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Chirality coupling in topological magnetic
textures with multiple magnetochiral
parameters

Oleksii M. Volkov 1 , Daniel Wolf 2 , Oleksandr V. Pylypovskyi 1,3,
Attila Kákay 1, Denis D. Sheka 4, Bernd Büchner2,5,6, Jürgen Fassbender 1,
Axel Lubk 2,5,6 & Denys Makarov 1

Chiral effects originate from the lack of inversion symmetry within the lattice
unit cell or sample’s shape. Being mapped onto magnetic ordering, chirality
enables topologically non-trivial textures with a given handedness. Here, we
demonstrate the existence of a static 3D texture characterized by two mag-
netochiral parameters being magnetic helicity of the vortex and geometrical
chirality of the core string itself in geometrically curved asymmetric permalloy
capwith a size of 80 nmand a vortex ground state.We experimentally validate
the nonlocal chiral symmetry breaking effect in this object, which leads to the
geometric deformation of the vortex string into a helix with curvature 3 μm−1

and torsion 11 μm−1. The geometric chirality of the vortex string is determined
by the magnetic helicity of the vortex texture, constituting coupling of two
chiral parameters within the same texture. Beyond the vortex state, we
anticipate that complex curvilinear objects hosting 3D magnetic textures like
curved skyrmion tubes and hopfions can be characterized bymultiple coupled
magnetochiral parameters, that influence their statics and field- or current-
driven dynamics for spin-orbitronics and magnonics.

Symmetry effects are fundamental in condensed matter physics as
they define not only interactions but also resulting responses for the
intrinsic order parameter depending on its transformation properties
with respect to the operations of space inversion and time reversal. In
magnetism, the magnetization vector M remains unaltered upon the
space inversion symmetry transformation but changes its sign with
time inversion. Much attention is devoted to magnetic materials or
layer stacks with structural space inversion symmetry breaking, which
leads to the appearance of chiral exchange interaction known as the
Dzyaloshinskii–Moriya interaction (DMI)1–5. The latter manifests itself
in the formation of nontrivial chiral and topological spin textures, such
as magnetic skyrmions6–11, bubbles12, homochiral spin spirals13, and
domain walls14,15. Magnetochirality is typically tailored at the intrinsic

structural level by the proper selection of specific materials and
adjustment of their composition.

Alternatively, space inversion symmetry breaking of the magnetic
order parameter appears in geometrically curved systems16. In curvi-
linear ferromagnets, curvature governs the appearance of geometry-
induced chiral and anisotropic responses17–21. Much attention is dedi-
cated to the exchange interaction, which enables curvature-induced
extrinsic DMI as was proposed theoretically22,23 and validated
experimentally24 for the case of conventional achiral magnetic materi-
als. Thus, geometric curvature of thin films and nanowires is envisioned
as a new toolbox to create artificial chiral nanostructures from achiral
magnetic materials suitable for the stabilization of skyrmions25, chiral
domain walls26 and their utilization for prospective spintronic devices27.
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In addition to the local exchange interaction, the impact of non-
local magnetostatic interaction on the properties of curvilinear ferro-
magnets enables the stabilization of topological magnetic field
nanotextures28, the realization of high-speedmagnetic racetracks29 and
curvature-induced asymmetric spin wave dispersions in nanotubes30.
Furthermore, symmetry analysis demonstrates the possibility to gen-
erate a fundamentally new chiral symmetry-breaking effect, which is
essentially nonlocal31. For the manifestation of the nonlocal chiral
symmetry break, there are strict requirements that are imposed both
ongeometric symmetries andon themagnetic texture. Inparticular, on
the geometry side, the top and bottom surfaces of the object should
not be equivalent. In addition, the magnetic texture should have both
in- and out-of-planemagnetization components of different parity with
respect to the coordinate reflection procedure31. Not only the experi-
mental validation of the predicted nonlocal chiral symmetry break is
pending but also its consequences for micromagnetic textures are still
to be understood. Yet it is expected that the impact should be different
compared to the familiar local chiral effects induced by the DMI.

The paradigmatic example of a nonlocal texture, which satisfies
the above requirements, is the magnetic vortex in a nanodisk32–35, see
Fig. 1a. This spatial distribution of magnetization is characterized by a
closed-flux in-plane component with either counter-clockwise or
clockwise magnetization rotation, which is referred to as circulation,
C = ± 1, respectively. Furthermore, the vortex core has a localized out-
of-plane magnetization component aligned upward or downward
(P = ± 1), determining the vortex polarity (see Fig. 1a). The vortex state
is topologically nontrivial and characterized locally by the topological
charge flux density, Ω, (see “Methods” and Supplementary Note 1 for
details) and by the topological charge (skyrmion number, Pontryagin
index), Q = q P/2, determined by the product of the polarity, P, and
vorticity, q (q = 1 for a vortex and q = − 1 for an antivortex)36,37. We
characterize the global chiral property of the vortex texture via mag-
netic helicity38,39. Being normalized to its absolute value, it readseC =C P (see Supplementary Note 2). The Bloch line in the vortex core
we refer as the vortex string, which is a locus of maximal Ω = ∣Ω∣. The
vortex state in a symmetric disk with equivalent top and bottom sur-
faces being doubly degenerate with respect to eC is situated in the
geometric center with the vortex string being a straight line (Fig. 1b;

see also Supplementary Note 3A and Supplementary Fig. 2b). An
intrinsic DMI results in amodificationof the size of the vortex core and
selects an energetically favorable state according to the type and sign
of the DMI constant as well as the sign of the vortex circulation C40,
which we generalize in the framework of eC (Fig. 1c; see also Supple-
mentary Note 3B and Supplementary Fig. 2c). Independent of the
presence of the DMI, the locus of the vortex string in planar disks is a
straight line. Therefore, similar to local textures in thin films like sky-
rmions, vortices are characterized by only one magnetochiral para-
meter. In addition to planar disks, vortices can be spontaneously
forming ground states in confined curvilinear shells41,42, including
magnetic caps on spherical nonmagnetic particles43–45.

