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ABSTRACT

Tsunami is a disaster that often occurs in Indonesia, and there are no valid indicators to assess and
monitor coastal areas based on functional land use and based on the land cover, which refers to the
biophysical characteristics of the earth’s surface. One of the recommended methods is the vegetation
index. The vegetation index is a method from LULC that can provide information on how severe the
tsunami’s impact was on the area. In this study, an increase in the vegetation index was carried out
using machine learning. This study aimed to develop a tsunami vulnerability assessment model using
the Vegetation Index extracted from Landsat 8 satellite imagery optimized with KNN, Random Forest,
and SVM. The stages of the study were 1) extraction of Landsat 8 images using algorithms NDVI,
NDBI, NDWI, MSAVI, and MNDWI; 2) prediction of vegetation indices using KNN, Random Forest,
and SVM algorithms. 3) accuracy testing using the MSE, RMSE, and MAE,4) spatial prediction
using the Kriging function, and 5) tsunami modeling vulnerability indicators. The results of this
study indicated that the NDVI interpolation value is 0 - 0.1, defined as vegetation density, biomass
growth, and moderate to low vegetation health. The NDWI value was 0.02 - 0.08, and the MNDWI
value was 0.02 - 0.09, interpreted as surface water along the coast. MSAVI is a value of 0.1 0,
defined as vegetation’s absence. The NDBI interpolation value was -0.05 - (-0.08), interpreted as the
existence of built-up land with social and economic activities. From the research results on the ten
areas studied, there were three areas with conditions with a high level of tsunami vulnerability, two
areas with medium vulnerability, and five areas with low vulnerability to tsunamis.
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1. INTRODUCTION

In 1994 there was a 13.9-meter-high Tsunami that hit the Banyuwangi area, with victims reaching 222 thousand of people [1].
This natural disaster occurred due to an earthquake in the Mw 7.8 megathrust zone. Based on historical records, the tsunami was
not a new disaster in the lives of people in Indonesia. From 1600 to 2007, Indonesia experienced several natural disasters, including
tsunamis [2]. Indonesia experienced approximately 172 tsunami natural disasters [3]. Physically, a tsunami is described as a chain
of ocean waves due to entrapping huge quantities of seawater. Abnormal amounts of sea wind movement could turn into devastating
tsunamis, devastating coastal areas far inland [4, 5]. Combating the vulnerability level of an area is important for areas adjacent to
the coastline and areas that have the potential to generate a tsunami. To determine tsunami risk, digital elevation model data (DEM)
can be developed using tsunami aspects such as vegetation, geomorphology, land cover, land use, and topography. DEM is digital
data that describes the geometry of the earth’s surface [6]. DEM has important data in tsunami modeling because it can provide a
geomorphological, hydrological, and ecological overview of tsunami-prone areas. The DEM model used in this study is a space-
based reflected and thermal radiation meter (ASTER). In some countries, ASTER was used to model different aspects and effects of
tsunami, such as topography and topography, structural damage, soil elevation, water level rise and layer changes. land cover (LULC)
[7].

The magnitude of local tsunami vulnerability is highly correlated with annual land use and land cover change (LULC) dynam-
ics. As a result, LULC can be used as an indicator to determine safe areas for local populations. In addition, LULC can be used
to provide information on how severe the tsunami impact was on the area. Therefore, analysis of the dynamics of LULC change
is of great importance for policymaking, planning, and implementation of coastal tsunami risk assessment. Currently, several algo-
rithms are used to model LULC change [8]. VI is a new LULC analysis method based on infrared and visible spectral irradiance
measurement with leaf area indices, ground cover, chlorophyll content, and plant biomass [9]. LULC temporal dynamics, identified
using the Vegetation Index (VI) indicator, are the normalized vegetation difference index (NDVI), the modified terrestrial adaptation
vegetation index (MSAVI), and the normalized water difference index ( NDWI), Modified Normalized Hydration Index (MNDWI)
and Normalized Difference Composition Index (NDBI) [10].

