
Zayed University Zayed University 

ZU Scholars ZU Scholars 

All Works 

2-1-2023 

CARLA+: An Evolution of the CARLA Simulator for Complex CARLA+: An Evolution of the CARLA Simulator for Complex 

Environment Using a Probabilistic Graphical Model Environment Using a Probabilistic Graphical Model 

Sumbal Malik 
United Arab Emirates University 

Manzoor Ahmed Khan 
United Arab Emirates University 

Aadam 
United Arab Emirates University 

Hesham El-Sayed 
United Arab Emirates University 

Farkhund Iqbal 
Zayed University 

See next page for additional authors 

Follow this and additional works at: https://zuscholars.zu.ac.ae/works 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
Malik, Sumbal; Khan, Manzoor Ahmed; Aadam; El-Sayed, Hesham; Iqbal, Farkhund; Khan, Jalal; and Ullah, 
Obaid, "CARLA+: An Evolution of the CARLA Simulator for Complex Environment Using a Probabilistic 
Graphical Model" (2023). All Works. 5728. 
https://zuscholars.zu.ac.ae/works/5728 

This Article is brought to you for free and open access by ZU Scholars. It has been accepted for inclusion in All 
Works by an authorized administrator of ZU Scholars. For more information, please contact scholars@zu.ac.ae. 

https://zuscholars.zu.ac.ae/
https://zuscholars.zu.ac.ae/works
https://zuscholars.zu.ac.ae/works?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5728&utm_medium=PDF&utm_campaign=PDFCoverPages
https://zuscholars.zu.ac.ae/works/5728?utm_source=zuscholars.zu.ac.ae%2Fworks%2F5728&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholars@zu.ac.ae


Author First name, Last name, Institution Author First name, Last name, Institution 
Sumbal Malik, Manzoor Ahmed Khan, Aadam, Hesham El-Sayed, Farkhund Iqbal, Jalal Khan, and Obaid 
Ullah 

This article is available at ZU Scholars: https://zuscholars.zu.ac.ae/works/5728 

https://zuscholars.zu.ac.ae/works/5728


Citation: Malik, S.; Khan, M.A.;

Aadam; El-Sayed, H.; Iqbal, F.; Khan,

J.; Ullah, O. CARLA+: An Evolution

of the CARLA Simulator for Complex

Environment Using a Probabilistic

Graphical Model. Drones 2023, 7, 111.

https://doi.org/10.3390/

drones7020111

Academic Editor: Pablo

Rodríguez-Gonzálvez

Received: 2 December 2022

Revised: 29 December 2022

Accepted: 5 January 2023

Published: 7 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

drones

Article

CARLA+: An Evolution of the CARLA Simulator for Complex
Environment Using a Probabilistic Graphical Model
Sumbal Malik 1,2 , Manzoor Ahmed Khan 1,2 , Aadam 1 , Hesham El-Sayed 1,2,* , Farkhund Iqbal 3 ,
Jalal Khan 1,2 and Obaid Ullah 1

1 College of Information Technology, United Arab Emirates University, Abu Dhabi 15551, United Arab Emirates
2 Emirates Center for Mobility Research (ECMR), United Arab Emirates University,

Abu Dhabi 15551, United Arab Emirates
3 College of Technological Innovation, Zayed University, Dubai 19282, United Arab Emirates
* Correspondence: helsayed@uaeu.ac.ae

Abstract: In an urban and uncontrolled environment, the presence of mixed traffic of autonomous
vehicles, classical vehicles, vulnerable road users, e.g., pedestrians, and unprecedented dynamic events
makes it challenging for the classical autonomous vehicle to navigate the traffic safely. Therefore, the
realization of collaborative autonomous driving has the potential to improve road safety and traffic
efficiency. However, an obvious challenge in this regard is how to define, model, and simulate the envi-
ronment that captures the dynamics of a complex and urban environment. Therefore, in this research,
we first define the dynamics of the envisioned environment, where we capture the dynamics relevant
to the complex urban environment, specifically, highlighting the challenges that are unaddressed and
are within the scope of collaborative autonomous driving. To this end, we model the dynamic urban
environment leveraging a probabilistic graphical model (PGM). To develop the proposed solution, a re-
alistic simulation environment is required. There are a number of simulators—CARLA (Car Learning
to Act), one of the prominent ones, provides rich features and environment; however, it still fails on a
few fronts, for example, it cannot fully capture the complexity of an urban environment. Moreover, the
classical CARLA mainly relies on manual code and multiple conditional statements, and it provides
no pre-defined way to do things automatically based on the dynamic simulation environment. Hence,
there is an urgent need to extend the off-the-shelf CARLA with more sophisticated settings that can
model the required dynamics. In this regard, we comprehensively design, develop, and implement an
extension of a classical CARLA referred to as CARLA+ for the complex environment by integrating
the PGM framework. It provides a unified framework to automate the behavior of different actors
leveraging PGMs. Instead of manually catering to each condition, CARLA+ enables the user to
automate the modeling of different dynamics of the environment. Therefore, to validate the proposed
CARLA+, experiments with different settings are designed and conducted. The experimental results
demonstrate that CARLA+ is flexible enough to allow users to model various scenarios, ranging from
simple controlled models to complex models learned directly from real-world data. In the future, we
plan to extend CARLA+ by allowing for more configurable parameters and more flexibility on the
type of probabilistic networks and models one can choose. The open-source code of CARLA+ is made
publicly available for researchers.

Keywords: autonomous driving; complex dynamics; urban environment; PGM; CARLA

1. Introduction

The advancement in sensor technologies, mobile network technologies, and artificial
intelligence has pushed the boundaries of different verticals, e.g., healthcare, autonomous
driving, etc. Statistics show that more than one million people are killed in traffic accidents
yearly, and the vast majority of the accidents are caused by human negligence [1]. Therefore,
the realization of safe and robust autonomous driving (AD) has the potential to drastically

Drones 2023, 7, 111. https://doi.org/10.3390/drones7020111 https://www.mdpi.com/journal/drones

https://doi.org/10.3390/drones7020111
https://doi.org/10.3390/drones7020111
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/drones
https://www.mdpi.com
https://orcid.org/0000-0003-2759-3144
https://orcid.org/0000-0002-0319-8126
https://orcid.org/0000-0002-8543-1429
https://orcid.org/0000-0002-7488-0915
https://orcid.org/0000-0001-9081-3598
https://orcid.org/0000-0002-6230-1760
https://orcid.org/0000-0003-1434-7948
https://doi.org/10.3390/drones7020111
https://www.mdpi.com/journal/drones
https://www.mdpi.com/article/10.3390/drones7020111?type=check_update&version=1


Drones 2023, 7, 111 2 of 28

reduce road traffic accidents, congestion, and excessive fuel consumption by shifting the
driving control from humans to autonomous vehicles.

The Society of Automotive Engineers (SAE) [2] classifies autonomous vehicles into six
levels of autonomy. Most of the autonomous driving features that are currently commer-
cially available in Level (L) 2 and L3 autonomous vehicles (AVs) are Advanced Driving
Assistance Systems (ADAS) and were first deployed in structured and controlled en-
vironments such as highway driving and low-speed parking. However, in urban and
uncontrolled environments, the presence of mixed traffic of autonomous vehicles, classical
vehicles, vulnerable road users, e.g., pedestrians, cyclists, and dynamic unprecedented
events make it challenging for the classical AV to safely navigate the traffic, reduce travel
delay, and avoid congestion. Therefore, the classical autonomous driving of L2 and L3 are
pushing toward the L5 fully autonomous driving. In relation to this, both industry and re-
search communities have been working on and contributing solutions such as collaborative
autonomous driving to realize a higher level of autonomous driving.

Collaborative autonomous driving solutions have been around for some time. How-
ever, the focus has been on lower automation levels and vehicular networks. Behavioral
planning, local planning, and inter-vehicular communication for lower automation levels
are simpler when compared with the envisioned higher automation levels that involve
different weather dynamics, congested settings, many lanes populated with vehicles of
varying speeds, roundabouts, crossings, pedestrians, etc. These complex dynamics ask
for the collaboration of short-time quanta and a varying number of collaborating vehicles.
The solution to these challenges necessitates a newer design goal of the evolved version
of collaborative autonomous driving. However, an obvious challenge in this regard is
how to create a dynamic and uncertain environment that realistically captures the complex
dynamics of this problem domain. Thus, to create and validate the solutions to these and
similar problems, a realistic environment is required for which the researchers heavily rely
on different options such as (i) simulators, (ii) emulators, and (iii) real environment. Testing
autonomous vehicles in real-time on public roads has always been extremely challenging
due to the high cost of the required infrastructure, high-performance computing, sensors,
and communication equipment, jeopardizing public safety. This is where simulation testing
helps to fill the research gap and democratize autonomous driving research.

In this research, we opt for simulation-based testing to define, model, and simulate the
dynamic and uncertain environment that realistically captures the dynamics of a complex
and urban environment. There are a bunch of simulators that are being used by researchers
in this area such as RRADS [3], TORCS, and Udacity [4]. However, these simulators
lack the environmental dynamics and complexity, such as predicting and controlling the
behavior of pedestrians, road junctions, traffic laws, and other complex dynamics, that
differentiate urban driving from simple track racing. In addition, some closed-source
commercial simulators such as Grand Theft Auto V and ANSYS offer little environment
customization and control, restricted kinematic behavior, limited scripting, and use case
scenario descriptions, constrained sensor suite specification, and various other limitations
caused by the commercial nature of the simulator. CARLA (Car Learning to Act) being
one of the prominent simulators, provides rich features and environment, however, it
still fails on a few fronts such as not being able to fully capture the complexity of the
urban environment. Moreover, it mainly relies on manual code, and multiple conditional
statements, and provides no pre-defined way to do things automatically based on the
dynamic simulation environment. Therefore, there is a dire need to extend the off-the-shelf
CARLA simulator with more sophisticated settings that can capture the required dynamics
and address the challenges of a higher level of autonomous driving.

