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Abstract

This article presents geographic information system usage
in transportation management for comfort calculations,
analysing vehicle vibration data measured during patient
transportation. The main goal of this article is to develop
a methodology for automatic discomfort cause recogni-
tion (DCR) that may be tested under real life conditions.
We analysed differences between uncomfortable locations
detected by passengers during patient transportation (ac-
cording to their subjective opinions) and uncomfortable
locations detected by the measurement system. The meas-
uring system is based on the three-axis accelerometer which
is used to determine road comfort values for specific loca-
tions gathered by a GPS module. The results obtained were
compared with data collected by passengers. During driv-
ing, when they experienced discomfort, passengers marked
locations in near real time using the GIS. The data thus ob-
tained were analysed with the data obtained by DCR. For
the first time, the application of GIS provides analytical tools
to create spatial data and define spatial data relations that
determine comfort. Testing under real conditions, involving
three separate cases, shows a high degree of correlation
between the results. The proposed system allows dynamic
comfort threshold criteria management and provides a vis-

ual representation of summarized tabular data.
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1 | INTRODUCTION

Transport represents the first basic condition for the normal development of economic and social life. One of the
most important underlying requirements for transport is good-quality road traffic conditions for the widespread
and safe use of vehicles all over the world. Road safety is a complex system that involves drivers, vehicles, and
roads. This means that improvements to road safety should address drivers' behaviour, the technical character-
istics of the vehicles, and the condition of the roads. On most roads, bumps greatly affect traffic movement and
control speed to ensure safety. Information about road conditions is highly desirable to allow the traffic to flow
safely and comfortably within permissible speed limits. Passenger comfort is one of the most significant concerns.
Even though ride comfort is a subjective experience for the driver and passengers travelling in a vehicle, noise,
temperature, road conditions, and vehicle dynamics certainly influence ride comfort. An understanding of such
factors is especially important in the case of patient transportation, as patients are passengers with health prob-
lems; ride comfort can have a greater influence on one's condition, which may already be precarious. Gray, Bush,
and Whiteley (2004) divided the transportation of patients into primary transport (the transfer of patients from
the site of illness or injury to the first hospital contact) and secondary transport (the transfer of the patient from
one hospital to another for continuing clinical care).

All road authorities try to maintain the quality of roads within their jurisdiction, particularly with respect to the
vibrations induced in the vehicles by road roughness. ISO 2631 (International Organization for Standardization
[ISQ], 1997) defines criteria that evaluate human whole-body vibration experienced by passengers during a ride,
starting from the first instance of vertical acceleration recorded in the vehicle. ISO standards also establish vibra-
tion limits to reduce discomfort and maintain health and safety during various activities. “Comfort” is a term that
has no strict definition; therefore, it is difficult to accurately measure and display. Factors that affect passenger
comfort while driving include seat vibration, vibration of the hands and feet, acoustic vibration (noise), seat de-
sign, temperature, humidity, air pressure, and the distance between seats. Of all factors, research has shown that
vibration levels (i.e., vibro-comfort) have the greatest impact on comfort. To overcome problems associated with
tracking multiple frequencies at the same time and to simplify the tracking of results, a method of absorbed power
has been developed. It suggests that vibro-comfort is proportional to the amount of vibration the human body
absorbs. This yields only one value commensurate with vibro-comfort. Absorbed power is calculated as the sum of
mechanical forces on each contact with the vehicle. Mechanical strength is calculated as the product of force and
speed. Measurements of vibro-comfort thus far have predominantly been based on the sensitivity of the human
body to vibrations of different frequencies. The generally accepted view is that vibro-comfort is directly propor-
tional to the acceleration acting on passengers while the vehicle is in motion. This is why most previous studies
have focused on measuring the sensitivity of the human body to the acceleration of different frequencies, and
can be found in the literatures of inertial navigation systems (British Standards Institution [BSI], 1987; ISO, 1997),
robotics, the automotive industry, and the measurement of human body kinematics (Yangi, 2007). Only the value
of acceleration is needed to measure vibro-comfort. The required value of speed is obtained using integrals. To
get the value of mechanical force, weighting functions are defined that depend on the mechanical properties of
the human body.

