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Simple Summary: Thymomas and thymic carcinomas (TCs) are malignant thymic epithelial tumors
(TETs) with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied
and may offer new therapeutic options. This is the first metabolomics investigation on thymic
epithelial tumors employing nuclear magnetic resonance spectroscopy of tissue samples. We could
detect and quantify up to 37 metabolites in the major tumor subtypes, including acetylcholine that
was not previously detected in other non-endocrine cancers. A metabolite-based cluster analysis
distinguished three clinically relevant tumor subgroups, namely indolent and aggressive thymomas,
as well as TCs. A metabolite-based metabolic pathway analysis also gave hints to activated metabolic
pathways shared between aggressive thymomas and TCs. This finding was largely backed by
enrichment of these pathways at the transcriptomic level in a large, publicly available, independent

Cancers 2022, 14, 1564. https://doi.org/10.3390/cancers14061564 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14061564
https://doi.org/10.3390/cancers14061564
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-4040-1784
https://orcid.org/0000-0003-0012-3177
https://doi.org/10.3390/cancers14061564
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14061564?type=check_update&version=1


Cancers 2022, 14, 1564 2 of 22

TET dataset. Due to the differential expression of metabolites in thymic epithelial tumors versus
normal thymus, pathways related to proline, cysteine, glutathione, lactate and glutamine appear
as promising therapeutic targets. From these findings, inhibitors of glutaminolysis and of the
downstream TCA cycle are anticipated to be rational therapeutic strategies. If our results can
be confirmed in future, sufficiently powered studies, metabolic signatures may contribute to the
identification of new therapeutic options for aggressive thymomas and TCs.

Abstract: Thymomas and thymic carcinomas (TC) are malignant thymic epithelial tumors (TETs)
with poor outcome, if non-resectable. Metabolic signatures of TETs have not yet been studied and
may offer new therapeutic options. Metabolic profiles of snap-frozen thymomas (WHO types A, AB,
B1, B2, B3, n = 12) and TCs (n = 3) were determined by high resolution magic angle spinning 1H
nuclear magnetic resonance (HRMAS 1H-NMR) spectroscopy. Metabolite-based prediction of active
KEGG metabolic pathways was achieved with MetPA. In relation to metabolite-based metabolic
pathways, gene expression signatures of TETs (n = 115) were investigated in the public “The Cancer
Genome Atlas” (TCGA) dataset using gene set enrichment analysis. Overall, thirty-seven metabolites
were quantified in TETs, including acetylcholine that was not previously detected in other non-
endocrine cancers. Metabolite-based cluster analysis distinguished clinically indolent (A, AB, B1)
and aggressive TETs (B2, B3, TCs). Using MetPA, six KEGG metabolic pathways were predicted
to be activated, including proline/arginine, glycolysis and glutathione pathways. The activated
pathways as predicted by metabolite-profiling were generally enriched transcriptionally in the inde-
pendent TCGA dataset. Shared high lactic acid and glutamine levels, together with associated gene
expression signatures suggested a strong “Warburg effect”, glutaminolysis and redox homeostasis as
potential vulnerabilities that need validation in a large, independent cohort of aggressive TETs. If
confirmed, targeting metabolic pathways may eventually prove as adjunct therapeutic options in
TETs, since the metabolic features identified here are known to confer resistance to cisplatin-based
chemotherapy, kinase inhibitors and immune checkpoint blockers, i.e., currently used therapies for
non-resectable TETs.

Keywords: thymoma; thymic carcinoma; HRMAS 1H-NMR; metabolomics; biomarker

1. Introduction

Thymomas and thymic carcinomas (TC) are rare thymic epithelial tumors (TETs) [1].
Thymomas are biologically and histologically unique tumors that show variable degrees of
thymus-like features, are commonly associated with paraneoplastic autoimmune diseases
and are classified as WHO type A, AB, B1, B2, B3 (and rare other) thymomas. Although
all thymomas are now considered malignant, type A, AB and B1 thymomas generally
show low tumor stages, follow a more indolent clinical course and are henceforth called
“indolent TETs”, while type B2 and B3 thymomas are generally aggressive cancers. TCs,
among which thymic squamous cell carcinoma is the most common subtype, have no
thymus-like features, are only rarely associated with autoimmune diseases, and are histo-
logically indistinguishable from comparable carcinomas in other organs. Nevertheless, they
show significant differences on the genetic level, suggesting a unique pathogenesis, not only
of thymomas but TCs as well [1–5]. So far, targetable mutations have been observed in less
than 5% of TETs, leading to unsatisfactory treatment results in non-resectable tumors [1].
Type B2 and B3 thymomas, together with TCs are henceforth called “aggressive TETs”.
Re-programming of cellular energy metabolism to support continuous cell growth and pro-
liferation has emerged as a hallmark of many cancers [6,7]. The approach of metabolomics,
i.e., the study of a subset of small molecules derived from the global or targeted analysis of
metabolic profiles from biological samples [8] has the potential to become a valuable tool
in the diagnosis and risk prediction of various diseases, including cancer, and can even
reveal subtle abnormalities [9]. The importance of studying the metabolome to identify
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cancer biomarkers has already been demonstrated, and is an expanding field [10]. Specifi-
cally, studies of metabolites to identify cancer fingerprints were helpful to elucidate new
therapeutic targets, such as CD147/EMMPRIN and CD44 in prostate cancer [11–13] and
to predict prognosis [14]. The latter would be a major step forward for many patients
with thymomas exhibiting “aggressive histotypes” but low tumor stages (e.g., B2 or B3
thymomas in stage pT1a/Masaoka-Koga stages IIa or IIb) [15], in whom over- or under
treatment is a clinical issue, since it is currently unknown which patients would profit from
adjuvant radiotherapy [16].

In terms of current treatment strategies, platinum-based chemotherapy is the standard
first line systemic treatment if mostly curative resection with or without adjuvant radio-
therapy is not possible in patients with advanced or metastatic TETs [16–19]. In contrast,
no standardized salvage treatments are currently implemented if patients are resistant to
platinum-based therapies [19,20]. However, recent clinical trials provided some promising
data on the activity of new ‘target therapies’, particularly for patients with TCs [19]. These
drugs include multikinase inhibitors with anti-angiogenic potential (e.g., sunitinib [21] and
lenvatinib [22]), mTOR inhibitors (e.g., everolimus [23]) and immune checkpoint inhibitors
(ICIs) (e.g., blockers of PD-1 [24,25] and PD-L1 [26]). Since ICIs unpredictively induce se-
vere autoimmune adverse reactions in a high proportion of patients with TETs, particularly
thymomas, use of ICIs should be considered only in the context of clinical trials [27].