The novelty of this research lies in contributing to introducing the complex dynamic en-
vironment through probabilistic graphical models (PGM) in the classical CARLA. The moti-
vation for using PGM is that it is a robust framework for encoding probability distributions
for this complex domain by computing the joint distributions over numerous random
variables that interact with one another. Furthermore, the experimental environment is



Drones 2023, 7, 111 3 of 28

carefully designed, developed, and implemented by capturing the relevant dynamics of
specialized use cases of complex and urban driving.

Some of the main contributions of this research are:

• Modeling the complex urban environment based on a state-of-art probabilistic graphi-
cal model which is suitable for capturing the dynamics specific to urban and higher-
level autonomous driving;

• Design and development of an extension of CARLA referred to as CARLA+ by in-
tegrating the PGM framework. Instead of manually catering to each condition, it
provides a unified framework to automate the behavior of dynamic environments
leveraging PGMs;

• Experimentation and validation of the proposed CARLA+ extension.

The paper is structured into six sections. Section 2 provides the background infor-
mation to comprehend the contents of this paper. Section 3 presents an overview of
state-of-the-art simulators and relevant studies. Section 4 elaborates on the design and
development of the proposed CARLA+ extension. Section 5 discusses the experimental
setup and different settings of experiments to validate the CARLA+ solution. Finally,
Section 6 elucidates the conclusion of the study.

2. Background

This section aims to equip the reader with some background information to compre-
hend the contents of this paper.

2.1. Autonomous Driving Design Goals

The ability to sense their surroundings using a variety of sensors allows autonomous
vehicles to operate without any human intervention. Perception, planning, and control are
the essential components of autonomous vehicle development. Each layer is responsible for
layer-specific operations and decisions. Therefore, realizing the interactions between layers
for various use case scenarios helps in achieving a higher level of autonomy. The Society
of Automotive Engineers (SAE) establishes design objectives and classifies vehicles into
six categories based on their degree of automation. Levels 0 to 2 can widely be defined
as driver-assisted, Levels 3 and 4 as semi-automatic, and Level 5 as fully autonomous.
The progression from Level 1 to Level 5 requires the development of numerous additional
features in autonomous vehicles. It is believed that Level 5 autonomous vehicles will
be able to drive and execute maneuvers optimally in a complicated urban environment,
handling unprecedented events, and assuring traffic efficiency, and road safety. Therefore,
a collaborative autonomous driving paradigm shift is necessary for classical autonomous
driving to realize a higher level of autonomy. In an uncontrolled and mixed traffic envi-
ronment, the solutions of Level 2–3 AVs relying solely on the onboard perception of the
environment, and limited visibility are impractical for classical autonomous vehicles to
navigate and take decisions. Therefore, the complex dynamics of these environments ask
for new short-time collaboration solutions with a varying number of collaborating vehicles.

For ready reference, in what follows next, we briefly discuss the features of SAE levels
and their testing requirements in simulation in Table 1.

2.2. Complex Dynamics of Urban Environment

The race to fully L5 autonomous vehicles is still going on, and the stakeholders,
including automakers and technology pioneers, are continually refining their approaches
to reaching the necessary level of automation for their vehicles. The testing grounds play a
crucial role in assessing the capability of autonomous vehicles under various environmental
dynamics. A key goal of testing grounds is to provide a realistic setting that accurately
simulates the environment in which autonomous vehicles will operate in the real world.
However, one of the challenging questions is whether autonomous vehicles be able to
handle unexpected and sophisticated scenarios.



Drones 2023, 7, 111 4 of 28

Table 1. Testing and Simulation Requirements to meet SAE Automation Levels.

SAE Level of Automation
Testing Requirements

Level (L) Description Example

L0

No Automation: There should
always be a human driver in the
vehicle performing the dynamic
driving task. Only warnings and
temporary assistance are offered

as features.

Blind spot warning Simulation of traffic flow, multiple
road types, radar and camera sensors

L1

Driver Assistance: It is necessary to
have a driver at all times. Steering or

brake/acceleration control is
provided through features.

Adaptive Cruise Control (ACC) &
Lane centering

All of the above (AoB) in addition to
simulation of vehicle dynamics and

ultrasonic sensors

L2

Partial Driving Automation: the
system is in charge of longitudinal
and lateral vehicle motion within a

constrained operational design
domain. Features include both

steering and
brake/acceleration control.

ACC & lane centering at the
same time.

AoB and the simulation of a driver
monitoring system and

machine–human interaction

L3
Conditional Automation: in case of
any failure, the system can request

the human intervention.
Traffic Jam Chauffer AoB and the simulation of traffic

infrastructure and dynamic objects

L4

High Automation: the automated
driving system is in charge of

detecting, observing, and reacting to
events. Features can operate the

vehicle in a few limited scenarios.

High Driving Automation

AoB and simulations of various
weather conditions, lidar, camera,

and radar sensors, mapping,
and localization

L5

Full Automation: L5 AVs will be
able to navigate through complicated

environments and deal with
unforeseen circumstances without

human interaction.

Robo-Taxi
All of the above, along with adhering

to all traffic laws, norms, and
V2X communication

The complex urban environment is a buzzword, and there is no one common concrete
definition of it, even though the 3rd Generation Partnership Project (3GPP) [5] standard-
ization body and different stakeholders have contributed with different use cases which
we have already studied in our research literature surveys [6,7]. Based on our extensive
research on understanding the complex urban environment, we provide our definition of a
complex environment and have created a high-level abstract Figure 1, which captures the
most relevant dynamics which are representative of a complex urban environment.

For an easy understanding of the complex urban environment and to highlight the
challenges of specific urban environment settings, we decompose the environment into vari-
ous scenes as shown in Figure 1. These scenes include: (i) Scene 1 with Lesser Dynamics—as
it can be seen, that scene 1 between A → B focuses on the road segment that presents
straightforward dynamics, e.g., clearly marked roads, smooth traffic, etc. Such dynamics ask
for simplistic environmental understanding and consequently a limited set of critical maneu-
vers. Furthermore, in this scene, the local perception of the environment is good enough for
AV to make decisions. (ii) Scene 2 with Roundabout Challenge—in this scene, the autonomous
vehicle is faced with going through a roundabout, which is a challenging scenario that
requires consistent interaction with other vehicles. In this scene, it is not possible for an
AV to cross the roundabout and interact with the neighboring vehicles solely relying on its
onboard sensors. Therefore, it is indispensable for the AV to have an extended perception
of the environment by collaborating with the neighboring vehicles leveraging vehicle-to-



Drones 2023, 7, 111 5 of 28

vehicle (V2V) communication, and creating short-term platoons. The collaboration would
result in increased safety and traffic flow at the roundabout. (iii) Scene 3 with Congestion
Settings—the road segments that are usually in the city centers with a lot of traffic and
reduced speed. In this scenario, the local perception of the environment is not enough for
the AV to navigate safely and timely in these congested settings. Therefore, realizing the
solution of autonomous driving for such settings requires enhanced vehicular collaboration
and platooning format for very short time quanta. (iv) Scene 4 with Sharp Turn and Vulnerable
Road Users—the challenge is obvious for vehicles that solely rely on onboard sensors. These
classical vehicles would not be able to detect pedestrians due to manifold reasons: (1) due
to the limited local perception of the vehicle; (2) occlusion and deformation; (3) due to
weather conditions. It is claimed that the realization of the collaboration using V2V and
vehicle-to-infrastructure (V2I) communication would provide AVs with an extended percep-
tion of the environment as a result, accurately predicting the pedestrians and vulnerable
road users. (v) Scene 5 with Sudden Speed Change Zones—the road segments with a sudden
change in the speed zones force the vehicles to react unprecedentedly. The AV equipped
with heterogeneous sensors (camera, LiDAR, Radar, etc.) is capable of detecting road signs,
however, the conventional decision making with a narrow environmental understanding
and short lifespan of decisions in terms of time and distance would compel the AVs to make
myopic decisions, resulting in erroneous decisions, injuries, fatalities, etc. Hence, having
such information known in advance leveraging collaboration with far-ahead vehicles would
allow the vehicles to react proactively in a timely and safe manner. (vi) Scenes 6 and 7 with
meeting road blockage due to accident—such situations are unprecedented and hamper the
usual traffic flow. In these scenarios, relying solely on the local perception of the environ-
ment would not allow the AV to know about the accident in advance, resultantly omitting
the vehicle to take decisions in advance. Therefore, it asks for dynamic adaptation of the
collaboration with other road users including other vehicles. Furthermore, the need for ex-
tended collaboration may prove to be instrumental (i.e., by implementing the collaboration
with farther vehicles/groups of vehicles, etc.) Collaboration with farther vehicles would
allow the AV to have a wider perception of the environment in advance and take optimal
decisions proactively. (vii) Scene 8 with an emergency vehicle on the road—in situations, where
emergency vehicles appear on the road, the norm of usual traffic is to be avoided. Such
situations could also be handled by efficient collaboration among the vehicles. Collaboration
would enable the AVs to communicate directly with each other or through the smart tower
deployed on the road and make way for the emergency vehicle.

