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Abstract 

Background: Coronavirus disease 2019 (COVID-19) is an infectious disease that has surrounded the world 

caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The disease is usually onset 

with symptoms like fever, cough, fatigue, respiratory problems, and loss of smell and taste. The majority of 

COVID-19 patients have mild or no symptoms, but a few demonstrate acute respiratory problems (ARDS) that 

can be life-threatening.  

Materials and Methods: Authors searched English published articles in local and international journals over the 

period 2000 to 2022 using several databases including Scopus, PubMed, Scholar, and Science Direct. Then, the 

relevant articles were revised. During this period, different articles have been published, but we tried to choose 

and review articles that introduced effective data. 

Results: Some people show symptoms long after their negative PCR test called post-COVID-19 syndrome, 

which studies showed can last more than 12 weeks after infection. Other than the complications patients 

confront amid the period of COVID-19 infection, there is an accumulation of evidence regarding the delayed 

complications of COVID-19, including auto-immune outbreaks such as multisystem inflammatory syndrome 

(MIS), idiopathic thrombocytopenic purpura (ITP), Guillain-Barre syndrome, Miller-Fisher syndrome, 

Autoimmune hemolytic anemia (AIHA), Autoimmune thyroid disease and also COVID-19 associated 

coagulopathies, have received remarkable attention since the early months of the pandemic. Microbiome 

changes in the gut and nasopharynx of patients with COVID-19 affect the severity of the disease, furthermore, 

some genes inherited from Neanderthals increase the severity of COVID-19.  

Conclusion: COVID-19 infection, along with the immune suppression mechanism, has the potential to evoke 

destructive inflammation in the host. Clarifying the pathophysiology of the COVID‐ 19 injuries to the host 

could help to develop appropriate treatment. 
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Introduction 

Coronavirus disease 2019 (COVID-19) is a 

communicable disease that caused by the SARS-

CoV-2 virus1. After a 1-14 day incubation period, the 

disease usually manifests itself through symptoms of 

fever, cough, fatigue, respiratory problems, and loss 

of taste and smell2. However, most COVID-19 

patients are asymptomatic or mildly symptomatic3,4; 

While a few of them may develop acute respiratory 

distress syndrome (ARDS) which can be life-

threatening5,6. 

We know that COVID-19 is the first pandemic and 

the third epidemic to occur in the SARS-CoV 

family7. There are risk factors for this disease, for 

example, its severe type in children below one year, 

adults over 65 years, pregnant women, 

immunocompromised patients, those with diabetes 

mellitus, respiratory disease, cardiovascular disease, 

hypertension, kidney disorders, and oncological 

complications8–12. The prevalence is higher in men13 

and obese people with a BMI above 30 have a higher 

mortality rate14. People with blood types A, B, and 

AB have a higher risk of ventilating and staying in 

the ICU than people with type O blood15.  

It is said that in mild COVID-19 we have some 

symptoms like fever, cough, sore throat, headache, 

fatigue, chills, pneumonia, nausea, and vomiting16. 

Nevertheless, in some patients, we have seen 

myocardial injury and kidney damage17.  

In many infections, loss of tolerance causes 

autoimmune responses. Following infection, patients 

may experience autoimmune conditions such as 

autoimmune hemolytic anemia, autoimmune 

thrombocytopenia, Guillain-Barré syndrome, 

vasculitis, and Multiple Sclerosis(MS) 18–21. Auto-

inflammation itself in children22 such as Kawasaki is 

also one of the most common cases23. Some 

thrombotic phenomena have been associated with the 

production of antiphospholipid antibodies, 

complement depletion24, deposition of the immune 

complex25, production of ANA, and antibodies 

against DNA26,27. 

COVID-19 could be seen as an inclining factor 

towards auto-reactivity and is implicated in 

mechanisms contributing to the initiation of 

autoimmunization. 

This review attempts to discuss short- and long-term 

inflammatory issues of post-COVID-19 complications. 