Comfort research papers have previously addressed various techniques to determine passengers' comfort
during rides, and some of them specifically deal with patient transport (Jovanovi¢, Blagojevic¢, Jankovié, & Peulié,
2019; Wheble, 1987). Suspension, tyres, drivers’ seats, and road types were tested for their influence on the
comfort of passengers with lumbar disc herniation during a drive (Battié et al., 2002; Gruevski, Holmes, Gooyers,
Dickerson, & Callaghan, 2016). The comfort values determined from these studies were based on real driving cal-
culations as well as simulations. Yangi (2007) deal with the commonly used simulation software and corresponding
models. Oijer and Edlund (2003, 2004) present a method which makes it possible to predict the durability of a
vehicle in real operation, and they have also explained vehicle durability and driver comfort in relation to road

obstacles. Several researchers have specifically designed algorithms to detect road roughness (Cuadrado, Dopico,
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Perez, & Pastorino, 2012; Xiandong, Zhidang, & Feng, 2003). Cuadrado et al. (2012) were involved in a research

project that aimed to develop automotive real-time observations based on detailed nonlinear multibody models
and the extended Kalman filter. Simulation models have been created (Yangi, 2007), and tests to estimate comfort
have been performed on many subjects and road surface types (Schmidt & Diedrich, 2007). Ride comfort is very
important in certain parts of the industry, so there is a lot of work to be done to make specific improvements
to industrial and transport vehicles such as trains and dump trucks (Cleon & Laurkis, 1996; Wang, Qian, Tang,
Wen, & Chen, 2000; Zhang, 2018). Some researchers have studied the impact of tyre and suspension quality
(Fenchea & Boltosi, 2006; Jianmin & Qingmei, 2009; Junoh et al., 2011; Strahman, Dueker, & Kimpel, 2000), while
others (Eriksson et al., 2008; Mohan, Padmanabhan, & Ramjee, 2008) have evaluated road surfaces. Eriksson
et al. (2008) investigate an application of mobile sensing: detecting and reporting the surface conditions of roads
using a collection of sensor-equipped vehicles. Paulraj, Yaacob, and Andrew (2010) propose a vehicle comfort level
indication to detect the comfort level in cars using an artificial neural network. Wu et al. (2007) show how neural
networks can be used in longitudinal vehicle guidance for comfort adjustment. Tan and Park (2005) present an
accelerometer-based internal navigation system.

There are studies about comfort detection but there are no studies about discomfort cause recognition (DCR),
which is the main topic of this article. Different sources of discomfort produce different acceleration values (road
bumps, potholes, acceleration or braking, skidding). In this article acceleration data are analysed within a GIS en-
vironment to locate and categorize causes of discomfort.

Since the spatial locations of causes of road discomfort are important, GIS usage is recommended. The main
benefits of using GIS are: (1) efficient management of spatial and temporal data; (2) effective visualization, high-
lighting areas of concern; and (3) improved efficiency in detecting discomfort locations.

According to Lee and Kwan (2018), due to advances in tracking technology, a large quantity of movement data
has been collected and analysed in various research domains. Geographic information systems provide complex
data analytical tools. Acceleration data can be analysed in relation to detected sources of discomfort and plotted
accordingly. GIS can also be used to compare discomfort locations automatically identified by the system with
those identified subjectively by human participants in the study. Although Li, Goldberg, Chu, and Ma (2019) state
that in-vehicle sensing platforms are typically very costly and only available commercially, inertial measurement
units and lightweight sensors that are used for orientation estimation in numerous applications are inexpensive.
Such sensors can therefore be placed in several different locations in the vehicle (e.g., in the seat or stretcher) to
obtain more accurate measurements.

The main aim of this article is to develop a methodology for automatically recognizing sources of discomfort on
road networks, and testing this methodology in real-life conditions. Three tests are presented: the first test is an
example of primary transport of a patient, from the accident site to a hospital; the second is an example of second-
ary transport from one hospital to another through an urban centre; and the third is also an example of secondary
transport, evaluating a section of road through a rural area. Passengers used a GIS to provide real-time explicit
feedback on the locations and levels of discomfort. The GIS was also used to visualize the results and compare the
system-generated locations and levels of discomfort with those identified by the passengers. The tests showed a
high degree of correlation between the automatic and manually derived results, hence the method shows poten-
tial for agencies with responsibility for road management and maintenance, in addition to bus, taxi and ambulance

transport management, but also for users who just want to travel with minimum discomfort.

