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Abstract
The aim of this paper is present and regroup 70
research works that have been done for detect-
ing Adverse Drug Events from social media.
For each work, we focus on its description, its
aim, its approach, the used models, the used
datasets, its novelty and its limitation.

1 Introduction

Detection of ADEs (drug side effects) is one of the
main tasks in the pharmaceutical industry. ADEs
can have profound effects on patients’ quality of
life and is one of the leading causes of increased
mortality internationally. The massive use of social
media, and the abundance of discussions relating
to healthcare in general (where drugs and ADEs
are the most widely discussed categories), let them
represent an excellent source for extracting ADEs.
More recently, different works have been proposed
for extracting ADEs from social media. The role of
this paper is to briefly present, classify and analyse
these works. To the best of our knowledge, no prior
survey was proposed on ADEs detection in social
media.

2 Adverse drug Events in social media:
Background

An adverse Drug Event (ADE), also noun as ADR
for Adverse Drug Reaction or drug side-effect,
refers to any injuries resulting from medication use,
including physical harm, mental harm, or loss of
function, that is greatly threatening public health
and have become a leading cause of death (Liu
et al., 2018; Lavertu et al., 2021). Detection of
ADEs is one of the main tasks in the pharmaceu-
tical industry. Monitoring drug side effects is a
crucial task for the pharmaceutical companies de-
veloping the drugs and the Food and Drug Admin-
istration (FDA) (Hsu et al., 2021). Social media
platforms such as Twitter, Facebook, Instagram,
Pinterest, etc. have been used extensively used for

market analysis of various products. Among large
volumes of patient-generated content, drugs and
ADEs are the most widely discussed categories,
(Liu et al., 2018).

3 Adverse Drug Events in social media:
related works

The works on ADEs detection in social media can
be grouped into different categories: classification,
extraction, normalisation, corpus creation and other
analysis related to ADEs such as the correlation be-
tween Drugs-ADEs or sentiment analysis regarding
ADEs.

3.1 ADEs classification
The classification corresponds to assigning the right
class to tweets, posts, texts, etc. In the majority of
cases, it is a binary classification where we only
have two classes ADE (for texts including ADEs)
and NoADE (for texts without ADEs). The clas-
sification represents the first step for detecting if
a given text includes reference to ADEs or not.
Hence different works focus on this tasks (Liu et al.,
2019; Ribeiro et al., 2021; Dai and Wang, 2019;
Booth et al., 2018; Rakhsha et al., 2021; Aji et al.,
2021; Kayastha et al., 2021; Mane et al., 2018; Hsu
et al., 2021; Pimpalkhute et al., 2021; Wang et al.,
2018; Habibabadi et al., 2022).

3.2 ADEs detection
Two common approaches have been used for med-
ical entity extraction in general (including ADEs
extraction): lexicon-based and machine learning
methods (Xie et al., 2018). The majority of the
most recent studies rely on the machine learning
approach (Wahbeh et al., 2021; Xie et al., 2018;
Gattepaille et al., 2020; Wang et al., 2021; Lavertu
et al., 2021; Shen et al., 2020, 2021; Zhang et al.,
2020, 2021; Rakhsha et al., 2021; Bollegala et al.,
2018b). However, we also observe that some ap-
proaches can not be classified into those categories



where the authors are extracting ADEs from a cor-
pus that was manually annotated without using any
lexicon or machine learning technics (Alex et al.,
2020). Some other approaches exploit various lexi-
cal, semantic, and syntactic features, and integrated
ensemble learning and semi-supervised learning in
order to detect ADEs (Liu et al., 2018). Some au-
thors start by training their own embedding model
that they use after for the detection (Hoang et al.,
2018) (where AC-SPASM, a Bayesian model for
the authenticity and credibility aware detection of
potential ADEs from social media is trained and
used). Finally, in addition to detecting ADEs, some
approaches also highlight the correlation between
drugs and ADEs (De Rosa et al., 2021)