Here, we demonstrate experimentally and theoretically the exis-
tence of the nonlocal chiral symmetry-breaking effect by studying the
deformation of a vortex string in a cap-like asymmetric permalloy
(Ni81Fe19) structure (Fig. 1d; see Supplementary Notes 3B and C, and
Supplementary Fig. 3 for details). By combining experimental data and
theoretical results, we show that the vortex string canbedescribed as a
space curve possessing nonzero curvature, κv, and torsion, τv, which is
positive (right-handed rotation) for eC = + 1 and negative (left-handed
rotation) for eC = � 1 (Fig. 1d). In this respect, vortex texture in a cur-
vilinear object is characterized by multiplemagnetochiral parameters.
Namely, the chirality of the vortex string and magnetic helicity of the
texture. These two magnetochiral properties are linked as the sign of
the torsion of the vortex string is determined by the direction of the
circulation of the in-plane magnetization component of the vortex for
the given vortex polarity. The equilibrium magnetic states of the
asymmetric cap are visualized by transmission electron microscopy
(TEM) based electron holography revealing the presence of vortices
with a positive chirality, eC = + 1, only. The combined theoretical and
experimental study allows to identify a new chirality coupling effect
where the geometric chirality of the vortex string is determined by the
magnetic helicity of the vortex texture.

Results
Nonlocal chiral symmetry break for vortex textures
The magnetostatic interaction is responsible for the formation of
closed-fluxmagnetic vortex textures in soft ferromagnetic systems. It is

Fig. 1 | Schematic representationof the influence of symmetry-breaking effects
on magnetic vortices. Magnetic vortex appears in a spatially confined magneti-
cally soft ferromagnetic nanoobject due to the formation of a closed-flux magne-
tization distribution33–35. a Schematics of the magnetic vortex in a disk with
circulating in-plane and localized out-of-plane magnetization components. The
maxima of the distribution of the topological charge density (isosurface is sche-
matically shown by red) determines the location of the vortex string, which is a
straight line for the case of a disk with equivalent top and bottom surfaces.
bWithout DMI, the magnetic vortex state is degenerate with respect to the sign of
the vortex chirality eC =C P, which is determined by the product of the circulation C
and polarity P. c DMI lifts the degeneracy of the vortex state with respect to the
vortex chirality eC. For the case of the bulk-type DMI with a positive DMI constant,

the vortex state characterized by eC<0 is energetically preferred compared to the
higher-energy but stable statewith eC>040. The vortex core is broader (narrower) for
vortices with eC of negative (positive) sign compared to the vortex state in achiral
disks. Independent of the sign of the DMI constant, the vortex string is straight
along the disk axis. dWe report that absence of the axial and mirror symmetries in
the geometryof amagneticobject leads to thedeformationof the vortex string due
to nonlocal chiral symmetry breaking. Specific features of the vortex string are its
bending and inclination by the angleψ to themirror symmetry plane. Furthermore,
vortex string experiences homochiral curling deformations determined by the
vortex chirality eC, which constitutes coupling of twomagnetochiralities within the
same texture. The curling deformation of the vortex string can be described as a
space curve with nonzero curvature (κv) and torsion (τv).
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convenient to analyze the influence of magnetostatics on magnetic
states relying on the concept of surface and volume magnetostatic
charges ς and λ, respectively46. This allows to decompose the magne-
tostatic energy in termsof their interaction, namely Ems = Eςς + Eλλ + Eλς.
The last cross-term, Eλς, binds features of the magnetic distribution on
the surface of the sample with magnetization inhomogeneities in the
volume, which can induce chiral symmetry break31. Being usually zero
in the static case of rectilinear geometries, Eλς � 0, this term is highly
sensitive to the appearance of any asymmetry in top and bottom sur-
faces of the magnetic samples. Geometrically curved magnetic thin
films offer a straightforward approach to lift the equivalence of the top
and bottom interfaces and allow to explore the influence of the Eλς

cross-term on magnetic textures.
To guide the experimental realization, we perform full-scale

finite-element micromagnetic simulations in the time domain and
compute phase diagrams of the total surface and volume magneto-
static charges Σ (Supplementary Fig. 5a) and Λ (Supplementary
Fig. 5b), respectively, for different symmetric and asymmetric
nanodisk geometries. To characterize the geometry, we analyze the
difference between the top and bottom surface areas, ST and SB,

respectively, and the effective thickness of the object
<h>= 1=SB

R
SB dS zðrÞ with the integration over the bottom surface

and r being the space coordinate inside the magnetic body. Without
loss of generality, we discuss a model system of a soft ferromagnetic
disk-shaped object (radius R) with a flat bottom surface and the top
surface accommodating a Gaussian bump (see “Micromagnetic
simulations” under Methods section and Supplementary Note 1 for
details). The difference in the surface areas can be tailored by
changing the amplitude and width of the Gaussian bump and quan-
tified by the surface asymmetry ratio, ζA = ST � SB

� �
=ðST + SBÞ.

In the case of an asymmetric nanodisk with an off-centered Gaus-
sian bump, the total surface and volume magnetostatic charges are
both nonzero in a broad range of geometric parameters. Furthermore,
their product is negative, which forces the micromagnetic system to
distort the vortex structure at equilibrium compared to the flat case
(colored region in Fig. 2a; see Supplementary Note 4 and Supplemen-
tary Figs. 4 and5 fordetails).Unlike aflat symmetric diskwith a vortex in
the center and ΛΣ =0 (Fig. 2b), a geometric asymmetry leads to the
appearance of ΛΣ ≠0. As a consequence, the interaction between the
surface and volumemagnetostatic charges acts on the vortex string by
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Fig. 2 | Vortex states in nanodisks of different geometry. a Product of the total
surface and volume magnetostatic charges Σ and Λ, respectively, for different
nanodisk geometries. Symbols correspond to the results of full-scale micro-
magnetic simulations of nanodisks with a radius of 150nm. States, which are typical
for the regions marked by different symbols, are shown in the following panels.
b The central part of the symmetric nanodisk (thickness: h = 30 nm) contains the
straight vortex line. Here and below, the red region depicts the isosurfaces for eΩ,
that determines the spatial localization and shape of the vortex string and illustrate
its width profile over the sample thickness. c The central part of the highly asym-
metric nanodisk of small thickness (h = 5 nm), accommodating a tall off-centered
Gaussian bump (t = 50nm, b = 20 nm and x0 = 10nm) at its top surface, contains a
pinned vortex stringwith a very small curvature. Here, 〈κv〉 =0.7μm

