Terrace Soil Suitability for Highway Construction: Case Study in Lesser Himalaya (CPEC Project E-35), North Pakistan

Salman Ahmed Khattak^{1, 2, 3*}, Anwar Qadir¹, Hamza Daud¹, Kamran Shehzad⁴, Muhammad Yasir¹, Muhammad Abubakar¹

¹Department of Earth Sciences, University of Haripur, Pakistan ²Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China ³University of Chinese Academy of Sciences, Beijing 100049, China ⁴Department of Geology, Khushal Khan Khattak University, Pakistan

*Email: salmanbinamin@gmail.com

Received: 15 January, 2021

Accepted: 16 August, 2021

Abstract: In this study, terrace soil investigation was carried out in project E-35 (phase-I) China-Pak Economic Corridor, Lesser Himalayas, North Pakistan. The methodology in current research is based on tests that include sieve analysis, plastic index, proctor, California Bearing Ratio, Los Angeles, sand equivalent and specific gravity. The results of these tests for different layers were compared with AASHTO and NHA specifications. The results show that the embankment, subgrade and subbase layers were composed of silt, sand and gravel, respectively while the aggregate base coarse was composed of sand, aggregate and less amount of fine clay material. The sieve analysis test shows that soil and aggregate base coarse has less clay with high silt, sandy material and index plastic to low plastic, which is appropriate for the construction. The California Bearing Ratio shows that the soil and aggregate base coarse have high load-bearing capacity. The Los Angeles abrasion reveal that the sub base and aggregate base coarse are resistive. The sand equivalent shows that aggregate base coarse has high sand material. The specific gravity illustrates that aggregate base coarse material is denser. The current study shows that terrace soil is suitable for the construction of the road in project E-35 (phase-I) China-Pak Economic Corridor.

Keywords: Terrace soil, highway construction, aggregate, sieve analysis, Haripur.

Introduction

The natural materials related to the processes of terrace formation in response to river's erosion and deposition (cut and fill) of alluvial sediments create variety of materials fluctuations (Bridgland and Westaway, 2008). These materials are reflective of the processes and are utilized for various purposes for construction and development. Testing these materials is of prime importance for the human civilization's sustainability (Young and Nanson, 1982).

Naturally, the highways are built on different geological materials having different engineering properties. The evaluation of these materials needs a variety of methods, designs and techniques. The importance of engineering geology in the construction field cannot be neglected to achieve the best use of materials. The nature and suitability of the soil plays an important role in the sustainability of road structure and design whereas the soil unsuitability may lead to structural and design failure. Thus, information about the soil profile is necessary especially for road construction (Perry and Hayes, 1985).

In the current study, the area from Jarikas to Maqsooda interchange in Haripur district (Hazara Division) is under investigation that is part of Hasanabdal-Havelian-Mansehra expressway project E-35 (phase-I) of the CPEC (Fig. 1). The China Pakistan Economic Corridor is a mega project to change the dynamics of Pak-China relations in the context of geo-economics. The main objective of CPEC is to improve the living standard of people of Pakistan and China by increasing the trading activity for regional connectivity. After completion of this project, it will become a major gateway for trading between China and many Afro-Asian countries.

The present study aims to evaluate and understand the nature and stability of terrace soil for highway construction. The main objectives are 1) To find out the geotechnical parameters of terrace soil and 2) To compare the class of terrace soil with NHA specification (1998) and AASHTO classification for the proposition of suitable material in highway construction (Fig. 2).

Tectonically, the study area lies in the Lesser Himalayas, which was formed as a collision of the Indian and Eurasian Plates in Eocene period (Khattak et al., 2017). Stratigraphically, the Hazara basin consists of Precambrian to Recent age rocks (Hussain et al., 2013). The Haripur area is having flatlands with less stratigraphically exposed surfaces as compared to other parts of the basin. It contains Quaternary deposits which are mainly stream deposits and include a system of terraces along the main rivers and larger creeks. The streams have deeply incised these deposits, forming nearly vertical gullies as much as 200 feet deep (Calkins et al., 1975; Hussain et al., 2013). The area under investigation contains the same reworked and eroded soils which are coarse to medium-sized gravels with silt and clays.

Fig. 1 Location map of study area generated from google earth. The inset shows the location of the study area in Pakistan.

Fig. 2 (A) Showing the compacted embankment layer. (B) The glance of subgrade while (B1) compacted subgrade layer (B2) until not compacted. (C) Showing subbase layer until not compacted of project E-35 Phase-I (D) Showing embankment, subgrade, subbase, and aggregate base coarse of highways.

Materials and Methods

The methodology employed in the current study includes Sieve analysis, Plastic index (PI), California bearing ratio (CBR), proctor (Moisture Density Relationship), sand equivalent, Los Angeles abrasion and specific gravity tests. The data were collected from Project E-35 (phase-I), China-Pak Economic Corridor (CPEC) (Table. 1).