Inflammation and COVID-19  

The intensity expansion of COVID‐ 19 is associated 

with host resistance28. In mild infections, the host has 

moderate resistance and has a better chance of 

rehabilitation due to this disturbed homeostasis, but in 

the severe form of resistance, the host becomes 

overactive and causes a lot of inflammation, leading to 

a cytokine storm29. SARS-CoV-2 infects epithelial 

cells, dendritic cells, and macrophages to produce 

cytokines30, and although these cells, with a few 

exceptions, produce interferon and in the first 

encountering the virus, large amounts of IP10, CCL3, 

CCL5, CCL2, TNF, GM CSF, ROS, IL1B, IL8, IL6 

are produced in patients’ serum31,32. In patients, IL2R 

and IL6 serum levels are associated with disease 

severity33. 

Delay in the production and secretion of interferons in 

the early stages, prevents the antiviral response. In 

later stages, chemotactic mediators like CXCL8, 

attract neutrophils and monocytes and cause 

inflammation34. However, the severity of symptoms in 

patients depends on the type of immune response and 

inflammation of them. Depending on the type of 

response, the extent and variety of cytokines, and 

chemokines, the severity of the disease varies from 

person to person35. 

Whether the patient's immune function suppresses the 

virus at an early stage of infection, a patient will reach 

the recovery phase and will have a high amount of 

Spike(S) Pr-neutralizing Antibodies36. IgA is produced 

in the first week followed by IgM6. IgG titer is 

increased in the first 3 weeks37. Cellular immunity, 

TCD4+, and TCD8+, also is increased in the first one 

to two weeks38. COVID-19 patients also develop 

memory responses in the absence of specific 

antibody39.  

Following viral infection, in the early or late phase of 

the disease, patients may experience autoimmune 

conditions40. The chain of events can lead to the 

spread of inflammation, such as the infiltration of 

lymphoplasmacytic commonly into the lungs and the 

expression of cytokines such as IL1, IL6, TNFα, IL17, 

and markers such as CRP and ferritin41. Development 

of autoimmunity and disease has four phases: 1- The 

viral phase in which the virus enters the body 2- 
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Excessive defensive response by the immune system 

3- The stage of increasing the coagulation of 

circulating blood components 4- Occurrence of 

damage and defects in the organs of the body42. 

In COVID-19, when lymphocyte depletion occurs in 

different categories such as TCD4+, TCD8+, and 

Treg, it causes temporary lymphopenia. It has many 

reasons including induction of apoptosis43, cytokine 

effects such as type I interferon44, bone marrow 

shutdown (bone marrow suppression due to viral 

stress)45, or redistribution with a severe recall of 

inflammatory cells occurring in the lung due to 

chemotaxis in the tissue. Redistribution of the 

immune system includes intrinsic immune 

components such as monocytes, macrophages, and 

dendritic cells46.  

After a temporary improvement in symptoms and 

immune system rehabilitation, the lymphocyte count 

increases again and can pave the way for preparation 

for an unregulated response47. The 

immunosuppression that occurs in SARS-CoV-2, like 

the redistribution of the immune system, is the result 

of primary tolerance or due to temporary weakness 

and reduced immune system regulation mechanisms 
48. It has been reported that regulatory T lymphocytes 

are also temporarily inhibited and can activate other 

lymphocyte lineages49. On the other hand, this 

autoreactivity may be associated with transient 

immunodeficiency of acquired and innate immune 

components that are unable to detect their antigens40. 

Furthermore, the development of autoimmunity 

depends on genetics50, Human leukocyte antigen 

(HLA)51, age, and sex52, which are greater in women 

due to the effects of estrogen53. 