−1, which results
in a substantial torsion 〈τv〉 = 3.7μm−1 (helix with radius 〈Rv〉 = 9.1ℓ and pitch

〈Pv〉 = 308.2ℓ). d The central part of an asymmetric nanodisk (h = 15 nm) with a
shallower Gaussian bump (t = 20nm, width b = 10 nm and shift x0 = 10 nm) on the
top surface of the disk contains a short vortex string, which is expelled from the
disk center. Distribution of e curvature κv and f torsion τv along the vortex string
shown in (d). Symbols indicate on-site values, solid lines represent trends and
dashed lines show mean values. Here, the average string curvature 〈κv〉 = 6.7μm−1

and torsion 〈τv〉 = 3 μm
−1. g The central part of a thick asymmetric nanodisk with a

Gaussian bump (h = 30nm, t = 40 nm, b = 20nm and x0 = 10nm) containing a
curled vortex string (c.f. Fig. 1b). Distribution ofh curvature κv and i torsion τv along
the vortex string shown in (g). Symbols indicate on-site values, solid lines represent
trends and dashed lines show mean values. Here, the average curvature
〈κv〉 = 4μm−1 and torsion 〈τv〉 = 3.3μm−1.
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pinning it at corrugation (Fig. 2c), pushing it out from the geometrical
center (Fig. 2d–f), or deforming it with a homochiral twist (Fig. 2g–i).
Thus, the magnitude of the product of the total surface and volume
charges ΛΣ can be used as a quantitativemeasure of the strength of the
nonlocal chiral interaction. Namely, in the case of large surface asym-
metry (ζA ≳ 2%), the vortex string is located in the center of the Gaussian
bump and remains almost straight with the curvature 〈κv〉=0.7μm−1

and torsion 〈τv〉= 3.7μm−1 (the straight line is a limiting case of a helix
with κ→0 and τ→∞, that corresponds to a helix with radius Rv→0 and
pitch Pv→∞, see Fig. 2c and Supplementary Fig. 6). This behavior is
driven by the dominant contribution of surface magnetostatic charges,
which produce an effective easy axis out-of-plane anisotropy along ẑ of
the bump that was studied in detail in ref. 47 for the case of asymmetric
yet ultrathin magnetic shells with a strong roughness.

In the opposite caseof a thin sample (hhi≈ 3‘with ℓ = 5.3 nmbeing
the exchange length for permalloy) with a small surface asymmetry
(ζA ≈0.5%), the vortex core is displaced away from the disk center
opposite to the bump. The resulting vortex string experiences a
bending deformation in the direction opposite to the center of the
Gaussian bump and is characterized by the curvature 〈κv〉 = 6.7μm−1

and the torsion 〈τv〉 = 3μm−1, which corresponds to a helix with radius
Rv = 24.1ℓ and pitch Pv = 60.4ℓ (see Fig. 2d–f and Supplementary Fig. 7).
This deformation of the vortex string appears together with ΛΣ ≳0,
due to the optimization of the magnetostatic energy with respect to
the imbalanced surface magnetostatic charges on the top and bottom
surfaces. Moreover, the loss in volume charges is compensated by a
strong energy gain in exchange due to the short length of the vortex
string. The displacement of the texture is driven by magnetostatic
effects, which is distinct from the previously considered displacement
of domain walls48 and skyrmions49 in curvilinear geometries due to the
local chiral interactions.Wenote that the local theory of the curvilinear

magnetism17,25 is valid within a narrow region of the phase diagram
Fig. 2a along the x axis below the effective thickness of about 3ℓ. It
should be noted that bending of the vortex string is not accompanied
by its branching. This is in contrast to the observed evolution of sky-
rmion tubes into a bifurcated complex 3D texture50–52.

For other asymmetric geometries on the phase diagram with ζA ≳
1% and 〈h〉 ≳ 3ℓ, the equilibrium vortex string is significantly deformed
(Fig. 1g). This region of geometric parameters corresponds to mod-
erate values of the product of Λ and Σ, see Fig. 2a, and it is char-
acterized by the optimizationof themagnetostatic energy through the
vortex string deformation inside the magnetic body. The latter can be
described as a space curvewith pronounced curvature, κv, and torsion,
τv, see Figs. 1h and 2i, respectively. Furthermore, for the specific signof
the vortex chirality eC, there is only one stable configuration: the vortex
string can be described either as a curve with τv >0 (right-handed
rotation) for eC = + 1 or τv <0 (left-handed rotation) for eC = � 1. The
helicity-dependent twist of the vortex string is a consequence of the
nonlocal chiral symmetry break. We note that the geometric defor-
mation of the vortex string in a helix constitutes the appearance of a
second magnetochiral parameter for the vortex texture. Furthermore,
the two magnetochiral parameters appear to be coupled. This region
of the phase diagram corresponding to themoderate product ofΛ and
Σ is chosen for the experimental validation of the predicted effects.

Experimental validation of nonlocal chiral symmetry break
To experimentally realize a nanostructure with the required asym-
metry ratio and effective average thickness exhibiting sizeable non-
local chiral effects (Fig. 1a, g), we deposited a 50-nm-thick permalloy
film on nonmagnetic polystyrene spheres with a diameter of 80nm.
Bright-field TEM tomography53,54 was applied to reveal the 3D shape of
the cap structure, whose distribution of principal curvatures and
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thickness are shown in Fig. 3a–c, respectively (see Supplementary
Note 6 for more details). The resulting cap has nonequivalent top and
bottom surfaces, which is quantified by the two different principal
curvatures (Fig. 3a, b). The respective asymmetry ratio between the
area of the top and bottom surfaces is about 1.8%, while the effective
thickness of the film, hhi, is about 5.0ℓ. For these geometric para-
meters, the experimental sample is well placed within the range where
the vortex string is expected to show a sizeable curling deformation,
see Fig. 2.

