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Abstract: Chronic lymphocytic leukemia (CLL) is the most common blood malignancy with multiple
therapeutic challenges. Cold physical plasma has been considered a promising approach in cancer
therapy in recent years. In this study, we aimed to evaluate the cytotoxic effect of cold plasma or
plasma-treated solutions (PTS) on hematologic parameters in the whole blood of CLL patients. The
mean red blood cell count, white blood cell (WBC) count, platelet and hemoglobin counts, and
peripheral blood smear images did not significantly differ between treated and untreated samples in
either CLL or healthy individuals. However, both direct plasma and indirect PTS treatment increased
lipid peroxidation and RNS deposition in the whole blood of CLL patients and in healthy subjects. In
addition, the metabolic activity of WBCs was decreased with 120 s of cold plasma or PTS treatment
after 24 h and 48 h. However, cold plasma and PTS treatment did not affect the prothrombin time,
partial thromboplastin time, nor hemolysis in either CLL patients or in healthy individuals. The
present study identifies the components of cold plasma to reach the blood without disturbing the
basic parameters important in hematology, confirming the idea that the effect of cold plasma may
not be limited to solid tumors and possibly extends to hematological disorders. Further cellular and
molecular studies are needed to determine which cells in CLL patients are targeted by cold plasma
or PTS.

Keywords: chronic lymphocytic leukemia; CLL; hematologic parameters; plasma medicine; reactive
oxygen species; reactive nitrogen species; whole blood

1. Introduction

Chronic lymphocytic leukemia (CLL) is the most common hematologic malignancy
worldwide [1,2], which is characterized by the accumulation of monoclonal CD5+ mature
B cells in the bone marrow, peripheral blood, and lymphoid organs, such as lymph nodes,
and spleen [2,3]. Increasing the number of mature B cells in the blood reduces the ability of
the bone marrow to produce red blood cells (RBCs) and platelets (PT) in CLL patients [4].
According to reported evidence, there is a relationship between induction of oxidative
stress and antileukemia chemotherapeutic agents [5–7]. Leukemic cells have increased
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basal oxidative stress, making them vulnerable to chemotherapeutic drugs that further
elevate ROS levels [8–10]. There is no doubt that chemotherapy drugs cause inevitable
damage to normal human cells. Therefore, the development of new avenues, such as gas
plasma technology, may be promising for CLL treatment.

In recent decades, scientists have proposed the ROS-generating action as the primary
treatment modality of gas plasma technology, as this partially ionized gas generates a
plethora of reactive oxygen and nitrogen species (ROS/RNS) simultaneously [11]. Besides
the treatment of chronic wounds, which has entered clinical practice [12], the opportunity
of cancer treatment came into researchers’ focus in the past years [13]. It has been demon-
strated that ROS/RNS produced by cold plasma can stimulate cellular signaling pathways,
including JNK, p38 [14], and p53 [15], and can promote mitochondrial dysfunction and
caspase activation, ultimately leading to apoptosis or non-apoptotic cell death [16,17].
Another mode of action increasingly investigated is the generation of plasma-treated solu-
tions (PTS) [18]. These plasma-oxidized liquids are dominated by the long-lived oxidation
products of the initially short-lived reactive species. Among the long-lived oxidants are
hydrogen peroxide (H2O2), and nitrite (NO2

−) and nitrate (NO3
−), which have been

attributed synergistic effects in anticancer activity [19].
Preclinical reports are promising that cold plasma or PTS can effectively induce cell

death in various types of solid tumors, including melanoma [20–22], glioblastoma [23],
breast [24], lung [25], gastric [26], prostate [27], and colon cancers [28], partially in a selective
manner. However, successful clinical application of cold-plasma-treated tumors showing
an evident decline of tumor mass is still limited to case reports of head and neck cancer
palliation [29], and an immunological dimension of this treatment has been suggested [30].
Apart from in vitro reports, the role of plasma medicine in hematological malignancies has
not been reported.

To this end, we exposed the whole blood of healthy donors and of CLL patients to
cold plasma or to PTS ex vivo. While we did not investigate leukemia cells directly, we
identified cold plasma and PTS components to reach the blood without disturbing main
hematological parameters, being the first proof-of-concept studies on the adverse effects of
cold plasma and PTS in this matrix, demonstrating the general feasibility of this approach.

