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PAPER

Acoustic HMMs to Detect Abnormal Respiration with Limited
Training Data

Masaru YAMASHITA†a), Member

SUMMARY In many situations, abnormal sounds, called adventitious
sounds, are included with the lung sounds of a subject suffering from pul-
monary diseases. Thus, a method to automatically detect abnormal sounds
in auscultation was proposed. The acoustic features of normal lung sounds
for control subjects and abnormal lung sounds for patients are expressed
using hidden markov models (HMMs) to distinguish between normal and
abnormal lung sounds. Furthermore, abnormal sounds were detected in
a noisy environment, including heart sounds, using a heart-sound model.
However, the F1-score obtained in detecting abnormal respiration was low
(0.8493). Moreover, the duration and acoustic properties of segments of
respiratory, heart, and adventitious sounds varied. In our previous method,
the appropriate HMMs for the heart and adventitious sound segments were
constructed. Although the properties of the types of adventitious sounds
varied, an appropriate topology for each type was not considered. In this
study, appropriate HMMs for the segments of each type of adventitious
sound and other segments were constructed. The F1-score was increased
(0.8726) by selecting a suitable topology for each segment. The results
demonstrate the effectiveness of the proposed method.
key words: hidden markov model, lung sound, patient detection, abnormal
respiration

1. Introduction

Auscultation of the lungs is used to identify respiratory
sounds that may be associated with various pulmonary dis-
eases. Although other non-invasive and inexpensive meth-
ods have been developed, auscultation using a stethoscope
can obtain valuable information regarding a patient’s health
status. In many cases, abnormal sounds (called adventitious
sounds [1]) are included in the lung sounds of a patient suf-
fering from pulmonary diseases. Thus, even today, ausculta-
tion is an effective method to diagnose pulmonary diseases.
However, doing so requires expert knowledge and experi-
ence; perceiving the difference between normal and abnor-
mal breathing is difficult for non-medical personnel. This
may be a key reason that auscultation has not been com-
monly adopted for household use. Furthermore, it may be
difficult for elderly people or those in rural areas to visit a
hospital for testing. Hence, a method to identify patients
with health conditions at home could lead to early detection
of pulmonary diseases.

Several studies have considered automatically distin-
guishing adventitious sounds from lung sounds [2]–[5]. In
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these works, a specific adventitious sound was detected ei-
ther by using a wavelet transform, or a frame of adventitious
sound was discriminated by using the short time spectrum.
However, the time of occurrence and duration of adventi-
tious sounds vary. Therefore, discriminating sounds using
the features of the whole respiration and its inflection would
be preferable. Furthermore, the features of adventitious and
respiratory sounds depend on an individual and the degree
of disease progression. Recently, convolutional neural net-
works [6]–[8] and recurrent neural networks [9], [10] have
been used to analyze lung sounds. However, these methods
require a large volume of training data to achieve good per-
formance. To overcome these issues, in our previous studies,
the features should be expressed statistically. The time se-
ries of the acoustic features of lung sounds are expressed by
constructing hidden markov models (HMMs) to discrimi-
nate between normal and abnormal respiratory sounds [11]–
[13]. HMM methods can express acoustic features statisti-
cally and have been applied in word recognition with lim-
ited amounts of training data [14]. Thus, HMMs can be
constructed with smaller training datasets compared to deep
learning methods. Therefore, HMMs were applied to detect
patients with respiratory issues in the present work.