1 2 3

4

5

68 7

Town Center

Destination
RADAR

A B

D

G F E

C

Figure 1. An overview of the dynamics of the complex urban environment.

We believe that the aforediscussed scenes to a greater extent capture the dynamics of
the complex urban environment. It should be highlighted that the problem of modeling



Drones 2023, 7, 111 6 of 28

and implementing a collaborative autonomous driving solution will take into account these
and similar challenges of the urban complex environment.

3. Related Work

The related work is divided into two sub-sections. Section 3.1 scrutinizes the state-of-
the-art simulators and their comparison however, Section 3.2 discusses the studies pertinent
to the proposed work.

3.1. Autonomous Driving Simulators—An Overview

Considering the complexity of a dynamic urban environment, the system must be eval-
uated in a wide range of settings and situations to validate the entire autonomous driving
architecture which would enormously increase the cost and development time using the
physical method. Given this, leveraging virtual development and validation testing and
designing acceptable driving scenarios are currently the cornerstones to building reliable
and safe autonomous vehicles. These simulators have developed over time, moving beyond
simply simulating vehicle dynamics to simulating more intricate functionalities. Therefore,
autonomous vehicle technology testing simulators must meet specifications that go beyond,
simulating actual vehicle models to include several sensor models, decision-making, path
planning, control, and more.

In what follows next, we briefly discuss the state-of-art simulators used to test and
validate autonomous driving solutions. Furthermore, the comparison of some additional
commercial and open-source simulators is also presented in Table 2.

• MATLAB/Simulink: launched its Automated Driving Toolbox which offers various
tools and algorithms to facilitate the design, simulation, and testing of Advanced
Driver Assistance Systems (ADAS) and automated driving. It enables the users to test
its main functionalities such as environment perception, path planning, and vehicle
control. It provides the feature to import HERE HD live map data and OpenDRIVE®

road networks into MATLAB and can be used for various design and testing applica-
tions. Last but not least, the toolbox allows the development of C/C++ code for faster
prototyping and Hardware-in-the-Loop (HIL) testing, providing support for sensor
fusion, tracking, path planning, and vehicle controller algorithms.

• PreScan: an open-source physics-based simulation platform that aims to design ADAS
and autonomous vehicles. It introduces PreScan’s automated traffic generator, which
offers manufacturers a variety of realistic environments and traffic conditions to test
their autonomous navigation solutions. It can also be used to design and evaluate
V2V and vehicle-to-infrastructure (V2I) communication applications. Among other
features, it also provides support for HIL simulation, real-time data, and Global
Positioning System (GPS) vehicle data recording, which can then be replayed later.
Furthermore, PreScan provides a special function known as the Vehicle Hardware-
In-the-Loop (VeHIL) laboratory. The test/ego vehicle is set up on a rolling bench,
and other vehicles are represented by wheeled robots that resemble vehicles allowing
users to establish a hybrid real-virtual system. Real sensors are installed in the test
vehicle. Therefore, the VeHIL is capable of offering thorough simulations for ADAS
by utilizing this setup of ego vehicles and mobile robots.

• LGSVL: an open-source multi-robot autonomous driving simulator developed by LG
Electronics America R&D Center. It is built on the Unity game Engine and offers various
bridges to pass the message between the autonomous driving stack and the simulator
backbone. The simulation engine provides different functions to simulate the environment
(e.g., traffic simulation and physical environment simulation), sensor simulation, and ve-
hicle dynamics. Additionally, a PythonAPI is available to control various environmental
variables, such as the position of the adversaries, the weather, etc. Furthermore, it also
provides a Functional Mockup Interface (FMI) to integrate the vehicle dynamics model
platform with the external third-party dynamics models. Lastly, exporting high-definition
(HD) maps from 3D settings is one of the key capabilities of LGSVL.



Drones 2023, 7, 111 7 of 28

• Gazebo: a multi-robot, open-source, scalable, and flexible 3D simulator that enables the
simulation of both indoor and outdoor environments. The world and model are the two
fundamental elements that make up the 3D scene. The gazebo is comprised of three
main libraries which include physics, rendering, and communication library. In addition
to these three core libraries, it also provides plugin support that enables the users to
communicate with these libraries directly. The gazebo is renowned for its great degree of
versatility and its smooth Robot Operating System (ROS) integration. High flexibility has
its benefits because it provides users with complete control over the simulation, but it
also requires time and effort. In contrast to CARLA and LGSVL simulators, Gazebo
requires the user to construct 3D models and precisely specify their physics and location
in the simulated world within the XML file. This manual approach is how simulation
worlds are created in Gazebo. It provides a variety of sensor models but also allows users
to add new ones by using plugins. Moreover, Gazebo is extremely well-liked as a robotic
simulator, but the time and effort required to construct intricate and dynamic scenarios
prevent it from being the first choice for testing self-driving technology. The gazebo is a
standalone simulator but most often it is used with ROS.

• CarSim: a vehicle simulator that is frequently used in both academics and industry.
The latest version of it supports moving objects and sensors that are useful for sim-
ulations involving ADAS and autonomous vehicles. These moving items, such as
vehicles, cyclists, or people, can be connected to 3D objects with their embedded ani-
mations. The key advantage of CarSim is that it offers interfaces for other simulators
such as MATLAB and LabVIEW. CarSim is not an open-source simulator, but it does
have extensive documentation and provides several simulation examples.

• CARLA [8]: an open-source simulator for autonomous urban driving. It is developed
from scratch to support training, prototyping, and validation of autonomous driving
solutions including both perception and control. As a result, CARLA makes an effort to
meet the needs of different ADAS use cases, such as learning driving rules or training
the perception algorithms. It is comprised of a scalable client-server architecture that
communicates over transmission control protocol (TCP). It simulates an open, dynamic
world implementing an interface between the world and an agent which interacts
with the world. The server is responsible for running the simulation, rendering the
scenes, sensor rendering, computation of physics, providing the information to the
client, etc. Whereas, the client side is comprised of some client modules that aim
to control the logic of agents appearing in the scenes. For a detailed discussion on
CARLA, the readers are encouraged to look into the authors’ previous publication [9].

A simulator should be as realistic as possible. Thereby, this means it should be accurate
with lower-level vehicle calculations such as the physics of the vehicle and detailed in terms
of the 3D dynamics and surroundings. There is always a trade-off between the accuracy of
the 3D environment and the vehicular dynamics [9]. To choose the right simulator, several
factors can be used as a metric to determine which simulators are most appropriate for different
tasks. These factors may include a set of sensors to create environmental perception, complex
dynamics of the environment, multi-view geometry, traffic infrastructure, vehicle control, traffic
scenario simulation, 3D virtual environment, 2D/3D ground truth, and last but not least, open
source. We analyze that MATLAB/Simulink is built with effective plot features and computation
capabilities to simulate straightforward scenarios. PreScan, as opposed to MATLAB and CarSim,
offers superior capabilities to create realistic surroundings and simulate various weather situa-
tions. Although the Gazebo is a well-known 3D robotic simulator, testing autonomous driving
technology is not the best use for it due to the time and effort required to generate sophisticated
and dynamic scenarios. Therefore, we shortlisted two simulators: LGSVL and CARLA. They
are the best simulators for testing perception, mapping, vehicle control, and localization systems
for autonomous vehicles. The majority of their characteristics are similar, e.g., open-source,
portability, 2D/3D ground truth, flexible API, etc., however, the LGSVL does not offer camera
calibration to conduct multi-view geometry or Simultaneous Localization and Mapping. In that
sense, we decided to choose the CARLA simulator for this research.



Drones 2023, 7, 111 8 of 28

Table 2. Comparison of Autonomous Driving Simulators.

Features
Simulator

CARLA AirSim DeepDrive LGSVL NVIDIA Drive rFpro MATLAB Gazebo

Licence Open-Source Open-Source Open Source Open-Source Commercial Commercial Commercial Open-Source

General

Portability Windows and
Linux

Windows and
Linux

Windows and
Linux

Windows and
Linux

Windows and
Linux

Windows and
Linux

Windows and
Linux

Windows and
Linux

Physics Engine Unreal Engine Unreal Engine
and Unity Unreal Engine Unity Unreal Engine U Unreal Engine DART

Scripting
Languages Python C++, Python, Java C++, Python Python Python U MATLAB C++, Python

Environmental

Urban Driving Town Town, City Road Track City City, Harbor Town, City, Road
Track N Road Track

Off-Road N Forest, Mountain N N N N N N
Actors–Human Y N N Y N/A Y Y Y

Actors–Cars Y Y Y Y N/A Y Y Y
Weather

Conditions Y Y Y Y Y Y N N

Sensors

RGB Y Y Y Y Y Y Y Y
Depth Y Y Y Y N/A Y N N

Thermal N Y N N N/A N/A N Y
LiDAR Y Y N Y Y Y Y Y

RADAR Y N N Y Y Y Y Y

Output Training Labels

Semantic
Segmentation Y Y N Y Y Y Y Y

2D Bounding Box Y N N Y Y N/A Y Y
3D Bounding Box Y N Y Y N/A N/A Y Y

Legend: U: Unknown, Y: Yes, N: No.