2. Materials and Methods
2.1. Patients and Controls

Nine untreated CLL patients (6 males and 3 females; mean age of 63.4 ± 12.9 years)
and nine sex- and age-matched healthy control subjects referred to the Hematology and
Oncology Clinic of Imam Khomeini Hospital in Sari affiliated with Mazandaran University
of Medical Sciences between January 2020 to January 2021 were included in this study.
Written consent letters were collected from all participants, and this research was accepted
by the ethics committee of the Mazandaran University of Medical Sciences (ethical ap-
proval code: IR.MAZUMS.REC.1398.6889). The patients’ ages ranged from 48 to 72 years,
and most patients were male (66.6%). The CLL patients were diagnosed and selected
by a hematology–oncology specialist based on white blood cell count, cell morphology,
immunophenotyping analysis, clinical symptoms, and microscopic observations of pe-
ripheral blood smear according to the standards outlined by the WHO [31]. All patients
and healthy participants included in this study had no history of receiving chemotherapy
or immunosuppressive drugs, or of having autoimmune diseases or other blood malig-
nancies. In addition, they had not been infected with any chronic viral diseases, such as
the Epstein–Barr virus (EBV), human betaherpesvirus 5/cytomegalovirus (CMV), human
immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), or any
congenital or acquired immunodeficiency identifiable upon anamnesis (Table 1). Venous
blood was drawn. Samples were divided into two tubes under sterile conditions. One was
used for complete blood counts with ethylenediaminetetraacetic acid (EDTA as potassium
salt spray-coated on the blood tubes) as an anticoagulant. The other was collected and
mixed at a 1:9 ratio with 3.2% trisodium citrate for decalcification. The samples were
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then centrifuged at 1000× g to obtain supernatants (blood plasma) not containing blood
cells. Finally, prothrombin time (PT) and partial thromboplastin time (PTT) were measured
as per standard hematology guidelines to assess the ability of blood plasma factors to
perform coagulation.

Table 1. Main hematological characteristics of CLL patients. Reference data are added from a healthy
Iranian population (n = 60, [32]), CD19+ count in a reference population is the median from public
databases. M: male; F: female; WBC: white blood cell count; RBC: red blood cell count; PLT: platelet
count; Hb: hemoglobin; HCT: hematocrit; MCHC: mean corpuscular hemoglobin concentration;
RDW: red cell distribution width; NA: not analyzed.

Sex Age WBC
(103/mm3)

RBC
(106/mm3)

Hb
(g/DL)

HCT
(%)

MCHC
(g/DL)

RDW
(FL)

PLT
(103/mm3)

CD19
(%)

1 M 63 6.6 5.1 14.2 42.2 33.6 12.3 126 NA

2 M 55 10.1 4.0 8.8 39.3 34.8 13.7 139 65

3 M 71 17.8 5.1 12.1 40.3 33.2 13.2 111 71

4 M 90 41.8 3.0 13.1 32.3 33.4 12.6 157 91

5 M 48 16.0 4.3 13.2 37.7 35.0 12.8 254 80

6 F 72 51.9 5.3 10.6 35.6 29.8 17.5 287 68

7 F 56 19.4 4.7 13.4 39.9 33.6 13.3 227 65

8 F 52 107.2 3.1 12.3 37.8 34.9 13.0 93 NA

9 M 64 70.7 3.6 11.0 31.1 35.4 13.8 127 78

Ref - - 8.3 4.6 12.3 37.4 32.5 13.3 334 (14)

2.2. Cold Plasma Jet Device and Sample Treatment

As previously reported, the adopted plasma jet device consisted of a copper cylindrical
tube as a fed electrode, a Pyrex tube as a dielectric, and a ground-based copper ring
electrode [21]. The interspace of two electrodes is ~7 mm. The plasma is discharged
between two electrodes, using high voltage and igniting argon gas (2.5 L/min). The peak
voltage (PV) and pulse repetition frequency (PRF) was held steady at 0–20 kV and 9 kHz
during treatment. For treatment, 1 mL of citrated blood and 1 mL of blood containing
EDTA were cultured separately from each voFlunteer in 24-well plates in triplicates. Then,
the cells were divided into two groups for treatment: one was exposed to the cold plasma
directly at a distance of 3 cm from the blood surface at two separate treatment times (60 s
and 120 s), and the other group was mixed with PBS (phosphate-buffered saline) that
had been pretreated with cold plasma for 120 s (plasma-treated solution— PTS). Plasma
treatment times were established based on preliminary tests on RNS production. The
dilution factor of PBS or PTS added to the blood was 25% (1:4 dilution of PBS or PTS with
blood). After exposure, the blood was incubated at 37 ◦C for morphological, molecular,
and biochemical investigations.