In auscultation, noise hinders the accurate detection
of adventitious sounds. The sounds received often include
noise from the body and rustle of the stethoscope. The
sound of the heart is a typical source of noise from the
body. Figure 1 shows examples of respiratory sounds, in-
cluding adventitious sounds, heart sounds, and other types
of noise. Because the first (S1) and second sounds (S2)
could be clearly heard, S1 and S2 were marked as heart
sounds. The frequency of heart sounds auscultated near
the heart is high. The database used in our study includes
many heart sounds; consequently, many normal respiratory
sounds were identified as abnormal respiratory sounds. To
distinguish adventitious sounds from heart sounds, a heart-
sound model was constructed using heart sounds for train-
ing [15], [16]. As a result, normal respiratory sounds were
identified correctly. However, accuracy decreased for ab-
normal respiratory sounds. These models were assumed not
to fit. Therefore, the topology for the acoustic models has
been analyzed. In our previous method [17], HMMs were
constructed for heart and adventitious sounds with high ac-
curacy by selecting a suitable number of states and mixtures.
However, the classification rate was not high. This result
may be attributed to two possible causes. First, despite the
considerable differences between acoustic features of dis-
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Fig. 1 Respiratory sounds, including adventitious sounds, heart sounds,
and other type of noise [15].

Fig. 2 Respirations, including discontinuous adventitious sounds.

Fig. 3 Respirations, including continuous adventitious sounds.

continuous and continuous adventitious sound (Figs. 2 and
3), a single model was trained without making distinctions
between the two. Second, a suitable number of states, mix-
tures of the HMM, and iterations of training for normal res-
piration was not set. Figure 2 shows the respirations, includ-
ing discontinuous adventitious sounds, which are referred to
as fine crackles. Figure 3 shows the respirations with con-
tinuous adventitious sounds, called wheezes. These figures
show that the acoustic features of discontinuous adventitious
sounds changed repeatedly and that the acoustic features of
continuous adventitious sounds were unchanged in each w2.

Although acoustic features of adventitious sounds differ by
type, the suitable number for each type was not selected.
Furthermore, the suitable number of breathing sounds in
control subjects and normal respiration was selected. In ad-
dition, although only a relatively small amount of training
data are available, the models tended to overfit with a large
number of training iterations. However, the number of itera-
tions in training was not examined. Therefore, this study, fo-
cuses on the acoustic features of adventitious sounds, which
can be roughly divided into two types, including continu-
ous and discontinuous adventitious sounds. Thus, a method
to construct HMMs for each sound with high accuracy was
proposed by selecting a suitable number of states, mixtures,
and iterations in training with a small amount of training
data. The effectiveness of the proposed method was con-
firmed through a classification experiment.

2. Lung Sound Database

2.1 Dataset

The lung sounds were recorded by a medical doctor using an
electronic stethoscope. They were recorded in WAVE for-
mat, sampled at 5 kHz, and quantized at 16 bits. The doctor
judged the recording points for each subject. Therefore, the
number of recording points differed between subjects. The
respiratory count was 5 breaths, and the average of recorded
time was 15.3 s. The medical doctor provided diagnoses and
classified the subjects as control and patients. As the result,
the data included 134 control subjects and 109 patients.

2.2 Manual Labeling

Segmentation was manually performed based on the
recorded sounds, waveforms, spectrograms, and power.
First, the lung sounds were divided into inspiration and expi-
ration sound segments. Second, these respiratory sound seg-
ments were divided into adventitious sound segments and
segments containing other breathing sounds. The adventi-
tious sound segment was divided into continuous and dis-
continuous sounds. The heart-sound segments were marked
on the lung sounds that were recorded from auscultation
points near the heart. If the occurrence interval of adventi-
tious and heart sounds was shorter than 100 ms, a recording
is regaraded as a single segment.

2.3 Definition of Normal and Abnormal Respiration

The acoustic features of some noises are similar to those of
adventitious sounds. Some respiratory sounds from control
subjects include adventitious sounds. Distinguishing these
sounds is challenging for non-medical personnel. Con-
versely, some respiratory sounds from a patient do not in-
clude adventitious sounds, but cannot be considered normal
respiratory sounds. Respiratory sounds are grouped into
four categories, and normal and abnormal respiration was
defined as follows:
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Fig. 4 Architecture of the classification system for normal and abnormal respiration.