Recent technological progress in NMR spectroscopy and mass spectrometry (MS),
the two most accepted methods used to measure metabolites, has improved the sensitiv-
ity and spectral resolution of analytic assays. Although HRMAS 1H-NMR spectroscopy
has a lower sensitivity than MS, it has the advantage of allowing easier quantification of
metabolite signals, as no compound specific standards are required, and the technique
is non-destructive. The latter aspect is relevant under the perspective of an ideal clinical
workflow: as we outline below, conventional unfixed diagnostic needle biopies appear as
optimal tumor material for immediate HRMAS 1H-NMR-based metabolite profiling fol-
lowed by histopathology to determine conventional tumor characteristics in the very same
biopsy. These advantages of NMR outweigh the higher sensitivity of MS [28,29]. Metabolite
extracts, i.e., liquid samples from 2D cell culture, are not the only material accessible with
NMR. With “High Resolution Magic Angle Spinning” (HRMAS) 1H-NMR [30], the identifi-
cation and quantification of metabolites within intact tissue is feasible. Nevertheless, direct
measurement of tissue samples by NMR spectroscopy is hampered by the broadening
of the resonances due to effects, such as dipolar coupling, chemical shift anisotropy, and
differences of bulk magnetic susceptibility. If, however, the sample is spun at the “magic
angle” θ = 54.7◦, where θ is the angle between the sample tube and the external magnetic
field, two of these line broadening factors can be substantially reduced [30]. For the line
narrowing to be successful, the spinning rate has to be larger than the strength of the
underlying line broadening mechanism and is typically chosen as 5 kHz at 600 MHz [30].

Using this well-established [31–35] and validated [36] technology, we here compare
metabolite profiles of a spectrum of indolent and aggressive TETs and identify enriched
metabolic pathways through metabolite set enrichment analysis (MSEA). Since we inves-
tigate a rare form of cancer with only a small cohort of tumors available for analysis and
no independent cohort of snap frozen tissue samples available for validation–implying
that MSEA may be vulnerable to false positive results—we combine metabolic profiling for
functional pathway elucidation with analysis of transcriptomic profiles of these pathways
in a large, independent cohort of TETs (the TCGA database). These data were used to check
whether the enriched pathways identified through metabolite profiling are accompanied
by a comparable enrichment of identical but transcriptome-based metabolic (KEGG) path-
ways. As alterations in the transcriptome of cancer cells often reflect changes in the genome,
transcriptional analysis can deliver information on the gene expression modifications of
the tumor and may help elucidate new therapeutic targets for rare tumors. This strategy
enabled us to include our new findings into already existing knowledge.
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Therefore, the aim of the present study was to identify metabolic profiles across the
major histological types of TETs and provide clues to new potential vulnerabilities of TETs.
From our results, we conclude that validation of our findings in prospective studies with
optimally obtained tumor material is warranted.

2. Materials and Methods
2.1. Patients and Tissue Samples

Patient characteristics are summarized in Table 1. Samples were classified according
to WHO criteria [1]. Where appropriate, thymomas were grouped as indolent thymo-
mas (WHO type A, AB and B1 thymomas) or aggressive TETs (B2 and B3 thymomas
and TCs). The study was approved by the local ethics committee (approval 2018-516N-
MA) at the Medical Research Center, Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany, and by the ethics committee of the Leibniz-Institut für Analytische
Wissenschaften—ISAS-e.V., Dortmund, Germany.

Table 1. Clinico-pathological characteristics of the 12 thymoma patients and 3 thymic carcinoma (TC)
patients, as well as 4 controls (non-neoplastic thymi, NT) studied here. Diagnosis: the histological
classification of thymomas (types A, AB, B1, B2, and B3) and TCs followed the World Health
Organization (WHO) [1]. Stage (I–IV): local tumor extension (I–III) and pleural spread (IVa) are given
according to the Masaoka-Koga classification [15]. Lymphocyte contents of tumor samples were
estimated in hematoxylin and eosin-stained representative histological sections as percentages of
nucleated cells (in 10% increments) as described previously [4]. [MG status: presence (+) or absence
(−) of Myasthenia gravis; N: number of cases; n.k.: not known].

Diagnosis N Age
(Years)

Sex
(M/F)

MG
Status

Stage
(I–IV)

Lymphocyte
Content (%)

Type A 1 77 M − n.k. 10

Type AB 3
(AB.1–AB.3) *

46
77
77

M
M
M

−
+
−

II
II
II

30
60
30

Type B1 1 72 M − III 90

Type B2 5
(B2.1–B2.5) *

75
73
51
72
73

F
F
M
F
F

+
+
−
−

n.k.

III
III
IVa
IVa
III

60
60
80
70
80

Type B3 2
(B3.1 and B3.2) *

80
58

F
M

−
−

I
II

10
20

TC 3
(TC.1–TC.3) *

75
69
78

M
M
M

−
−
−

III
II
II

10
10
10

NT 4
(NT.1–NT.4) *

27 **
42
39
20

M
M ***
F **
F *

−
−
+
+

90
90
90
90

* Annotation of individual cases as used in the text; ** NT.1: qPCR-based relative gene expression values of NT.1
were used to normalize respective gene expressions in thymomas, TCs and other thymuses; *** NTs with thymitis
(lymphofollicular hyperplasia).

2.2. Sample Preparation and Measurement Conditions for NMR

Until preparation, the samples were stored at −80 ◦C for NMR analysis. Preparation
of the samples was performed in a completely humidity free environment in a nitrogen
atmosphere at −10 ◦C [30]. These conditions were essential in order to prevent any possibil-
ity of water condensation due to humidity changes, which occurs when working in an open
environment on dry ice. After removing the tissue from −80 ◦C, it was kept at −10 ◦C for
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30 min to allow its temperature to adapt to that of the surrounding. Tumor tissue samples
were obtained using a 2-mm punch (PFM Medical, Cologne, Germany) so that samples
could fit into 33-µL disposable inserts (DIs) (Bruker, Rheinstetten, Germany) for the 4-mm
magic-angle spinning rotors. The tissue was weighed on a calibrated balance. Next, the
DIs were filled with a solution containing the internal standard 3-trimethylsilylpropionic-
2,2,3,3-d4-acid sodium salt (TSP) in D2O in order to calibrate the spectrum to 0.0 ppm.