2.3. Complete Blood Cell Count (CBC) and Imaging of Peripheral Blood Smear

Complete blood cell counts (CBC) were performed by an automatic hematology
analyzer (KX-21N; Sysmex, Norderstedt, Germany) at 2 h, 4 h, 8 h, and 24 h after cold
plasma or PTS exposure. Red blood cells (RBC), white blood cells (WBC), platelets (PLT),
hemoglobin (Hb), and red cell distribution width (RDW) were measured. Specifically, for
the hemogram determination, three hydraulic subsystems were used for analyzing the four
parameters, being the RBC channel, the WBC channel, the PLT channel, and a separate Hb
channel. For the preparation and imaging of peripheral blood smears, blood smears were
prepared and stained with May-Grünwald-Giemsa at 2 h, 4 h, 8 h, and 24 h after cold plasma
or PTS treatment. A hematologist then examined smears to investigate the morphological
changes of the WBCs, including hypersegmentation, toxic granulation, smudge cells, and
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morphological changes of the RBCs, including anisocytosis and microcytosis, hypochromia,
and echinocytes. Microscopy of the smears was performed manually.

2.4. RNS and Lipid Peroxidation in Blood Plasma Treated with Cold Plasma or PTS

The nitrite (NO2
−)/nitrate (NO3

−) colorimetric Griess assay [33] was used according
to the manufacturer’s protocol to measure the concentrations of RNS introduced by cold
plasma and PTS treatment in isolated EDTA blood plasma at 2 h, 4 h, 8 h, and 24 h after
treatment. The Griess reagents include 0.1% N-naphthyl-ethylenediamine dissolved in
ionized water and 2% sulphanilamide in 5% HCl. This reagent reacts with nitrite in blood
plasma and was incubated for 30 min at 37 ◦C to form a purple product. Then, the ab-
sorbance of each reaction mixture was measured at 540 nm using a BioTek microplate reader
(BioTek, Winooski, Vermont, USA). Lipid peroxidation results from oxidative damage, and
malondialdehyde (MDA) is a valuable marker for oxidative stress, which was analyzed
according to the lipid peroxidation assay instruction at 2 h, 4 h, 8 h, and 24 h after plasma
exposure with cold plasma or PTS. Briefly, 20% trichloroacetic acid (TCA) was added to the
blood plasma to precipitate proteins. Then, 0.6% thiobarbituric acid (TBA) was added to the
mixture. MDA in the blood plasma reacts with TBA to produce an MDA–TBA compound.
This compound was detected colorimetrically at 535 nm (BioTek, Winooski, Vermont, USA).
MDA leveled up to 1 nmol/well.

2.5. MTT Assay for Cytotoxicity of Cold Plasma and PTS Treatment

After 12 h, 24 h, and 48 h of treatment of the whole blood of 4 CLL patients and 4 sex-
and age-matched healthy control subjects with cold plasma or PTS, the metabolic activity of
WBCs was measured using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide; Sigma, St. Louis, Missouri, USA) assay according to the manufacturer’s protocol.
Briefly, the samples were centrifuged and the blood plasma was isolated. Next, RBCs were
removed using lysis buffer added to the pellet, and WBCs were isolated and cultured in
isolated blood plasma. MTT solution (at a final concentration of 5 mg/mL in PBS) was
added to each well. Following incubation for 3 h at standard culture conditions, the super-
natant was removed, and 150 µL of DMSO was added to each well. The absorbance was
measured using a BioTek microplate reader (BioTek, Winooski, Vermont, USA) at 570 nm.

2.6. Prothrombin Time (PT) and Partial Thromboplastin Time (PTT) Measurements

The PT and PTT from isolated citrated blood plasma were measured after 2 h, 4 h,
8 h, and 24 h of cold plasma or PTS exposure, using a Thermo Fisher kit according to
the manufacturer’s protocol. A control sample (blood plasma from clinically healthy
individuals) was included in each run. For the PT test, 100 µL of citrated blood plasma was
incubated for 1 min at 37 ◦C with 200 µL of PT reagent. The time from mixing the reagent
with blood plasma to the initiation of clot formation (detected visually) was determined as
PT in seconds (s). For the PTT test, 100 µL of citrated blood plasma was added to 100 µL of
PTT reagent and then incubated for 3 min at 37 ◦C. Subsequently, 100 µL of heated calcium
chloride (37 ◦C) was added for activating the intrinsic (plasmatic) clotting cascade. Finally,
the time (s) for clot formation (visually detected) was determined as PTT.