• Abnormal respirations from patients (AP): respirations
that include adventitious sounds from patients.
• Abnormal respirations from control subjects (AC): res-

pirations that include noises resembling adventitious
sounds from control subjects.
• Normal respirations from patients (NP): respirations

that do not include adventitious sounds or noises re-
sembling the adventitious sounds from patients.
• Normal respirations from control subjects (NC): res-

pirations that do not include adventitious sounds or
noises resembling the adventitious sounds from pa-
tients.

In our discrimination experiment, only NC was used as nor-
mal respiration and AP as abnormal respiration; that is, AC
and NP were excluded.

3. Detection of Abnormal Respiration

3.1 Fundamental Classification Procedure

Several approaches to classification have been developed,
such as methods using support-vector machine (SVM) and
deep learning models. However, SVM models are more
suited to analyze, e.g., flame, and are not well-suited to an-
alyze the entire sequential signal of a sound. Deep learn-
ing methods are effective, e.g., in speech recognition. How-
ever, large-scale training databases are required. In contrast,
HMMs have achieved relatively high accuracy on speech
recognition tasks with small amount of training data. In
this study, HMMs were used to perform classification be-
cause no large-scale database of lung sounds is available,
and lung sounds should be analyzed using entirety of the
sequential signal of the respiration. Generally, in speech
recognition, the acoustic models of a phoneme (as the small-
est unit of speech) and the occurrence probability of words
are used to construct stochastic models. This technique was
applied to recorded lung sounds. Figure 4 shows the archi-
tecture of the classification system for normal and abnormal
respiration [13]. The system involves training and testing
processes. In the training process, the HMMs are traind as
acoustic and the segment-sequence models [15] that define

the occurrence probability of the divided segments. In the
testing process, an input respiration is classified as normal
or abnormal respiration based on the maximum likelihood
approach. Assuming that sample respiration W consists of
N segments, it can be expressed as W = w1, w2 · · · wi · · ·
wN where wi is the i-th segment of W.

The training process can be explained as follows. First,
we extract the acoustic features and train each segment. For
normal respiration, if we assume that heart sounds are not
included, it consists of single segment (N = 1). Conversely,
for abnormal respiration, including adventitious sounds, it
consists of at least two segments (N ≥ 2). For example, for
the case of expiration in Fig. 3, it consists of one wheeze
segment and two breathing segments (N = 3). For the
case of inspiration in Fig. 3 that does not include adventi-
tious sounds, it consists of single breathing sound segment
(N = 1). Training of the segment sequence model can be
explained as follows. The occurrence probability of the seg-
ments P(W) is calculated by using a segment bigram. P(W)
can be written as

P(W) = w1 × ΠN
i=2P(wi|wi−1) (1)

Let P(wi|wi−1) be defined as

P(wi|wi−1) = C(wi|wi−1)

= (wi−1,wi)/C(wi−1), (2)

where C(wi) is the count of wi, C(wi−1) is the count of wi−1,
and C(wi|wi−1) is the count of segment wi after wi−1 in the
training database.

The testing process can be explained as follows. The
maximum likelihood calculated is found, and the corre-
sponding segment sequence Ŵ is selected to recognize the
sample respiration sound. If the sequence includes at least
one adventitious sound, the sample respiration is identified
as an abnormal sound. Conversely, the sample respiration is
identified as a normal sound. Here, Ŵ can be written as

Ŵ = arg max
W

(log P(X|W) + α log P(W)) (3)

where X is the sample respiration, and log P(X|W) is the
acoustic likelihood. The weight factor was obtained experi-
mentally.
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3.2 Detection of Patient Subjects

This section describes the detection of patients. Noises from
outside the body occur irregularly. Conversely, adventitious
sounds occur periodically. Therefore, for control subjects,
most respirations are classified as normal even if one or a
few respirations are classified as abnormal. That is, for con-
trol subjects, most of the likelihood values for normal res-
piration are higher than the likelihood values for abnormal
respiration, even if one or a few respirations are classified
as abnormal. To detect patients, we calculate the likeli-
hood L(Wno) for the segment sequence Wno that does not
include adventitious sounds and the maximum likelihood
L(Wab) for the segment sequence Wab that includes adven-
titious sound segments for each respiration. If the total of
L(Wab) is greater than or equal to the total of L(Wno) then
the subject is classified as patient. That is,