Autoimmunity and Multiple Inflammatory 

Syndrome after COVID-19 in Children 

It is obvious that the intensity and frequency of 

COVID-19 infection are lower in children, However, 

children have reported symptoms similar to Kawasaki 

disease and toxic shock, referred to as multisystem 

inflammatory syndrome (MIS) 54,55. The cause is a 

severe host immune response56. The primary cause of 

death is the inflammatory response caused by SARS-

CoV-2. Cytokines play an important role in 

immunogenicity, and a sharp increase in them leads to 

a cytokine storm57. The release of inflammatory 

 
Figure 1. Autoimmunity after COVID-19 in adults and some laboratory findings related to each autoimmunity. TSH, thyroid 

stimulating hormone; TT3, total triiodothyronine; TT4, total thyroxine; TPO, thyroid peroxidase; APA, anti-platelet autoantibodies; 

GBS, Guillain-Barre syndrome; ITP, idiopathic thrombocytopenic purpura; AIHA, autoimmune haemolytic anaemia; MFS, Miller-

Fisher syndrome; DAT, direct anti-globulin test; COVID-19, coronavirus disease of 2019; IL6, interleukin 6; IL8, Interleukin 8; GQ1B 

GD1B, ganglioside Q1B D1B. 
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mediators is associated with overactive immune 

systems in conditions such as cytokine storms56.  

Neutrophils are the main actors in cytokine storms 

and can secrete ferritin, which is found in various 

inflammatory syndromes58. Ferritin is 

immunosuppressive and inhibits the differentiation of 

myeloid cells, B and T lymphocytes58, although high 

ferritin levels and hemophagocytosis can be 

associated with inflammatory exacerbation and are 

seen in several diseases such as severe cases of 

COVID-1911, macrophage activation syndrome, 

Multisystem Inflammatory Syndrome in children 

(MIS-C)59, that shares some aspects with other 

inflammatory disorders and large amounts of 

cytokines cause dysfunction of several organs, 

including Kawasaki, sepsis, macrophage activation 

syndrome (MAS), and Hemophagocytosis 

LymphoHistiosis (HLH)60. 

In some people with symptoms similar to Kawasaki 

disease, changes in hemodynamic parameters have 

been observed with gastrointestinal manifestations. 

In a study in France and Switzerland, 35 children 

with symptoms of MIS-C were observed. In 31 of 

them, the PCR test was positive61. It is important to 

be aware that the spread of MIS-C following 

COVID-19 infection can be in the first and second 

weeks after infection62, although in patients with 

negative PCR, the spread of MIS-C has been seen 6 

weeks after exposure to COVID-1963. 

Kawasaki disease (KD) is a systemic vasculitis that 

usually occurs in children younger than 5 years of 

age64. It is generally self-limiting and can cause 

Coronary Artery Aneurysm (CAA)65, the number one 

cause of acquired cardiac disease in children 66. 

Kawasaki Shock Syndrome (KSS) is associated with 

capillary leakage syndrome or poor perfusion as a 

result of inflammatory myocarditis67.  

Kawasaki-like disease in COVID-19 is called 

Paediatric inflammatory multisystem syndrome 

temporally associated with SARS-CoV-2 (PIMS-

TS), or Multiple Inflammatory Syndrome in 

Children64. Superantigens stimulate T cell clonal 

proliferation and produce many inflammatory 

cytokines68, and there is evidence that KD can be 

triggered by a super antigenic response 69. KSS is 

also associated with severe cytokine release. 

Inflammatory proliferation syndrome can be due to 

the autoantibodies formation through molecular 

mimicry, vascular damage because of deposition of the 

immune complex or ADE (antibody-dependent 

enhancement) may also be associated with the IgG 

immune complex, which increases the penetration of 

viral infection into FC receptor bearing cells70,71.  

The disease has not been seen in Asia, which could 

indicate that host genetics and differences in the virus 

genome play a role64.PIMS has been shown to overlap 

with Kawasaki, but they must be distinguished. 

Kawasaki patients associated with COVID-19 are 

older72 and have gastrointestinal and meningeal 

symptoms. They may have leukopenia with 

lymphopenia, thrombocytopenia, increased ferritin, 

and myocardial markers, a high prevalence of 

myocarditis, and cardiac interactions62,63. KD-COVID-

19 is usually worse due to myocarditis and most can 

be hospitalized73. 