To get highly accurate results, it is necessary to use machine learning. An application of artificial intelligence is machine
learning. The main capability of machine learning is handling high-dimensional data, such as remote data sensing, and its complexity
into several classes with complex characteristics [11, 12] by using methods in machine learning such as k-Nearest Neighbor (KNN),
Random Forest, and SVM. One of the advantages of the random forest method is its resistance to overtraining and creating a large
number of random forest branches, which does not cause the risk of overfitting [13]. KNN has several advantages, including very
fast training, simple and easy to learn, anti-noise training data, and efficiency when training big data [14, 15]. The concept of
a Support Vector Machine (SVM) sends high-dimensional data to low-dimensional vectors. The Support Vector Machine (SVM)
method classifies the extracted features as an image classification method [16].

The vegetation index has many indicators that can be used in researching tsunamis. The study [17] examined vegetation
density due to the tsunami disaster using the Normalized Difference Vegetation Index (NDVI) indicator. In this study, NDVI was able
to identify the density of vegetation in the area. Therefore, vegetation density can be used as an indicator to determine the severity
of the area affected by the tsunami. In research, [18] used NDWI and MNDWI indicators to obtain areas that have high-standing
water, such as rivers and lakes. The tsunami risk level increases in areas with rivers or lakes because the stagnant water can overflow
if a tsunami occurs. In research [19] conducted research to measure soil density, the indicator used in this study was the Modified
Soil Adjusted Vegetation Index (MSAVI). MSAVI is proven to be used to study vegetation density which can be used as an indicator
of tsunami vulnerability. Another indicator that can be used as an indicator of tsunami vulnerability is the Normalized Difference
Built-up Index (NDBI). In this study [20], this indicator was used to measure the density of built-up land. Several previous studies
have applied various approaches to improve NDVI, NDWI, MNDWI, NDBI, and MSAVI. However, there are weaknesses in previous
studies; namely, the accuracy of the estimation method is still in the range of 70% to 85%, so there is fitness to increase the accuracy.
So, this study proposes the Ordinary Kriging method in the application of KNN, Random Forest, and SVM. Ordinary Kriging is
a good way to avoid the drawbacks of KNN, Random Forest, and SVM techniques in generating vegetation index data. Ordinary
Kriging is an interpolation method that works using the Spatial Autocorrelation principle to obtain data that has no value based on
points close to the predicted points.

This study aimed to develop a tsunami vulnerability assessment model using the Vegetation Index extracted from Landsat 8
satellite imagery optimized with KNN, Random Forest, and SVM.
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2. RESEARCH METHOD
2.1. Research location

The study was conducted in an area with high tsunami vulnerability, namely Banyuwangi District, East Java, Indonesia. The
area is shown in Figure 1. The determination of high tsunami-prone areas is based on the Banyuwangi Regency Regional Regulation
Number 8 of 2012 concerning the spatial plan for the Banyuwangi Region 2012-2032 (Indonesian language). Existing documents
inform that the total area with high Tsunami risk is 302.86 km2. Tsunami-prone areas in this study are defined as areas with low
coastal elevations and areas that have the potential or have been affected by a tsunami, including areas in four subdistricts. Ten
villages were taken from these sub-districts: Sarongan, Kandangan, Sumberagung, Pesanggaran, Buluagung, Temurejo, Grajagan,
Sumberasri, Purwoasri, and Kendalrejo. The study results have various land uses: industrial areas, vegetation, rice fields, fisheries,
beaches, and settlements.

Figure 1. The research area is Banyuwangi Regency, East Java Province, Indonesia

1. Research data
Research data can be categorized into two types of DEM data: i) Aster uses ASTER data to determine contours, slopes, and

aspects. ii) VI data is extracted from the runway eight imagery. VI data comprises five types: MSAVI, NDVI, NDBI, NDWI, and
MNDWI. VI data is used to determine the characteristics and dynamics of LULC patterns.

2.2. Machine Learning
Data classification methods using ML algorithms are of interest to much remote analytics. Sensing researchers because it can

model unusual high-dimensional nonparametric data large scale with high accuracy compared to traditional classification methods
number of predictors. Random Forest (RF) is a method to increase the accuracy value. This method aims to build a decision tree
consisting of a root, internal, and leaf nodes by randomly taking attributes and data according to the provisions [21]. The decision
tree begins by calculating the entropy value as a determinant of the level of attribute impurity and the value of information gain. To
calculate the entropy value, use the formula in equation (1).

Entropy(Y ) = Σip(c|Y )log!p(c|Y ) (1)

Y is the case set, and P (c|Y ) = The proportion of the value of Y to class c.