Drones 2023, 7, 111 9 of 28

3.2. Relevant Studies

Gómez-Huélamo et al. [10] validated the fully autonomous driving architecture in the
CARLA based on some challenging driving scenarios inspired by the CARLA Autonomous
Driving Challenge (CADC), focusing on the proposed decision-making layer, based on
Hierarchical Interpreted Binary Petri Nets (HIBPN). They started by outlining the ROS-
based autonomous driving architecture. The CARLA simulator is then discussed, along
with the steps followed to integrate the suggested architecture with it and the benefits
of developing ad-hoc driving scenarios for use case validation. The architecture was
then evaluated utilizing some driving conditions, including STOP, Pedestrian Crossing,
ACC, and Unexpected Pedestrian. For each use case, some qualitative and quantitative
findings were reported, verifying the architecture in the simulation. In another study [11],
the authors extended their work with several interesting temporal graphs to examine the
sequence of events and its effect on the physical behavior of the vehicle holistically.

Ramakrishna et al. [12] conducted interesting research and proposed an ANTI-CARLA
framework for automated adversarial testing, evaluation, and exploration of the perfor-
mance of AVs within the CARLA simulator. It offers a framework that enables the plugging
in and testing of any pipeline for autonomous driving. It is comprised of a domain-specific
Scenario Description Language (SDL) to explain the test conditions and a simple interface
to specify test conditions. The suggested system has the drawback of only being able to
sample static scenes. The temporal order of scenes preceding each failed case, however, is
not yet available.

To enhance the accuracy of risk assessment for autonomous vehicles, leveraging situa-
tional awareness for behavior prediction, Reich et al. [13] developed the Situation-Aware
Dynamic Risk Assessment (SINADRA) method. They created a computing pipeline as a
Python program element and integrated it into the CARLA. Based on dynamically moni-
tored environmental cues, SINADRA employed probabilistic Bayesian network models
to estimate the behavior intentions of other traffic participants. Afterward, these behavior
intentions were converted into trajectory distributions by using behavior-specific motion
models. Finally, probabilistic risk metrics evaluated the risk of executing the planned ego
trajectory in the current scenario given the expected future positions of traffic participants
and a planned ego trajectory.

The systematic testing of autonomous vehicles operating in a complex real-world
environment is a challenging and costly problem. Therefore, to tackle this issue, Majum-
dar et al. [14] developed a Paracosm framework allowing users to write systematic test
scenarios for autonomous driving simulations. It enables users to programmatically define
complicated driving scenarios with particular elements, such as road layouts, environmen-
tal conditions, and temporal reactions of other vehicles, and pedestrians. It is also made
practicable to explore the state space systematically for both visual elements and reactive
interactions with the environment. Additionally, a notion of test coverage for parameter
configurations is defined based on combinatorial testing and low dispersion sequences.

Vukic et al. [15] developed an urban-like neighborhood simulation environment based
on Unity to test sensors and algorithms for autonomous vehicles and to show the deviations
from reference data. The proposed simulation model comprised city objects and partic-
ipants such as roads, sidewalks, buildings, pedestrians, traffic signs, and vehicles. They
simulated the motion and sensors from a single vehicle equipped with a stereo camera
setup. Unity was used to design the simulation; however, the behavioral scripts were
executed using the C# programming language. The OpenCV class for computing stereo cor-
respondence employing the semi-global block matching algorithm was applied to simulate
stereo images to demonstrate the testing of relevant algorithms.

The simulation framework proposed by Teper et al. [16] integrated cutting-edge
robotics, communication, and control system components such as ROS2, Gazebo, OM-
NeT++, Artery, MATLAB, and Simulink to simulate the cooperative autonomous driving
scenarios and their required technologies. The proposed framework can also be used to inte-
grate new tools since the integration is done in a modular fashion. The platooning scenario



Drones 2023, 7, 111 10 of 28

under cooperative adaptive cruise control (CACC) and the ETSI ITS-G5 communication
architecture was used by the authors to further highlight the framework.

In another study, Cai et al. [17] presented SUMMIT, a simulator to generate high-
fidelity interactive data to develop, train, and test crowd-driving algorithms. The simulator
generated unregulated congested traffic at any location in the world using online maps.
It could generate complex and realistic crowds that closely resemble uncontrolled traffic
in the real world by fusing topological road contexts with an optimization-based crowd
behavior model. Moreover, the authors also formulated a Context-POMDP as a reference
planning algorithm for future developments. In conclusion, they stated that SUMMIT can
support a wide range of applications such as perception, control, planning, and learning
for driving in unregulated dense urban traffic.

Emre et al. [18] addressed the problem of tracking algorithms based on deep learning.
To this end, they designed and developed four different deep learning algorithm—deep
convolutional neural networks, deep convolutional neural networks with fine-tuning, trans-
fer learning with a deep convolutional neural network, and fine-tuning deep convolutional
neural networks with transfer learning to track the targeted object. The proposed algo-
rithms achieved significantly good results than the state-of-the-art algorithms. In another
research, Gulay [19] worked on a similar problem. They leveraged the Kalman filter and
deep learning algorithms to detect and track the multiple dynamic targeted objects.

4. Proposed Extension to CARLA

In this section, we provide a detailed discussion of the design and development of
CARLA+. In what follows next, we first discuss the PGM for modeling the environment
followed by a thorough discussion on the design and development of CARLA+ which
integrates a PGM framework with CARLA.

4.1. PGM for Modeling Complex Urban Environment

To capture the realistic dynamics of the complex urban environment such as the
number of vehicles, the dynamic speed of the vehicles, the probability of pedestrians in
an urban environment, the dynamic weather of the environment, and the time of the day,
the probabilistic graphical model (PGM) is used. We aim at capturing the dynamically
changing state of the environment, the partially observable state of the environment,
and unprecedented events in the environment. To further understand the environment,
consider Figure 1 which explains some scenario scenes of the complex urban environment.

In what follows next, we discuss the motivation to opt for the PGM, which comes
from the following facts:

• It is instrumental in understanding the complex relationship between a set of random
variables. This is an important feature because the considered problem domain
involves several variables (e.g., number of vehicles, number of pedestrians, vehicle
speed, weather state, time of the day, distance from other vehicles and objects, road
markings, road signs, road traffic lights, etc.) Furthermore, these variables have an
impact on one another, resulting in much more complex interparameter relationships;

• It allows to reuse the knowledge accumulated over the different scenes and settings;
• It allows for solving tasks such as inference learning. This feature is relevant to the

considered collaborative autonomous driving problem domain since we are interested
in estimating the probability distributions and probability functions in different use
cases. For instance, when the probability is associated with the elements of action
space in a specific use case, we are interested in achieving the optimal values of the
associated probability values;

• It allows the independence properties to represent high-dimensional data more com-
pactly. The independence properties help in the considered problem domain by
assisting in understanding the characteristics of a particular attribute separately from
the rest of the system;



Drones 2023, 7, 111 11 of 28

• The concept of conditional independence brings in significant savings in terms of how
to compute and represent the network structure.

A PGM models a joint probability distribution over a set of random variables
X = {X1, ..., Xn}. It is represented as a pair (G, Θ), which consists of a graph structure
G that codifies the dependent relationships between the random variables and a set of
parameters Θ. There are different types of PGM models, however, in this research, we
implement the PGM model based on directed acyclic graphs (DAG). Given a PGM (G, Θ)
with a DAG G = (X, R), where X is a non-empty finite set of nodes and R is a set of edges,
and three distinct subsets of variables (U, Y, Z) of X, Y is conditionally independent of Z
given U if U d-separates Y and Z in G.

We suppose that the set of variables X is arranged in accordance with a DAG G ances-
tral ordering, the parent nodes of X j

(
PAj

)
variable d-separates Xj from any prior variable

in the ancestral ordering, Xi(i < j). This is to say that Xj is conditionally independent of
any Xi(i < j) given its parents, PAj. Based on this property, we express the joint probability
distribution of X given the chain rule as:

p(x) = p(x1, ..., xn) =
n

∏
j=1

p
(
xj | x1, ..., xj−1

)
(1)

when codified by a DAG-based PGM, it is factorized as:

p(x) =
n

∏
j=1

p(xj | paj) (2)

Bayesian network (BN) models are DAG-based PGMs with all the discrete random
variables, comprised of a DAG G and a set of parameters Θ. By taking DAGs into account,
the joint probability distribution p(x) can be factored using Equation (2), which typically
uses a much smaller set of Θ than the general factorization (Equation (1)). The set of
parameters Θ represents all the probability distributions, p

(
xjl | pajk

)
. Each parameter

Θjkl = p
(

xjl | pajk

)
defines the probability that variable Xj takes its l − th possible value

given that the parents PAj of Xj take their k− th value. Each variable Xj has a set of dj
values. As a result, the set of potential values for a random vector is the product of the sets
of possible values for each X such that the parent PAj of variable Xj takes Dj = ∏i/XiεPAj

di

different values.
As the size of the model increases, the BN model derived from a set of examples

becomes impractical. Therefore, we learn the BN. Generally, the process of learning a
BN with DAG G and parameters Θ from a data set D comprising n observations can be
accomplished in two steps, Equation (3). Following the D provision, the BN is learned in
two stages: structural learning and parametric learning.