To gain a better understanding of the 

hyperinflammation in MIS-C and Kawasaki disease, 

peripheral blood mononuclear cells (PBMCs), were 

evaluated for expression and intensity of surface 

markers by flow cytometry. Differences were found in 

the distribution of T CD4+ subtypes by CD45RO and 

CD27 expression, as well as the frequency of T 

Follicular Helper (TFH) expressed by CXCR5. The 

total number of T cells in both types was lower than in 

healthy individuals. Both groups of patients with 

SARS-CoV-2 infection had more central memory and 

executive T CD4 + but less naive TCD4+ than 

Kawasaki patients. TFH levels have decreased in 

children with SARS-CoV-2, with or without MIS-C, 

compared with patients in Kawasaki. CD57 is a 

differential marker of T CD4+ effector that was 

decreased in severe and acute COVID-19 patients74. 

Children with mild COVID-19, or MIS-C, had more of 

these differentiated cells than Kawasaki patients. T 

CD8 + cells were lower in MIS-C children than in 

children with mild COVID-1973. 

Although MIS-C is temporarily related to SARS-CoV-

2 infection in children, its immunogenicity isn't well 

caught on. Children suffering from MIS-C without the 

IL-17-based cytokine storm are typical of Kawasaki 

disease73. Proinflammatory cytokines associated with 

disease severity in children with COVID-19 have been 

shown to include IL-2, IL-6, IL-10, IL-13, and IL-17. 

However, children with MIS-C have higher TNF 
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levels, which may show a reduction of the viral 

infection or cytokine release syndrome (CRS), which 

is a systemic inflammatory response against viral 

infections 75,76.  

Children with mild COVID-19 and mild MIS-C 

showed higher antibody binding and antibody 

affinity to non-structural protein2 (NSP2) and NSP13 

compared to children with severe COVID-19 or 

severe MIS-C77. 

SARS-CoV-2 shares its epitope with the Kawasaki 

antigen, inositol triphosphate tri kinase c, because of 

its molecular similarity, and this could cause 

Kawasaki78. We will discuss molecular similarity 

more below. 

Autoimmunity after COVID-19 in adults 

The range of complications following COVID-19 in 

adults is wider in comparison to children and 

includes autoimmune diseases, but their prevalence is 

rare, such as idiopathic thrombocytopenic purpura, 

Guillain-Barre syndrome, Miller-Fisher syndrome, 

Autoimmune hemolytic anemia and Autoimmune 

thyroid disease 18–20,79,80. Compared with PIMS, 

autoimmune symptoms occur in adults in the early 

phase of COVID-1922 (Figure 1). 

1. ITP, or Immune Thrombocytopenia Purpura 

Idiopathic, is a systemic autoimmune disease 

in which Platelet counts are low due to 

autoantibodies to glycoproteins expressed on 

platelets64,86. It is usually life-threatening if it 

occurs in children. Some viruses, such as 

CMV, EBV, rubella, measles, or HIV, can 

cause ITP because of their molecular 

similarity87,88. Many mechanisms have been 

proposed, such as inhibition of platelet 

production due to direct infection of bone 

marrow cells or platelets by the virus89. 

Platelets do not have ACE2 receptors, 

although studies have shown that platelets 

can bind to SARS-CoV-2 mRNA 

independent of ACE290. COVID-19 patients 

have fewer regulatory cells due to immune 

dysregulation48, and therefore cytotoxic T 

cells can directly kill platelets89. Molecular 

similarity can also play a role in this disease. 

2. Guillain-Barré syndrome or GBS is a rare 

autoimmune disorder characterized by 

inflammatory demyelination and axonal 

neuropathy that causes progressive paralysis 

with reduced or no reflexes and can be 

associated with cranial neuropathy and 

pain91,92. One of the main mechanisms of 

GBS is molecular similarity93,94. The antibody 

binds to peripheral motor membrane surface 

gangliosides and sensory neurons, damaging 

myelin and axons95. We know that SARS-

CoV-2 elicits an immune response, which in 

turn activates T and B lymphocytes and 

produces antibodies96, but possibly causes a 

loss of tolerance due to the structural 

similarity of the ganglioside and virus 

sequences97,98.  