2.7. Quantification of Hemolysis

The RBCs were isolated by centrifugation (3000 rpm at 10 min) from 2 mL of whole
blood and resuspended in 500 µL of PBS. From this initial erythrocyte stock, 50 µL was
added to 1 mL of PBS and, following exposure to cold plasma (60 s and 120 s) or PTS (ratio
of PTS to whole blood: 1:5), after 6 h of incubation, samples were centrifuged at 500× g
for 5 min. Then, the supernatant was removed, and the hemolytic activity was quantified
using spectrophotometry at 414 nm. In this experiment, deionized water (dH2O) and 10%
SDS (sodium dodecyl sulfate) were used as positive controls. As an additional readout,
blood agar medium was prepared and poured into 60 mm dishes using isolated RBCs that
were washed in PBS 3-times and incubated for 24 h at 37 ◦C. After preparing the plates, the
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samples were exposed directly to cold plasma (120 s) or PTS. After an additional 24 h of
incubation, the hemolytic activity was assessed from the diameter of the hemolytic zone.
In this experiment, deionized water (dH2O) and 10% SDS were dropped onto blood agar
plates as positive controls.

2.8. Statistical Analysis

Results are presented as the mean ± SEM of at least four independent experiments.
The t-test for paired data or the 2-way ANOVA analysis for repeated measures was used.
To perform pairwise comparisons between groups, Tukey’s post hoc test was used. All
graphs were performed using Prism 7.0 (GraphPad Software, San Diego, California, USA),
with p < 0.05 considered statistically significant.

3. Results

Neither cold plasma treatment nor PTS exposure affected hematological parameters
or blood cell morphology. Analysis of CBC parameters in the blood of CLL patients after
cold plasma treatment (60 s or 120 s) and PTS exposure (120 s) regarding mean counts
of RBCs, WBCs, platelets, and hemoglobin identified no significant changes between
treated and untreated samples in either CLL or healthy subjects (Figure 1). Blood smear
images of the whole blood of CLL patients and healthy counterparts that had received
cold plasma treatment (60 s or 120 s) or PTS exposure (120 s) were investigated after 2 h,
4 h, 8 h, and 24 h post-exposure by a hematologist. The images contain information on
the morphological changes, and the results were compared with the untreated group.
Peripheral blood smear images showed no significant morphological changes in WBCs,
including hypersegmentation, toxic granulation, smudge cells, as well as morphological
changes in RBCs, including anisocytosis, microcytosis, hypochromia, and echinocytes
among either the treatment or control groups in both CLL and healthy subjects (Figure 2).

3.1. Cold Plasma and PTS Increased RNS Levels, Lipid Peroxidation, and Cytotoxicity

ROS/RNS are known cold plasma effectors in cells. We, thus, examined the ability
of cold plasma to deposit RNS in whole blood by running subsequent analyses in blood
plasma. Both cold plasma treatment and PTS exposure significantly increased RNS pro-
duction in the blood plasma of CLL patients and healthy controls compared to untreated
controls. However, the RNS concentration produced by cold plasma was considerably
higher than the concentration introduced by PTS (Figure 3). Both cold plasma and PTS treat-
ments showed increased lipid peroxidation levels, as determined using MDA (Figure 3).
MDA levels were equally high in both treatment regimens and independent of the cohort
(CLL vs. healthy). Next, we investigated the cytotoxicity of cold plasma treatment and PTS
exposure in WBCs using the MTT assay (Figure 3). The treatment decreased the metabolic
activity of leukocytes in CLL patients in a dose-dependent manner. The metabolic activity
of WBCs was reduced with 120 s of cold plasma or PTS treatment after 24 h and 48 h
(p < 0.001), while cold plasma was not cytotoxic in cells of healthy patients.
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Figure 1. CBC parameters in CLL patient- and healthy volunteer-derived blood receiving either cold
plasma (60 s or 120 s) or PTS (120 s) treatment, with subsequent analyses at 2 h, 4 h, 8 h, and 24 h. No
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significant difference was observed for any of the parameters between the control groups against
either cold plasma treatment or PTS exposure in both healthy and CLL blood. Data are represented
as mean + SEM of four donors each.