Table 1 Showing the tests performed for different soil layers of Project E-35, CPEC.

S No	Layers	Sieve Analysis	PI	Proctor	CBR	Los Angeles	Sand Equivalent	Specific Gravity
1	Embankment	√	~	√	~	-	-	-
2	Subgrade	~	~	~	~	-	-	-
3	Sub base	1	~	1	~	~	~	-
4	Aggregate base coarse	~	~	~	~	~	~	~

Samples have been collected from four layers of the Expressway. Standard methods and procedures were adopted to test the materials for the road suitability following all the QA/QC protocols (Roberts et al., 1996; Krishna and Reddy, 2002; Schaefer et al., 2008; Moaveni et al., 2013).

Results and Discussion

The data collected from different tests performed were analysed to investigate the soil and aggregate of highways (Table 2, 3).

Embankment layer

The cumulative passing percentage on sieves 1", 3/4", 3/8". No.4. No.10. No. 40 and No. 200 for embankment are 98.2, 81.5, 72.2, 50.8, 30.3, 20.7 and 18.6, respectively (Fig. 3A), compared with NHA specification (1998) shows that the material fulfils the required criteria. The test result of the plastic index is non-plastic for the embankment layer i.e.3.7 (Fig. 3B & C) and fulfils the required criteria. The result of the proctor test is that the moisture content percentage is 8.8. The maximum dry density is 2.220 gms/cc. The peak value of the graph between maximum dry density and moisture content shows that maximum dry density is 2.220 at 8.3 moisture content (Fig 3D & E). The dry density of CBR on 10 blow, 30 blow and 65 blows are 1.998, 2.109 and 2.220 for the embankment layer. The soaked CBR on 10, 30 and 65 blows are 10, 13 and 15, respectively. The moisture percentage is 8.8, on 65 blows. The CBR at 93% of max dry density 2.065. The CBR value for embankment layer is 11.5 % (Fig 4 A & B). The swell value of the material for embankment material shall not exceed five-tenths (0.5) per cent and the test swell value is 0. The result shows that the material fulfils the criteria and the material is suitable for the construction of the embankment layer.

Subgrade layer

The cumulative passing percentage on sieves 1", 3/8", No.4, No.10, No. 40 and No. 200 for subgrade are 100, 94.4, 76.5, 66.8, 42.5 and 10, respectively (Fig. 5A). The result shows that the material fulfils the required criteria and the material is A3 and suitable for the subgrade layer. The test result of the plastic index is non-plastic with a value of 11.1 (Fig. 5B & C), the material fulfils the required criteria. The result of the proctor test is that the moisture content percentage is 10.6. The dry density is 2.119 gms/cc. The peak value of the graph between maximum dry density and moisture content shows that maximum dry density is 2.119 at 10.6 moisture content (Fig. 5D & E). The dry density of CBR on 10 blow, 30 blow and 65 blows are 1.907, 2.024 and 2.100 for the subgrade laver. The soaked CBR on 10, 30 and 65 blows are 11.6, 13.3 and 15, respectively. The moisture percentage is 10.6 on 65 blows. The CBR at 93% of max dry density is 1.971. The CBR value for subgrade layer is 12.5% (Fig. 6A & B). The swell

value of the material for the subgrade layer shall not exceed five-tenths (0.5) per cent and the test swell value is 0 (zero). The outcome demonstrates that the material satisfies the criteria and the material is appropriate for the development of the subgrade layer.

Subbase layer

The cumulative passing percentage on sieves 2". 1. 3/8", No.4, No.10, No. 40 and No. 200 for Subbase are 100, 75.7, 56.7, 49.9, 36.4, 12.9 and 3.4, respectively (Fig. 7A) which show that the material satisfies the criteria. The test result of the plastic index is non-plastic. The plastic index (PI= LL-PL) is 2.1 (Fig. 7B & C). The test result of the proctor is that the moisture content % is 4.8. The maximum dry density is 2.223 gms/cc. The peak value of the graph between maximum dry density and moisture content shows that maximum dry density is 2.223 at 4.8 moisture content (Fig. 7D & E). The test results show that the weight of the tested sample is 3726 gms and abrasion is 25.5 % for the subbase layer (Fig. 7F). The abrasion shows that the material is resistive and suitable, and the material fulfils the criteria of NHA specification (1998). According to NHA specification (1998), the sand equivalent for all classes shall be 25 min. The sand readings are 4.3, 4.6, 4.8 and the clay readings are 5.2, 5.5, and 5.7 for the subbase layer. The sand equivalent percentages are 82.1, 83.6, and 84.2 and the average sand equivalent percentage is 83 % (Fig. 8A). The result shows that the material fulfils the criteria. The dry density of CBR on 10, 30 and 65 blows are 2.001, 2.120 and 2.243, respectively for the subbase layer. The soaked CBR on 10, 30 and 65 blows are 30.7, 35, and 39.9, respectively. The moisture percentage is 4.8 on 65 blows. The CBR at 90% of max dry density is 2.001. The CBR value of the subbase layer is 30.7% (Fig. 8B & C). The NHA specification (1998) for the subbase layer is that the CBR material shall have a CBR value of at least 50%, determined according to AASHTO T-193. The CBR value shall be obtained at a density corresponding to ninety-eight (98) per cent of the maximum dry density determined according to AASHTO T-180. The material fulfils the NHA specification (1998) and is suitable for the construction of the subbase layer.