NMR spectral acquisition was performed using a Bruker Avance III NMR spectrometer
equipped with a 14.1 T magnet at 278 K. Acquisition and pre-processing of NMR spectra
was performed under the control of a workstation with TopSpin 3.2 (Bruker BioSpin,
Karlsruhe, Germany). Two different 1H-NMR spectra were collected: a 1D 1H spectrum
providing quantitative metabolite data for statistical analysis, while 2D TOCSY and 2D
1H-13C HSQC experiments assisted in peak assignment and metabolite identification using
standard Bruker pulse programs. For 1D 1H spectra performed for each sample, a Carr
Purcell Meiboom Gill (CPMG) pulse sequence with 200 echoes was used to suppress the
macromolecular background. Solvent signal suppression was achieved by presaturation
during the relaxation delay (Frequency range 7 kHz, 16 K data points, relaxation delay
4 s, 128 scans, HRMAS rotation frequency 5 kHz). All spectra were processed using
an exponentially decaying window function with a line broadening of 0.3 Hz and the
baseline was automatically corrected. As already known, the TSP signal may be affected
by proteins or other macromolecules present in the samples, and as a result we used
the “Electronic REference To access In vivo Concentrations” (ERETIC) technique for the
calibration of sample spectra [37]. The spectral region between 0.8 to 10 ppm was analyzed
for metabolites and their relative concentrations (in mM) using the Chenomx NMR Suite 7.3
(Chenomx Inc., Edmonton, AB, Canada) based on its 600 MHz library. Chenomx NMR Suite
7.3 compares the integral of a known reference signal (e.g., TSP or formic acid) with signals
derived from a library of compounds containing chemical shifts and peak multiplicities.
In addition, the identification of selected metabolites was also cross checked from the
Human Metabolome Database (HMDB) and from the literature.

A sample of a 0.3%-TSP-solution in D2O was used as the ERETIC reference, which
was measured under the same conditions as the tissue samples. The reference signal
was calibrated with ERETIC, imported into the Chenomx-Software and all metabolite
concentrations were calculated in relation to this reference signal. From the resulting
relative concentrations, the absolute concentrations in the tissue sample were calculated
as follows:

Metabolite concentration =
mass (0.3% TSP in D2O in mg)× 0.003

molecular mass TSP (172.24g/mole)

× concentration of metabolite signal in Chenomx (mM)

concentration of TSP from ERETIC (mM)
× 106

mass of tissue (mg)

Statistical analyses were performed using the web server Metaboanalyst 5.0 (https://
www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml accessed on 9 March 2022) [38],
as well as R-scripts using the same procedures for a customized graphical representation,
where sample specific normalization allowed the manual adjustment of relative concentra-
tions based on biological inputs (i.e., volume, mass), and row-wise normalization allowed
the general-purpose adjustment for differences among samples. Prior to normalization,
described in detail in Section 2.3, imputing of missing values (set to zero in our raw data)
was performed using one fifth of the smallest value measured for the respective metabolite
in the sample set. Data transformation and scaling were accomplished using two different
approaches to make features more comparable: Raw data were scaled using mean-centering
and intensities in each spectrum were normalized to the sum of all metabolite concentra-
tions of a given sample to avoid the contribution of dilution effects.

https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
https://www.metaboanalyst.ca/MetaboAnalyst/ModuleView.xhtml
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2.3. NMR Related Statistical Analysis

Multivariate statistical analysis, namely sPLS-DA [39], was applied to the metabolomic
profile dataset to provide insights into the separations between the two groups. Since
the mainly water-soluble metabolites are diluted to different extents in different tissues
(typically due to different fat/lipid contents), normalization of metabolite concentrations
(amounts per weight of tissue) is necessary. This was achieved by dividing individual
metabolite concentrations by the sum of all metabolite values in the respective sample.
Mean centering was applied to remove the offset from the data. In this way, one gets a
reduced rank representation of the model and avoids numerical problems as a simpler
model can be fitted to the data. Additionally, data scaling was done after mean centering of
the data by dividing each value by the standard deviation of this metabolite concentrations
over all measured samples. This procedure ensures that each metabolite is treated equally
in the principal component analysis (PCA) disregarding absolute concentrations. More-
over, using normalized data without mean centering and scaling, AUC values obtained
from receiver operating characteristic (ROC) values [40] were calculated to verify which
metabolites had the highest sensitivity/specificity ratio for diagnosis. The aim of classical
ROC curve analysis is to evaluate the performance of a single feature, e.g., a metabolite,
as a biomarker (see below). To check whether there is a significant statistical difference
between the indolent and aggressive groups of TETs, a Welch two sample t-test was run on
the same data using the “t.test” module implemented in R 3.6.2 (http://www.r-project.org/
accessed on 9 March 2022).

2.4. MetPA Analysis of Metabolite Profiles for Metabolic Pathway Detection

To investigate whether identified metabolites represent a random sample of com-
pounds or reflect the enrichment of known metabolic pathways, the identified metabolites
and their concentrations were subjected to MetPA metabolic pathway analysis [41] using
Metaboanalyst 5.0 (Xia Lab @ McGill university, Montreal, QC, Canada) [38]. The output
of the MetPA analysis are KEGG pathways (henceforth called “KEGG metabolite-based
metabolic pathways” [41]), p-values that indicate the degree of enrichment of these path-
ways, and ‘impact-values’. “Impact” is a quantitative measure of the importance of an
individual metabolite in a given pathway: the higher the impact, the higher the func-
tional relevance of the respective metabolite [41]. p-values from MetPA are multiple
testing corrected [41].

2.5. Quantitative Real Time PCR

Total RNA was isolated from whole tissues using TRIzol reagent (Invitrogen Waltham,
MA, USA) and treated with DNase using DNA-free™ DNA Removal Kit (Thermofisher
scientific, Bremen, Germany) to remove any DNA contamination. mRNA was reverse tran-
scribed with RevertAid™ H Minus Reverse Transcriptase (Fermentas, Hamburg, Germany)
using the manufacturer’s protocol and the resulting cDNA was used for quantitative
PCR. This procedure is henceforth called qPCR, which was performed in duplicate on a
StepOnePlusTM TaqMan PCR System (ABI, Applied Biosystems, Borken, Germany) using
FAST SYBR Green master mix (ABI, Germany). Primer sequences and respective gene
names are available in Tables S1 and S2, respectively. Post-PCR analyses were carried out
automatically to check the dissociation or melting curves at the end of each PCR experiment
to exclude primer–dimers and to determine the specificity of the PCR reaction and resulting
product (Figure S1). The relative expression (RQ) of a given gene was calculated using
the ∆∆Ct method (also called 2ˆ-deltadelta Ct method) in relation to the expression of the
housekeeping gene, GAPDH. In some figures (e.g., Figures S2 and S3) relative expression
in thymic tumors in our “Own tumor cohort” is given as “fold change” normalized to the
relative expression in normal thymus. For this normalization, the mean relative expression
in the normal thymus NT.1 in Table 1 was used.

http://www.r-project.org/
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2.6. Gene Set Enrichment Analysis (GSEA)

For GSEA, the RNAseq TCGA raw data was obtained from cBioportal (https://
www.cbioportal.org) last accessed on 9 March 2022. The count data was transformed to
log2-counts per million (logCPM) using the voom-function from the limma package [42].
Differential expression analysis was performed using the limma package in R. The ranking
gene list was generated by sorting the results using the t-values obtained from differential
expression analysis (limma package). GSEA pathway analysis was done with R and
bioconductor using fgsea package [43] and the EnrichmentBrowser package [44] in R using
the pathway information from KEGG data base (https://www.genome.jp/kegg/pathway.
html) last accessed on 9 March 2022.