3. Miller-Fisher syndrome or MFS is a rare and 

acquired disease. It is a mild form of Guillain-

Barré syndrome that affects approximately 

5% of all GBS cases and can occur with 

areflexia, ophthalmoplegia, mild weakness of 

limbs, ptosis, facial paralysis, bulbar palsy, 

and overall respiratory muscle weakness99. 

The majority of people with MFS had specific 

antibodies that were Anti ganglioside Q1B 

(GQ1B) and anti-GD1b100,101. Large amounts 

of GQ1b gangliosides have been observed in 

the oculomotor and trochlear and abduces 

nerves, which is associated with 

ophthalmoplegia10085. 

4. Autoimmune Hemolytic Anemia (AIHA) is 

an autoimmune disorder that is developed in 

some cases of COVID-19 during 

infection18,80,102. Based on this report, all of 

them happens after the starting of the 

infection indications and within a time 

allotment consistent with that of the cytokine 

storm. The median time from the major side 

effects of COVID-19 to the onset of AIHA 

was nine days (4-13 days). All patients 

exhibited marked hemolysis and all patients 

had raised markers of inflammation18. The 

reason could be linked to an antigenic cross-

reaction with red blood cells secondary to 

molecular mimicry103. Some drugs that can 

cause Coronary artery disease (CAD) can also 

be identified102,104. 

5. Autoimmune thyroid disease is one of the 

autoimmune disorders and some studies 

45 
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reported that COVID-19 patients might 

experience that79,105,106. SARS-CoV-2 

patients’ thyroid glands were influenced by 

damage to the follicular and parafollicular 

epithelial cells107. Levels of the patient's 

total triiodothyronine (TT3), total thyroxine 

(TT4), and thyroid stimulating hormone 

(TSH) with SARS were impressively lower 

than those of controls in both the progression 

and recuperation stages108. In addition, the 

amount and intensity of TSH-positive cell 

staining have declined in the pituitary gland 

of SARS-CoV-2 patients, which appeared 

that the decrease in TSH concentration can 

be linked to the changes in TSH-secreting 

cells in the pituitary109. Patients with 

COVID-19 had low levels of TSH and TT3, 

and the higher the severity of COVID-19, 

the lower the levels of TSH and TT3106. 

 There may be reasons for this disorder, such as a 

direct viral impact on the pituitary cells, indirect 

impacts like the actuation of different 

proinflammatory cytokines caused by the infectious 

disease, or its therapeutic effects leading to hormonal 

changes in the input rings of the pituitary-endocrine 

axis 110,111. Persistent stress from hypoxemia and 

glucocorticoids that most patients have been treated 

with may also reduce TSH levels in COVID-19 

patients106. The presence of variables such as anti-

thyroid peroxidase (TPO) antibodies or high levels of 

anti-thyroid antibodies, which may be evidence of the 

development of Graves' or Hashimoto's post-COVID-

19 79,112, could support the development of 

inflammatory disorders following COVID-19 that 

trigger autoimmunity105 (Figure 2). 

One of the analyzes that can be done for the 

etiopathology of this disease is the molecular 

similarity between the virus and human proteins. After 

infection, the immune response evoked against SARS-

CoV-2 may react to human peptides that some virus 

sequences are identical to humans64,113. Like the 

SARS-CoV-2 spike glycoprotein heptapeptide 

“KLNDLCF” and “NASVVNI” that can overlap with 

human protein “interleukin-7” and “Thyroid adenoma-

associated protein” respectively. Also, the association 

between human peptides and SARS-CoV-2 

 
Figure 2. Brief summary of Autoinflammation and autoimmunity in COVID-19 patients. GBS, Guillain-Barre syndrome; ITP, 

idiopathic thrombocytopenic purpura; AIHA, autoimmune haemolytic anaemia; MFS, Miller-Fisher syndrome; RBC, red blood cell; 

SIC, sepsis-induced coagulopathy; DIC, disseminated intravascular coagulation; PIC, pulmonary intravascular coagulopathy; MIS-C, 

multisystem inflammatory syndrome in children; COVID-19, coronavirus disease of 2019; SARS-CoV-2, severe acute respiratory 

syndrome coronavirus 2; ACE2, angiotensin-converting enzyme 2. 
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neuropathic complications can be observed. For 

example, histone-lysine N-methyltransferase 2C may 

be associated with neurodevelopmental disorders as 

well as behavioral abnormalities and seizures114. 