Tsunami Vulnerability and . . . (Gallen Cakra Adhi Wibowo)
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K-Nearest Neighbor is an algorithm that makes predictions by classifying them to designate something based on similarities
with previous data [22]. The k-nn algorithm is intrinsically nonparametric and generally applied for pattern recognition. The k-nn
algorithm works by calculating the distance between the unknown sample and the nearest known sample. Then, the unknown sample
is assigned a label or class calculated from the average distance of the k-nearest neighbor variables. The formula commonly used to
determine distances using Euclidean is as in the following equation (2).

di =
√

Σp
i=(x2i − x1i)2 (2)

The use of the k-NN algorithm as a prediction system algorithm is due to the characteristics of the data set. Where five
attributes are numeric, and one target data is nominal. Feature data is based on data mining role theory [23], which can be used as a
classification that can accommodate both numeric and nominal attributes, but targets must be in nominal form.

The Support Vector Machine (SVM) algorithm is a discrimination-based algorithm that aims to find optimal separation bound-
aries called hyperplanes to distinguish classes from one another. The sample closest to these hyperplanes is called the support vector,
and the difference is expressed as the sum of the weights of the sample subsets, which limits the complexity of the problem [24]. To
separate the two classifications through the optimal hyperplane, use the following equation (3).

f(x) = Σn
i=1aiyiK(x, xi) + b (3)

Ordinary Kriging (OK) is an interpolation method that works using the Spatial Autocorrelation principle, which assumes that
points that are closer to the prediction points have a greater value than sample points that are farther from the prediction points using
equation (4) [25].

γ(d) =
1

2N(d)
Σ

N(d)
i=1 [Z(xi + d)]2 (4)

Where γ(d) is the value of the variogram at a distance d, Z(xi) is the value of the variable observed at the location (i), notation
N(d) is the sum of all observation points within the range of distance d. The variables’ distribution predictions were calculated using
linear regression Z ∗ (x), as shown in equation (5). Where λi(x) is the weight, m(x) and m(i) are the mathematical expectations of
the random variables Z ∗ (x) and Z ∗ (i).

Z ∗ (x)−m(x) = Σ
N(x)
i=1 γi(x)[Z(xi)−m(xi)] (5)

2.3. Validation test
Mean squared error (MSE) measures the amount of error in statistical models. It assesses the average squared difference

between the observed and predicted values using equation (6). When a model has no error, the MSE equals zero. As model error
increases, its value increases. The mean squared error is also known as the mean squared deviation (MSD) [26].

MSE = ΣN
i=1

(Actuali − Predictedi)2

N
(6)

RMSE is an acronym for Root Mean Square Error, which is the square root of the value obtained from the Mean Square Error
function. Using RMSE, we can easily plot a difference between the estimated and actual values of a parameter of the model. The
RMSE has been used as a standard statistical metric to measure model performance in meteorology, air quality, and climate research
studies [27]. RMSE is shown in equation (7).

RMSE =

√
ΣN

i=1(Actuali − Predictedi)2

N
(7)

Mean Absolute Error calculates the average difference between the calculated values and actual values. It is also known as
scale-dependent accuracy, as it calculates errors in observations taken on the same scale. It is used as an evaluation metric for
regression models in machine learning. It calculates errors between actual values and values predicted by the model. It is used to
predict the accuracy of the machine learning model using equation (8) [28].

MAE =
1

n
Σn

i=1|xi − x| (8)
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2.4. Stages of the experimental procedure
Figure 2 shows the experimental stage. 1) Initial processing of DEM data. This phase is performed by downloading the

ASTER image from the portal https://earthexplorer.usgs.gov/ and selecting the survey area by coordinates. 2) Preprocessing of
satellite image data. In this step, the Landsat 8 imagery is transformed from a portal https://earthexplorer.usgs.gov/, atmospheric
correction, radiometric correction, geometric correction coordinates and selection of study areas according to performance, and 3)
Analyze and interpretation of DEM data. This stage is done by determining the hillshade and elevation. 4) Time series data mining
VI. This step is performed using data projections MSAVI, NDVI, NDBI, NDWI, and MNDWI 5) VI. This stage is performed using
the KNN algorithm, random forest, and SVM 6) to check the accuracy of prediction results. This stage is performed using the RMSE,
MAE, and MSE methods. 7) Forecast VI results mapped at high tsunami risk areas by Kriging Method.