2.7. Transcriptomics Related Statistical Analysis

The statistical analyses of gene expression data were performed with GraphPad Prism
V6.0 (GraphPad Software Inc, La Jolla, CA, USA). Two-tailed student’s t-test and one-Way
ANOVA were applied when gene expression of the metabolism-related genes was altered
in different groups of thymic tumors in comparison to normal thymi. A subsequent Tukey’s
multiple comparisons test was used to compare variances, with p < 0.05 at a confidence
level of 95% (p < 0.05) being considered as significant.

3. Results

3.1. 1H NMR Spectroscopy Reveals 37 Metabolites in TETs

Analysis of 15 snap-frozen TETs using HRMAS 1H-NMR spectroscopy revealed a total
of 37 metabolites (Table S3), the concentrations of which are given in Figure 1. No single sam-
ple contained all 37 metabolites: 3 cases (all aggressive TETs) showed 33 metabolites, 2 cases
(1 indolent, one aggressive TET) showed 32 metabolites, 2 cases (1 indolent, 1 aggressive
TET) showed 31 metabolites, while 8 cases (3 indolent, 5 aggressive TETs) showed less
than 31 metabolites. Overall, more metabolites could be detected in the aggressive
TETs compared to the indolent TETs. A representative HRMAS 1H-NMR spectrum is
shown in Figure 2.

https://www.cbioportal.org
https://www.cbioportal.org
https://www.genome.jp/kegg/pathway.html
https://www.genome.jp/kegg/pathway.html
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Figure 1. Boxplots showing the concentrations (y-axis) of the 37 metabolites found in normal thymi 
(NT, n = 4), thymomas (A, AB, B1, B2, B3, n = 12) and thymic carcinomas (TC, n = 3). The black bars 
show the respective median of a distribution, while the yellow triangles show the respective aver-
age. Each box is drawn from the 25th to the 75th percentile. Please note that the scale of the y-axis 
was adapted to the concentration range and is therefore different among the different metabolites. 

Figure 1. Boxplots showing the concentrations (y-axis) of the 37 metabolites found in normal thymi
(NT, n = 4), thymomas (A, AB, B1, B2, B3, n = 12) and thymic carcinomas (TC, n = 3). The black bars
show the respective median of a distribution, while the yellow triangles show the respective average.
Each box is drawn from the 25th to the 75th percentile. Please note that the scale of the y-axis was
adapted to the concentration range and is therefore different among the different metabolites.
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Figure 2. Representative 1D HRMAS 1H-NMR spectrum of a B2 thymoma measured at a tissue tem-
perature of 4°C and referenced to the internal standard, TSP (3-trimethylsilylpropionic-2,2,3,3-d4-
acid sodium salt), full spectrum (upper left) and three expansions. Abbreviations: Ace: acetate, Ala: 
alanine, Asc: ascorbate, Asp: aspartate, Cho: choline, Cre: creatine, Eth: ethanolamine, For: formiate, 
Fum: fumaric acid, Glc: glucose, Glu: glutamate, Gln: glutamine, GSH: glutathione, GPC: glycer-
ophosphocholine; Glyc: glycine, His: histidine, Ile: isoleucine, Ino: inosin, Lac: lactate, Leu: leucine, 
Lys: lysine, Met: methionine, mIno: myo-inositol; Oxy: oxypurinol, PCho: O-phosphocholine, PE: 
O-phosphoethanolamine, Phe: phenylalanine; Pro: proline, Ser: serine, Succ: succinate, Tau: taurine, 
Tyr: tyrosine, Val: valine. 

3.2. Metabolic Profiles Are Closely Associated with WHO Histotypes 
Unsupervised cluster analysis of metabolite expression profiles of 14 of the 15 cases (from Ta-

ble S4) are shown in the heatmap in Figure 3. TCs and aggressive (B2 and B3) thymomas each form 
one group. A third group consists of the indolent thymomas (A, AB, B1). All TETs cluster separately 
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Figure 2. Representative 1D HRMAS 1H-NMR spectrum of a B2 thymoma measured at a tissue
temperature of 4 ◦C and referenced to the internal standard, TSP (3-trimethylsilylpropionic-2,2,3,3-
d4-acid sodium salt), full spectrum (upper left) and three expansions. Abbreviations: Ace: acetate,
Ala: alanine, Asc: ascorbate, Asp: aspartate, Cho: choline, Cre: creatine, Eth: ethanolamine, For:
formiate, Fum: fumaric acid, Glc: glucose, Glu: glutamate, Gln: glutamine, GSH: glutathione, GPC:
glycerophosphocholine; Glyc: glycine, His: histidine, Ile: isoleucine, Ino: inosin, Lac: lactate, Leu:
leucine, Lys: lysine, Met: methionine, mIno: myo-inositol; Oxy: oxypurinol, PCho: O-phosphocholine,
PE: O-phosphoethanolamine, Phe: phenylalanine; Pro: proline, Ser: serine, Succ: succinate, Tau:
taurine, Tyr: tyrosine, Val: valine.

3.2. Metabolic Profiles Are Closely Associated with WHO Histotypes

Unsupervised cluster analysis of metabolite expression profiles of 14 of the 15 cases
(from Table S4) are shown in the heatmap in Figure 3. TCs and aggressive (B2 and B3) thy-
momas each form one group. A third group consists of the indolent thymomas (A, AB, B1).
All TETs cluster separately from non-neoplastic thymi.