Σ jL(Wj,ab) ≥ Σ jL(Wj,no), (4)

where L(Wj,ab) is the likelihood for the segment sequence
that includes adventitious sound segments for the j-th res-
piration of the subject and L(Wj,no) is the likelihood for the
segment sequence that does not include adventitious sound
segments for the j-th respiration.

3.3 Classification Procedure Using a Heart-Sound Model

To distinguish adventitious from heart sounds, a heart-sound
model was constructed in addition to the breathing-sound
model and adventitious model [15], [16]. In the training pro-
cess, the acoustic models were trained. For normal respira-
tion sounds, the normal sound model was trained using the
breathing and heart-sound segments. For abnormal sound,
the model was trained as in the fundamental classification
procedure. In the testing process, the maximum likelihood
among the calculated likelihoods was found, and the corre-
sponding segment sequence W was selected to recognize the
sample respiration sound, as in the fundamental classifica-
tion procedure. The difference from the fundamental clas-
sification procedure is that, even if the sequence includes
some heart sounds, the sample respiration was identified as
a normal sound.

4. Construction of Appropriate HMMs

In our previous studies [11]–[16], the number of states and
mixtures of HMMs for each segment was set to three, and
the models were assumed to be not suitable. Therefore, we
focused on analyzing the topology of acoustic models. For
example, the duration of the stationary sound period differed
significantly between heart and adventitious sounds. Table 1
shows the mean and standard deviation (S.D.) of the dura-
tion of adventitious and heart sounds. The duration of heart-
sounds is shorter than that of adventitious sounds. Subse-
quently, we focused on the model for adventitious and heart

Table 1 Mean and standard deviation of duration for adventitious and
heart sounds (unit in s) [15].

Source sound Mean S.D.
Adventitious sound 0.53 0.31
Heart sound 0.12 0.03

sounds. To construct the appropriate HMMs for adventi-
tious and heart sounds, suitable HMMs were constructed by
selecting several states and mixtures for each segment [17].
The results showed that selecting the number of states and
mixtures was effective. In [17], although we did not distin-
guish between the model for continuous adventitious sounds
and that for discontinuous adventitious sounds, there was a
significant difference in the character of the acoustic features
of continuous and discontinuous adventitious sounds.

Thus, in the proposed approach, suitable HMMs were
constructed for adventitious sound segments by select-
ing several states and mixtures for continuous adventi-
tious sounds and discontinuous adventitious sounds sepa-
rately. Furthermore, we construct the appropriate HMMs
for breathing sounds and normal respirations.

5. Classification Experiments

5.1 Experimental Conditions

Every 10 ms, six mel-frequency cepstral coefficients
(MFCCs) and power values were extracted as acoustic fea-
tures using a 25-ms Hamming window. The lung sound
data were sampled at 5 kHz. Figure 5 shows the auscul-
tation points. In this study, a heart-sound model was used
for auscultated lung sounds from three points near the heart
(A-C). Conversely, a heart-sound model was not used for
auscultated lung sounds from six points far from the heart
(D-I). Table 2 shows that the number of abnormal respi-
ratory sounds included adventitious sounds, and the num-
bers of patients included at least one adventitious sound. As
many normal respirations or control subjects were selected
randomly for each detection experiment of abnormal respi-
rations and patient subjects. The number of each sound seg-
ment is shown in Table 3. Because there were no significant
differences between the acoustic features of S1 and S2, one
heart-sound model was constructed without distinctions be-
tween the two. Hereafter, a leave-one-out cross-validation
was performed to construct a subject-independent model.