Figure 2. Computer model framework for tsunami vulnerability

Tsunami Vulnerability and . . . (Gallen Cakra Adhi Wibowo)
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3. RESULT AND ANALYSIS
To assess tsunami vulnerability using machine learning, we process eight satellite imagery data on a model built using the

vegetation index formula to produce NDVI, NDWI, MNDWI, NDBI, and MSAVI. Next, the results of this vegetation index will be
used for the machine learning process to produce a more accurate vegetation index. The resulting data from machine learning will
then be entered into the kriging interpolation process. Finally, the results of the vegetation index from the kriging process will be
used to determine the tsunami vulnerability level (see Figure 3).

Figure 3. NDVI results of KNN, random forest, and SVM kriging interpolation

Figure 3 shows a spatial prediction model of potential tsunami impacts in each study area using machine learning combined
with Kriging interpolation. Areas with a high NDVI represent a high vegetation density and are theoretically less likely to be
damaged by a tsunami. The results showed that the NDVI values ranged from 0 to 0.3, meaning that the studies show vegetation
density, photosynthetic biomass growth, diverse canopy formations, and high and low vegetation health. Green indicates a high
vegetation level, yellow indicates that the vegetation level in the area is within normal limits, and red indicates that part of the land
is used for construction. Hence, the area has almost no vegetation level, indicating that no Coastal topography can be recognized
and forecasted using the VIs, namely MSAVI, NDVI, NDWI, NDBI, and MNDWI. The usefulness of VIs is based on the following
considerations: i) VI focuses on specific types of land cover (vegetation types, water bodies, and soil surfaces). ii) It can reduce
background clutter effects. iii) It can reduce the effects of atmospheric distortion caused by the sun’s angle and the sensor’s viewing
angle [29]. The diagram above is categorized as shown in Table 1.

Table 1. NDVI Classification of Banyuwangi Regency [10]

Interpretation Value Range Vulnerability level Color
LULC green vegetation density is low 0 0.1 High Red
LULC green vegetation density is medium 0.1 0.2 Medium Yellow
LULC green vegetation density is high 0.2 0.3 Low Green

In Table 1, the NDVI values LULC are classified into three categories based on their level of vulnerability. Green vegetation.
The NDVI number produced indicates the amount of tsunami vulnerability [30]. The high LULC density of green vegetation, which
is denoted in green, indicates a high level of vegetation in the area. Green areas in coastal topography, dominated by mangroves, pine
forests, and built environments, are affected to some extent by tsunami energy’s inundation, propagation, and absorption [31].

Based on Figure 3, the authors took a sample of 10 areas on the coast to see the tsunami risk level, where the classification
of tsunami risk levels is taken in Table 1. In the kriging test, NDVI data were obtained from 3 machine learning algorithms: KNN,
Random Forest, and SVM. The collected data are in the form of NDVI values, measured by the classifications in Table 1, resulting in
tsunami vulnerability scores. Table 2 shows the classification results for 10 sample regions.
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Table 2. NDVI Results for 10 Regions

No. Region NDVI Results VulnerabilityKNN RF SVM
1 Sarongan 0.04 0.03 0.02 High
2 Kandangan 0.05 0.05 0.03 High
3 Sumberagung 0.05 0.04 0.02 High
4 Pesanggaran 0.13 0.12 0.11 Medium
5 Buluagung 0.15 0.15 0.14 Medium
6 Tumurejo 0.21 0.21 0.21 Low
7 Grajagan 0.25 0.25 0.25 Low
8 Sumberasri 0.27 0.27 0.27 Low
9 Purwoasri 0.27 0.27 0.27 Low
10 Kendalrejo 0.26 0.26 0.26 Low

In Table 2, the vulnerability level of an area is taken based on three measurement indicators, namely KNN, Random Forest,
and SVM. The level of vulnerability is calculated based on the results of the three indicator values for each region, and the average
value is taken to determine the level of tsunami vulnerability based on Table 1. Figures 5 and 4 are a spatial prediction model of
the potential impact of the tsunami in each study area using machine learning combined with Kriging interpolation. In areas with
high MNDWI/NDWI, the color denoted in blue represents the surface or body of water, which in theory, increases the potential for
damaging impacts in the event of a tsunami. Figures 4 and 5 show the colors blue, green, and yellow with an interpolation value of
0.1 - (-0.25), which represents the water surface and paddy fields along the coast, built-up land, and vegetation land.