COVID-19 associated thromboembolism 

Thrombotic events occur in 1/3 of COVID-19 

patients, often pulmonary embolism associated with 

disease severity and mortality120,121. Venous 

thromboembolism or VTE has a high prevalence in 

viral diseases such as SARS-CoV-1 and H1N1, as 

well as a high rate in severe COVID-19122,123. In 

coagulopathy-related COVID-19, patients may have 

mild thrombocytopenia, increased prothrombin time, 

and increased fibrinogen and D-dimers86,124. This 

Pattern of coagulopathies associated with COVID-19 

(CAC pattern) may have features in common with 

sepsis-induced coagulopathy (SIC) and disseminated 

intravascular coagulation (DIC)117. DIC and SIC may 

occur during COVID-19, but it is less common117. 

One of the most coagulation disorders in respiratory 

manifestation in COVID-19 is pulmonary 

intravascular coagulopathy (PIC) which is a part of 

systemic coagulopathies. The development of SIC 

and DIC leads to PIC, the symptomatic sign of 

coagulopathies or maybe as a local or systemic 

coagulation118. 

In some viral infections, a disorder similar to MAS 

occurs and although this disorder is part of secondary 

hemophagocytic lymphohistiocytosis (sHLH), in 

COVID-19 it has different features125,126 127. 

Immunopathology of pulmonary macrophage 

activation syndrome in COVID-19 is different from 

classic sHLH 128. These disorders are associated with 

organomegaly, thrombocytopenia, hemophagocytosis, 

and DIC129. Rapid onset of DIC can be associated with 

hyperferritinemia and indicates hemophagocytosis and 

clot failure. Pulmonary involvement without 

hyperplasia of the lymphatic organs is typically 

associated with COVID-19 pneumonia. 

Intrapulmonary hemophagocytosis can cause 

extracellular red blood cell hemolysis and cell damage 

by macrophages. DIC can also happen late during 

COVID-19 pneumonia130. 

Homeostasis and the immune system are interrelated. 

Physiological immunothrombosis can be disrupted and 

cause excessive clots to form effect on small 

vessels131. Immunothrombosis is one of the most 

important pathological mechanisms of COVID-19 

 
Figure 3. Immunothrombosis in COVID-19. COVID-19, coronavirus disease of 2019; MAC, membrane attack complex; IL6, interleukin 

6; TNF, tumor necrosis factor; VWF, von Willebrand factor; C3b, complement component 3; CR1, complement receptor 1; C5a, 

complement factor 5a; NET, neutrophil extracellular traps. 
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activation of innate immunity, excessive coagulation, 

and endothelial dysfunction can lead to the 

development of prothrombotic stages132. Primary 

binding of SARS-CoV-2 to type 2 pneumocytes, 

infiltrates innate immune cells such as macrophages, 

monocytes, and neutrophils131,133. The cytokines 

released from these cells, cause a hypercoagulable 

state by various mechanisms. IL6 itself causes 

platelet generation 134.  

Neutrophil-producing serine protease, cathepsin G, 

can also actuate platelets. TNF- α and IL-6 can 

induce tissue factor that is expressed by a variety of 

cells such as monocytes, macrophages, and 

endothelium133–135. One of the most important 

coagulation-inducing factors is the membrane attack 

complex (MAC), which causes the killing of 

target136. This causes coagulopathy with the onset of 

microthrombi formation and von Willebrand factor 

(VWF) formation137. Like the increase in 

prothrombin activity, another mechanism is the 

binding of complement component 3 (C3b) and 

complement receptor 1 (CR1) to the platelet surface, 

which releases short-chain polyphosphate or polyp, 

causing tissue factor expression133.  

