however, due to the absence of light needed for charge carrier
generation in the case of dark catalysis, it seems that defects are crucial sources of charges
to activate ROS formation. This may be the case with black (and colored) TiO2, whereby
surface defects could further promote ROS generation and, consequently, (photo)catalytic
activity. Thus, in terms of implant application, looking at both photo- and dark catalysis
could give a more holistic overview as implants could be also exposed to light prior to
implantation, resulting in the so-called residual disinfection effect.

The residual disinfection observed after the removal of irradiation can also be taken
advantage of by developing strategies to address the growing concern about antibacterial
resistance. Deepening the understanding of what is happening during residual catalysis
could help design materials, processes, and strategies to address such challenges and
prevent implant/device failure. For example, while there is a general understanding of the
involvement of ROS, intracellular peroxidation, and the disruption and direct attack of TiO2
NPs themselves in this (photoinduced) residual bactericidal effect of TiO2 [122], further
details on what is happening could be beneficial in obtaining a nuanced understanding to
aid designing materials with improved bactericidal action. The specific mechanisms for

https://creativecommons.org/licenses/by/4.0/
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each different microbial species also need to be figured out. As many of these microbial
species evolve continuously, such as by developing into different strains, such mechanisms
should also be updated regularly. The fact that the viability of bacteria differs when inside
and outside a biofilm should also be considered. Though mechanisms of actions of TiO2
against bacteria outside and within a biofilm have been proposed [51,65,125,126,129], these
understandings need to be further deepened.

In addition to photocatalysis and residual catalysis on TiO2, it is important to also
explore and further establish TiO2 catalysis in the dark. Whereas over the past years,
significant development has been carried out to unravel the dark ROS formation mech-
anism on TiO2, such as by looking at the role of SETOVs in dark activation of H2O2 on
TiO2, the mechanism is yet to be confirmed (if possible) in non-SETOV-incorporated TiO2
nanostructures. The role of other intrinsic defects (Ti3+ and surface oxygen vacancies) on
the dark catalysis of TiO2 should also be further studied, and a mechanism including these
remains to be proposed. The role of extrinsic defects, e.g., for doped TiO2 structures, in
dark catalysis also needs to be studied. This is important, especially when considering
that Ti alloys include other elements which could introduce impurities to TiO2 or form
mixed oxides with Ti. Further knowledge of dark catalysis on TiO2 can also be helpful in
advancing the use of TiO2 for biomedical applications. Implants and devices will be in the
dark after surgery and important in vivo processes to ultimately determine implantation
failure or success, such as inflammation, tissue regeneration, and possibly antibacterial
action around the implant also occurs in the absence of irradiation. Thus, the role of ROS
in dark TiO2 catalysis in view of these processes is crucial in addressing the challenges in
Ti-based implant application.

Understanding the dark catalysis on TiO2 in vitro can shed light on what could be
happening with TiO2/Ti implants in vivo and help in rationally designing materials that
could take advantage of ROS formation and/or catalysis for implant application. The
sensitivity of ROS generation observed in several studies to factors such as pH and concen-
tration, the presence/absence of oxygen, and other bio-/molecules points to a possibility of
a different mechanism happening in the physiological condition and also during inflamma-
tion. In vitro mechanistic studies on these implant materials using physiological conditions
should therefore be eventually extended to in vivo studies.

Black TiO2 nanomaterials also introduce new opportunities to widen the application
of TiO2 in the biomedical field. The fact that it can be produced on amorphous TiO2 and on
other Ti alloys without necessitating heat treatment makes it attractive for bioimplants—
which could be made from amorphous alloys. Further, in vivo (/in situ) phototreatment
could be made possible as the light absorbance of black TiO2 could be tuned to lie within the
biological near-IR window. Its redshifted broadened absorbance allows for photothermal
application in relation to implant use, which is beneficial for cancer treatment, photothermal
antibacterial disinfection, and so on. However, its biosafety has to be confirmed.

The development of new materials, while it is useful and advances the field, also entails
the need to be investigated in terms of their ROS generation mechanism. For example, the
incorporation of other components to further improve other desired properties, surface
treatments, and the use of alloys forming (supposedly mixed) surface oxides can have
an influence on the dark catalytic properties; their mechanisms would also need to be
studied. Novel materials for implant application will also result in the formation of new
microstructures of corrosion products (e.g., the oxide layer), which will also need to be
evaluated in terms of their vulnerability to ROS attack. This is considering the plethora of
processing available, the nanostructures that can be formed, the incorporation of bulk and
surface modification, and the possibility of protocol changes with the advancements in the
medical field, such as in the fight against antibacterial resistance. There are also findings on
other Ti alloys that cannot be explained by the current existing understanding, and this
points to the possibility that they involve modifications in the mechanism known for pure
TiO2 alone. Additionally, a number of applications using TiO2 make use of its amorphous
state, such as for TiO2 grown on glassy alloys that are used in dental implants. Apart from
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using it as a control in crystallinity effect studies, this structural state seemed to have been
forgotten, especially in terms of understanding its catalytic activity (if any) and properties
and performance in the presence of ROS. This is also relevant when considering black TiO2,
which can be grown as an amorphous material and possibly also on an amorphous material.
It is also necessary to investigate the catalytic activity of black TiO2, both photocatalytic
and in the dark, and now also PEC and EC processes (with an increasing number of
studies presenting such as comparative results), in terms of ROS generation when relevant.
Therefore, the understanding of TiO2 catalysis needs to be extended to (and maybe modified
for) these materials, which will make the already complex question (of understanding
dark ROS generation on titanium-oxide-based implants and addressing challenges in the
biomedical field in light of TiO2 catalysis) a tad more complex.
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