Changes in NDWI and MNDWI values are also impacted by naturally occurring long-term seasonal patterns, as well as short-
term seasonal trends that arise as a result of socioeconomic activity in coastal communities, such as the stocking season, variety, and
harvest season in the fishing business. NDWI and MNDWI are the indicators to determine whether there are large stagnant bodies of
water and stagnant water, such as rivers and rice fields, during the rainy season. In Figures 4 and 5, green indicates vegetation land
with low tsunami vulnerability, yellow indicates built-up land and soil surface with moderate vulnerability, and red indicates high
open water with high tsunami vulnerability. All coastal areas indicate land use for economic and social activities. , and settlements.
From the picture above, a classification is produced as in Table 3.

Figure 4. MNDWI interpolation of KNN, random forest, and SVM kriging interpolations
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Figure 5. NDWI Interpolation of KNN, Random Forest, and SVM Kriging Interpolation

Table 3. Classification of NDWI/MNDWI Banyuwangi Regency [9]

Interpretation Value Range Vulnerability level Color
Open Water > 0.02 High Red
Built-up Land and Ground Surface 0.02 (-0.05) Medium Yellow
Vegetation Land > -0.05 Low Green

In Table 3, the NDWI/MNDWI values are classified into three categories based on the level of open water, built-up land, and
vegetation land. The level of tsunami vulnerability can be seen from the NDWI, and MNDWI values obtained. NDWI is an indicator
to determine whether there are large bodies of water and stagnant water, such as rivers and rice fields [32]. The river itself is one of
the factors that increase the vulnerability of the study area to tsunamis. When a tsunami occurs, tidal waves can enter a land through
river channels so that areas close to rivers have a high level of vulnerability compared to areas without rivers [19].

Based on the results of Figures 4 and 5, the authors took a sample of 10 areas on the coast to see the tsunami risk level, where
the tsunami risk level classification is taken in Table 3. In the kriging test, NDWI and MNDWI data were obtained from 3 machine
learning algorithms: KNN, Random Forest, and SVM. The extracted data is in the form of NDWI and MNDWI values, which are
then assessed using the categories in Tables 4 (MNDWI) and 5 (NDWI) to yield tsunami vulnerability ratings. Table 4 and Table 5
show the results of the ten classifications in the sample area.

Table 4. MNDWI results for 10 regions

No. Region MNDWI Results VulnerabilityKNN RF SVM
1 Sarongan 0.03 0.05 0.04 High
2 Kandangan 0.02 0.04 0.02 High
3 Sumberagung 0.05 0.09 0.02 High
4 Pesanggaran 0.01 0.02 0.01 Medium
5 Buluagung -0.01 0.005 0.006 Medium
6 Tumurejo -0.06 -0.04 -0.1 Low
7 Grajagan -0.09 -0.08 -0.13 Low
8 Sumberasri -0.11 -0.11 -0.14 Low
9 Purwoasri -0.12 -0.12 -0.14 Low
10 Kendalrejo -0.09 -0.09 -0.13 Low
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Table 5. NDWI Results for 10 Regions

No. Region NDWI Results VulnerabilityKNN RF SVM
1 Sarongan 0.01 0.05 0.02 High
2 Kandangan 0.01 0.07 0.03 High
3 Sumberagung 0.08 0.01 0.02 High
4 Pesanggaran -0.09 -0.08 -0.11 Low
5 Buluagung -0.12 -0.11 -0.13 Low
6 Tumurejo -0.18 -0.18 -0.19 Low
7 Grajagan -0.22 -0.22 -0.23 Low
8 Sumberasri -0.24 -0.25 -0.25 Low
9 Purwoasri -0.24 -0.25 -0.25 Low
10 Kendalrejo -0.23 -0.23 -0.24 Low

In Tables 4 and 5, the vulnerability level of an area is taken based on three measurement indicators, namely KNN, Random
Forest, and SVM. The level of vulnerability is calculated based on the results of 3 indicator values for each region, and the average
value is taken to determine the level of tsunami vulnerability based on table 3. The average value of NDWI or MNDWI, which is in
the range of more than 0.02, has a high level of vulnerability. Values 0.02 to -0.05 have moderate susceptibility, and values greater
than (0.05) have low susceptibility.