Aggregate Base Coarse

The cumulative passing percentage on sieves 2", 1", 3/4", 3/8", No.4, No.10, No. 40 and No. 200 for aggregate base coarse are 100, 78.3, 66, 41.6, 28.6, 19.2, 10.8, and 7.7, respectively (Fig. 9A) The test result of a plastic index is non-plastic where plastic index is 3. The test result of the proctor is that the moisture content percentage is 9.8. The maximum dry density is 2.245 gms/cc. The peak value of the graph shows that the maximum dry density is 2.200 at 9.8 moisture content (Fig 9D & E). The test result shows that the weight of the tested sample is 3975 gms and abrasion is 20.5 % for aggregate base coarse. The

abrasion shows that the material is resistive and suitable for construction (NHA specification 1998) (Fig. 10A). The NHA specification (1998) for the sand equivalent test is that the sand equivalent determined according to AASHTO T-176 shall not be less than 45. The clay readings are 8.9, 9.0 and sand readings are 4.1 and 4.2 for aggregate base coarse. The sand equivalent percentages are 46.1, 46.7 and the average sand equivalent percentage is 46.4 %. The material fulfils the NHA specification (1998) and is suitable for the construction of aggregate base coarse layer (Fig. 10B & C). The specific gravity absorption percentage is 0.36, 0.40. The average bulk oven-dry specific gravity is 2.668, average bulk saturated specific gravity is 2.679 and average apparent is 2.696. The dry density of CBR on 10, 30 and 65 blows are 2.053, 2.170 and 2.272, respectively for aggregate base coarse. The soaked CBR on 10 blow, 30 blow and 65 blows are 81.4, 120 and 182.8. The moisture percentage is 4.5 on 65 blows. The CBR at 100% of max dry density is 2.272. The CBR value of aggregate base coarse is 182% (Fig. 11A & B). The material fulfils the criteria and is suitable for the construction of aggregate base coarse.

Fig. 3 A) Showing sieve analysis of embankment material, B) Showing plasticity index of embankment material, C) Showing moisture content /liquid limit on 25 blows of embankment material, D) Showing proctor test for embankment material, E) Showing moisture density relation of embankment material and peak value of graph shows that maximum dry density of embankment material is 2.220 at 8.3 moisture content.

NOISTURE CONTENT PERCENT %

Fig. 4 A) Showing CBR test values of three moulds for embankment material and in the graph black curve shows 10 blows, the blue curve shows 30 blows and the red curve shows 65 blows, B) Showing modified proctor of CBR value and dry density for embankment layer while the graph shows the relationship between CBR and dry density for embankment layer.