Figure 2. Morphological analysis of CLL patient- and healthy volunteer-derived blood receiving
either cold plasma (60 s or 120 s) or PTS (120 s), with subsequent analyses at 2 h, 4 h, 8 h, and 24 h.
No macroscopic difference was observed for the May-Grünwald staining between the control groups
and either cold plasma treatment or PTS exposure in either healthy or CLL blood, as shown for one
representative donor.
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Figure 3. RNS (nitrite + nitrate) and MDA concentrations in CLL patient- and healthy volunteer-
derived blood receiving either cold plasma (60 s or 120 s) or PTS (120 s), with subsequent analyses at
2 h, 4 h, 8 h, and 24 h, as well as metabolic activity of cultured leukocytes assessed at 12 h, 24 h, and
48 h after exposure. Data are represented as mean + SEM of three donors each; *** denotes p < 0.001.
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3.2. Cold Plasma and PTS Treatment Did Not Affect the PT, PTT, or Hemolysis

The median prothrombin time (PT) and partial thromboplastin time (PTT) from the
citrated blood plasma of CLL patients and healthy individuals were analyzed 2 h, 4 h,
8 h, and 24 h after cold plasma or PTS exposure. Significant changes were not observed
(Figure 4). Next, hemolysis was investigated macroscopically (Figure 5a) and quantitatively
(Figure 5b). Compared to the positive controls SDS and dH2O, no hemolytic activity was
observed with either cold plasma or PTS treatment in either CLL or healthy volunteer
whole blood 6 h post-treatment for the specific plasma source used in this study.

Figure 4. Hemostasis parameters. The median prothrombin time (PT) and partial thromboplastin
time (PTT) in citrated blood plasma of patients with CLL and healthy volunteers were analyzed at 2 h,
4 h, 8 h, and 24 h after either cold plasmas (60 s or 120 s) or PTS (120 s) exposure. The results showed
no significantly different results when comparing untreated to plasma groups. Data are represented
as mean + SEM of four donors each.
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Figure 5. Investigation of hemolysis of RBCs isolated from CLL patients and healthy individuals
after exposure to either cold plasma (60 s or 120 s) or PTS (120 s) after 24 h culture on agar plates (a).
The quantitative spectrophotometric experiment was performed at 6 h (b). Deionized water (dH2O)
and SDS 10% served as positive controls. Data are represented as mean + SEM of four donors each;
*** denotes p < 0.001.

4. Discussion

Plasma jet technology has attracted widespread attention in biomedical applications.
It has been reported that cold plasma and PTS can selectively induce cell death in various
tumor cells, typically by producing a wide range of ROS/RNS [34,35]. Enhanced basal RNS,
especially nitric oxide (NO), might play a role in the prevention and progression of cancer.
The selective nature of cold plasma is hypothesized to rely on ill-fated metabolism and
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baseline ROS/RNS in cancer cells compared to non-malignant counterparts, suggesting
the former to be more sensitive to external ROS/RNS stressors and eventually leading to
cell death [36,37]. PTS also contains high levels of H2O2 and NO2− capable of inducing
programmed cell death at higher concentrations in malignant cells [38,39]. Using a plasma
device that can operate in RNS production mode, this study provides information about
the effects of cold-plasma-produced RNS on the blood of leukemia patients, as we reported
decreased cell viability in the whole blood of patients with hematologic malignancies,
namely CLL. In our ex vivo study protocol of patient and healthy donor blood, we aimed to
identify the effect of cold plasma or PTS-mediated effects on hematological parameters such
as CBC, WBC, RBC morphology, PT, PTT, cytotoxicity in WBC, RNS, lipid peroxidation,
and hemolytic activity. Our findings showed that cold plasma exposure and PTS treatment
increased blood plasma RNS and MDA levels in both CLL patients and healthy individuals
without significantly altering complete blood count, WBC, RBC morphology, or PT and
PTT time.