2 | METHODS

In this study, an ISO standard algorithm is modified to provide information about discomfort causes. The ISO
standard defines calculation of root-mean-square (RMS) acceleration on vertical Z accelerations. With a one-axis

accelerometer it is possible to calculate comfort, but it is not possible to detect various types of discomfort, so a
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three-axis accelerometer was used for comfort detection. This detects the difference between RMS caused by
vibrations and RMS caused by inclination. The ISO standard is good for checking comfort in a controlled environ-
ment, but in real-life vehicle driving, unexpected situations are very common.

Comfort is directly proportional to the acceleration that passengers can feel during the ride. Current standard
methods include 1SO 2631-1 (ISO, 1997) and British Standard 6841:1987 (BSI, 1987). Both standards assume that
the magnitude of acceleration, frequency spectrum, and duration represent the principal exposure variables that
account for potential harmful effects. The acceleration measured at one or more of the points of entry of vibration
to the body is used to quantify the magnitude of vibration. Methods based on acceleration are fast, conceptually
simple, and technically hassle-free since acceleration is the quantity directly measured by detectors.

ISO 2631 depends for calculating RMS acceleration on vertical Z accelerations. RMS acceleration values on

the user's body (a;ps) are given by:

1.2 2 2
Ay = \/H (a2, +a% + - +a2) (1)

where a,,;is the ith Z-axis sample acceleration. Obtained a,,, values must be multiplied by the weighting factor values
W, (because the human body has different vibration sensitivities, depending on the characteristic frequencies of
vibrations) corresponding to these frequency bands. In the end, it is possible to determine the vertical weighted RMS

acceleration, a,,. This is given by:

Awz = Z (W, - Gizrms)? (2)

This standard generates a single value in terms of acceleration due to gravity (G), which can be categorized in
relation to comfort levels as shown in Table 1.

The main problem is the determination of the weighting factor. However, at lower intensity levels, the body
finds all frequencies equally objectionable. Under normal driving conditions, vibration levels are lower and all
frequency weightings are similar. The most commonly used weights are described in ISO 2631 and are used in the
calculation of vibration dose values.

2.1 | Measuring system

The measuring system employed in this study uses accelerometer values to determine the road comfort value for a
specific location defined by GPS position. The control unit (CPU) reads the measured acceleration values from the
accelerometer sensor and the GPS coordinates of the system's current position from the GPS module. Processed

TABLE 1 Comfort levels related to a,,, threshold values

Intervals of a,, values [G] Comfort level

<0.315 Not uncomfortable
0.315-0.63 A little uncomfortable
0.63-0.8 Fairly uncomfortable
0.8-1.25 Uncomfortable

1.25-2.5 Very uncomfortable

>2.5 Extremely uncomfortable

Source: ISO (1997).
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data are forwarded to a laptop computer via a USB connection. The data are then processed and formatted in
KML file format, which is an XML file suitable for viewing in Google Earth (Open Geospatial Consortium, 2015).
The accelerometer is an ST Microsystems three-axis, 2g/6g inertial sensor LIS3LO2AQ. For each axis, the
maximum sample rate is 160 Hz. The central microprocessor is an 180 MHz AT91RM9200 made by ATMEL Corp.,
which is more than enough for running this application. A GM682-GPS module was also used. All signals were
sampled at 100 Hz. The accelerometer used for comfort detection collects data at a minimum rate of 25 samples
per second; however, system outputs were generated every 10 s taking into account all collected samples in a

period of 10 s.

2.2 | Inclination compensation on measuring system—Equilibrium position calculation

The system must detect the difference between RMS caused by vibrations and RMS caused by inclination. Gravity
has a great influence on accelerometer axis values.

Figure 1 shows driving uphill and downhill on a good-quality road. At first, the car was driven on an even sur-
face, then uphill, then on an even surface again, then downhill, and on an even surface again (Figure 1a). The X-axis
was insensitive (Figure 1c), the Y-axis was slightly sensitive (Figure 1d) but the Z-axis was very sensitive (Figure 1e)
to this kind of driving. There are no acceleration peaks caused by an uneven surface. The presented values are
simply caused by road inclination. This is reflected in the RMS value presented in (Figure 1f). Since the RMS value
is calculated in 10 s time intervals, it is presented as a flat horizontal line. The detected value of 0.54G could be
categorized as little uncomfortable (Table 1).