A	-	SI	EVES ANAL	YSIS		B DETERMINAT	B DETERMINATION							
	(/	ASHTC	DESIGNATI	UN T.27 - 78)		LIQUID LIMIT					-			
DESCR	IPTIO	N: SUB	GRADE			NO OF BLOWS		16	26	35				
ORIGI	NAL W	EIGHT	OF SAMPLE	: 1255	gms	CONTAINER NO.			P	F	1			
d	inte ein		Cum Wt	Cum 9/	Cum %	WT. OF CONTAINER + W	ET SO	L (g)	29.70	28.80	28.76			
4.07	CYC SIZ	MM	Datained	Datainad	Decoing	WT. OF CONTAINER + D	RY SO	L(g)	27.00	27.00	26.80			
ASI	M	MIM	Retained	Retained	Passing	WT. OF WATER		(g)	2.70	1.80	1.96			
		40.0	Gms.			WT. OF CONTAINER		(2)	18.90	20.80	19.60			
2"		50.8	-	-	-	WT. OF DRY SOIL		(8)	8.10	6.20	7.20			
1"	1	25.4	Nil	. · · ·	100	MOISTURE CONTENT		(%)	33.3	29.0	27.2			
3/8"	1	9.5	70	5.6	94.4	Liquid limit = 29.4			0010	1 4710	1.01.00			
1/4"		6.35	-	-	-	PLASTIC LIMIT								
No. 4	1	4.75	295	23.5	76.5	DETERMINATION		_	1	1	2			
No.8		2.36	-		-	CONTAINER NO			H	1	Ň			
No.10	1	2.00	630	50.1	49.9	WT OF CONTAINED + W	ET SOI	L (a)	26.05	22	24			
No 16		1.18				WT OF CONTAINER + D	DV COI	L(g)	20.75	22	10			
No 30		0.60	120	6	0	WT OF WATER (a)	1 301	L (2)	1.15		74			
No.40	1	425	900	70.0	20.1	WI OF WATER(g)			1.13	0	./4			
No.40	v	.423	890	/0.9	29.1	WI OF CONTAINER (g)			19.6		10			
No.50		.300	0.7%			WI OF DRY SOIL (g)			6.20	4	.10			
No.100		.150	-	•	-	MOISTURE CONTENT (%)		18.6	1	8.0			
No.200	1	.075	1130	90.0	10.0	$\int PI = (LL - P.L) 11.$	1		P	L = 18.3	i			
40.0		D	ETERMINATION	OF LL		(AASHTO T - 180) DESCRIPTION SUBGRADE								
35.0						Wt. of Mould: 4195 gms	Mould:	22)4.6 cc					
			∧_			Weight of wet soil+ Mould				-				
30.0						(gms)	8795	8967	9136	9362	9345			
t						Weight of wet soil (gms)	4600	4772	4941	5167	5150			
25.0						Wet density of soil (gm/cc)	2.086	2.165	2.241	2.344	2.336			
Z 20.0						Cone No	U	S	Al	D				
020.0						Weight of Can (gms)	56.4	63.67	63.43	62.65	50.4			
15.0						Weight of wet soil+ Can (gms)	281.4	288.6	310.4	288.6				
8 10.0						Weight of Dry soil+ Can								
Ň						(gms)	282.3	269.1	271.9	286.7	262.5			
5.0	tunt	minut		to the second se	-t-und	Weight of water	8.6	12.3	16.7	23.7	26.1			
(0.0 5.0	10.0 15	0.0 20.0 25.0 3	0.0 35.0 40.0	45.0 50.0	Weight of dry soil	225.9	205.4	208.5	224,1	212.1			
			NUMBER OF	BLOW		Water content	3.8	6.0	8.0	10.6	12.3			
						Dry density (gm/cc)	2.010	2.042	2.075	2.119	2.080			
						Moisture Content (%)				10.6				
				2110 2110 2110 2100 2000 2000 2000 2000	• /									

Fig. 5: A) Showing sieve analysis of subgrade material, B) Showing plasticity index of subgrade material, C) Showing moisture content /liquid limit on 25 blows of subgrade material, D) Showing proctor test for subgrade material, E) Showing moisture density relation of subgrade material and peak value of graph shows that maximum dry density of subgrade material is 2.119 at 10.6 moisture content.

Fig. 6 A) Showing CBR test values of three moulds for subgrade material and in the graph black curve shows 10 blows, the blue curve shows 30 blows and the red curve shows 65 blows, B) Showing modified proctor of CBR value and dry density for subgrade layer while the graph shows the relationship between CBR and dry density for subgrade layer.