Complement factor 5a (C5a) invokes neutrophils and 

Neutrophil Extracellular Trap(NET) induces 

coagulation137. Although NETosis is considered in 

health as a mechanism for clearing foreign and 

dangerous factors, viral infections such as COVID-

19 are one of the causes of autoimmune reactions so 

the patient's plasma with SRAS-CoV-2 is a NETosis 

activator. 138,139. NETs with promoting a pro-

inflammatory and procoagulant state are involved in 

the pathogenesis of COVID-19 138. In severe 

COVID-19 patients, neutrophil’s NET is related to 

cytokine storm 138. Histone, a major component of 

NET, causes platelets to adhere and aggregate, 

thereby inducing tissue factor140. Neutrophilic 

elastase breaks down tissue factor inhibitors and 

prevents tissue factor inhibition141,142 (Figure 3). 

Complications of Inflammation and 

Autoimmunity Following COVID-19 Infection 

According to Hygiene Theory 

The hygiene hypothesis was linked to autoimmune 

diseases in the early 2000s143. Genetic factors such as 

HLA, epialleles, and underlying diseases such as 

diabetes mellitus or Insulin-dependent diabetes 

mellitus (IDDM) play a role in the severity and 

persistence of symptoms and signs of inflammation. 

Environmental factors such as viruses and other 

microorganisms are also involved in autoimmunity144. 

It is concluded that Hygiene is related to the 

microbiota gut, especially in the gastrointestinal tract 

and other mucosal surfaces of the body, and plays a 

role in immunity145. The main purpose of the 

epidemiological function of health theory is to show 

the relationship between the multiplicity of infections 

and the multiplicity of allergic and autoimmune 

diseases144.  

Regarding the evolution of modern humans, it can be 

mentioned that Homo sapiens, a species to which all 

modern humans belong, evolved from a cross between 

African humans and Neanderthals. Some haplotypes 

that exist in modern humans and are derived from 

Neanderthals contain important genes in the immune 

response144,146. It has been discovered recently that 

certain genes leading to a greater vulnerability in 

people with COVID-19 are found in Neanderthals147. 

From a genetic point of view, the severity of COVID-

19 can be linked to chromosome 3, and in particular to 

a genomic region that encodes chemokine receptors 

mediating different cellular responses148. Chromosome 

3 is the main source of genetic risk factors of COVID-

19 severity that contains a gene cluster encoding 

chemokine receptors. The chemokine genes CCR1, 

CCR2, CCR3, CCR5, CCR9, XCR1, and CXCR6 are 

all at risk of severe COVID-19149. This major genetic 

risk factor of severe COVID-19 is inherited from 

Neanderthals150.  

Molecular mechanisms in microbiome changes in 

the gut and Nasopharyngeal of COVID-19 patients 

Dysbiosis means an imbalance of commensal bacteria 

that puts the intestinal microbiota in pathogenic 

conditions 151. Many studies have shown commensal 

bacteria responsible for regulating autoimmunity, and 

their absence or reduction can lead to autoimmunity152, 

such as probiotics and lactobacilli. In the case of 

COVID-19, there is also evidence that the intestinal 

microbiota is disordered153,154. Metagenomic 

sequencing (MGS) analysis shows that clear changes 

in intestinal bacterium have occurred in COVID-19 

hospitalized patients and the diversity of intestinal 

microbiota and beneficial bacteria decreased155.  

Conversely, opportunistic pathogens such as 
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Streptococcus / Rotia / Actinomycetes associated with 

gastrointestinal problems such as abdominal pain, 

nausea, vomiting, and diarrhea were increased151,154. 

COVID-19 infection is associated with the immune 

system and microbiota like fingerprints, and the 

source of dysbiosis is a severe immune response and 

inflammation. The function of the gut microbiota and 

its composition in each individual can determine a 

person's sensitivity or resistance to COVID-19, as 

well as response to medication and treatment155. 