5.2 Classification Experiments Between Normal and Ab-
normal Respirations

In a previous study [17], we determined the number of states
of HMMs for the heart-sound segments. We found a suitable
number of states from one to five, with three mixtures and it-
erations in training. Figure 6 shows F1-score of detection of
abnormal respiration using each number of states, mixtures
and iterations in training for the heart-sound model. The F1-
score was the highest when the number of states was two.
Subsequently, two was selected as a suitable number of mix-
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Fig. 5 Auscultation points.

Table 2 Numbers of abnormal respiratory sounds and patients.

Points No. abnormal Respiration No. patients
A 219 44
B 161 89
C 254 53
D 217 47
E 312 62
F 206 52
G 182 46
H 324 62
I 260 62

Total 2135 517

Table 3 Numbers of each type of sound segment.

Segments No. segments
Heart sound 4940

Discontinuous adventitious sound 1753
Continuous adventitious sound 397

Breathing sound 4285
Normal respiration 2135

Fig. 6 F1-score of the abnormal respiration detection using each heart-
sound model.

tures from one to five, with two states for the heart-sound
segments. Meanwhile, three was selected as a suitable num-
ber of iterations in training from one to five with two mix-
tures for the heart-sound segments. Thereafter, the numbers
of states, mixtures and iterations in training for each seg-
ment with this procedure were set.

For the HMMs for adventitious sounds, we first set the
number of states for discontinuous adventitious sounds. We
found a suitable number of states, with three mixtures and
iterations in training. Figure 7 shows the F1-score of de-

Fig. 7 F1-score of the abnormal respiration detection using each discon-
tinuous adventitious sound model.

Fig. 8 F1-score of the abnormal respiration detection using each contin-
uous adventitious sound model.

tection of abnormal respiration using each number of states,
mixtures and iterations in training for the discontinuous ad-
ventitious sound model. The F1-score shown in Fig. 7 is
lower than that shown in Fig. 6, because Fig. 7 was calcu-
lated using more respirations, and many veiled sounds were
observed. The F1-score was the highest when the number
of states was three. We then found two mixtures and three
iterations in training to be suitable values.

For the HMMs for continuous adventitious sounds, we
first set the number of states. Figure 8 shows the F1-score
of detection of abnormal respiration using each number of
states, mixtures, and iterations in training for the continuous
adventitious sound model, with three mixtures and iterations
in training. The F1-score was highest with a single state.
We attribute this to the acoustic features of the continuous
adventitious sounds being steady. Therefore, a single state
was sufficient to express the continuous adventitious sound
segments. We found two mixtures and two iterations to be
suitable values for training. The number of states for con-
tinuous adventitious sounds was less than that for discontin-
uous adventitious sounds. We considered that this was the
case because the change in acoustic features of continuous
adventitious sounds was small. The result was the highest
when we set a different number of states and iterations in
training between continuous adventitious and discontinuous
adventitious sounds. This result indicates the effectiveness
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Fig. 9 F1-score of the abnormal respiration detectiion using each
breathing-sound model.

Fig. 10 F1-score of the abnormal respiration detection using each nor-
mal respiration-sound model.

of constructing the adventitious sound model for each.
For the HMMs for breathing sound segments from pa-

tients (e.g., w1 and w3 in Figs. 2 and 3), we first set the num-
ber of states. Figure 9 shows the F1-score of detection of
abnormal respiration using each number of states, mixtures
and iterations in training for the breathing sound model.
The F1-score was the highest for three states. As the suit-
able number of mixtures was three, the model was trained
in more detail than the heart-sound model or adventitious
sound model. This was the case because the amount of train-
ing data for the breathing sound segments was greater than
that of the heart-sound segments or the adventitious sound
segments. This is because the duration of heart and adventi-
tious sound segments was short. Then, four iterations were
selected as a suitable value in training.