P(G, Θ | D)︸ ︷︷ ︸
Learning

= P(G | D)︸ ︷︷ ︸
Structure Learning

. P(Θ | G,D)︸ ︷︷ ︸
Parameter Learning

(3)

Finding the G that encodes the dependent structure of the data constitutes structure
learning. In this research, we opt for the Hill Climbing (HC) search algorithm to learn the
structure of the BN. In Algorithm 1, the initialization phases (steps 1 and 2) are followed
by an HC search (step 3). HC executes local moves such as arc additions, deletions,
and reversals to explore the area around the current candidate Gmax in the space of all
possible DAGs aiming to locate the G (if any) that raises the score Score (G,D) the most
over Gmax. Then, in each iteration, the HC attempts to add each potential arc that is not
already present in Gmax, as well as to delete and reverse each arc in the current optimal Gmax.
For all the remaining acyclic DAGs G∗, the HC calculates SG∗ = Score (G∗,D). The new
candidate G is the G∗ with the highest SG∗ . If this DAG has SG > Smax, then G becomes the



Drones 2023, 7, 111 12 of 28

new Gmax, and Smax is set to SG and HC moves to the next iteration. On the other hand,
if SG < Smax, the HC reaches an optimum.

Algorithm 1 Hill-climbing search algorithm for structure learning
Input: a dataset D from X, an empty DAG G, a score function Score (G,D).
Output: the Gmax that maximizes the Score (G,D).

1: Compute the score of G, SG = Score (G,D)
2: Set Smax = SG and Gmax = G
3: Hill Climbing: repeat as long as Smax increases.

(a) For each potential arc addition, deletion, or reversal in Gmax resulting in a DAG:
(i) Compute the score of updated G∗, SG∗ = Score (G∗,D)
(ii) SG∗ > Smax and SG∗ > SG , then set G = G∗ and SG = SG∗

(b) If SG > Smax, set Smax = SG and Gmax = G

As a local search algorithm, the HC can get stuck in the local optima. Therefore, there
are two simple approaches that are efficient to escape from the local optima:

• Tabu List: it first moves away from Gmax by allowing up to t0 additional local moves.
These moves would generate DAGs G∗ with SG∗ ≤ Smax, therefore, the new candidate
DAGs would have the highest SG even though if SG < Smax. Moreover, DAGs accepted
as candidates in the last ti iterations would be saved in a list referred to as the tabu list.
It will allow the algorithm to not revisit the recently seen structures aiming to guide
the search towards unexplored regions of the space of the DAGs and this approach is
referred to as Tabu search.

• Random Restarts: multiple restarts up to r times would allow the algorithm to find the
global optimum when at a local optimum.

Estimating the Θ based on the G produced by structure learning is what parameter
learning entails. We employ the Bayesian Parameter Estimation to learn the parameters.
When learning with a Bayesian approach, the Dirichlet distribution is used as an a priori
distribution over all possible sets of parameters, and the maximum a posteriori probability
(MAP) estimation—the set of parameters Θ̂ with the highest a posteriori probability given
the D and a graph structure G—is used to estimate the parameters.

Θ̂ = arg max
Θ

p(Θ | G,D)α arg max
Θ

p(D | G, Θ).p(G, Θ) (4)

Given a set of hyper-parameters α = (αjk1, ..., αjkdj
), which are the parameters of the

a priori Dirichlet distribution that characterizes the prior knowledge about the Θ̂, we
compute the set of Θ̂ that maximizes this expression by using the formula below:

ˆΘjkl =
Njkl + αjkl

Njk + αjk
(5)

where in Equation (5), the Njkl is the total number of occurrences in D where the variable
Xj is given its l − th value and the configuration of PAj is given its k− th instance, Njk =

∑
dj
l=1 Njkl and αjk = ∑

dj
l=1 αjkl .

4.2. Designing CARLA+

This section presents a detailed discussion on designing the CARLA+ comprises
various crucial components. In what follows next, we discuss each component in detail.

4.2.1. CARLA Architecture

CARLA utilizes the client-server model for its operation where the server runs the
actual simulation and the client is responsible to communicate and controlling that sim-
ulation. The CARLA client communicates with the CARLA server using the provided



Drones 2023, 7, 111 13 of 28

API. Therefore, to use the CARLA client, we first establish a connection with the CARLA
server running on a specific IP and port. Multiple clients can also be used to communicate
simultaneously with a server. The main functionality of the client is to ask for information
from the server, load different maps, record simulations, and initialize the traffic manager.
The classical architecture of CARLA is presented in Figure 2.

Client

Traffic
Manager

Server 
Simulation

Communicates via API

M
odifies the behavior Co

nt
ro

ls 
Tr

af
fic

World

Figure 2. Classical architecture of CARLA.

In CARLA, the World represents an object, encapsulating the actual simulation. It is
an abstract layer that is used to spawn different actors (vehicles, pedestrians, etc.), change
weather conditions, obtain the current state of the world, etc. Each simulation will contain
only one world object, which will be destroyed and replaced when loading a new map.

CARLA also provides a Traffic Manager module which controls vehicles in autopilot
mode. This is the default implementation for traffic simulation in CARLA. Its behaviors
can be modified by the user/client, e.g., forcing a lane change, over-speeding, ignoring
traffic lights, stopping signs, etc. It can be used to orchestrate carefully designed driving
scenarios to train autonomous agents.

Actors are those elements in CARLA that can perform some action to affect the envi-
ronment or other actors. These include different sensors, traffic signs, traffic lights, vehicles,
pedestrians, etc. These actors can be spawned, handled according to the requirements,
and destroyed, by the World. Sensors are special actors that are used to retrieve data from
their surroundings.

4.2.2. Maps

In CARLA, a map consists of both the 3D model of the town and the road definition.
CARLA comes with 8 predefined towns, each containing two kinds of maps, layered and
non-layered maps. Layered maps allow the user to toggle certain layers of the maps, such
as buildings, etc., while non-layered maps do not allow any layer-toggling. Furthermore,
new user-defined maps can be created and imported into CARLA, allowing for more
customizability and extensibility of the system. The proposed CARLA+ is designed in a
way that it can work with any kind of map either built-in or user-defined. This would
retain the extensibility of the CARLA environment while providing the option for a more
realistic and dynamic environment modeling irrespective of the map.

4.2.3. Vehicles

There are a number of blueprints for different types of vehicles in the CARLA.
A blueprint is a predefined model with animations and attributes, some of which are modi-
fiable. They allow for the easy incorporation of new actors into the simulation. CARLA
contains 70+ blueprints for a different types of vehicles and pedestrians, from large trucks



Drones 2023, 7, 111 14 of 28

to motorcycles. The proposed CARLA+ allows the user to spawn a particular vehicle based
on its blueprint ID, select a vehicle at random, or filter vehicles using a wildcard pattern,
e.g., using the pattern 'vehicle.mercedes.*' would return all the available models of
mercedes. Furthermore, CARLA+ uses all kinds of vehicles by default, but the user can
configure if they want to experiment with a particular type of vehicle or a particular model.

4.2.4. Weather

Each town is loaded with suitable weather, which can be customized based on user
requirements. Different weather parameters can be set by using the WeatherParameters
class to simulate a particular weather. These parameters are independent of each other,
i.e., having more clouds would not automatically result in rain or raining would not
automatically create puddles as well. Some of the parameters that can be set are cloudiness,
precipitation, wind intensity, fog, sun azimuth, altitude angles, etc. CARLA+ enables the
user to validate their solutions in any weather setting. Some of the examples of weather
conditions in CARLA are shown in Figure 3.

Figure 3. CARLA Weather conditions.

4.3. Developing CARLA+

In this section, we discuss the development of CARLA+ and its components. The pro-
posed high-level architecture of CARLA+ is presented in Figure 4.

The CARLA+ is comprised of four main modules:

1. Environment Manager Module;
2. Vehicle Manager Module;
3. Pedestrian Manager Module;
4. Integration of PGM Module.

Each of these modules is configured via configuration files, which contain different
specifications for environment modeling. The configuration files are an integral piece of
the framework as they connect all the other modules together and allow them to function
seamlessly. These files are defined in a hierarchical manner where the underlying config
can easily be replaced with a different one based on the scenario and requirements. Figure 5
shows the different configuration files, their folder structure, as well as some sample configs
to demonstrate how they are used within CARLA+. Configurations within a particular
directory are easily replaceable with another of its peers. For example, to load rainy weather
instead of clear, we can easily specify the weather/rain.yaml file in the main config file.
Schema definitions for different types of configurations are also defined to make sure that
the user-defined config files conform to the schema definitions. All of these configuration



Drones 2023, 7, 111 15 of 28

files are modifiable at three levels, i.e., using the actual config files, using the command line,
as well as the Python script.

Client Pedestrian 
Manager

PGM 
Module

Vehicle 
Manager

Environment 
Manager

CARLA+

Configures Server 
Simulation

World

Updates 
Environment

Traffic
Manager

M
od

ifi
es

 th
e 

be
ha

vi
or

Contro
ls T

raffic
 

Figure 4. Proposed high-level architecture of CARLA+.

Figure 5. An overview of the configuration files. (a) Folder structure. (b) Sample configurations.

In what follows next, we discuss the functionality and role of each component in detail.

4.3.1. Environment Manager Module

This module deals with the configuration of the simulation environment. It is de-
veloped to dynamically simulate the weather and time of day. Based on the provided
configuration files, it changes the weather and time inside the simulated environment.
It can also dynamically change the weather with the passage of time. The configuration



Drones 2023, 7, 111 16 of 28

files expose a number of parameters such as cloudiness, rain, wind, fog, etc., where
the user can specify the percentage of value required to get the desired weather in the envi-
ronment. Some of the pre-defined weather configuration files for some common scenarios,
such as clear, rainy, cloudy, etc., are also provided. Furthermore, we enable the user to
model a particular hour of the day which can automatically be converted into respective
sun azimuth and altitude angles to be used in the simulation. All of these configuration
files are configurable and can be extended by the researchers allowing for more granular
control over every aspect of the simulation environment.