Figure 6. MSAVI results of KNN, Random Forest, and SVM Kriging Interpolation

Figure 6 is a spatial prediction model of the potential impact of the tsunami in each study area using machine learning combined
with Kriging interpolation. In areas with high MSAVI, it represents high vegetation density so that, in theory, it reduces the potential
damage impact in the event of a tsunami. The results showed that the MSAVI value was in the range of 0 -0.18, which means that
the research has LULC vegetation density and low to the low land slope. The green color represents the density of vegetation and the
high slope of the land, which has a low level of tsunami vulnerability. The yellow color indicates the level of density of vegetation
and the medium slope of the land, which has a moderate level of vulnerability to a tsunami. The red color indicates the density of
vegetation, indicating that the area has a low slope due to the development of some of the land and high vulnerability to the tsunami.
In Table 6, the MSAVI values are classified into three categories based on the level of vegetation density and land slope. The level
of tsunami vulnerability can be seen from the MSAVI value obtained. MSAVI is an indicator to determine the level of vegetation
density in an area and the area’s slope level. Vegetation density significantly affects tsunami hazards because high vegetation density,
such as in forests, can dampen the energy of tsunami waves [18]. The slope of an area affects the height or run-up of the tsunami.
The steeper the place, the lower the sea waves. Tsunamis will not travel too far inland on coastal slopes as it is received and reflected
by the coastal cliffs. Whereas on a sloping coast, a tsunami can reach several hundred meters inland [33].
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Table 6. Classification MSAVI Banyuwangi Regency [10]

Interpretation Value Range Vulnerability level Color
LULC Vegetation Density and Low Land Slope 0 0.05 High Red
LULC Vegetation Density and Medium Slope 0.05 0.12 Medium Yellow
LULC Vegetation Density and High Slope 0.12 0.18 Low Green

In table 7, the vulnerability level of an area is taken based on three measurement indicators, namely KNN, Random Forest, and
SVM. The level of vulnerability is calculated based on the results of the three indicator values for each region, and the average value
is taken to determine the level of tsunami vulnerability based on table 6s. MSAVI values that are in the range of 0 to 0.05 have a high
level of vulnerability. Values 0.05 to 0.12 have a moderate vulnerability, and values 0.12 to 0.18 have low vulnerability.

Table 7. MSAVI Results from 10 Regions

No Region MSAVI Results ColorKNN RF SVM
1 Sarongan 0.02 0.01 0.01 High
2 Kandangan 0.02 0.02 0.01 High
3 Sumberagung 0.03 0.02 0.01 High
4 Pesanggaran 0.09 0.08 0.07 Medium
5 Buluagung 0.1 0.1 0.09 Medium
6 Tumurejo 0.14 0.14 0.14 Low
7 Grajagan 0.17 0.17 0.16 Low
8 Sumberasri 0.18 0.18 0.18 Low
9 Purwoasri 0.18 0.18 0.18 Low

10 Kendalrejo 0.17 0.17 0.17 Low

Figure 7 is a spatial prediction model of the potential impact of the tsunami in each study area using machine learning combined
with Kriging interpolation. Areas with a high NDBI represent a high density of built-up land, so in theory, it increases the potential
for damage if a tsunami occurs. Changes in short-term NDBI values indicate massive changes in land use carried out in coastal areas
as physical development activities in coastal areas, as shown in Figure 7. Physical development is a change in land use from open land
to buildings, mesh networks, and the fishing industry, such as ponds shrimp. In Figure 7, the green color indicates the low density of
built-up land with a low level of tsunami vulnerability, the yellow color indicates the medium density of built-up land with a moderate
level of tsunami vulnerability, and the red color indicates the high density of built-up land with a high level of vulnerability. NDBI is
the VI used to map built-up land.