One striking finding was the higher concentrations of specific metabolites in the ag-
gressive, i.e., B2 and B3 thymomas compared to TCs, including proline, alanine, oxypurinol,
choline and cysteine (Figure 1). Low levels of cysteine were characteristic of TCs, although
single B2 and B3 thymomas showed low levels as well. Taking the similarity between B3
thymomas and TCs in terms of their shared dominance of tumor cells over rare T cells into
account (Table 1), the much lower levels of several metabolites in TCs (e.g., alanine, glu-
tamine, glutathione, proline, serine and threonine) are particularly remarkable, since they
are likely related to the actual tumor cells and may have tumor biological relevance. For
example, low levels of alanine have been observed in various cancer types [45], to which
we can now add TCs. While the mechanisms leading to low alanine levels are poorly
understood [45], they were associated with apoptosis resistance in melanoma [46] and high
aggressiveness in various non-thymic carcinomas [45], which fits well with the particularly
high apoptosis resistance and clinical aggressiveness of TCs [1,3]. Interestingly, there was
no metabolite with a consistently higher level in TCs than in B2 and B3 thymomas; even
lactic acid levels that were higher in aggressive (B2, B3 and TC) than indolent TETs were
lower in TCs than in B2 and B3 thymomas (Figure 1). Furthermore, succinic acid and
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L-isoleucine were found in 13 and 11 samples, respectively, but were not detectable in any
non-neoplastic thymus.
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Figure 3. Heatmap with identified metabolites in thymic epithelial tumors (TETs): Hierarchical
clustering analysis (HCA) was performed on 37 standardized, log2-transformed values of metabolites
from 14 of the 15 TETs (1 A, 3 AB, 1 B1, 5 B2, 2 B3 thymomas and 3 thymic carcinomas, TC) and
4 non-neoplastic thymi (NT). One AB thymoma was exempt from the analysis since all metabolite
concentration were extremely low or even zero, resulting in graphical over representation of this
sample. To create the heatmap, the values of the raw data from Table S4 were log2 transformed and
then the value of each metabolite was standardized (subtracted) with the respective mean value of
the log2 transformed values of the normal thymi. Note that aggressive thymomas (B2, B3 thymomas)
and TCs form distinct clusters. Note: t1, t19, t3, etc. are the internal labels of the samples as used in
the excel sheet with the metabolite levels as provided in the Supplement Materials (Table S4).

3.3. HRMAS 1H-NMR Analysis Discriminates ‘Indolent’ from ’Aggressive’ Groups of TETs

When we compared the clinically important groups of indolent (n = 5) and aggressive
(n = 10) TETs, only 7 of the 37 metabolites showed significantly different levels (p < 0.05;
Welch two sample t-test) (Table S3 and Figure S4). Higher levels of cysteine and myo-
inositole were typical of indolent TETs, while higher levels of alanine, glutathione, inosine,
lactic acid and oxypurinol were characteristic of the group of aggressive TETs.



Cancers 2022, 14, 1564 11 of 22

To investigate whether a broader spectrum rather than a small set of metabolites was
more suitable to separate indolent from aggressive TETs, a “scarce partial least square-
discriminant analysis” (sPLS-DA) was calculated. As shown in Figure 4, high concen-
trations of cysteine, myo-insositol, glycine, glutamic acid and glucose contributed to the
delineation of the group of indolent TETs, while the group of aggressive TETs was charac-
terized by higher concentrations of alanine, glutathione, inosine, lactic acid, ascorbic acid,
creatine, inosine, ethanolamine, fumaric acid, glutamine, isoleucine, phosphoethanolamine,
proline, serine, tyrosine, phosphocholine, phenylalanine and glycerophosphocholine. Seven
metabolites, namely alanine, cysteine, glutathione, inosine, lactic acid, myo-inositol and
oxypurinol showed significantly different levels between indolent and aggressive groups
of TETs (p < 0.05) (Table S3), and nine metabolites (creatine and glutamine in addition to
the aforementioned 7 metabolites) showed an area under the curve of >0.8 when receiver
operating characteristic (ROC) curves [40] were generated (Table S5).

3.4. HRMAS 1H-NMR Analysis Reveals Differentially Activated Metabolic Pathways in TETs

The complete set of metabolites (Table S4) of the 15 TETs was subjected to a MetPA
metabolic pathway analysis [41] to determine whether the identified metabolites reflect
the activation of distinct KEGG metabolic pathways. As shown in Table 2, MetPA analysis
revealed six “KEGG metabolite-based metabolic pathways” that were significantly activated
in the group of aggressive TETs. In functional terms, these pathways may have an impact
on trans-sulfuration, homocysteine and tricarboxylic acid (TCA) cycles, the management of
reactive oxygen species (ROS) and glycolysis (Table 2), i.e., on cellular processes relevant to
tumor biology. Surprisingly, MetPA analysis failed to reveal a single activated metabolic
pathway in the group of indolent TETs.

Table 2. “KEGG metabolite-based metabolic pathways” identified by the MetPA algorithm using
37 metabolites detected in the groups of indolent (A, B1 and AB thymomas) and aggressive (B2, B3
thymomas and thymic carcinomas, TC) groups of thymic epithelial tumors (TETs). The first column
lists the “key metabolite” associated with each enriched metabolic pathway (columns 2). The assumed
biological function associated with the given pathway is listed in column 3. p-values represent the dif-
ferences in enrichment of the MetPA-derived “metabolite-based metabolic KEGG pathway” (column 2)
between indolent and aggressive groups of TETs. “Impact” is a quantitative measure of the importance
of an individual metabolite in a given pathway: the higher the value, the higher the impact and the
functional relevance of the individual metabolite in the respective pathway [41].

Key Metabolite MetPA-Derived KEGG Pathway Assumed Function p-Value Impact

Cysteine Cysteine/methionine metabolism Transulfuration Pathway <0.001 0.22

Glycine Glycine, serine and threonine metabolism Homocysteine cycle 0.012 0.46

Glutathione Glutathione metabolism Redox state 0.013 0.37

Alanine Alanine, aspartate and
glutamate metabolism TCA cycle 0.022 0.54

Lactate Pyruvate metabolism Glycolysis 0.029 0.14

Glutamine Glutamine/glutamate metabolism Glutaminolysis 0.032 0.50
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Figure 4. (a) sPLS-DA scores plot (3 components) showing clustering between indolent (group A)
and aggressive (group B) thymic epithelial tumors (TETs). 95% confidence intervals are given in
red (indolent group) and turquois (aggressive group). Top: Component 1 against component 2.
Bottom: Component 1 against component 3. (b) sPLS-DA loadings plots for components 1 (top),
2 (middle) and 3 (bottom) showing upregulation and downregulations of metabolites for indolent
TETs (upregulation is shown in red, downregulation in blue). The naming of the triangles and dots
refers to the different tumor cases given in Table 1, for example B2.3 means the third B2 thymoma
case from the top as listed in Table 1.