The compensation of gravity influence has to be done on the measuring system so the difference between
RMS caused by vibrations and inclination can be detected. The average axis acceleration values and the dif-
ferences between maximum and minimum values (Ax, Ay, Az) for every axis are calculated in intervals of 1 s.
The RMS caused by inclination is detected when the axis values are high but with no high acceleration values
differences (A < 0.3), thus it is not included in discomfort calculation. This functionality could be used for de-
tection of vehicle turning during collisions. Vehicle turning is detected if Ax, Ay, and Az are less than 0.3 and
X, Y or Z values are not in logical value range relative to their position in a vehicle. Discomfort is detected if
AX, Ay, or Az are greater than 0.3, even on inclined roads. In such cases, average axis values are used for RMS
calculation.

2.3 | DCR algorithm—RMS with acceleration peak detection

It is possible to calculate comfort with a one-axis accelerometer; however, it is impossible to detect various types
of discomfort. This is the main reason why a three-axis accelerometer is used for detection of discomfort. It col-
lects data at a rate of at least 25 samples per second. Every sample contains X, Y, and Z accelerometer values (ax,

a, az) and accelerometer intensity, g, is calculated as:
— Ja2 + g2 + a2
a=./a2+a2+a? (3)

This algorithm modification allows detection of various types of isolated discomfort causes thanks to a three-
axis accelerometer placed in a vehicle, oriented vertically by the Y-axis, so its value needs to be compensated for
the influence of gravity. Axis influence when turning left or right, hitting a pothole or bump in the road, and sudden

acceleration or braking is shown in Figure 2.
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FIGURE 1 Uphill and downhill driving: (a) car motion; (b) all signals; (c) X-axis; (d) Y-axis; (e) Z-axis; and (f) RMS
value

As Zhao and Stefanakis (2018) pointed out, the accelerometer measures the vehicle's acceleration in a three-
axis frame, which can effectively capture the “jerk energy.” The X-axis is sensitive to left and right turns. The Y-axis
is sensitive to vertical jolts (potholes, bumps). The Z-axis is sensitive to sudden accelerations and deceleration. This
is the main idea of this article: to analyse axis values in GIS software if discomfort is detected.

Some axes are more sensitive to some types of discomfort (Figure 2) but every axis detects some acceleration.
As previously mentioned, beside the RMS calculation defined in ISO 2631, accelerometer threshold values (apeak)
detected in standard 10 s time intervals were also calculated. The ISO standard is good for checking comfort in a
controlled environment. In real-life vehicle driving, unexpected situations, such as collisions, sudden braking, or

sharp turns, are very common. These have a great influence on comfort, so the ISO standard algorithm is modified
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FIGURE 2 The appearance of accelerometer axis in different types of movement

to calculate an Apeak if uncomforted RMS is detected in the standard time interval. The RMS threshold value was ini-

tially set to 0.8G according to Table 1 and confirmed by GIS software analysis which is explained later in this article.

To detect discomfort type, it is necessary to analyse the highest acceleration value (a

peak) calculated by

Equation 3 in detected discomfort. The causes of discomfort (Table 2) could be categorized based on X, Y, and Z-

axis impact in Apeak and axis sensitivity (Figure 2).
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TABLE 2 Discomfort cause types marker colour
Marker
Axis Value sign Recognized cause colour
X + Sharp turn right (drift) Dark green
- Sharp turn left (drift)
Y + Road bump Dark red
- Road pothole
Z + Intensive breaking (front hit) Dark blue
- Intensive acceleration (hit from behind) Light blue

By observing Figure 2 it is easy to detect activity by X- and Z- axis, but the problem is in the Y-axis since a road
bump and a pothole create similar charts. This happens because the pothole creates high positive acceleration
values as a consequence of hitting the pothole edge. This problem is solved by analysing the Y-value. The pothole
is detected if it is initially a negative sign. A bump is detected if it is initially positive. Z-axis discomforts, "hit from
the front" and "hit from behind," are included in the algorithm since they could be used in discomforts caused by
collision situations. Three-axis acceleration values when impact occurs are shown in Figure 3.