A		SIEV	ES ANA	LYSIS	ver.	B DETERMINATION		1	2	3
	(A	ASHTO	DESIGNATI	ON T.27 - 78)	LIQUID LIMIT				
DESCRI	IPTIO	N : SUB	BASE			NO OF BLOWS	1	1	23	32
OVEN D	DRYV	VT. OF S	AMPLE AF	TER WASH	I: <u>5055</u>	CONTAINER NO.	I	.1	L2	L3
gms	ana ala		Com Wit	Cum %	Cum #/	WT, OF CONTAINER + WET SOIL (g) 46	.47	49.73	50.54
AST	M	MM	Retained	Retained	Passing	WT. OF CONTAINER + DRY SOIL (2) 43	.52	46.40	47.24
			Gms.		°.	WT OF WATER (a) 2	95	3 33	3 30
2"	~	50.8	Nil	Nil	100	WT OF CONTAINER (a	1 28	00	28 30	27.80
1.1/2"	-	38.1	-	-	-	WT OF DRY SOIL (g) 15	52	18.10	10.44
1"	1	25.4	1228	24.3	75.7	MOISTURE CONTENT (%) 1	0.0	18.10	17.0
3/4	_	19.1	-	-	-	Liquid limit = 19	01 1	7.0	10.4	17.0
1/2"	- /	12.5	-	-	-	DI ASTIC I IMIT				
3/8"		9.5	2189	43.3	50.7	PLASTIC LIMIT	- ř -	1		•
1/4	- /	0.55	-	-	-	DETERMINATION	-	1		-
No. 4	v	4.15	2533	50.1	49.9	CONTAINER NO.	1	.4	1	5
No.10	1	2.50	2216		26.4	WT OF CONTAINER + WET SOIL (g	() 37	.61	37	.21
No.10	v	1.18	5215	03.0	30.4	WT OF CONTAINER + DRY SOIL (g) 36	.35	36	.18
No 30		0.60	-		-	WT OF WATER (g)	1.	.26	1.	09
No.40	1	425	4405	87.1	12.9	WT OF CONTAINER (g)	2	8.5	29	0.3
No 50		300	4403	07.1	12.5	WT OF DRY SOIL (g)	7.	.85	6.	88
No 100		150	-	-		MOISTURE CONTENT (%)	1	6.0	15	5.8
No 200	1	075	1993	86.6	2.4	PI = (L.L - P.L) 2.1		P	L=15.	9
STURE CONTENT	30.0					Weight of wet soil= Mould 8690 Weight of wet soil (gms) 4475 Wet density of soil (gm/cc) 2.089 Cone No C Weight of Can (gms) 67,7 Weight of wet soil+ Can (gms) 348.1	9010 4795 2.239 D 50.4 374.6	9205 4990 2.330 J 68.7 394.0	9155 4940 2.30 E 56.4 5 392.	6 4
IQ N	H					Weight of Dry soil+ Can (gms) 341.3	363.4	379.	7 373.	4
	n					Weight of dry soil 273.6	313.0	311.0	317.	0
	0.5	5.5 10	5 15.5 20.5 2	5.5 30.5 35.5	40.5 45.5	weight of water 6.8	11.3	14.9	19.0	
			NUMBER	OFBLOW		Water content 2.5	3.0	4.8	0.0	<i>.</i>
						Dry density (gn/cc) 2.038	2.101	1.12	2.17	9
						Moisture Content (%)		4.8		
2.24	40		1		1	F LOS ANGELES ABRASI	ON TEST			
2.22	20 ←		/			GRADING 11/2*-1" 1*-3/4" 3/4*-1/2* 1/2*	90 J SUB	-14	14" - Np. 4	No.4 - 2
2.20 2.18 2.16	50		/			Designation (F) A Weight of test cample 1259±25 1250±25 1250±10 1251 Designation B B B B B	10 290	0 <u>±10</u>	2500±10	D 5000 ±
2 212	20	/				Weight of test samples 2500±10 250	±10			
2 2 10	00	/				TOTAL WEIGHT OF TEST SAMPLE 5000_+	10 g.	_		-
2.08	80	1	_			E Revolutions (30/33 cp.m.) No.		- 11		
2.06	50	/				F Designation				
2.04	40	+	100	¥		G Total Weight of Tost Sample		510	0	
2.02	2.0	3.0	40	5.0 6.0	7.0	11 Weight effected sample retained on 1.7mm Serve		37	16	
		MO	STURE CONTENT P	ENCENT %		1 Loss By Abrasica (%) -((GH)/ (0)x 100		16	6	

Fig. 7 A) Showing sieve analysis of subbase material, B) Showing plasticity index of subbase material, C) Showing moisture content /liquid limit on 25 blows of subbase material, D) Showing proctor test for subbase material, E) Showing moisture density relation of subbase material and peak value of graph shows that maximum dry density of subbase material is 2.223 at 4.8 moisture content, F) Showing Los Angeles abrasion test percentage calculations of subbase layer.

Fig. 8 A) Showing clay reading, sand reading, sand equivalent and average sand equivalent percentage of a subbase layer, B) Showing CBR test values of three moulds for subbase material and in the graph black curve shows 10 blows, the blue curve shows 30 blows and the red curve shows 65 blows, C) Showing modified proctor of CBR value and dry density for subbase layer while the graph shows the relationship between CBR and dry density for subbase layer.