Magnetic imaging is done by means of off-axis electron
holography55, which reveals the projections of the in-plane magnetic
induction distribution, Bxy, on the x̂ŷ plane, see Fig. 3d. The data shows
the presence of the off-centered vortex state with in-plane circulation
C = − 1, which denotes the clockwise magnetization rotation in the x̂ŷ
plane. The state is prepared in a way to assure having a vortex with
negative polarity (P = − 1), resulting in a positive vortex chirality,eC = + 1. The vortex string is localized at the position, where the cap is
the thickest (compare Fig. 3c, d). Furthermore, we observe that the
shape of the projected vortex string is not circular and reveals sizeable
ellipticity (ϵ = p2/p1 = 0.86 for p1 and p2 being semi-major and semi-
minor axes, respectively). This can be either due to the deformation of
the in-plane vortex texture, or due to the projection of the bent vortex
string to the x̂ŷ plane. To understand the details of the contrast, we
perform finite-element micromagnetic simulations of vortex states
with different vortex chiralities (Supplementary Figs. 11–14). For these
simulations, the object geometry was retrieved from the tomographic
reconstruction (see Fig. 3a–c and Supplementary Note 6 for the
details). The simulations confirm the second assumption that the
vortex string is geometrically deformed (see the shape of the vortex
string of positive chirality eC in Fig. 3e, f and the comparison of pro-
jections of vortex strings of different chiralities with the experimental
result in Fig. 3d). The curvature of the vortex string increases from
bottom surface of the nanocap to the top one with 〈κv〉 = 2.5μm−1,
while the torsion remains constant along the string with 〈τv〉 ~ 11μm

−1,
see Fig. 3g, h, Supplementary Note 6C, and Supplementary Table 2.
The positive sign of torsion for the positive magnetochirality eC of the
vortex is in linewith the predicted chirality coupling effect, which links
two magnetochiral parameters of the texture, c.f. Fig. 2g–i.

To understand the formation of magnetochiral vortex states, we
performed additional experimental investigation of another asym-
metric nanocap possessing vortices of different circulation and
polarity. Herein, the polarity ismanipulated bydeliberately varying the
external magnetic field with the help of the objective lens of the TEM.
Note, however, that in all switching trials, we only observe vortices ofeC = + 1, which correspond to P = + 1,C = + 1 and P = − 1,C = − 1 (Fig. 4).
Consequently, the circulation of the vortex texture is linked to the

vortex polarity in a specific way always yielding a positive magnetic
chirality. Vortex states corresponding to the opposite chirality eC = � 1
(P = + 1, C = − 1 and P = − 1, C = + 1) are not identified in the experiment.
Instead, we observed vortex–antivortex pairs restoring a topologically
trivial state with Q =0 consisting of a vortex with Q = ± 1/2 and an
antivortexwithQ = ∓ 1/2, see Fig. 5.Wenote that the spatial localization
of the vortex–antivortex pairs as well as the distance between these
textures are different for different polarities and circulations of the
vortex state (but for the same eC = � 1). This difference and its relation
to the nonlocal chiral effect is an appealing independent study by
itself.

Discussion
The physics of the geometric deformation of the vortex string related
to the vortex chirality can be analyzed in terms of geometric symme-
tries and balance between the contribution of surface and volume
magnetostatic charges. The high-symmetry state is supported by a
planar circular nanodisk (Supplementary Note 3A). Taking into
account time inversion operation, vortices with the same circulations
andopposite polarities are enantiomorphs (mirror images), see Fig. 6a.
In this case, the cross-term Eλς =0, as it depends on both spatial deri-
vatives and surface normals. The presence of DMI lifts the energetic
degeneracy between the states with different eC but does not change
the vortex string configuration (Supplementary Note 3B).

By changing the shape of the top surface in the formof a centered
Gaussian bump, we find from simulations that the vortex core is not
located at the geometric center of the disk (Supplementary Note 3C).
The vortex string is bent along the thickness of the disk. The top and
bottomequilibriumpositions of the vortex string areoff-centeredwith
different radii with respect to the geometrical center (Fig. 6b). This
means that there are infinite angular positions around the geometric
center for which the magnetic state is degenerates. Therefore, the
system supports an infinite manifold of equilibrium vortex states
(Supplementary Fig. 3a–d). This is equivalent to the appearance of a
zero-frequency Goldstone mode for a vortex string excited along a
circular trajectory around the disk center. A further analysis of the
locus for the vortex string along the thickness of the disk reveals that
besides bending of the vortex string, the curling deformation of the
vortex string is also present. This deformation is magnetochiral-
dependent: the curling direction is determined by the vortex chirality
being right-handed (i.e., τv > 0) for eC = + 1 and left-handed (i.e., τv <0)
for eC = � 1. In otherwords, for a givenpolarity and in-plane circulation,
only one of the curling directions of the vortex string exists.

In the case of a nanodisk without the axial symmetry but with the
vertical mirror symmetry plane σver (Fig. 6c; i.e., the Gaussian bump is

Fig. 4 | Experimental equilibriummagneticvortex states inpermalloy caps.The
figure shows maps of the magnetic induction (magnitude and direction of the B-
field) in the x̂ŷ projection obtained by means of off-axis electron holography for
magnetic vortices with C = + 1, P = + 1 and C = − 1, P = − 1. We stress that only vortices
with eC = + 1 are observed experimentally.