3.5. Metabolic Gene Set Enrichment Analysis of the TCGA Transcriptomic Dataset

To investigate whether the KEGG metabolite-based metabolic pathways (Table 2)
were reflected by corresponding enriched KEGG pathways at the transcriptomic level
(henceforth called “KEGG transcriptome-based metabolic pathways”), we used gene set
enrichment analysis (GSEA) [43] and the DAVID pathway overrepresentation tool [47] to
interrogate the transcriptomic profiles of the TCGA thymic cancer database (CbioPortal,
https://www.cbioportal.org accessed on 9 March 2022) that contains 10 type A, 48 AB,
12 B1, 25 B2, and 10 B3 thymomas, as well as 10 TCs [4]. The comparison between the
two groups of indolent (A, AB, B1 thymomas) and aggressive TETs (B2 and B3 thymomas
and TCs) by ranking genes according to their t-values for gene set enrichment analysis
(GSEA [43]) revealed—in accordance with findings in Table 2—that pathways related to

https://www.cbioportal.org
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lactate (glycolysis), alanine (the TCA cycle and the alanine/aspartate/glutamate path-
way) and gluthathione showed significant or close to significant enrichment, while the
cysteine/methionine pathway (Figure 5) and the glycine/serine/threonine pathway (not
shown) were not significantly enriched. Due to the paucity of associated genes (n = 5),
GSEA was not applicable for the D-Glutamine/D-Glutamate pathway. Since MetPA analy-
sis (Table 2) did not identify pathways linked to the “high-level metabolites“, oxypurinol
and proline (Figure 3), we selected the KEGG purine metabolism pathway (hsa00230) for
oxypurinol (although hsa00230 does not explicitly list oxypurinol as metabolite), and the
arginine and proline pathway (hsa00330) for proline as hypothetical candidates for GSEA.
While the purine pathway was significantly enriched (FDR = 0.012), the arginine/proline
pathway showed only a trend (FDR = 0.11) (Figure 5).
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Figure 5. Gene set enrichment analysis (GSEA) of the indicated KEGG pathways comparing transcrip-
tomic profiles of the group of indolent (A1, AB, and B1 thymomas) and aggressive thymic epithelial
tumors (TETs) (B2 and B3 thymomas and thymic carcinomas, TC) as extracted from the TCGA,
PanCancer Atlas dataset. Corresponding “key metabolites” identified in the HRMAS 1H-NMR-based
analysis (Table 2) are given in red. Alanine as “key metabolite” was assumed to be functionally
linked to two KEGG pathways: The TCA cycle and the alanine/aspartate/glutamate pathway. In
addition to the Hsa00270 Cysteine/methionine pathway, the Hsa00260 Glycine/serine/threonine
pathway (not shown) was also not enriched. Of note, the selection of the purine metabolism pathway
in relation to high oxyurinol levels is only a hypothesis, since it is unknown whether oyxpurinol is
an endogenous metabolite of purine metabolism or derived from an unknown food ingredient (we
excluded allopurinol as a source of oxypurinol in the respective patients through clinical history).
FDR, false detection rate.

To check the GSEA results with an alternative method, we next investigated the TCGA
TET cohort with the DAVID annotation database provided at https://david.ncifcrf.gov
(last accessed on 9 March 2022.) to identify pathway overrepresentation [47]. This analysis
was focused on 90 genes mentioned in (Table S2) selected from the “KEGG transcriptome-
based metabolic pathways” from Figure 5 on the basis of their most differential expression
between indolent and aggressive TETs. Of note, the 90 genes included 53 genes that
showed significantly different expression (with p < 0.05) between individual thymoma

https://david.ncifcrf.gov
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types with similar lympho-epithelial composition but different (indolent versus aggressive)
biological behavior (as exemplified by the comparison between type A and B3 thymomas)
(Table S7). This established strategy considers the fact that the variable abundance of
non-neoplastic lymphocytes in the various TET histotypes (Table 1) can obscure molecular
differences between them [4]. The overrepresented pathways identified in this way are
given in Table 3 and overlap with the significantly enriched pathways found through GSEA
(Figure 5). In addition, the arginine/proline pathway and–at lower significance levels–the
cysteine/methionine and the glycine/serine/theronine pathways were also found to be
overrepresented in the group of aggressive TETs (Table 3).

Table 3. “KEGG transcriptome-based metabolic pathways” retrieved from the TCGA thymic epithe-
lial tumor (TET) database [4] applying the DAVID overrepresentation analysis tool to 90 genes with
significantly (p < 0.05) different expression between indolent TETs (A1, AB, and B1 thymomas) and
aggressive TETs (B2, B3 thymomas; TCs).

Key
Metabolite(s) KEGG Pathways KEGG-ID p-Value Fold Enrichment FDR Genes *

Glutathione Glutathione metabolism hsa00480 1.3 × 10−9 25.3 1.9 × 10−8
GSTK1, GCLC, GGT6,

GPX4, ANPEP, IDH1, 2,
MGST1, MGST2, LAP3

Alanine Alanine, aspartate and
glutamate metabolism hsa00250 1 × 10−7 28.7 1.1 × 10−11

ALDH4A1, ADSL,
FOLH1, GOT1,

RIMKLA, NIT2, ASS1

Proline Arginine and
proline metabolism hsa00330 2.9 × 10−11 28.7 5.8 × 10−10

ALDH4A1, GOT1,
P4HA1, NOS2, NOS3,
ARG1, PYCR1, LAP3,
PRODH, ALDH9A1

Glucose and
lactic acid Glycolysis/Gluconeogenesis hsa00010 5.3 × 10−6 15 3.9 × 10−5

HK3, PKM, ALDOA,
FBP1, PCK2, HK1,

ALDH9A1, SLC2A1,
SLC16A3, SLC16A14

Oxypurinol PurineMetabolism ** hsa00230 4.8 × 10−4 89.6 3.2 × 10−3

NT5C3A, ADCY10,
ADSL ***, PKM, PNP,

IMPDH1, NUDT2,
HPRT1, DCK, GART

Cysteine Cysteine and
methionine metabolism hsa00270 2.1 × 10−3 15.1 1.1 × 10−3

SDS, GOT1,
MDH1, CBS,

SLC1A5, SLC3A2

Glycine Glycine, serine and
threonine metabolism hsa00260 2.3 × 10−3 14.7 1.1 × 10−3 SDS, SHMT2,

CBS, PSPH

* Representative genes for each metabolic pathway are highlighted in bold. ** The assignment of Oxypurinol to
“purine metabolism” is a hypothesis, since it is unknown, whether oyxpurinol is a metabolite that is involved
in the purine pathway or is the derivative of an unknown food component other than allopurinol that was
excluded here as source of oxypurinol through clinical history. *** increased transcription of ADSL (encoding
adenylosuccinate lyase) in B2 and B3 thymomas.

Finally, we investigated whether the TCGA cohort (n = 115) might be representative of
our TET cohort analyzed by NMR (n = 15). To this end, we used qPCR to quantify transcripts
of 28 genes selected from the identified metabolic pathways (Table 3) in whole RNA
extracts of 51 TETs from Mannheim (including the 15 cases analyzed by NMR) as described
previously [3]. Since the relative expression profiles of up to 26 of the 28 metabolism-
associated genes were similar in both cohorts (Figures S2 and S3, Table S6), we assume that
the findings obtained with the TCGA dataset are of relevance to our cohort of TETs.