Angiotensin-converting enzyme 2 (ACE2) 

metabolizes angiotensin (Ang) II into the Ang 1-7 

peptides and regulates the renin-angiotensin system 

(RAS)156. ACE2 is abundantly found in the gut to 

control expression157.  is a transporter 

involved in the uptake of sodium coupled to neutral 

amino acids such as tryptophan158.  

substrates, especially glutamine and tryptophan, 

downregulate proinflammatory cytokines, form a 

tight junction, activate the release of antimicrobial 

peptides, and regulate mucosal cell autophagy as a 

defense mechanism159,160. All of this can be disrupted 

by COIVD-19 and causes leaky gut. COIVD-19 

patients may experience diarrhea, nausea, and 

vomiting119, which can cause the virus to spread in 

the stool and leads to fecal-oral transmission161–163. In 

the large intestine, the dysbiotic gut microbiome 

increases the release of inflammatory cytokines, loss 

of tight junction, and changes in mucosal cell 

autophagy164. 

Also, about the nasopharyngeal microbiome, Patients 

with severe type showed reduced microbial diversity 

and also less abundance of beneficial bacteria like 

Corynebacterium and Dolosigranulum than healthy 

individuals and patients with moderate severity. 

Decreased diversity of microbiota and beneficial 

compounds is associated with the spread of not only 

Staphylococcus but also Prevotella and 

Peptostreptococcus165.  

Humoral immunity and COVID-19 

Humoral immunity plays a dual role in COVID-19 

While neutralizing antibodies can play a protective 

role against COVID-19166,167, unregulated humoral 

immunity can cause COVID-19 immunopathology 

and autoimmunity 168,169. These autoantibodies can 

affect many functions, such as disrupting cellular 

signaling or killing specific cells by FCR or 

compliment. These indicate that these patients’ 

autoantibodies can directly inhibit cytokine and 

chemokine activity and reduce immune cells170. 

Patients with anti-IFN_1 autoantibody have increased 

viral load and show impaired virus clearance169. 

Patients with  autoantibodies have normal B and 

NK cells but have low levels of TCD4+, TCD8+, and 

NKT lymphocytes, and patients with autoantibodies to 

CD38 have low activated NK, TCD4+, and TCD8+ 

cells. It has been observed that patients' IgG or plasma 

can cause Ab-dependent cellular phagocytosis or 

ADCP versus Jurkat or Raji cells. They even observed 

anti-tissue autoantibodies, such as vascular cells, 

coagulation factor, and platelets, connective tissue, 

extracellular matrix components, and organs such as 

lungs, central nervous system, skin, gastrointestinal 

tract170.  

Various autoantigens such as Neurexophilin-1 

(NXPH1), proprotein convertase subtilisin/kexin-type 

1 (Pcsk1), anti-hypocretin receptor 2 (HCRTR2), 

solute carrier family 2 members 10 (SLC2A10) are 

associated with markers associated with COVID-19 

severity, such as D-dimer, ferritin, CRP, lactate171,172. 

They also observed an HCRTR2 autoantibody, the 

Orexin receptor (which is highly expressed in the brain 

and is involved in the central response mechanisms 

that control behavior) in the hypothalamus that 

interferes with its activity170,173. 

Conclusion 

It is not yet a good time to accept autoimmunity as the 

primary comet complication of COVID-19, and many 

of the immune-related disorders in SARS-CoV-2 can 

indicate a temporary secondary disorder following a 

viral infection. Anti-inflammatory therapies and 

immunosuppressants can help prevent autoimmune 

disease. But information is still evolving and we need 

more time to give a definitive answer to this question. 

Today's world is waiting for the future and other 

pandemics. COVID-19 infection, along with the 

immune suppression mechanism, has the potential to 

evoke destructive inflammation in the host. 

As we have witnessed a wave of inflammatory 

autoimmune disorders and subsequent complications 

of viral infections, not only to combat this 
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phenomenon but also to try to prevent it, the front 

line of the fight against these complications must be 

included. 
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