4.3.2. Vehicle Manager Module

This module is developed to adjust the behavior of the traffic inside the simulation.
It allows for a wide range of configuration parameters for traffic, such as the number of
vehicles to spawn, the maximum allowed speed, the safe distance from the leading vehicle,
the type of vehicle to spawn, and more. Each of these parameters can be configured via
configuration files and can be modified later on by the PGM model based on the state of
the world. The user can also choose to spawn a mixed type of vehicle such as a car, van,
truck, etc.

4.3.3. Pedestrian Manager Module

This component is developed to capture the dynamics of the pedestrians in the simula-
tion environment. It manages the number of pedestrians to spawn, and randomly spawns
them on various locations around the map. It also provides the functionality to modify
the behavior of the spawned pedestrians, such as the percentage of pedestrians that are
running or crossing the road, etc. This module can be used to dynamically model the
number and behavior of pedestrians in specific scenarios such as roundabouts. We also
provide multiple pedestrian models enabling users to spawn various types of pedestrians
which can easily be configured via the configuration files provided.

4.3.4. Integrating PGM Module

This is the main component of the CARLA+ that glues all the other components
together. It takes the current state of the world as input and predicts the state of different
variables based on that. It uses a BN model and loads the Conditional Probability Distri-
bution (CPD) from the configuration files. It then uses the Variable Elimination method to
obtain the probability distribution of the required states. The simulated environment is
then updated based on the most probable state of the desired variables.

This module is developed to be used in a number of ways. First, the states and CPDs of
different variables can be defined entirely in the configuration files manually. The module
will create a BN model based on those configuration files. Second, different parameter
learning algorithms can be used to directly learn the CPDs of variables from raw data,
which can then be exported into the configuration files and loaded into a BN from there.
Another approach could be to bypass the configuration files for CPDs and directly load
or train the BN when the simulation starts. This flexibility allows us to handle various
scenarios, from hand-crafted CPDs to complex CPDs learned directly from real-world data.

Once the model and its CPDs are defined, the CARLA+ loads that model into memory
and use that for modeling the simulation. The CARLA client queries the CARLA server
for different environmental parameters, and based on the returned parameters, it uses
the user-defined PGM model to infer new states for different variables. Once the desired
states have been calculated, CARLA+ updates the simulation weather in the CARLA server
and traffic count as well as a behavior using the Traffic Manager accordingly. In this
way, the CARLA+ framework extends the classical CARLA by integrating it with a PGM
framework that is able to model different parameters in the simulated environment and
dynamically change the states of those variables based on their dependencies, as defined in
the CPD.



Drones 2023, 7, 111 17 of 28

Having discussed the design and development of CARLA+, we provide a discussion
on clearly highlighting the difference between the classical CARLA and CARLA+. Al-
though CARLA is a comprehensive and well-designed simulator for autonomous driving,
providing options to customize the environment including the map, number, and type of
vehicles, pedestrians, weather and time of day, automatic and manual traffic control, etc., it
does not provide a unified framework to automatically manage those. For instance, we can
manually code to spawn a different number of pedestrians based on weather conditions
and daytime using multiple conditional statements, but there is no pre-defined way to do
so automatically, based on the dynamic simulation environment. Therefore, the proposed
CARLA+ takes these different disconnected components of CARLA and provides a unified
framework to automate their behaviors leveraging PGMs. For example, a user can define a
PGM that models the dynamics of pedestrian counts, vehicle counts, and vehicle speed
based on dynamic weather and time of day. CARLA+ is flexible enough and lets the user
define the PGM model in different ways: (i) manually defined by the user; (ii) trained on
real-world data improving the ability to model different dynamics from the real world.
Therefore, instead of manually catering to each condition, CARLA+ enables the user to
automate the modeling of different dynamics of the environment. It gives the user more
flexibility and control over the dynamic environment, encouraging them to design more
complex experimental scenarios.

5. Validation of the Proposed CARLA+

This section carefully discusses the experimental design, implementation details, and the
experiments performed in different settings to validate the proposed CARLA+ extension.

5.1. Experimental Setup

In this section, we discuss the experimental setup of the proposed CARLA+ in detail.
To validate the proposed CARLA+ solution, all the experiments are conducted in CARLA
Town10 map. The motivation behind choosing Town10 is a complex urban setting with de-
tailed high-quality realistic textures and a city comprised of streets, avenues, and pedestrian
walkways with various environments. The map layout and the illustration of the simula-
tion environment are shown in Figure 6. Furthermore, the details of different hardware,
software, and libraries used to design and develop the CARLA+ are listed in Table 3.

A B

Figure 6. (A) A map of Town 10 in CARLA. (B) Illustration of Town 10 simulation environment.



Drones 2023, 7, 111 18 of 28

Table 3. Hardware and Software Requirements for Experimental Setup.

Requirement Version Usage

Operating Sysyem Windows 11 -

RAM 16 GB -

CPU Intel i7 -

GPU NVIDIA GTX 1080 -

CARLA v0.9.13 To simulate the environment

Python v3.7 Scripting language

Pgmpy v0.1.19 For Bayesian networks

Hydra v1.2.0 For configuration management

Scikit-learn v1.0.2 For data analysis

Matplotlib v3.6.2 For plotting

5.2. Experiments

As discussed in Section 4.3 the proposed CARLA+ is designed and developed to be
used in different ways to model the dynamics in the environment. Therefore, to validate
the proposed extension, we perform two different types of experiments.

5.2.1. Controlled Settings

This experiment aims to model the dynamics between rain, the number of vehicles,
and their dynamic speed in the environment. More specifically, a model is developed that
can dynamically change the traffic count and speed of the vehicles based on the presence
of rain in the environment. Our assumption is that when it is raining, the vehicle count and
speed of vehicles will be low, and when it is not raining, it will be high.

Therefore, for this setting, a relatively simple PGM model is designed to validate the
effect of rain on the dynamic traffic count and vehicle speed. Three random variables are
selected, namely, Rain, Traffic and Speed, having the possible states as shown in Table 4.
The Traffic and Speed variables have a dependency on Rain, and their CPDs are defined
manually, as shown in Figure 7.

Table 4. Random variables and their states.

Random Variable States

Rain NO_RAIN RAIN

Traffic LOW HEAVY

Speed LOW HIGH

Rain

Traffic

Speed

Rain

NO_RAIN 0.2

RAIN 0.8

RAIN No_RAIN RAIN

LOW 0.2 0.7

HEAVY 0.8 0.3

RAIN No_RAIN RAIN

LOW 0.1 0.8

HIGH 0.9 0.2

Figure 7. Bayesian network of controlled settings along their CPDs.



Drones 2023, 7, 111 19 of 28

Firstly, the environment manager reads the weather configuration files and updates
the simulation weather accordingly. Then, based on the amount of rain in the simula-
tion environment, the PGM model predicts the state of Traffic and Speed. Finally, a
Poisson distribution is used to randomize the actual number of vehicles to spawn and the
speed of those vehicles. The value from the predicted state is passed onto the Poisson function
as the expected number of events occurring in a fixed time interval, which would return a
sample from the parameterized Poisson distribution.

The notion of LOW and HEAVY can be set by the user in the configuration files as
well. For example, in one simulation, 20 vehicles might be considered LOW Traffic while
in another, it is HEAVY Traffic. These values vary based on the dynamic simulation
environment and experiment settings and can be configured easily via configuration files.

This minimal and bare-bones experiment aims to showcase the effectiveness and
usefulness of CARLA+ even in the simplest of scenarios. Simple rules and dependencies
are used to model the dynamic environment, which would then generate values from
random distributions to better model the randomness inherent in the real world. Given
that we use a Poisson distribution to select the actual value, instead of a hard-coded one,
we ran the experiment 1200 times for each of the scenarios, i.e., NO_RAIN and RAIN to better
showcase the effectiveness of this approach. As can be seen in Figure 8, the resulting graph
shows that in the case of NO_RAIN, the Speed and Traffic is low, while in the case of RAIN,
their values are generally high. This shows that even such simple rules and models can be
used to create dynamic environments easily using the proposed CARLA+.

5.2.2. Learning-Based Settings

For this experiment, the objective is to showcase the utility of CARLA+ when modeling
the simulation environment based on dynamics learned from real-world data. For this
purpose, different features are collected from the real world and a BN is trained based on
that data. The trained network is then exploited in the CARLA+ framework to simulate the
dynamic environment of the real world.

Figure 8. Distributions resulting from controlled settings. (a) Distribution of Speed. (b) Distribution
of Traffic.

To validate the full potential of the CARLA+, in this experiment we used real-world
data to model the simulation environment. Weather and traffic data from different sources
are collected, and the relevant features are extracted to train a PGM model that reflects real-
world dynamics more acutely, as compared to hand-crafted CPDs. This section provides a
detailed discussion of all the steps involved in learning a PGM model as shown in Figure 9
and the results achieved in this setting.