A		SIEVI	ES ANAI	YSIS	82	B	DETERMINATION	2	1	1	2	3
	(AA	SHTO D	ESIGNATIO	N T.27 - 78;)	LIO	JID LIMIT		-			-
DESCR	IPTIO	N : AG	GREGATE	BASE COU	RSE	NO	OF BLOWS		2	16	27	34
ORIGIN	AL W	EIGHT	OF SAMPL	.E:5	395 gms	CON	TAINER NO.			5	4	6
si	eve siz		Cum Wt	Cum %	Cum %	WT.	OF CONTAINER + WET :	SOIL (g) 3	4.30	36.48	38.98
AST	M	MM	Retained	Retained	Passing	WT.	OF CONTAINER + DRY :	SOIL (g) 3	0.50	33.00	35.70
			Gms.			WT	OF WATER	((3	3 80	3.48	3.28
2"	~	50.8	Nil	Nil	100	WT	OF CONTAINER	6	0) 1	7 30	19.10	21.20
1.1/2"		38.1	-	-	-	WT.	OF DBV SOIL			2.20	12.00	14.50
1"	¥	25.4	1171	21.7	78.3	111.	OF DR 1 3OIL			3.20	15.90	14.50
3/4		19.1	1834	34.0	66.0	MOI	STURE CONTENT	C	70)	28.8	25.0	22.0
1:2		12.5	-	-	-	Liqui	d limit = 25.7					
3/8	¥	9.5	3151	58.4	41.6	PLA	STIC LIMIT					
124		0.35	-	-	-	DET	ERMINATION			1		2
NO. 4		4.75	3852	71.4	28.0	CON	TAINER NO.			1	1	ĸ
N0.8		2.30	1.55	555	-	WTO	OF CONTAINER + WET S	OII (a) 2	7.55	28	54
No.10	~	2.00	4359	80.8	19.2	WTO	DE CONTAINER + DRY S	OIL	a) 3	5 90	27	30
No.16		1.18	2.43		-	WT	DE WATER (-)	OIL I	21 2	1.65	1	24
No.30		0.60		0-0		WIG	JF WAIEK(g)			1.05	1.	24
No.40	1	.425	4812	89.2	10.8	WIG	OF CONTAINER (g)			18.7	- 2	1.8
No.50		.300			-	WTO	DF DRY SOIL (g)		- 3	7.20	5.	.50
No.100		.150	100	-	-	MOI	STURE CONTENT (%)		3	22.9	22	2.5
No.200	1	.075	4980	92.3	7.7	PI	= (L.L - P.L) 3.0			Ρ.	L = 22.7	/
C			DETERMINAT				D MOISTURE D	ENSIT	Y REL	TION	SHIP	
35.0			DETERMINAT	ION OF LL			(A.	ASHTO	T - 180)		
						1	DESCRIPTIONA	GGRE	VAL	C Mul	DARSE	141.0 -
							Wt. of Mould: 4215 gms	_	V 01. 0	e Moui	0: Z	141.9 6
	HHH		*×~			1	weight of wet soll / Mould	0760	0712	0072	0220	0272
25.0				×			Waight of wat coil (ome)	4153	4409	4959	5174	5059
z				- The			Wat dencity of soil (om/oc)	1 0 2 0	2 100	2 265	2.416	2 362
Ë							Cong No.	1.939 C	2.100 M	2.20e	1	2.302 D
N N							Weight of Care (arra)	67.7	66.2	61.0	61.2	51.4
O 15.0	####						Weight of wat coil+ Con	07.7	55.5	01.9	31.4	31.4
2							(mms)	286.4	286.0	285.0	296.4	290.4
2						1	Weight of Dry soil+ Can	200.4	200.0	-0,0,0	2,70.4	2,70,-4
0			•				(gms)	275.6	271.9	268.5	274.5	265.9
\$ 5.0	hand	min	diminut	ii.ı		4	Weight of dry soil	207.9	216.6	206.6	223.3	214.5
	0.0 5.	0 10.0	15.0 20.0 25.	0 30.0 35.0	40.0 45.0 5	0.0	Weight of water	10.8	14.1	16.5	21.9	24.5
			NUMBER C	F BLOW			Water content	5.2	6.5	8.0	9.8	11.4
							Dry density (gm/cc)	1.843	1.972	2.100	2.200	2.120
						_	Moisture Content (%)				9.8	
			E	2.220 2.180 2.180 2.180 2.180 2.180 2.190 2.190 2.190 2.080 2.080 2.080 2.080 2.080 2.080 2.080 2.080 1.900 2.080 2.080 2.080 2.080 2.190 2.090 2.190 2.190 2.090 2.190 2.000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000 2.00000000	*							
				1,940 1,920 1,920 1,920 1,920 1,920 1,940 1,940 1,940 1,940	50 0	0 7.0 STURE CO	8.0 9.0 10.0 11.0 12.0 TTENT PERCENT %					

Fig.9 A) Showing sieve analysis of aggregate base coarse material, B) Showing plasticity index of aggregate base coarse material, C) Showing moisture content /liquid limit on 25 blows of aggregate base coarse material, D) Showing proctor test for aggregate base coarse material, E) Showing moisture density relation of aggregate base coarse material and peak value of graph shows that maximum dry density of aggregate base coarse material is 2.200 at 9.8 moisture content.