Before impact, all axes oscillate slightly around O thanks to equilibrium position calculations. When an impact
occurs, the vehicle and the accelerometer values oscillate until they calm down. This means that one impact
could produce several values greater than a threshold value, which, however, does not mean that there were
several impacts.

As shown in Figure 3a, when impact occurs, the acceleration intensity increases and a threshold value is
achieved. This first acceleration intensity value higher than a threshold is important since it identifies the location
of the cause of discomfort. All values except Apeak need to be rejected. This is done in real time within the measur-
ing system. When the first value above the threshold (|| > ay, eqhoig @Nd 104] < Gy reshod) iS detected, the system
calculates Apeak values in 1 s intervals. During this time the oscillations subside. Four peaks greater than a threshold

value are detected (Figure 3) but are rejected.

2.4 | System testing in real-life conditions

The algorithm was tested in real-life by driving through the streets of Cacak, Serbia. Three independent tests were
conducted (Figure 4). The first test was conducted on a 1.84 km long route which connects the city centre to the
nearest hospital (route I). The measurements were made in May 2019. The passenger was a man, about 60 years
old, without significant physical problems. The second test covered a 4.30 km long route through streets in the
city centre from the hospital to the capital Belgrade with a higher-level health centre (route Il). The measurements
were made in August 2020. The passenger was a man, about 20 years old, with no major health problems. The
third test was conducted in the rural areas of the municipality of Cac¢ak in September 2020, on a 4.07 km road sec-
tion that also forms part of the route towards the higher-level health centre in Belgrade (route Ill). The passenger
was a 40-year-old woman with spinal problems.

The measurement system could be fixed in several places in the vehicle. Results presented in this article were
collected with the measurement system fixed to the windscreen.

Passengers in the vehicle during the tests had to subjectively record discomfort in near real time by placing
markers on images within the GIS. The supporting orthophotos (GUP Grada Cacka, 2019) had 30 cm precision,

providing a high level of precision for mapping the location and severity of discomfort in real time.
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FIGURE 4 The geographic position of the study area and routes used to test the system. Source: https://
www.google.rs/maps/

3 | RESULTS AND DISCUSSION

As previously mentioned, according to ISO 2361 and Table 1, discomfort is detected when RMS exceeds 0.8G. To
confirm use of this threshold within the measurement system, the following tasks were completed:

e The measuring system was installed in a vehicle and the RMS threshold value was set to 0.5G. This threshold
value was determined empirically based on repeat measurements and expert opinion. The lower value was set
for detailed analysis and RMS value confirmation in practice. Measurements were taken while driving along
three routes and results are presented in Figures 5a, 6a, and 7a.

e During driving, passengers marked locations on the GIS when they detected discomfort. Marker colours are
chosen according to the discomfort types listed in Table 2. The results are shown in Figures 5b, 6b, and 7b.

During system testing on route |, as shown in Figure 5b, the passenger marked nine discomfort locations based
on his subjective opinion. At the same time the measuring system detected 23 locations shown in Figure 5a. This
is because the RMS threshold was set to 0.5G, not 0.8G. Marker counts by colour and RMS value for all three
routes are shown in Table 3. It is important to note that all nine locations marked subjectively by the passenger
were detected objectively by the system, that is, they share same geographic position.

The sum of dark red and blue markers (representing RMS > 0.8G) is 8. This means that system detected one discomfort
location fewer than the passenger. Comparing the markers from both figures, marker no. 8 in Figure 5b (blue) is marked in
red on Figure 5a (marker no. 22). This means that detected RMS is lower than 0.8G and that the RMS threshold values were
not exceeded. A total of 23 locations were detected by the system overall, only four of which exceeded 1.2G.

During system testing on the route Il, as shown in Figure éb, the passenger marked seven discomfort locations.
The measuring system detected 31 locations for the same route (Figure 6a). As in the case of route |, this is because
the RMS threshold value was set to 0.5G instead of 0.8G. However, in this case, the sum of dark red and blue mark-
ers is seven (Table 3), which is in line with the subjective opinion of the passenger. Also, as in the case of route |, the
geographic position of the locations marked by the subject corresponds to the locations detected by the system.