3.3 Normalisation
The normalisation consists in assigning(mapping)
ADEs to their corresponding codes in medical on-
tologies such as Unified Medical Language System
(UMLS), SNOMED CT, Medical Dictionary for
Regulatory Activities (MedDRA), etc. This task
is in most cases associated with the detection (ex-
traction) where the ADEs are first extracted auto-
matically and then mapped to an existing ontology.
To the best of our knowledge, it has no works dedi-
cated to normalisation only without involving the
detection (Ji et al., 2021). To map the extracted
ADEs to MedDRA, these authors first apply Neural
Transition-based Model for named entity recogni-
tion (NER) and then link each extracted mention to
its MedDRA code.

3.4 Resources creation
Some authors start dedicating their efforts to con-
structing such resources (Dietrich et al., 2020;
Laksito et al., 2018; Alvaro et al., 2017; Karimi
et al., 2015). Other studies focus in validating
the constructed corpus either by classifying ADEs
(Smith et al., 2018; Shen et al., 2019; Habibabadi
et al.; Duval and Silva, 2019; Jiang et al., 2018;
Li et al., 2020) or by extracting them (Li et al.,
2020; Arnoux-Guenegou et al.). For this category
of works, Twitter was also the predominant source
for collecting data.

3.5 Classification, detection and
normalisation

Some works focus on a pipeline including both
tasks, such as (Yaseen and Langer, 2021), which
did not only perform binary classification of the
ADE text, but also extracted them. Many other

studies (Fuentes-Carbajal et al., 2022; Wang et al.,
2022; Guo et al., 2021; Zhang et al., 2019; Bolle-
gala et al., 2018a; Tang et al., 2018; Saha et al.,
2021; Kim et al., 2020) followed the same pat-
tern,while others (Sakhovskiy et al., 2021; Zhou
et al., 2021; El-karef and Hassan, 2021; Magge
et al., 2021; Jagannatha et al., 2019; Dima et al.,
2021; Ramesh et al., 2021; Barry and Uzuner,
2019) have added normalisation to the pipeline
as a technique for transforming features to be on a
similar scale like associate or map extracted ADEs
to code.

3.6 ADEs analysis

The last category of work is dedicated to carrying
on some analysis related to ADEs (Golder et al.,
2019; Lentzen et al., 2022; Lyu et al., 2020; Golder
et al., 2021; Clemens et al., 2022; Chalasani et al.,
2018; Saha et al., 2021; Nawar et al., 2022; Zhou
et al., 2020; Suragh et al., 2018). These analyses
could be related to the sentiments, expectations,
and anxiety of the users related to ADE (Golder
et al., 2019; Lentzen et al., 2022; Clemens et al.,
2022; Suragh et al., 2018). They can also be related
to some linguistic features validated by clinical
experts for detecting ADEs (Lyu et al., 2020) or to
a comparison of the ADE related to a given drug
with others or evaluating the Complementary and
Alternative Medicine (CAM) (Golder et al., 2021;
Saha et al., 2021; Nawar et al., 2022). Finally, some
analyses are dedicated to evaluating the precision
and the accuracy of the ADEs reported on Social
media (Zhou et al., 2020).

4 Conclusion

In total, we collected 70 papers that we synthesise
and summarise (for more detail, refer to the ap-
pendix part). These works were classified into 6
different categories: works on classification, de-
tection, normalisation, classification and extrac-
tion and normalisation, resources construction and
ADEs analysis. To sum up, many challenges are re-
lated to extracting data from social media including
the proportion of noise, diversity in content, expres-
sions, language and posting formats, non-textual
content used as text, and use of symbols, emoti-
cons and jargon (Indani et al., 2020). Finally one
of the most important challenges behind working
on collected data from social media is to obtain
imbalanced corpora. Few studies only focus on
these issues and the majority of the works that did,



are focusing on oversampling the data. Many other
techniques for balancing a dataset have been pro-
posed. Hence more experiments are required in
this part.
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