4. Discussion

This first ever metabolomics study of TETs using HRMAS 1H-NMR has provided four im-
portant findings: (1) 37 metabolites were detected in the major TET subtypes, (2) metabolite-
based cluster analysis distinguished the three clinically relevant TET subgroups-indolent
and aggressive thymomas and TCs, (3) metabolite-based pathway analysis gave hints
to activated metabolic KEGG pathways shared between aggressive thymomas and TCs,
and (4) differentially activated metabolic pathways identified through metabolite profiling
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were generally also enriched at the transcriptomic level in the groups of indolent versus
aggressive TETs in the TCGA TET dataset [4].

4.1. General versus TET-Specific Metabolites

The 37 metabolites detected here in a spectrum of TETs compares well with the number
of metabolites (9–34) reported in previous studies of non-thymic cancers [48,49], including
42 metabolites detected recently using the same HRMAS 1H-NMR technique in a cohort
of breast cancers [50]. Although breast cancers in contrast to TETs are mostly hormone
responsive adenocarcinomas with very different genetic aberrations, the overlap of detected
metabolites between the two cancer types was extensive (Figure 6). This suggests that
most detected metabolites are involved in cancer-related processes, and are not specific to
a particular organ or tumor type. The former is exemplified by the higher levels of lactic
acid in aggressive thymomas and TCs, which likely reflect the switch in energy metabolism
known as the Warburg effect that is observed in many cancers [51]. Similarly, high levels of
glutathione, one of the key regulators of the cellular redox state, are also typically found
in a variety of aggressive cancers and associated with tumor progression and increased
resistance to chemotherapy [52]. On the other hand, the low levels of cysteine and myo-
inositol observed in the group of aggressive TETs are also typical of aggressive non-thymic
solid and hematopoietic cancers and have been linked to alterations in the redox state and
oncogenic PI3K/AKT signaling, respectively [53,54]. In addition, low levels of cysteine
and glutamic acid in the aggressive TETs fit very well with the observed elevated levels of
glutathione, because both metabolites are glutathione precursors.
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Figure 6. Venn diagram illustrating the metabolite distribution in breast cancer [48], thymic epithelial
tumors (TETs) (this study) and lung cancer [55]. Note that most detected metabolites in TETs
were also present in lung and breast cancers. Only acetylcholine (ACh) and oxypurinol (OXP) are
‘unique’ metabolites of TETs. The ‘unique’ metabolites of squamous cell (SCC) lung carcinoma and
adenocarcinoma (adeno) of the lung were pyruvate (PYR) and taurine (TAU), respectively.

In contrast to several non-specific metabolic features detected in TETs, acetylcholine
and oxypurinol are potentially TET-specific metabolites since they were undetectable in
breast and lung cancers (Figure 6). The detection of appreciable levels of acetylcholine is in-
triguing since acetylcholine receptor subunits are expressed in the tumor cells of thymomas,
particularly if associated with Myasthenia gravis (MG) [56]. Accordingly, sufficiently pow-
ered, future metabolite profiling analyses of myasthenic versus non-myasthenic TETs might
open new insights into the enigmatic pathogenesis of TET-associated MG. Why acetyl-
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choline was detected in TETs but not in breast and lung cancers is unclear. Acetylcholine
levels in tissues are regulated by the interplay of synthesis, degradation and transport [57].
Therefore, we analyzed TCGA transcriptomic data sets of TETs, breast and lung cancers
(CBioPortal, http://www.cbioportal.org/ accessed on 9 March 2022) for the expression
of the two key synthesizing enzymes (choline acetyltransferase [CHAT] and carnitine
acetyltransferase [CRAT]), the key degrading enzyme (acetylcholine esterase [ACHE]) and
several transporters (including the organic cation transporters, OCT1-3 [SLC22A1-3]) but
did not find a unique RNA expression pattern that could easily explain the higher levels in
TETs (Figure S5) [58]. To validate and eventually explain the observed difference, future
studies could simultaneously quantify acetylcholine in TETs, breast and lung cancer biop-
sies using HRMAS 1H-NMR, as well as a complementary technique (e.g., HPLC) to exclude
biases due to the technique. This, however, is unlikely since breast tumors were analyzed
using the identical HRMAS 1H-NMR technique [30] and no acetylcholine was detected.
In addition, acetylcholine metabolizing enzymes and transporters could be analyzed at
the protein level, since their expression and thus their function may not exclusively be
regulated through transcription [58,59].

The occurrence of oxypurinol in aggressive TETs (Figure 1) is even more enigmatic.
While careful anamnesis excluded allopurinol medication as a source of oxypurinol in
our patients [60], high natural levels of intratumorous oxypurinol have not been reported
thus far, and there is no known physiological connection between oyxpurinol and the
purine metabolism. Nevertheless, we observed enrichment of the KEGG purine pathway
in the group of aggressive TETs (Figure 5) with overexpression of three purine metabolism-
associated genes, ADSL, HPRT1 and IMPDH1 (Table 3) [61,62]. Interestingly, ADSL one of
the enzymes involved in purinosome complex formation and de novo purine synthesis [63]
showed high expression in our cohort of B2 and B3 thymomas but not in TCs (Table 3;
Figure S2). Since ADSL is a known oncogenic driver in several cancers and a potential pre-
dictive biomarker for response to the purine antimetabolite, 6-mercaptopurine in preclinical
models [64], a more in-depth analysis of ADSL, especially in B2 and B3 thymomas appears
warranted under a therapeutic perspective. In summary: although purine metabolism
appears as a potentially interesting oncogenic pathway in TETs (that needs validation in
independent cohorts of TETs), it remains enigmatic how the oxypurinol detected in aggres-
sive TETs is generated and whether it is formed inside the tumors themselves. However,
since purine metabolites are constituents of tumor-derived exosomes [65] and oxypurinol
was recently detected in the blood of non-thymic cancer patients [66], future studies should
address the levels of oyxpurinol in TETs and the blood of TET patients with fully monitored
medication. Furthermore, future in vitro studies may eventually help to clarify the source
of oxypurinol. For instance, if long-term production of oxypurinol could be observed
in ex-vivo TET cultures, this would argue for a natural source, while rapidly declining
oxypurinol levels in vitro would challenge this argument.

4.2. Metabolite Profiles Meet KEGG Pathway and Gene Expression

Although the relatively low sensitivity of HRMAS 1H-NMR [30] explains the detection
of only 37 metabolites, and not all 37 found in each investigated TET, the metabolite spec-
trum identified was sufficient to distinguish the three different TET groups by unsupervised
cluster analysis: (i) the prognostically favorable type A, AB and B1 thymomas that can
mostly be cured by surgery; (ii) type B2 and B3 thymomas that often require (neo-)adjuvant
treatment concepts, have an unfavorable prognosis and commonly show paraneoplastic
MG; and (iii) the often lethal TCs that are mostly unrelated to autoimmunity [1].