Fig. 5 | Experimental topologically trivial (Q =0) magnetic states with
vortex–antivortex pairs in asymmetric caps. The figure shows maps of the
magnetic induction (magnitude and direction of theB-field) as in Fig. 4. The change
of the vortex chirality and polarity causes the formation of topologically trivial
states, where the topological charge of magnetic vortex (Q = ± 1/2) is compensated
by the charge of antivortex (Q = ∓ 1/2).
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shifted out of the center of the top surface), only one stable angular
position of the vortex string exists for a given vortex chirality. Thus,
vortices with eC = + 1 and eC = � 1 have the same energy, but are dif-
ferently localized in space. Still, the vortex string remains deformed
with the same curvature but different signs of the torsion, see Figs. 1c
and 6c (see also Supplementary Fig. 3e–h). As a result of the symmetry
lowering and the well-defined non-degenerate equilibrium state, the
Goldstone mode vanishes.

Mimicking the experimental situationwith a cap of low symmetry,
we finally consider two off-centered Gaussian bumps at the top and
bottom surfaces of the nanodisk. This shape eliminates the σver sym-
metry of the previous case (Fig. 6d). As a consequence, the system
supports only one equilibrium vortex state (eC = + 1 in Fig. 6d) that
corresponds to the shortest vortex string. In line with the theoretical
predictions, we observe experimentally that vortices with the same
positive chirality, namely different sign for the polarity and circulation,
have the same spatial positions and homochiral deformations of the
vortex string (Fig. 4).

To understand the role of the exchange and magnetostatic
interactions on the formation of curved vortex strings, we perform
additional micromagnetic simulations where magnetostatic interac-
tion was switched off and/or replaced with effective anisotropy
models, see details in Supplementary Note 5 and Supplementary
Table 1. In the first model case, we utilize only exchange interaction
and the magnetization is pinned at the surface facet of the mesh to
assure the vortex state, while the magnetostatic interaction is swit-
ched off. Thus, the magnetic system with only exchange interaction
minimizes the vortex string length going outside the bump to the
region with flat top and bottom surfaces. As this observation is not in
line with the experiment, we conclude that accounting for surface
magnetostatic charges at the surface facet only is insufficient. The

resulting vortex string has 〈κv〉 = 2.0 μm−1, which is three times
smaller than the one obtained for the full-scale simulation
〈κv〉 = 6.2μm−1, while the vortex string torsion 〈τv〉 = − 6.6μm−1 has
opposite sign to the case of the full-scale simulation 〈τv〉 = 9.0μm−1.
Furthermore, the vortex core dimensions increase in the absence of
magnetostatic interaction.

In the second model case, we consider magnetization to be pin-
ned in the vortex state at all sample boundaries in a system with
exchange interaction and additional shape anisotropy, that replace
magnetostatics. We perform simulations for two model cases of ani-
sotropy distributions: (i) homogeneous easy-plane anisotropy in the
x̂ŷ plane and (ii) spatially varying “in-surface” anisotropy, with the easy
surface of magnetization linearly changing from the bottom to the top
surfaces. Both these anisotropy models reveal that the equilibrium
vortex position lies outside the bump with a substantial shrinking of
the vortex core radius to a radius of aboutmesh size. Still, bothmodels
provide similar curvature being hκðiÞ

v i=3:2μm−1 and hκðiiÞ
v i= 3:3μm−1,

while the torsion values are different being 〈τ(i)〉 = 4.3μm−1 and 〈τ(ii)〉 =
1.3μm−1. These inconsistencies with the experimental observations
indicate that the shape anisotropy coming from surfacemagnetostatic
charges itself is insufficient to describe theposition of the vortex string
and its shape within the Gaussian bump. The role of the volume
magnetostatic charges is decisive. Hence, the homochiral deformation
of the vortex string aswell as the state selection due to the geometrical
symmetry reductions originates from the dipole-dipole interaction
and the related nonlocal chiral symmetry break. Accordingly, the
experimental results validate the existence of the nonlocal symmetry-
breaking effect predicted by the generalized micromagnetic theory of
curvilinear shells31.

The discussed nonlocal chiral effects are distinct from the
exchange-driven polarity-circulation coupling and boundary effects

Fig. 6 | Schematics of the evolution of the shape of the vortex string in mag-
netic nanodisks with a Gaussian bump. a Planarmagnetic disk possesses axial C∞

symmetry, one horizontal σhor and infinite number of vertical mirror planes σver.
Such system supports two equilibrium vortices with eC = ± 1, that possess the same
straight vortex strings without any deformation. These states can be obtained by
σhor with taking into account the time inversion operation. b Removing the σhor
mirror plane, the vortex core at the top surface displaces thereby introducing
bending deformation with additional helicity-dependent curling of the vortex
string. The sense of curling is specific for the particular vortex chirality. Such
deformationof the vortex string can take any angular positionat remanence, due to

the axial symmetry in the system. Dotted lines correspond to unstable vortex string
deformations unfavorable for the particular chirality eC. The green- and red-filled
cells correspond to the energetically favorable andunfavorable states, respectively.
c If the C∞ symmetry is also absent (for instance, due to the presence of a shifted
Gaussian bump), only two stable vortices can be formed: one vortex with eC = + 1
and right-handed curling of the vortex string, and another vortex with eC = � 1 and
left-handed curling. d In the case of a fully asymmetric nanodisk, there is only one
equilibriumvortex statewith eC = + 1. This is due to themetastability of vorticeswith
chirality eC = � 1 as they provide longer vortex strings.
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induced by the sample shape. The first type of effects originates in thin
shell systems, where curvature of the surface introduces a coupling
between the localized out-of-surface part of themagnetization texture
and its delocalized in-surface component as was predicted for vortices
in spherical shells56 and merons in parabolic and hyperbolic shells57.
The boundary effects are expected in magnetic systems without axial
symmetry, which introduces stable positions for multiple equilibrium
magnetic distribution. Namely, elliptical-58 or ellipsoid-shape59,60 par-
ticles exhibit a deformed vortex core, which connects two geometric
focal points through the formation of a Bloch domain wall with the
Néel cap37. Such magnetization distribution originates from the inter-
play between the exchange and magnetostatic energy, which tends to
optimize magnetization distributions by the formation of divergence-
free solenoidal textures. Thus, the resulting textures are bi-stable as a
vortex core connects pairwise any of the two focal points on different
surfaces of the sample, as these states are symmetric and energetically
equivalent.