LOS A	NGELES .	ABRASION '	TEST		
(ASTM C 131 - 81 AA	SHTO T 9	6) AGGREO	GATE BASE	COARSE	
GRADING 1 1/2" - 1" 1" - 3/4	4 " 3/4" - 1/	2 " 1/2" - 3/8"	3/8" - 1/4"	1/4" - No. 4	No.4 - No 8
Decimation (E)	_				D
Weight oftest comple 1250 + 251250 +	25 1250 +	10 1250 + 10	2500 + 10	2500 + 10	5000 ± 10
Designation $1250 \pm 251250 \pm$	25 1250 <u>+</u>	B	2300 <u>+</u> 10	2300 <u>+</u> 10	<u>5000 ± 10</u>
Weight of test samples	2500 +	10 2500 + 10	-	· · · · ·	
TOTAL WEIGHT OF TEST SAMPLE	5000 + 10	a.			
E Revolutions (30/33 rn m)	No	b .	1	2	
E Designation			C	С С	
G Total Weight of Test Sample			5000	5000	
H Weight of tested sample retained	lon 1.7 mm	Seine	3800	3040	
II weight of tested sample retailed		Bewe	5670	5740	
I Loss By Abrasion (%) =((G-H) /	H) x 100		22.2	21.2	
				AVE= 21.7	7
DESCRIPTION AGGREGATE BA	ASE COA	RSE		Determinatio	n
Clay Reading			8.9	9.0	
Sand Reading			4.1	4.2	
$Sand Equivalent = \frac{sand Reading}{clay Reading} x 1$	100 %		46.1	46.7	
Average Sand Equivalent		%		46.4%	
C COARSE AGGREGATE		RET=3/4"	RET=	=3/4"	AVERAGE
Mass. Of Oven Dry Sample in Air A	(g)	4225	45	12	
Mass of S.S.D. Sample in Air B	(g)	4240	45	30	
Mass of S.S.D. Sample in Water C	(g)	2660	28	35	
Bulk Specific Gravity A / (B-C)		2.674	2.6	62	2.668
Bulk S.S.D. Specific Gravity B / (B-C)		2.684	2.6	73	2.679
Appearent Specific Gravity A / (A-C)		2.700	2.6	91	2.696
Water Absorption (B-A / A) x 100	%	0.36	0.4	40	0.38

Fig. 10 A) Showing Los Angeles abrasion test percentage calculations of an aggregate base coarse layer. B) Showing clay reading, sand reading, sand equivalent and average sand equivalent percentage of aggregate base coarse layer, C) Showing specific gravity test calculations of aggregate base coarse material.

Fig. 11 A) Showing CBR test values of three moulds for aggregate base coarse material and in the graph black curve shows 10 blows, the blue curve shows 30 blows and the red curve shows 65 blows, B) Showing modified proctor of CBR value and dry density for aggregate base coarse layer while the graph shows the relationship between CBR and dry density for aggregate base coarse layer.

Δ

LAYERS		NHA	SPECIFICA	TION		TEST RESULTS				
EMBANKMENT LAYER	% passing on sieve no	A1 material	A2 material	A3 material	A4 material	% passing on sieve no				
	No.10	50 max	2.00			No.10	30.3			
	No.40	30 max	(iii)	51 min	1	No.40	20.7			
	No.200	25 max	35 max	10 max	36 min	No.200	18.6			
SUBGRADE LAYER	% passing on sieve no	A1 material	A2 material	A3 material	A4 material	% passing on sieve no				
	No.10	50 max		•		No.10	49.9			
	No.40	30 max	1943	51 min	- 2	No.40	29.1			
	No.200	25 max	35 max	10 max	36 min	No.200	10.0			
SUB BASE LAYER	Passing percer No. 200 are 10 respectively.	itage on sieve 10, 55-85, 40-	s 2", 1", 3/8", 70, 30-60, 20	No.4, No.10, 50, 10-30 and	No. 40 and 15-15	Passing percentage on sieves 2°, 1°, 3/8°, No.4, No.10, No. 40 and No. 200 are 100, 75.7, 56.7, 49.9, 36.4, 12.9, 3.4 respectively.				
AGGREGATE BASE COARSE	Passing percer and No. 200 is respectively.	ntage on sieve i 100, 75-95, 3	s 2°, 1, 3/8°, 10-65, 25-55,	3/4", No.4, No 15-40, 8-20 a	n.10, No. 40 nd 2-8	Passing percentage on sieves 2", 1", 3/8", No.4, No.10, No. 40 and No. 200 are 100, 78.3, 66.0, 41.6, 28.6, 19.2, 10.8, and 7.7 respectively.				

Table 2 Showing sieve analysis results of different layers of Project E-35, CPEC is compared with NHA specification (1998).

Table 3 Showing plastic index, proctor, CBR, Los Angeles, sand equivalent and specific gravity test results of Project E-35, CPEC are compared with NHA specification (1998).