Figure 7. NDBI interpolation KNN, random forest, and SVM kriging interpolation results
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In Table 8, the NDBI values are classified into three categories based on the level of density of built-up land. The level of
tsunami vulnerability can be seen from the NDBI value obtained. NDBI is an indicator to determine the level of density of built-up
land in an area. The NDBI is referred to as an urban index or an index that represents an area that functions as a place of settlement,
concentration, and distribution of government services, social services, and economic activity [17]. The NDBI index shows that the
larger the area with built-up land, the higher the level of vulnerability to tsunami risk [34]. Vegetation density significantly affects
tsunami hazards because high vegetation density, such as in forests, can dampen the energy of tsunami waves [24]. The slope of an
area affects the height or run-up of the tsunami. The steeper the place, the lower the sea waves. The tsunami will not go too far inland
on the steep slopes of the coast because it is caught and reflected by the coastal cliffs. Meanwhile, on a sloping coast, a tsunami can
reach several hundred meters on land [35].

Table 8. NDBI Results for 10 Regions [9]

Interpretation Range of Values Vulnerability level Color
Built-up Land Density High -0.05 (-0.08) High Red
Built-up Land Density Medium (-0.08) (-0.1) Medium Yellow
Built-up Land Density Low -(0.1) (-0.12) Low Green

In Table 9, the vulnerability level of an area is taken based on three measurement indicators, namely KNN, Random Forest,
and SVM. The level of vulnerability is calculated based on the results of the three indicator values for each region, and the average
value is taken to determine the level of tsunami vulnerability based on Table 9. For example, NDBI values in the range of -0.05 to
-0.08 have a high level of tsunami vulnerability and high density. Conversely, values -0.08 to -0.1 have a moderate vulnerability,
and values -0.1 to -0.12 have low vulnerability. Based on the results of research on the level of vulnerability using machine learning
algorithms on the NDVI, NDWI, MNDWI, MSAVI, and NDBI, their indexes are combined in the table below to find overall results
using the indicators in the previous table.

Table 9. NDBI Results of 10 Regions

No. Region NDBI Results VulnerabilityKNN RF SVM
1 Sarongan -0.07 -0.07 -0.04 High
2 Kandangan -0.07 -0.06 -0.05 High
3 Sumberagung -0.08 -0.08 -0.08 High
4 Pesanggaran -0.1 -0.1 -0.08 Medium
5 Buluagung -0.1 -0.1 -0.09 Medium
6 Tumurejo -0.1 -0.1 -0.09 Low
7 Grajagan -0.12 -0.12 -0.09 Low
8 Sumberasri -0.12 -0.12 -0.09 Low
9 Purwoasri -0.12 -0.12 -0.09 Low
10 Kendalrejo -0.12 -0.12 -0.09 Low

In Table 10, the level of vulnerability is divided into three parts, namely low (L), medium (M), and high (H).

Table 10. Vulnerability Results Overall Vegetation Index

No. Region Vulnerability Result of Vegetation index ResultNDVI NDWI MNDWI MSAVI NDBI
1 Sarongan H H H H H High
2 Kandangan H H H H H High
3 Sumberagung H H H H H High
4 Pesanggaran M L M M M Medium
5 Buluagung M L M M M Medium
6 Tumurejo L L L L M Low
7 Grajagan L L L L L Low
8 Sumberasri L L L L L Low
9 Purwoasri L L L L L Low
10 Kendalrejo L L L L L Low

Machine learning results are the initial process of obtaining VI data that will be used in the kriging process. The use of Kriging
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aims to find out the pattern of the spatial distribution of each VI. Kriging will determine an unknown VI value because there are
no sample points, so areas where there are no sample points, will get a VI value. This VI is important because it will be used to
obtain regional vulnerability data. The resulting machine learning data are NDVI, MNDWI, NDWI, NDBI, and MSAVI. The results
are separated based on the machine learning algorithm used. MSE, MAE, and RMSE test results that are close to zero have high
precision, and a result not close to zero has low precision.