The consequence of the nonlocal chiral symmetry break is the
new chirality coupling effect. When we discuss on the geometric
chirality coupling, geometry-governed chiral interactions can realize
an interplay between the geometric chirality of the object and the
magnetochirality of the texture with nontrivial magnetic helicity21.
Typically, this means that the geometric chirality of the sample
determines the magnetochirality of the texture. Now we observe
another phenomenon: the sign of the torsion of the vortex string (i.e.,
chirality of its locus still characterizing the magnetic texture) is
determined by the sign of the circulation of the vortex state for the
given polarity (i.e., magnetic helicity of the vortex). In this respect, the
magnetic helicity of the texture determines the geometric chirality of
the vortex string. This is different to the vortex in a planar disk, where
the vortex string is straight and its shape is independent of the circu-
lation. In the asymmetric sample, both parameters of the texture are
chiral and being coupled.

In summary, we demonstrated that the geometric asymmetry is a
key ingredient for the observation of the nonlocal symmetry-breaking
effect in a magnetic object. This effect originates from the interplay
between surface and volume magnetostatic charges. The nonlocal
chiral symmetry breaking is detected experimentally through the sta-
bilization of nontrivial magnetic textures of a specific magnetic chir-
ality, which is determined by the sample’s symmetry. Although
geometrically curvedobjects offer a convenient playground to observe
nonlocal chiral effects, we stress that the conclusions of this work are
generic and valid not only for curved three-dimensional architectures.
These effects are also expected in any object possessing nonequivalent
opposite surfaces, whose size allows the presence of nonvanishing
volume magnetostatic charges and hosting a noncollinear magnetic
texture. For instance, vortices in wedge-shaped disks could experience
a bent of the vortex string as discussed above. Furthermore, thinmetal
films deposited on flat substrates like Si wafers usually possess corru-
gated top surfaces. Therefore, it would be insightful to analyze the
impact of the nonlocal chiral effects on noncollinear textures resting or
propagating in these corrugated thin films, whichmight be relevant for
prospective spintronic and spin–orbitronic devices including domain
wall and skyrmion-based racetrackmemory61–63. In this respect,wenote
that the discussed nonlocal chiral effects also affect local noncollinear
textures like domain walls as schematically shown for a Néel domain
wall in Fig. 1h in ref. 31. Still, detailed studies are needed to quantify how
large the effects and the physical consequences for the statics and
dynamics of domain walls are.

Deformations of a texture should not necessarily be expected as a
homochiral or unidirectional in a general sense. Namely, microwave
excitations of chiral skyrmion tubes demonstrate both sense of left-
and right-handed rotations independently of the skyrmion
chirality64,65. This is in contrast to our finding that even at equilibrium
and in the absence of the Dzyaloshinskii–Moriya interaction, the

vortex string not only bends into helix, but also the helix chirality is
unique for the given vortex symmetry. It should be noted, that the
similar curling deformation of the same chirality has been recently
reported for skyrmion tubes in the asymmetrically shaped helimag-
netic samples66. Thus, we anticipate that our findings are generic for a
wide class of magnetic nanotextures and provide an explanation of
their structure in geometrically asymmetric samples.

It is natural to extend the presented approach of the formation
and analysis of the textures with multiple magnetochiral para-
meters on more complex geometries hosting 3D textures. For
instance, even for localized chiral textures like skyrmions in con-
fined geometries, the sense of axial modulation of the skyrmion
strings could be related to the chirality of skyrmion texture
themselves67. This coupling between chiral parameters can be even
more pronounced in magnetization dynamics, e.g., dynamic helical
solitary waves propagating along skyrmion strings64,65. Further-
more, 3D textures with nontrivial Hopf index eH could offer another
appealing system to search for multiple coupled magnetochiral
parameters with examples of double rings with eH = 168 or trefoil
knot-like shapes with eH = 769.

In addition, we anticipate active prospective research on the
realization of complex 3D objects accommodating 3D magnetic
textures with multiple and coupled magnetochiral parameters
relying on direct nanoscale writing28. The characterization of these
3D textures and their evolution under external stimuli will require
advanced imaging techniques relying on electron holography67 or
X-ray-based tomography approaches70. In this respect, curvilinear
and 3D magnetic low-dimensional architectures offer an appealing
material science platform to fabricate and study novel physics of 3D
magnetic textures characterized by multiple magnetochiral para-
meters, which can be tailored on demand relying on geometric
parameters.

Methods
Magnetostatics
As the rigorous account of its self-consistent stray field requires the
solution of integrodifferential equations, it is convenient to analyze
spatial distributions of surface and volume magnetostatic charges37, ς
and λ, respectively:

ςðrÞ=mðrÞ � nðrÞ, λðrÞ= � ∇ �mðrÞ, ð1Þ

wherem =M/Ms is the normalizedmagnetization vector withMs being
the saturation magnetization and n being the outer surface normal.
The magnetostatic energy is determined by the interaction of ς and λ.
The resulting magnetostatic energy, Ems, originates from the pairwise
interactions between ς and λ, which follows from

Ems
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Eλς

:

ð2Þ

Here, the first term Eςς describes the interaction between the sur-
face charges at different surfaces of the object. In the case of thin
symmetric shells, this term could be reduced to a local shape ani-
sotropy Eςς =2πh

R
S dSðm � nÞ2, which linearly depends on thickness

h for curved shells71 and films72. The second term Eλλ denotes the
interplay between volume magnetostatic charges, while the third
one Eλς originates from the pairwise interaction between volume
and surface magnetostatic charges. The cross-interaction Eλς in Eq.
(2) is zero in many standard examples of nanomagnets because of
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two factors: (i) tangential magnetization at the sample edges leads
to the absence of respective surface charges; (ii) equivalence of
surface charges at the top and bottommagnetic surfaces. The latter
is reasonable for conventional soft ferromagnetic planar thin films,
where according to the pole avoidance principle, magnetostatics
determines the formation of closed-flux magnetic textures37,46. In
the case of symmetric nanodisk, this leads to the appearance of the
vortex distribution with both volume and surface magnetic charges
tend to be balanced by opposite ones in equilibrium, which
corresponds to Σ = ∫S dS ς(r) = 0 and Λ = ∫V dr λ(r) = 037. Thus,
although the total surface and volume magnetostatic charges (Σ
and Λ, respectively) do not enter to the expression for the
magnetostatic energy (2), these quantities are convenient for the
analysis of the impact of the integrals in Eq. (2), which contain their
local counterparts (ς and λ, respectively). It should be noted, that
the influence of the term Eλς on localized textures like domain walls
is expected in geometries possessing notches, where the require-
ment ςedge = 0 is not necessarily fulfilled73. Furthermore, extended
curvilinear magnetic shells naturally break the geometric symmetry
between the top and bottom surfaces, resulting in a nonzero Eλς

31.

