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Attractive colloids diffuse and aggregate to form gels, solid-like particle networks suspended in
a fluid. Gravity is known to strongly impact the stability of gels once they are formed. However,
its effect on the process of gel formation has seldom been studied. Here, we simulate the effect of
gravity on gelation using both Brownian dynamics and a lattice-Boltzmann algorithm that accounts
for hydrodynamic interactions. We work in a confined geometry to capture macroscopic, buoyancy-
induced flows driven by the density mismatch between fluid and colloids. These flows give rise
to a stability criterion for network formation, based on an effective accelerated sedimentation of
nascent clusters at low volume fractions that disrupts gelation. Above a critical volume fraction,
mechanical strength in the forming gel network dominates the dynamics: the interface between the
colloid-rich and colloid-poor region moves downward at an ever decreasing rate. Finally, we analyze
the asymptotic state, the colloidal gel-like sediment, which we find not to be appreciably impacted
by the vigorous flows that can occur during the settling of the colloids. Our findings represent the
first steps toward understanding how flow during formation affects the life span of colloidal gels.

I. INTRODUCTION

Colloidal gels feature in a range of applications, be-
cause their properties bridge fluid and solid response.
The arrested dynamics in the percolating particle net-
work allow a gel to support its own weight for a finite
time (the ‘shelf life’), while its mechanical weakness al-
lows it to be poured upon the application of relatively low
stresses. A large body of experimental, simulation, and
theoretical work has elucidated colloidal gel formation [1–
11], rheology [12–18], and shelf life [19–33]. Many of these
studies point toward fluid flow and hydrodynamic inter-
actions (HIs) as contributing to or even dominating the
properties and dynamics of colloidal gels.

Until recently, however, simulations of colloidal gela-
tion have mostly neglected HIs and flow, due to com-
putational limitations. State-of-the-art computational
fluid dynamics methods, capable of simulating many
thousands of suspended colloids, have started to rec-
tify this [30, 34–38]. For example, our lattice-Boltzmann
(LB) simulations [36] have shown that HIs speed up the
gelation of particles with strong, short-ranged attractions
at low colloid volume fractions φ0 and slow it down for
high φ0, with respect to systems without such interac-
tions. Surprisingly for an out-of-equilibrium process, the
network structure with and without HIs appeared iden-
tical when the systems are compared at equal ‘structural
time’. These findings likely resolve seemingly conflict-
ing results [35, 39, 40] on the role of HIs in establishing
structure during colloidal gelation.

∗ j.degraaf@uu.nl

In practice, hydrodynamic flows are almost always pri-
marily driven by buoyancy forces FB. That is, there is
a mass density difference ∆ρ = ρc − ρs between the col-
loids (ρc) and the suspending medium (ρs). For spherical
colloids of diameter σ, this leads to

FB =
π

6
g∆ρσ3 < 0, (1)

where g is the local gravitational constant. It is already
known that buoyancy-driven flows are implicated in the
way gels fail at the end of their life time. Such col-
lapse can involve recirculation of the suspending medium
triggered by the falling of dense ‘debris’ from the air-
suspension meniscus [19, 25, 27, 28]. The question nat-
urally arises: “How do such flows affect the process by
which gels form in the first place?”

Allain et al. addressed this using a diffusion-limited-
cluster-aggregation (DLCA) model [41], identifying a
transition between “cluster deposition” and “collective
settling”. The transition was argued to occur when the
gelation, sedimentation, and diffusion times are equal,
leading to a crossover volume fraction

φ∗ ∝ Pe(3−d)/(1+d), (2)

with d the fractal dimension (d = 1.8 in DLCA). The
gravitational Péclet number

Pe =
πg∆ρσ4

12kBT
, (3)

is the ratio between displacement through FB and ther-
mal diffusion with diffusivity D = kBT/(3πησ), where T
is the temperature, kB Boltzmann’s constant, and η the
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dynamic viscosity of the suspending medium. The theo-
retical prediction order-of-magnitude matched the exper-
imental lower stability bound. The agreement is, how-
ever, of limited utility as the DLCA picture only applies
in the limit φ0 → 0, where φ0 is understood to be the
homogeneous colloid volume fraction at preparation.