During system testing on route Ill, as shown in Figure 7b, the passenger marked six discomfort locations. The

measuring system detected 22 locations for the same route (Figure 7a). As in previous cases, the cause is the RMS
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FIGURE 5 Route l.(a) System-detected discomforts with RMS threshold value 0.5G. (b) Discomfort causes
marked by a passenger during driving. Source: https://www.openstreetmap.org/

threshold value. As in the case of route |, the passenger detected one more location than the system (Table 3).
Comparing the markers from both figures, marker no. 5 in Figure 7b (light red) is marked in red on Figure 7a
(marker no. 18). Since comfort is a subjective feeling, RMS threshold values could be set lower or higher than the
0.8G used here. As in the previous two cases, all locations marked subjectively by the passengers correspond to
those automatically detected by the system.

One of the reasons for the slight differences in the first and third tests may be the age and health condition of
the passenger. Unlike the second test, where the passenger was a young and healthy man, in the first test the pas-
senger was a healthy, elderly man, while in the third test the passenger was a younger woman with spinal problems.
Regardless of these slight differences during system testing, the measuring system confirmed passengers' comfort
calculations in practice.

GIS software was used to analyse the collected comfort values and automatically generate causes of discom-
fort (DCR). As shown in Figure 3e (with the red circle), Apeak is detected and this is the most important value after
the one first detected in an insensitive period. It carries information about the discomfort caused. By using the
three-axis accelerometer for gathering X, Y, and Z values, the discomfort cause can be determined. The main idea
is to calculate the percentage contributions from each axis in the detected Opeak and analyse those values in GIS
software to determine the cause (type) of the discomfort. This is achieved using the following equations in the GIS:

_ |sample X| + [sample Y| + [sample Z| (4)
p= 100
Xy = Isample X| (5)
p
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v = |[sample Y|
pr — p (6)
|sample Z|
Zy = Y (7)

where p is a percentage absolute axis acceleration sum value and X Ypr and Zpr are axis percentage share values. Xpr,

pr’
Ypr and Zpr sum to 100%. As a result, three percentage values are obtained. All locations detected by the system and

marked by passengers with calculated X, Ypr and Zpr are shown in Tables 4-6.

P

The highest percent values which prepresent the highest axis influence in peqi ATE shaded grey (Tables 4-
6). Discomfort cause types are categorized according to those values and the discomfort categorization shown
in Table 2. The system can classify the cause of discomfort if the maximum percentage value exceeds 45%.
Otherwise only the location and level of discomfort are detected. This situation is shown in Table 4 as an empty

SYSTEM DCR column value. This occurred only once in 20 detected DCRs (5%).
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TABLE 3 Detected discomforts

Marker
Red
Dark red
Blue

4 | CONCLUSIONS

Marker count for Marker count for
route | route
15 24

6

1

Marker count for route

17

Road surface problems can cause significant vehicle vibrations which are felt by passengers inside the vehicle.

These vibrations are the main cause of driving discomfort. Comfort, in particular, is difficult to evaluate ob-

jectively, because this is fundamentally subjective, based on the sensitivity of the individual. Thus, the main
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aim of this article was the automation of a discomfort cause recognition process without human activity. One
of the main problems in such work was defining appropriate comfort threshold value-system sensitivity, since
lower values produce more locations while higher values detect only high discomfort causes. The low-resource
algorithm presented in this article is developed and tested within a GIS. The novelty in this article is the use
of a GIS to automate the process of discomfort cause recognition and the possibility of visualization of the
obtained locations. Calculated values can be integrated into the measuring system with automatic discomfort
cause recognition.

Although the tests showed a high degree of correlation between the results, further research should be under-
taken in different weather conditions and different geographical locations with passengers of different physical-
psychological profiles, to fully confirm its applicability.

The system presented and tested would be of great importance for the transport of patients because their
health conditions usually require the most comfortable driving experience. However, this system could also be very
useful to highways agencies for cost-effective detection of road conditions for road maintenance since the type of
road discomfort cause is detected. Also, vehicles could be compared by comfort value or by the number of detected
discomforts caused while driving on the same road. Live data transmission is also possible. This would allow live
road problem detection and road surface problems. As a result of prolonged usage of the system, road comfort
quality maps with discomfort types could be created. Drivers could determine paths with the least discomfort to
their destinations.
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