Micromagnetic simulations
Full-scale micromagnetic simulations for the experimental geometry
and asymmetric nanodisks are performed by means of a finite-
element micromagnetic code, the successor of the GPU accelerated
TETRAMAG

74,75. Simulations are done for a magnetic body with micro-
magnetic parameters of permalloy: saturation magnetization
μ0Ms = 1.08 T, where μ0 is the vacuum permeability, exchange con-
stant A = 13 pJ/m and exchange length ‘=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2A=ð4πM2

s Þ
q

= 5:3 nm.
Using the energy minimization approach by means of a conjugate
gradient method, the equilibrium magnetic distributions are
obtained starting from the initial states corresponding to
geometrically-centered vortex states with various polarities, P = ± 1,
and circulations, C = ± 1. The calculations are carried out for model
nanodisks as well as for experimentally reconstructed permalloy cap
structures. As nanodisks, we consider reference objects with flat top
and bottom surfaces as well as those with flat bottom surface and
the top surface accommodating a Gaussian bump. For nanodisks, we
simulate objects with a radius of R = 150 nm and thickness in the
range h = [2.5; 60] nm. Different structural asymmetries are intro-
duced through the formation of a Gaussian bump at the top surface

Fig. 7 | Vortex states in a truncated experimental nanocap. Panels
a, e, i,m represent the reconstructed vortex lines (black tubes) inside the truncated
asymmetric nanocap with vortices of different magnetic helicity: a for P = + 1,C =
+ 1; e for P = − 1,C = − 1; i for P = + 1,C = − 1; m for P = − 1,C = + 1. Their rescaled

shapes extracted from the calculation of eΩ are shown in (b, f, j,n), respectively. The
resulting distributions of vortex string curvature and torsion are shown in
(c, g, k, o) and (d, h, l, p), respectively. All isosurfaces are constructed for eΩ=0.35.
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of the disk

z = t exp �ðx � x0Þ2 + y2
2b2

" #
: ð3Þ

Here, t = [0; 60] nm is the bump height, b = 20nm is its width, and
x0 = 10 nm is the bump shift with respect to the center of the disk.

In the case of the experimental geometry, the precise sample
shape is obtained by means of bright-field TEM tomography with 0.5-
nm spatial resolution in all dimensions. To resemble the experimen-
tally observed vortex state, we introduce fixed boundary conditions
for the region corresponding to the magnetic layer on the supporting
part. This allows us to reproduce the experimentally obtained homo-
geneous magnetization distribution, that is formed in the supporting
part of the sample (see Supplementary Fig. 10). To investigate the
influence of this supporting part on the vortex state and discussed
nonlocal chiral effects, we perform additional micromagnetic simula-
tions for the truncated magnetic cap without the supporting part, see
Fig. 7, Supplementary Note 6 and Supplementary Table 3. As a result,
the magnetic vortex string becomes slightly shifted, but obtains a
similar homochiral curling deformation to that observed for the full
experimental geometry. This confirms that the main source of the
observed nonlocal chiral effects is the asymmetry of the top and bot-
tom surfaces of the object as well as the interplay between the surface
and volume magnetostatic charges.

In addition, we utilize MuMax3 code76 for the simulations of the
planar nanodisk (radius R = 150 nm and thickness h = 20nm) with DMI
to reproduce the vortex chirality splitting obtained in ref. 40. Such
simulations are performed for a permalloy disk with DMI of the bulk
typewithD = 0.2mJ/m2. The equilibrium states are calculated from the
initial vortex distributions of various circulation and polarity bymeans
of the conjugate gradient method. Also, we perform additional simu-
lations using MAGPAR code77 for asymmetric permalloy nanocaps to
analyze the influence of the exchange and magnetostatic interactions
on the formation of the curved vortex strings, see Supplementary
Note 5 for details.

Determination of the vortex string from topological charge
density
A standard approach to determine the vortex string position and its
fine structure in thin rectilinear samples is based on the localization of
the intersection of isosurfaces mx =0 and my =078. However, this
approach meets challenges for the case of thick asymmetric and/or
curvilinear magnetic geometries, as magnetic textures may exhibit
additional bending that goes beyond the standard Cartesian descrip-
tion. Thus, it is instructive to analyze thedistributionof thefluxdensity
of the topological charge68,79,80 over the 3D geometry:

Ωl =
1
8π

ϵlnoϵijkmi∂nmj∂omk , ð4Þ

wheremi is the normalized local magnetization component, ϵijk is the
Levi–Civita tensor and i, j, k, l, n, o = {x, y, z}. The closed integral over
the sample’s total surface results in the topological charge (skyrmion
number or Pontryagin index) being Q = ∫S dS ⋅Ω, which defines the
mapping degree of the magnetization distribution onto a sphere
m2 = 179,81,82. Namely, for the vortex (winding number q = + 1) and anti-
vortex (q = − 1) states of positive polarity (P = + 1) in soft-ferromagnets,
the target sphere is half wrapped, which denotes Q = + 1/2 for the
vortex and Q = − 1/2 for the antivortex, respectively83.