Our data suggest a selective effect on reduced metabolic activity in cells of CLL blood
compared to healthy donor blood. Therefore, considering that the plasma therapy does
not affect non-malignant leukocyte cells to a significant extent, the cold plasma treatment
and the PTS exposure using the current plasma setup seem to be cytotoxic to mature
malignant B cells known to be accumulated in the blood of CLL patients [40]. A range of
previous in vitro studies on leukemia cells of different phenotypes, such as acute myeloid
leukemia (AML) and acute T-cell leukemia, have provided evidence of cold-plasma-induced
toxicity. This includes THP-1 and Jurkat cells [41–43], TK.6 cells [44], MOLM13 [45,46],
U937 [41,42,47–50], and Molt-4 [41,50], which are among the previously in vitro studied cell
lines. However, a study directly comparing the sensitivity of Jurkat and THP-1 leukemia
cells with their non-malignant counterparts, T-helper cells and monocytes, revealed that
the leukemia cells were much more resistant to cold-plasma-induced toxicity compared to
the healthy donor cells [51]. Although the cells in that study were cultured in a cell culture
medium and not derived from whole donor or patient blood, further research is needed to
assess the selectivity of the plasma approach based on single-cell data. To the best of our
knowledge, our report is the first study to show that both cold plasma treatment and PTS
exposure reduced the metabolic activity of whole blood cells in CLL patients. However,
further cellular and molecular studies are needed to determine which cells in CLL patients
are targeted by cold plasma and PTS.

The direct plasma treatment induced greater MDA levels than PTS (indirect) exposure.
This might be due to the delivery of relatively short-lived reactive species, such as peroxyni-
trite, shown to be generated by plasma jets [52] that can induce lipid peroxidation and MDA
formation. The half-life of peroxynitrite is about two seconds; hence, it is likely absent in the
PTS, leading to less MDA formation. At the same time, PTS induced a more considerable
decline in metabolic activity than the direct plasma treatment. This might be due to the
reactive species being degraded by the blood’s antioxidant during the direct treatment,
ultimately leading to a lower overall concentration of plasma-derived oxidants, such as
hydrogen peroxide that was shown to be toxic to white blood cells [53]. In the case of PTS,
a higher concentration accumulates in the plasma-treated solution, which is then added
to the blood cells at once, exposing a fraction of blood cells to that higher concentration
during the mixing, and subsequently inducing more significant toxicity. The fact that not
directly plasma-treated healthy leukocytes but CLL-derived leukocytes showed a decline
in metabolic activity nevertheless suggests a particular specificity of the exposure-induced
toxicity. This was also the case with PTS. Nevertheless, it should be mentioned that the
PTS is radically different from the direct treatment in terms of reactive species generation
and treatment application. In the PTS approach, a higher concentration of the long-lived
oxidant hydrogen peroxide is added, but then quickly diluted in the matrix, leading to
potentially different results than the direct treatment where more short-lived species are
being deposited to the sample [54].
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This study had several limitations. First, a preliminary plasma treatment time dose-
escalation based on toxicity was not performed, ultimately leading to a modest decline
in the blood cells’ metabolic activity. However, at 120 s, the direct plasma treatment was
already relatively long. Hence, the current plasma-jet-based treatment scheme might be
unsuitable for therapeutic action in the blood due to practical treatment time constraints.
However, the current study served as a proof-of-concept trial, rather than as a therapeutic
attempt. Moreover, the current study lacks single-cell analysis data done via, e.g., flow
cytometry with fluorescently conjugated antibodies staining individual cell populations to
demonstrate that the decline in metabolic activity and, therefore, likely cell death induction
was present in the leukemia cell population specifically. In addition, measuring reactive
species concentrations immediately after exposure to plasma or PTS, as well as testing
liquids with equivalent ROS/RNS concentrations, would have been desirable, but was
not possible in our study. Moreover, the possibility of endogenous ROS/RNS production,
as known for phagocytes generating, for instance, superoxide and/or nitric oxide after
activation after direct gas plasma or PTS exposure was not explored.

5. Conclusions

This proof-of-concept study provides evidence of non-hemolytic cold plasma operation
modes for treating whole blood. At the same time, a decline in cellular activity was
observed. These data suggest the principal feasibility of cold plasma exposure as an
adjuvant option for leukemia treatment. While the exact integration of cold plasma into
realistic clinical treatment schemes awaits further studies, the current research supports the
idea that the effectiveness of cold plasma might not be limited to solid tumors but may be
extended to hematological disorders, as well. Adapting cold plasma technology systems
to the specific needs of such a future therapy within a clinically applicable approach is
awaited. A potential modus operandi would be to perform extracorporeal blood circulation
(leukapheresis unit) in conjunction with a plasma discharge integrated within a flow system
and a liquid discharge without external gas. Such an apparatus would be conceivable as a
medical device. However, the approach using plasma-treated solutions (PTS) might fall
within the approval procedure of drugs, with much more effort needed to translate this
concept into clinics.
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