The coastal topography of the study area can be visualized using the hillshade method, as shown in Figure 8. Hillshade
visualizes surface relief using a DEM raster data source in 2D format, adding light to make it look like a 3D object. The purpose
of using the hillshade method is to sharpen the visualization of the relief of the ground. A visualization of shadows and hill heights
is shown in Figure 8. This represents a model of the relief and elevation characteristics of the earth’s surface in the 3D format as a
background where the NDVI vegetation, MNDWI water bodies, MSAVI open land, and MNDBI built-up land are located. Figure 8
(1, 2, 3, and 6) shows the sub-districts of Sarongan, Kandangan, Sumberagung, and Tumurejo, with terrain on the coast dominated
by hills that could theoretically protect the island from high tsunami waves. The elevations at 1, 2, 3, and 6 indicate that these points
are at an altitude of about > 500 meters above sea level. This area is more protected from tsunamis because it is hilly and heavily
forested. Regions 4 and 5, namely Pesanggaran and Buluagung, show open coastal terrain without natural protection, such as hills.
Moreover, there are only buildings and city parks to withstand the tsunami. In areas 7, 8, and 9, namely Grajagan, Sumbersari, and
Purwoasri, there are rivers where if a tsunami occurs, the water will overflow and hit the settlements of local residents, and there are
no hills in those areas. Furthermore, Region 10, Kendallejo, is a wooded area with more trees and taller bases than the surrounding
areas. There are also not many residential areas in this area, so if a tsunami occurs, it will not significantly impact the surrounding
population.

Figure 8. Model of the Relief and Elevation Characteristics of the Earth’s Surface in Banyuwangi District

The tsunami vulnerability assessment model for land use and land cover using NDVI information, NDWI, MDWI, MSAVI,
and NDBI vegetation index extracted from Landsat 8 satellite imagery shows effective performance. Based on the test results of the
machine learning algorithm used in this study, namely KNN, Random Forest, SVM, and spatial interpolation tests, namely Ordinary
Kriging using MSE, MAE, and RMSE, show high accuracy compared to previous studies with an accuracy value of MSE of 0.063,
MAE of 0.04, and RMSE of 0.0742. This study identified an area for tsunami vulnerability using five indicators of vegetation index,
NDVI, NDWI, MNDWI, MSAVI, and NDBI. After using five indicators found vulnerability. From the results of research on the ten
areas studied, there were three areas (Sarongan, Kandangan, and Sumberagung) with conditions that have a high level of vulnerability
to tsunamis because they have low vegetation levels, with water levels, open spaces, and tall buildings. 2 regions (Pesanggaran and
Buluagung) with conditions that have a moderate level of vulnerability to tsunamis because they have low ground elevation and
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no hills, relatively low vegetation levels, and only a few water levels and buildings, and finally five regions (Tumurejo, Grajagan,
Sumberasri, Purwoasri, and Kendalrejo) with conditions that have a low level of vulnerability to tsunamis because they have tall
vegetation, low air surface area, and buildings. The results of this study have a higher level of accuracy compared to studies without
using machine learning. The comparison of the proposed method is better than previous studies, which can be shown in Table 11.

Table 11. Comparison of The Proposed Model Performance with Previous Studies

No. Author (Year) Dataset Method Accuracy (MAE)
1 [36] NDVI ANN 0.055
2 [37] NDVI Linear Regression 0.06
3 [38] NDVI Support Vector Regression (SVR) 0.25
4 The Proposed Method NDVI KNN, SVM, Random Forest+Ordinary Krigging 0.04

4. CONCLUSION
The tsunami-vulnerability-assessment-model results using MSAVI, NDBI, NDWI, and MNDWI extracted from Landsat 8

satellite imagery and optimized with machine learning show effective and accurate results. In general, the tsunami risk assessment
using the vegetation index is mostly carried out without the use of machine learning and uses only a few vegetation index indicators.
This study used three machine learning algorithms to optimize the vegetation index to produce more accurate data. Compared to only
processing the vegetation index without using machine learning and kriging interpolation. From the results of research on the ten
areas studied, there are three areas (Sarongan, Kandangan, and Sumberagung) with conditions that have a high level of vulnerability
to tsunamis because they have low vegetation levels, with water levels, open spaces, and tall buildings. 2 regions (Pesanggaran and
Buluagung) with conditions that have a moderate level of vulnerability to tsunamis because they have low ground elevation and
no hills, relatively low vegetation levels, and only a few water levels and buildings, and finally five regions (Tumurejo, Grajagan,
Sumberasri, Purwoasri, and Kendalrejo). Further research can be carried out in other areas with a high tsunami risk and add vegetation
index indicators or new indicators so that results with a higher level of accuracy are obtained and can add to the algorithm used.
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