Spatial derivatives in Eq. (4) lead to the appearance of nonzero
topological charge densities Ω = ∣Ω∣ in the vicinity of nontrivial mag-
netization textures, that provide noncollinear magnetization dis-
tributions. Thus, extrema in the distribution of Ω unambiguously
determine the position and spatial configuration of the center part of

the topologically nontrivial magnetization textures even in the bent
state70. As magnetic vortex strings could have different spatial con-
figurations, it is more convenient to introduce the normalized flux
density of the topological charge eΩ=Ω=Ωmax, where the Ωmax is the
absolute maximum value of Ω for the particular magnetization
distribution.

It should be emphasized that the introduced in the Eq. (4) the
topological charge flux density obtains the same form of the mapping
Jacobian84, previously introduced for the normalized 3D vector field
defined on a 3D closed surface25. In the limit case of 2D plane systems,
it transforms into a gyrocoupling vector (topological density, topolo-
gical current, vorticity)79,85–87:

ρ =
1
2
ϵnom � ∂nm×∂om

� �
,

with n, o = {x, y}. This is widely used for 2D topological nontrivial
magnetic distributions, e.g., solitons88, vortices89 and skyrmions64, in
planar magnets and thin-film shells.

Sample preparation
A nominally 50-nm-thick permalloy layer is deposited on top of 80 nm
polystyrene spheres by means of magnetron sputtering at room tem-
perature (base pressure 10−8 mbar, Ar is used as a sputter gas at a
pressure of 10−3 mbar). Before the deposition, polystyrene spheres
were distributed from solvent across a copper TEM grid with sup-
porting lacey carbon film.

Bright-field TEM tomography
A tilt series of bright-field Lorentz TEM measurements within an
angular tilt range of ± 68° in 4° steps is acquired for a representative
permalloy capon topof a polystyrene sphere attached to the barof the
lacey carbon support covered with permalloy. The bright-field TEM
images of the tilt series are then converted to projected attenuation
maps by computing the negative logarithm. Coarse displacements
between successive projections are corrected by cross-correlation,
whereas the fine alignment, i.e., the accurate determination of the tilt
axis and correction for sub-pixel displacements, is conducted by a self-
implemented center-of-massmethod and common line approach. The
tomographic reconstruction of the aligned tilt series is carried out
using the weighted simultaneous iterative reconstruction technique
(W-SIRT)54 using five iterations. The in-house developed W-SIRT
method utilizes at each SIRT iteration a weighted instead of a simple
back projection as in the case of conventional SIRT. This improves the
convergence properties of the tomographic reconstructions. The
obtained tomogramwith a spatial resolution of about 0.5 nm reveals a
corrugated surface of the object (Supplementary Movie 1 and Sup-
plementaryNote 6A for details). The latter is both a realproperty of the
permalloy layer deposited by sputtering and a reconstruction artefact
due to noise and local dynamical scattering contrast if single grains of
the poly-crystalline permalloy layer are in low-index zone axis orien-
tation with respect to the electron beam. Moreover, due to the
incomplete tomographic tilt range ( ± 68° instead of ± 90°), the lateral
resolution in the directions, which are not covered by the tilt series, is
reduced. For these reasons, the tomogram was smoothed (i.e., reg-
ularized), before the surface of the permalloy cap is finally extracted as
input for the micromagnetic simulations.

Electron holography
Electron holograms of polystyrene spheres covered with permalloy
caps were acquired using a double-corrected FEI Titan3 80 − 300
microscope (ThermoFisher Comp., USA) operated in imaging-
corrected Lorentz mode (conventional objective lens switched
off) at an acceleration voltage of 300 kV. The voltage of the elec-
trostatic Möllenstedt bisprism is set to 210 V yielding a hologram
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fringe spacing of 1.7 nm and fringe contrast of 15 % acquired with a
2k by 2k Gatan Ultracan CCD camera. Amplitude and phase images
were reconstructed from the electron holograms by Fourier tech-
niques incorporating empty holograms for correction of imaging
artifacts, such as distortions of the camera and projective lenses90.
The reconstructed phase images contain the phase shift between
object wave and unperturbed reference wave that can be expressed
by

φðx, yÞ=
Z 1

�1
dz CE V ðx, y, zÞ �

e
_
Az ðx, y, zÞ

h i
, ð5Þ

where CE is an interaction constant depending on the electron beam
energy, V(x, y, z) the three-dimensional electrostatic object potential, e
the electron charge, ℏ the reduced Planck constant, and Az(x, y, z) the
component of the magnetic vector potential parallel to the electron
beam direction z. Accordingly, the first term can be considered as
electric phase shiftφel and the second asmagnetic oneφmag. The latter
can also be expressed by themagnetic flux fromwhich the projections
of the lateral components Bx and By of the magnetic flux density
(induction) B= Bx ,By,Bz

n oT
may be obtained by differentiating φmag

according to

∇x,y φmagðx, yÞ=
e
_

Z 1

�1
dz

Byðx, y, zÞ
�Bxðx, y, zÞ

� 	
: ð6Þ

To separate electric and magnetic phase shift, for each phase
image a second phase image of the specimen flipped up-side down is
acquired. Due to the odd time-reversal symmetry of the magnetic
induction, the magnetic phase shift changes its sign in the second
phase, hence, can be calculated by half of the difference between
phase images before and after flipping. Prior to the separation, the
phase images were firstly corrected from residual image aberrations
(e.g., as described in ref. 90) and secondly aligned by affine image
registration methods to minimize artifacts in the magnetic phase
shifts, especially towards the boundaries of the nanocap. Exploiting
relation (6), the projected magnetic induction components Bx and By
are finally computed. To establish different remanent vortex (anti-
vortex) states of the nanocaps (Figs. 4 and 5), we applied an out-of-
plane magnetic field using the objective lens. We started with the
application of + 1500 mT resulting in the magnetic state with C = + 1
and P = − 1 (Fig. 5), followed by − 35 mT resulting in C = − 1 and P = − 1
(Fig. 4), followed by − 400mT resulting in C = − 1 and P = + 1 (Fig. 5),
and finally, + 400mT resulting in C = + 1 and P = + 1 (Fig. 4).

Data availability
All data that support the plots within this paper and other findings of
this study are available from the corresponding authors upon rea-
sonable request. Source data are provided with this paper.
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