Furthermore, on the basis of the 37 metabolites, the MetPA algorithm was able to
identify differentially activated metabolic pathways in the clinically most relevant group of
aggressive TETs, i.e., B2 and B3 thymomas and TCs. The possible relevance of these differ-
entially activated pathways was underpinned through gene set enrichment analysis (GSEA)
of the independent TCGA TET dataset [4]. By GSEA, the glycolysis/gluconeogenesis path-
way (together with the citrate/TCA cycle) was the most strongly enriched pathway in

http://www.cbioportal.org/
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aggressive TETs (Figure 5). This is in line with changes expected in conjunction with an
active Warburg effect-high levels of lactic acid, and known preferential expression of the
glucose transporter GLUT1 in TCs and B3 thymomas [67]. While these features underlie
the high power of 18F-fluorodeoxy-glucose-based positron emission tomography to predict
aggressive TETs [68], they are again not specific for TETs but also encountered in many non-
thymic aggressive tumors [69]. The same low specificity may also apply to the observed
enrichment of the TCA cycle pathway and the alanine/aspartate/glutamate metabolic
pathway (Figure 5) that are both typical of aggressive cancers [70].

4.3. Therapeutic Perspectives

Due to the differential expression of metabolites in TETs versus normal thymi (Figure 1),
pathways related to proline, cysteine, glutathione, lactate and glutamine appear as potential
therapeutic targets in refractory TETs, in which targeted treatments have remained elusive [71].

In agreement with the high levels of proline in aggressive TETs (Figure 3), we observed
differential transcription of the PYCR1 gene encoding Pyrroline-5-carboxylate reductase
1 in the TCGA dataset (Tables 3 and S7 and Figure S2). PYCR1 catalyzes the last step of
proline biogenesis [72]. Since proline has a major impact on energy metabolism, glycolysis,
the redox state, apoptosis and proliferation of tumor cells, PYCR1 has been suggested
as a therapeutic candidate target in many cancers [72–74] to which we now can add
aggressive TETs. PYCR1-targeting agents that block proline synthesis are in the early stages
of development [75].

Low levels of cysteine (a glutathione precursor), in conjunction with high levels of
glutathione (Figure 1) observed in TETs are reminiscent of the altered redox landscape re-
ported in other cancer types that promotes tumor progression and treatment resistance [76].
This redox state is characterized by increased levels of both reactive oxygen species (ROS)
and anti-oxidants like glutathione, thereby maintaining redox homeostasis and promoting
tumor cell survival [77]. Drugs tipping the redox balance towards increased oxidative
stress or towards reduced glutathione levels and synthesis, either directly or through
cysteine starvation [78] are currently being developed [79] and appear worth testing in
future studies.

High lactate levels (Figure 1), the enrichment of the glycolysis pathway (Figure 5),
including overexpression of hexokinases (HK1, HK3) and pyruvate kinase (PKM) (Table 3),
as well as the high protein expression of the glucose transporter, GLUT1 [67] all hint to an
active ‘Warburg effect’, and provide promising potential therapeutic targets for aggressive
TETs [80]. Small molecule inhibitors to GLUT1, hexokinases and PKM2 are already avail-
able for preclinical testing [80]. Finally, a prominent ‘Warburg effect” implies that the cancer
cells have a critical need to fuel the TCA cycle with glutamate through glutaminolysis for
the synthesis of vital cellular constituents, including nucleotides and glutathione [79]. High
levels of glutamine (Figure 1) and an activated glutamine/glutamate pathway (Table 3)
suggest that this pathway is functional in aggressive TETs. Therefore, inhibitors of glu-
taminolysis and of the downstream TCA cycle appear as rational therapeutic strategies. In
fact, Glutaminase (GLS) inhibitors, such as CB-839, an orally available, potent, and spe-
cific inhibitor of GLS, have shown anti-tumor efficacy. CB-839 disrupts the conversion of
glutamine to glutamate and alters a number of downstream pathways, including the TCA
cycle, glutathione production, and amino acid synthesis [81]. Therapeutically targeting
the TCA cycle function could also be an attractive strategy to treat TETs. Targeting IDH1
(isocitrate dehydrogenase 1) that is overexpressed in aggressive TETs (Tables 3 and S6)
using IDH1 Inhibitors such as GSK864 as reported in preclinical tests in glioblastomas
could be a new therapeutic option, especially when used in combination with inhibitors of
RTK-PI3K signaling [82].

4.4. Limitations of the Study

Major limitations of our study are the comparatively small sample size, the hetero-
geneity of histotypes and the lack of an independent set of TETs to validate our HRMAS
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1H-NMR results. In particular, we are aware of the fact that that our results must be
interpreted cautiously, since MESA and GSEA analyses are prone to yield false positive
results in the face of relatively low case numbers. These weaknesses are related to the
extreme rarity of TETs, particularly TCs [1], and the even rarer chance to retrieve native
tumor material for fast snap-freezing that is a prerequisite for HRMAS 1H-NMR. In future
studies, core needle biopsies may be a promising approach to prospectively obtain tumor
material of “near-to-in-vivo” quality. Although the combined use of innovative metabolite
profiling in a small cohort of TETs and the analysis of transcriptional profiles of the same
and related pathways in our own cohort of TETs, as well as the large, independent TCGA
cohort of high quality TETs gave us new insights into their metabolic characteristics, it
is necessary to validate our preliminary results in prospective, much larger collections of
optimally retrieved tumor material (e.g., through core needle biopsies).

5. Conclusions

We conclude that HRMAS 1H-NMR is a valuable tool that provided new insights
into the tumor biology of TETs, particularly the heterogeneity of their metabolic features
that segregated well with clinical risk groups, i.e., indolent and aggressive thymomas and
thymic carcinomas. While transcriptomic approaches helped validate most of the activated
pathway that were identified by metabolite-based profiling of TETs, HRMAS 1H-NMR
also identified “TET-specific” metabolites (such as acetylcholine), whose occurrence could
not be readily explained by transcriptomic data. Therefore, we conclude that HRMAS
1H-NMR will deepen our understanding of TETs by revealing features that may be missed
when using genomic techniques alone. The metabolite-derived findings reported here
suggest that metabolic pathways that are commonly altered in many other cancer types
are also affected in TETs, as exemplified by an active Warburg effect and glutaminolysis.
Such abnormally activated pathways can compromise treatments (e.g., chemotherapy
and immunotherapies) that are also currently used in inoperable TETS but have limited
efficacy [83–85]. Therefore, the current findings–if confirmed in larger, independent cohort
s of TETs–support the new perspective that targeting specific metabolic vulnerabilities of
TETs may have the potential to improve the efficacy of current standard therapies and the
prognosis of patients with aggressive TETs.
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