										-	LAYER								
Tests		Embankment layer					Subgrade layer					T	5	ab ba	se laye	r	Aggregate base coarse		
	NHA specification					Test results	NHA specification			Test results	NHA specification			Test results	NHA specification		Test results		
Plastic Index	Al	A2	A3	A4	A5		Al	A2	A3	A4	11.1	Al	A2	A3	A4		Al	A2	
	6 1183	11 min	00	10 max	10 max	3.7	6 max	11 min	10	10 max		6 max	11 min	10	10 max	2.1	6 max	11 min	3.0
Proctor	- MDD =2 220					MDD =2.220				MDD =2.119	-			MDD =2.223			MDD=2,200		
CBR	CBR value not less than 5 % Swell value not > 0.5 %				CBR value 11.5 % Swell value 0.24	CBR % Swell	value n value r	ot less : iot > 0.	than 7 5%	CBR value 12.5 % Swell value 0.22	CBR	≤ 50 %	6		CBR value 33.3 % Swell value 0.29	CBR v less th	ulue Not an 80 %	CBR value 90 % Swell value 0	
Los angeles											LAA 50%	LAA not more than 50%		n	LLA is 25.5 %	LAA not more than 40%		LLA is 21.7%	
Sand equivalent			850								1	All classes shall be 25		25	83%	Shall not be less than 45		46.4%	
Specific gravity						2									Apparent SG 2.696				

Conclusion

It is concluded that soil and aggregate base coarse constitutes coarse grains, silt, sand, and gravel. The Atterberg limits reveal that soil is low plastic or nonplastic. The California bearing ratio shows that soil and aggregate base coarse have a high load-bearing capacity, which shows that the material has high mechanical strength. The Los Angeles abrasion test results show that the material is resistive. The sand equivalent results show that aggregate base coarse indicate high sand material. The specific gravity result shows that the material is highly dense. All the tests performed in the laboratory shows that the material is suitable for road construction of project E-35 China-Pakistan Economic Corridor.

Acknowledgements

The authors are thankful to Khalid Latif, Material Engineer, PMC G3 engineering, Pakistan for their support in current research work and for helping out during data collection. We are also thankful to Awais Haider, Umer Zeb and Aizaz Khan for helping out in the collection of data in the field.

References

- Bridgland, D., Westaway, R. (2008). Climatically controlled river terrace staircases: a worldwide quaternary phenomenon. *Geomorphology*, **98** (3–4), 285-315.
- Calkins, J. H., Offield, T.W., Abdullah, S. K. M., Ali. (1975). The geology of southern Himalayas in

Hazara, Pakistan and adjacent areas. *United States Geological Survey Profession Paper*, 716c, 29.

- Hussain, H. S., Fayaz, M., Haneef, M., Hanif, M., Jan I. U. (2013). Microfacies and diagenetic-fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. *Journal of Himalayan Earth Sciences*, **46** (2), 79-91.
- Khattak, S. A., Rehman, G., Ahmad, S., Jan, M. F., Khurshid, S., Ghani, A. (2017). Deformational style and hydrocarbons trapping mechanism of the sub-Himalayan frontal ranges near Fateh Jhang, Punjab, Pakistan. *Journal of Himalayan Earth Sciences*, **50** (2), 1-13.
- Krishna, R. R. (2002). Engineering properties of soils based on laboratory testing, department of civil and materials engineering, University of Illinois, Chicago.
- Mishra, D., Tutumluer, E. (2012). Aggregate physical properties affecting modulus and deformation characteristics of unsurfaced pavements. *ASCE Journal of Materials in Civil Engineering*, **24** (9), 1144-1152.
- Moaveni, M., Wang, S., Hart, J. M., Tutumluer, E., Ahuja, N. (2013). Aggregate size and shape evaluation using segmsentation techniques and aggregate image processing algorithms, transportation research record 2335. *Journal of the Transportation Research Board*, National Research Council, Washington, D.C., pp 50-59.
- NHA specification (1998). National highways authority Pakistan. Sampak international (pvt) Ltd. P 108-202.
- Perry, J. G., Hayes, R. W. (1985). Risk and its management in construction projects. *Proceedings* of the Institution of Civil Engineers. **78** (3), 499-521.
- Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. Y., Kennedy, T. W., (1996). Hot mix asphalt materials, mixture design, and construction. national asphalt pavement association education foundation. Lanham, MD.
- Schaefer, Vernon R., White, D. J., Ceylan, H., Stevens, L. J. (2008). Design guide for improved quality of roadway subgrades and subbases. In:Trans Project Reports. 46.
- Young, R. W., Nanson, G. C. (1982). Terrace formation in the Illawarra region of new South Wales Australia. *Geogr.*, **15** (4), 212-219.

This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial 4.0 International License.</u>