Drones 2023, 7, 111 20 of 28

Dataset Creation

Feature 
Engineering

Feature 
Discretization

Dataset comprising 
all input features 

Dataset for Bayesian 
Network Learning

Feature selection 
and filtering

Data entry 
filtering

Dataset for efficient 
and specific learning 

Structure 
Learning

Parameter 
Learning

Learned 
Bayesian 
Network

Model evaluation 
and integration

Figure 9. Stages to learn the Bayesian Network.

In what follows next, we discuss each step in detail.

Dataset Creation

For this experiment, we aim to model the effect of weather and time of day on traffic
count, pedestrian counts, and vehicle speed in a dynamic environment. After a thorough
search, we did not find any relevant dataset which contained data about traffic count, traffic
speed, pedestrian count, and weather. Therefore, we created such a dataset ourselves and
selected the dataset for New York City, as it satisfied all of our data requirements. The detail
of all the data sources that we used to create the new dataset are discussed below:

• Traffic Count: for the traffic count, we used New York City’s open data platform [20]
which contains data for traffic volume counts. It contains traffic volume data of
different streets in the boroughs of New York City, taken at 15-minute intervals.

• Pedestrian Count: for pedestrians counts, we used the Brooklyn Bridge Automated
Pedestrian Counts data [21], which contains pedestrian count as well as basic weather
data, taken at 1-hour intervals.

• Traffic Speed: we used New York City’s Real-Time Traffic Speed data [22] which is
comprised of the traffic speed as well as the borough where the data were captured.

• Weather: the NYC weather data are taken from Open-Meteo’s Historical Weather
API [23] for the city of Brooklyn.

We selected the data from the year 2019 as they contained the largest number of
entries in all the datasets, and created a unified dataset containing 8670 rows corresponding
to every hour in the year 2019. Our new dataset is openly available for researchers at
https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data (accessed on
2 January 2023) to experiment and validate their solutions.

https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data


Drones 2023, 7, 111 21 of 28

Data Preparation and Feature Engineering

Once we have data corresponding to every hour in the year 2019, we filtered it to
only contain the data for Brooklyn City, as the pedestrian count only corresponds to that.
To handle the missing entries, we employed the backward fill method, where the null entry
is replaced with the previous entry. For this experiment, we aim to validate the effect
of weather and time of day on traffic and pedestrian counts, as well as their effect on
traffic speed. Thus, we filtered only the relevant columns from the dataset, resulting in the
following final columns:

• Hour
• Pedestrians
• Traffic
• Speed
• Rain
• Fog
• Clouds

As most of these columns contain continuous values, we further discretize them
to be used in a BN. The variable Hour is classified into the time of days, as shown in
Table 5. Moreover, the Rain, Fog, and Clouds variables are discretized into four categories
based on the rules defined in Table 6. As for the discretization of Traffic, Pedestrians,
and Speed parameters, they are divided into three bins based on their data distributions, as
shown in Table 7. The final processed and discretized dataset is made publicly available at
the following link https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-d
ata (accessed on 2 January 2023).

Table 5. Hour classification into the time of the day.

Hour Classification into Time of the Day

2:00 AM to 6:00 AM Early Morning

6:00 AM to 9:00 AM Morning

9:00 AM to 12:00 Late Morning

12:00 PM to 5:00 PM Afternoon

5:00 PM to 7:00 PM Eary Evening

7:00 PM to 9:00 PM Evening

9:00 PM to 11:00 PM Late Evening

11:00 PM to 2:00 AM Night

Table 6. Rules to discretize the Rain, Fog, and Clouds parameters.

Label Rain (mm/h) Fog (%) Clouds (%)

NO 0 0–25 0–25

LIGHT 0.1–2.5 25–50 25–50

MODERATE 2.6–7.5 50–75 50–75

HEAVY >7.5 75–100 75–100

Table 7. Rules to discretize the Traffic, Pedestrian, and Speed parameters.

Label Traffic Pedestrian Speed (km/h)

LOW 0–200 0–100 0–30

MEDIUM 200–800 100–1200 30–45

HIGH >800 >1200 45–55

https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data
https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data


Drones 2023, 7, 111 22 of 28

Learning and Integration of PGM Model

Once the data have been cleaned, pre-processed and discretized, we learn the BN
based on two stages: (i) structure learning and (ii) parameter learning.

Structure learning is used to learn the network structure of the BN and to highlight
the dependencies of different variables on one another. For this purpose, the HC algorithm
is used, and the best-scoring network structure is selected, as shown in Figure 10. The BN
structure depicted in Figure 10 shows that only two of the seven random variables, Time
and Clouds, are independent, while all the rest are dependent on one or another.

Time
Clouds

Fog

SpeedTraffic

Pedestrian

Rain

Figure 10. Bayesian Network structure for the learning-based settings.

After learning the structure of the BN, the Bayesian estimator algorithm is used for
parameter learning. It learns the CPDs for different variables directly from the dataset that
we created previously. Some of the parameters used to learn the structure and parameter
learning are presented in Table 8. Once trained, the model is evaluated based on certain
criteria and then integrated into our CARLA+ by updating the random variables and their
states in the model and variable configuration files. This trained model is then used to
model the dynamics of the real world in the simulated environment which allows us to
design customized dynamic and more realistic scenarios.

Table 8. Parameters for structure and parameter learning.

Learning Stage Parameter Value

Structure
Learning

Scoring method k2score

Epsilon 1 × 10−6

White list Possible edges

Parameter
Learning

Estimator BayesianEstimator

Prior type BDeu

Equivalent sample size 10

Complete samples only FALSE

The model is used to infer the state of a certain variable given the states of others, and a
Poisson distribution is then used to sample actual values based on the inferred state. Due to
the inherent randomness incurred by the utilization of Poisson distribution, we collected
100 samples relating to each permutation of the different variable states, giving us a total of
51,200 data samples. These samples are then used to visualize and present the results of
the trained model. The experimental results show the distribution of Speed, Pedestrian,
and Traffic variables with respect to Time of the day in Figure 11. In Figure 11, the dif-
ferent states of Time are represented along the x-axis, and the y-axis corresponds to the
values from the three different modalities, which are Traffic, Pedestrians, and Speed.



Drones 2023, 7, 111 23 of 28

The graph in Figure 11 shows the distributions of values we get from the Poisson distribution
in each particular time state. Figures 12–14 show the distributions of traffic, speed,
and pedestrians, respectively. The distribution for each variable is represented with re-
spect to the different states of Rain, Fog, and Clouds. In Figures 12–14, the x-axis and the
color correspond to the states of Rain and Clouds, respectively, while the columns represent
different states of Fog. Moreover, some of the results of the simulation environment are
shown in Figures 15–17. All of these distributions are localized to Brooklyn City, and the
year 2019. Different cities and time intervals would result in different traffic scenarios and
behaviors, and as a result, different resulting distributions.

From these experimental results, we have demonstrated that CARLA+ has the poten-
tial to model the dynamics of real-world scenarios more effectively and efficiently. Instead
of hand-crafted rules to model certain requirements, CARLA+ can be used to automatically
handle the scenarios based on their defined CPDs, which can be either hand-crafted or
trained via machine learning algorithms.

Figure 11. Distributions of Speed, Traffic, and Pedestrian counts with respect to time.



Drones 2023, 7, 111 24 of 28

Figure 12. Distributions of Traffic count with respect to Rain, Clouds, and Fog.

Figure 13. Distributions of Vehicle speed with respect to Rain, Clouds, and Fog.

Figure 14. Distributions of Pedestrian count with respect to Rain, Clouds, and Fog.



Drones 2023, 7, 111 25 of 28

Figure 15. A view of simulation environment with clear weather and high mixed traffic.

Figure 16. A view of simulation environment showing heavy rainy day with a small number of traffic
and pedestrians.



Drones 2023, 7, 111 26 of 28

Figure 17. A view of simulation environment showing a clear sunny day with traffic congestion
behind the red crossing vehicle.

6. Conclusions

Autonomous driving in an uncontrolled urban environment is challenging due to the
environment dynamics, weather types, heterogeneous vehicles, pedestrians, etc. Therefore,
an obvious challenge in this regard is to correctly model the environment that captures
the dynamics of this problem domain. To cope with this challenge, the proposed research
models the dynamics of the environment leveraging the probabilistic graphical model.
The motivation behind using PGM is that it is a robust framework for encoding probability
distributions for this complex domain by computing the joint distributions over numerous
random variables that interact with one another. Therefore, to develop the proposed
solution, we rely on the classical CARLA simulator. It provides rich features; however, it
still fails on a few fronts, therefore, there is a dire need to extend the off-the-shelf CARLA
with more sophisticated settings that can model the required dynamics. To this end, we
have thoroughly designed and developed CARLA+, an extension of classical CARLA.
The CARLA+ based on the PGM framework is capable enough to model the dynamics of
the environment such as time of the day and weather types, predict the vehicle count in the
environment, and predict the speed of the vehicles based on the weather, and predict the
number of pedestrians with respect to time and weather, etc. Experiments with different
controlled and learning-based settings have been conducted, ranging from hand-crafted
PGMs to complex PGMs learned directly from real-world data. The experimental results
demonstrated that CARLA+ is flexible enough to be used in various ways to model the
dynamics of the environment. In the future, we plan to extend CARLA+ by allowing for
more configurable parameters and more flexibility on the type of probabilistic networks
and models one can choose.