In the next step, we found a suitable number of states
and mixtures for HMMs of the normal respiration segment.
First, we set the number of states. Figure 10 shows the F1-
score of detection of abnormal respiration using each num-
ber of states, mixtures and iterations in training for the nor-
mal respiration sound model. The F1-score was the highest
with four states, mixtures, and iterations. The model was
trained in more detail than the heart or adventitious sound
model. This is because the amount of training data for the
normal respiration segment was greater than that of heart
or adventitious sound segments, similar to breath sounds.

Table 4 F1-score of the detection of patients.

Method Recall Precision F1-score
Baseline 0.8395 0.8821 0.8603
Proposed 0.8569 0.8949 0.8755

Table 5 Comparison of the F1-scores of each method.

Method Recall Precision F1-score
SVM 0.9433 0.5542 0.6982
Deep learning 0.6173 0.6346 0.6258
Baseline 0.8445 0.8541 0.8493
Proposed 0.8787 0.8598 0.8726

Conversely, we considered that, when large values were se-
lected, the amount of training data was insufficient. That is,
the model overfitted the data.

The above result shows the significant effectiveness
(p = 0.0025) of setting the suitable states, mixtures and iter-
ations in training.

5.3 Classification Experiments Between Control Subjects
and Patients

Finally, a classification experiment between control subjects
and patients is presented here. Table 4 shows the F1-score
of detection of patients. In the baseline, we set the num-
ber of states, mixtures, and iterations in training as three.
We selected the number of states, mixtures, and iterations in
training as the best values obtained in the previously men-
tioned classification experiments between normal and ab-
normal respiration.

In the classification experiment between control sub-
jects and patients, the results showed the possibility of im-
provement of the F1-score. However, the improvement
was not significant because the number of test subjects was
small.

5.4 Discussion

We performed classification experiments between normal
and abnormal respiration using SVM and deep learning
models that set parameters as in general speech recognition.
In the experiment using a SVM, when abnormal flames were
detected from respiration, the respiration was detected as ab-
normal. Consequently, although the recall rate was high, the
precision was low. This was the case because noises were
detected as abnormal sounds, and then respirations includ-
ing noises were detected as abnormal. In contrast, in the
experiment using deep learning, both the recall and preci-
sion were low. Consequently, the F1-score was not high
because deep learning requires large-scale training data to
achieve high performance. That is, the amount of training
data was not satisfied and the model was overfitted the data.
To overcome these issues, the method adopts HMMs, which
are suited to express the entire sequential signal of a sound.

Then, these methods were compared. Table 5 shows
the F1-score of each method. Baseline refers to a method
using HMMs in which the number of states, mixtures, and
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iterations in training was set as three. The methods using
HMMs achieved better performance than the method using
SVM and deep learning. The results show the effectiveness
of the method using HMMs. Furthermore, to confirm the
suitable HMMs with small training data, a suitable number
of states, mixtures, and iterations in training were selected.
Comparing the baseline with proposed method, the F1-score
of our proposed method was higher than that of the baseline
method. The result shows the significant effectiveness of our
proposed approach. In contrast, it does involve the draw-
back of some difficulty in selecting the suitable number of
states, mixtures, and iterations in training without ground-
truth data.

6. Conclusions

In this paper, a method was proposed to construct an ap-
propriate HMM for heart sounds, two types of adventitious
sounds, breath sounds, and normal respiration with high ac-
curacy by selecting a suitable number of states, mixtures,
and iterations in training to distinguish the sounds of nor-
mal and abnormal respiration. The result of he classifica-
tion experiment confirmed an improvement in the F1-score
of the abnormal respiration detection, demonstrating the ef-
fectiveness of the proposed approach. The number of states,
mixtures, and iterations in training must be set according
to the properties of the acoustic features and the amount of
training data available. Furthermore, the resulets indicated
that the suitable number of states and iterations in training
differed for each type of adventitious sound. In contrast, in
the classification experiment between control subjects and
patients, the observed improvement was not significant ow-
ing to the small number of test subjects. In future work, we
plan to clarify the number of suitable states, mixtures, and
other parameters using a deep neural network, which has
been shown to be effective in speech recognition.
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