Author Contributions: Conceptualization, S.M., M.A.K.; H.E.-S.; Investigation, S.M., M.A.K., A. and
H.E.-S.; Methodology, S.M., M.A.K. and A.; Project administration, S.M., M.A.K., A., H.E.-S. and F.I.;
J.K. and O.U., Supervision, M.A.K., H.E.-S. and F.I.; Writing—original draft, S.M., M.A.K. and A.;
Writing—review and editing, S.M., M.A.K., A. and H.E.-S. All authors have read and agreed to the
published version of the manuscript.

Funding: This work is partially supported by the Emirates Center of Mobility Research (ECMR) of
UAE University, Sandooq Al Watan, and the UAEU-ZU research project.



Drones 2023, 7, 111 27 of 28

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement:

• The open-source code of CARLA+ is available at https://github.com/aadimator/CARLA-Plus
(accessed on 2 January 2023)

• The processed and discretized Traffic dataset is available at https://www.kaggle.com/datasets/
aadimator/brooklyn-2019-traffic-data (accessed on 2 January 2023)

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

3GPP 3rd Generation Partnership Project
ACC Adaptive Cruise Control
AD Autonomous Driving
ADAS Advanced Driving Assistance Systems
AV Autonomous Vehicle
BN Bayesian Network
CACC Cooperative Adaptive Cruise Control
CPD Conditional Probability Distribution
CARLA Car Learning to Act
DAG Directed Acyclic Graph
HC Hill Climbing
PGM Probabilistic Graphical Model
ROS Robot Operating System
SAE Society of Automotive Engineers
V2I Vehicle-to-Infrastructure
V2V Vehicle-to-Vehicle
V2X Vehicle-to-Everything

References
1. Batkovic, I. Enabling Safe Autonomous Driving in Uncertain Environments. Ph.D. Thesis, Chalmers Tekniska Hogskola,

Goteborg, Sweden, 2022.
2. SAE Levels of Driving AutomationTM Refined for Clarity and International Audience. Available online: https://www.sae.org/bl

og/sae-j3016-update (accessed on 20 December 2022).
3. Baltodano, S.; Sibi, S.; Martelaro, N.; Gowda, N.; Ju, W. RRADS: Real road autonomous driving simulation. In Proceedings of

the Tenth Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts, Portland, OR, USA,
2–5 March 2015; pp. 283–283.

4. Udacity Universe | Udacity. Available online: https://www.udacity.com/universe (accessed on 17 October 2022).
5. 3GPP—The Mobile Broadband Standard Partnership Project. Available online: https://www.3gpp.org/ (accessed on

17 October 2022).
6. Khan, M.J.; Khan, M.A.; Beg, A.; Malik, S.; El-Sayed, H. An overview of the 3GPP identified Use Cases for V2X Services.

Procedia Comput. Sci. 2022, 198, 750–756. [CrossRef]
7. Malik, S.; Khan, M.A.; El-Sayed, H. Collaborative autonomous driving—A survey of solution approaches and future challenges.

Sensors 2021, 21, 3783. [CrossRef] [PubMed]
8. Dosovitskiy, A.; Ros, G.; Codevilla, F.; Lopez, A.; Koltun, V. CARLA: An open urban driving simulator. In Proceedings of the

Conference on Robot Learning, Mountain View, CA, USA, 13–15 November 2017; pp. 1–16.
9. Malik, S.; Khan, M.A.; El-Sayed, H. CARLA: Car Learning to Act—An Inside Out. Procedia Comput. Sci. 2022, 198, 742–749.

[CrossRef]
10. Gómez-Huélamo, C.; Egido, J.D.; Bergasa, L.M.; Barea, R.; López-Guillén, E.; Arango, F.; Araluce, J.; López, J. Train here, drive

there: Simulating real-world use cases with fully-autonomous driving architecture in carla simulator. In Proceedings of the
Workshop of Physical Agents, Madrid, Spain, 19–20 November 2020; pp. 44–59.

11. Gómez-Huélamo, C.; Del Egido, J.; Bergasa, L.M.; Barea, R.; López-Guillén, E.; Arango, F.; Araluce, J.; López, J. Train here,
drive there: ROS based end-to-end autonomous-driving pipeline validation in CARLA simulator using the NHTSA typology.
Multimed. Tools Appl. 2022, 81, 4213–4240. [CrossRef]

https://github.com/aadimator/CARLA-Plus
https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data
https://www.kaggle.com/datasets/aadimator/brooklyn-2019-traffic-data
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/blog/sae-j3016-update
https://www.udacity.com/universe
https://www.3gpp.org/
http://doi.org/10.1016/j.procs.2021.12.317
http://dx.doi.org/10.3390/s21113783
http://www.ncbi.nlm.nih.gov/pubmed/34072603
http://dx.doi.org/10.1016/j.procs.2021.12.316
http://dx.doi.org/10.1007/s11042-021-11681-7


Drones 2023, 7, 111 28 of 28

12. Ramakrishna, S.; Luo, B.; Kuhn, C.; Karsai, G.; Dubey, A. ANTI-CARLA: An Adversarial Testing Framework for Autonomous
Vehicles in CARLA. arXiv 2022, arXiv:2208.06309.

13. Reich, J.; Trapp, M. SINADRA: Towards a framework for assurable situation-aware dynamic risk assessment of autonomous
vehicles. In Proceedings of the 2020 16th European Dependable Computing Conference (EDCC), Munich, Germany,
7–10 September 2020; pp. 47–50.

14. Majumdar, R.; Mathur, A.; Pirron, M.; Stegner, L.; Zufferey, D. Paracosm: A test framework for autonomous driving simu-
lations. In Proceedings of the International Conference on Fundamental Approaches to Software Engineering, Luxembourg,
27 March–1 April 2021; pp. 172–195.

15. Vukić, M.; Grgić, B.; Dinčir, D.; Kostelac, L.; Marković, I. Unity based urban environment simulation for autonomous vehicle stereo
vision evaluation. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO), Opatija, Croatia, 20–24 May 2019; pp. 949–954.

16. Teper, H.; Bayuwindra, A.; Riebl, R.; Severino, R.; Chen, J.J.; Chen, K.H. AuNa: Modularly Integrated Simulation Framework for
Cooperative Autonomous Navigation. arXiv 2022, arXiv:2207.05544.

17. Cai, P.; Lee, Y.; Luo, Y.; Hsu, D. Summit: A simulator for urban driving in massive mixed traffic. In Proceedings of the 2020 IEEE
International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 4023–4029.

18. Kiyak, E.; Unal, G. Small aircraft detection using deep learning. Aircr. Eng. Aerosp. Technol. 2021, 93, 671–681. [CrossRef]
19. Unal, G. Visual target detection and tracking based on Kalman filter. J. Aeronaut. Space Technol. 2021, 14, 251–259.
20. Automated Traffic Volume Counts | NYC Open Data. Available online: https://data.cityofnewyork.us/Transportation/Autom

ated-Traffic-Volume-Counts/7ym2-wayt (accessed on 14 November 2022).
21. Brooklyn Bridge Automated Pedestrian Counts Demonstration Project | NYC Open Data. Available online: https://data

.cityofnewyork.us/Transportation/Brooklyn-Bridge-Automated-Pedestrian-Counts-Demons/6fi9-q3ta (accessed on
14 November 2022).

22. Real-Time Traffic Speed Data | NYC Open Data. Available online: https://data.cityofnewyork.us/Transportation/Real-Time-T
raffic-Speed-Data/qkm5-nuaq (accessed on 14 November 2022).

23. Historical Weather API | Open-Meteo.com. Available online: https://open-meteo.com/en/docs/historical-weather-api/#latit
ude=&longitude=&start_date=2016-01-01%5C&end_date=2022-10-25%5C&hourly=precipitation,rain,cloudcover (accessed on
14 November 2022).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1108/AEAT-11-2020-0259
https://data.cityofnewyork.us/Transportation/Automated-Traffic-Volume-Counts/7ym2-wayt
https://data.cityofnewyork.us/Transportation/Automated-Traffic-Volume-Counts/7ym2-wayt
https://data.cityofnewyork.us/Transportation/Brooklyn-Bridge-Automated-Pedestrian-Counts-Demons/6fi9-q3ta
https://data.cityofnewyork.us/Transportation/Brooklyn-Bridge-Automated-Pedestrian-Counts-Demons/6fi9-q3ta
https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/qkm5-nuaq
https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/qkm5-nuaq
https://open-meteo.com/en/docs/historical-weather-api/#latitude=&longitude=&start_date=2016-01-01%5C&end_date=2022-10-25%5C&hourly=precipitation,rain,cloudcover
https://open-meteo.com/en/docs/historical-weather-api/#latitude=&longitude=&start_date=2016-01-01%5C&end_date=2022-10-25%5C&hourly=precipitation,rain,cloudcover

	CARLA+: An Evolution of the CARLA Simulator for Complex Environment Using a Probabilistic Graphical Model
	Recommended Citation
	Author First name, Last name, Institution

	Introduction
	Background
	Autonomous Driving Design Goals
	Complex Dynamics of Urban Environment

	Related Work
	Autonomous Driving Simulators—An Overview
	Relevant Studies

	Proposed Extension to CARLA
	PGM for Modeling Complex Urban Environment
	Designing CARLA+
	CARLA Architecture
	Maps
	Vehicles
	Weather

	Developing CARLA+
	Environment Manager Module
	Vehicle Manager Module
	Pedestrian Manager Module
	Integrating PGM Module


	Validation of the Proposed CARLA+
	Experimental Setup
	Experiments
	Controlled Settings
	Learning-Based Settings


	Conclusions
	References