The settling of aggregating colloids and the nature of
the sediment has also been the subject of several numeri-
cal investigations [42–46], recently including HIs [37, 47].
When attractions are too weak to gel the system, the
steady-state sedimentation rate can be slightly enhanced
with respect to that of a single particle at low φ0 [44, 46,
47]. For sufficiently strong attractions, HIs can even in-
terrupt the formation of a percolating network by align-
ing and reconfiguring the forming clusters [37]. How-
ever, the full process of gelation in a confining geometry
with (emerging) height-dependent density and flow het-
erogeneities has not been studied thus far.

Here, we extend our recent computational analysis of
bulk gelation of colloids with short-ranged, depletion-like
attractions [36] to include buoyancy (FB > 0). We com-
pared simulations using overdamped Langevin dynam-
ics (no HIs or flow: NH; [48]) to those using a GPU-
accelerated fluctuating LB fluid (with HIs and flow: WH)
that capture large-scale flow and hydrodynamic interac-
tions between colloids. We specifically used an enclosed
simulation volume to ensure that density heterogeneities
throughout the sample are accounted for, which can im-
pact the large-scale flows. These simulations allowed us
to identify a distinct gelation criterion, given by a criti-
cal initial volume fraction φc, based on the (initial) non-
steady settling of the suspension.

Below φc, the settling is characterized by an effective
acceleration of the colloid-rich phase toward the bottom
of the sample. The buoyancy-driven flows are sufficiently
vigorous to eject small clusters from the interface between
the colloid-rich and colloid-poor phases and generally dis-
rupt the formation of the gel network. The acceleration
in a system that otherwise obeys Stokes-flow conditions,
can be explained by the combined effect of cluster growth
and cluster reorientation. We present a minimal theo-
retical model to help clarify this effect. Above φc, the
interface settling is decelerated, which we associate with
mechanical strength in the nascent gel dominating the
dynamics. Surprisingly, despite the strong effect of fluid
flow at low volume fractions, the colloidal sediment that
is achieved for long times compared to the time it takes a
single colloid to sediment its own diameter, is not appre-
ciably affected. That is, this sediment is identical within
the error with or without HIs and flow. It is this sediment
that behaves as a true, albeit density-wise heterogeneous
gel, i.e., it has strongly arrested dynamics at intermedi-
ate volume fractions φ ≈ 0.3.

We close our analysis with a comparison to other sim-
ulation studies and by highlighting the limitations of our
work. We also connect to recent experiments on gelation
in small confining geometries, thus providing a founda-
tion for further in-depth studies.

II. NUMERICAL METHODS

The simulation methods used here to study the effect
of buoyancy on the formation of attractive colloidal gels
are similar to those we employed recently [36]. We will
therefore briefly outline the key points and focus on the
differences that are needed to account for FB > 0.

Our simulation volume is a prism with a square base of
length 32σ and it is periodic in the basal direction. We
also performed a few larger size simulations with basal
dimensions 48σ and 64σ, respectively. This volume is en-
closed vertically by a ‘floor’ and ‘ceiling’ that are purely
repulsive to the colloids and are impenetrable to the fluid,
possessing no-slip boundary conditions its velocity field
(standard LB bounce-back algorithm). The placement
of the enclosing boundaries is such that the colloid cen-
ters are constrained to a volume with height H = 125σ.
Additionally, a few simulations were performed with ef-
fective heights H = 189σ and H = 253σ, respectively.
We will indicate it in the text when we deviate from our
standard choices of 32σ width and H = 125σ.

We choose an enclosed, rather than fully periodic sim-
ulation volume to facilitate the modeling of backflows
throughout the sample. The fully periodic setup used by
Varga, Hofmann, and Swan [30] to study gel rupture and
more recently by Turetta and Lattuada [37] to study col-
loidal gelation — both using FB > 0 — imposes global
momentum conservation within the simulation volume.
However, because a local segment of gel experiences flows
that result from compaction throughout the sample, such
a local conservation argument may not hold. That is, the
system may not reach steady-state settling: (i) Hetero-
geneous flows can damage the nascent gel locally, setting
up larger recirculatory flows driven by gravity. (ii) Typ-
ically settling gels have a heterogeneous density, mean-
ing that flow through a specific slice of the sample can
be driven by forces that originate lower (deeper) in the
sample. Both of these considerations informed our deci-
sion not to follow the zero-net-momentum approach here.
We also focus on gel formation rather than rupture, as
we found that there is significant impact on the amount
of preforming of a gel in our (unreported) attempts to
reproduce the results of Ref. [30]. We will return to the
topic of preforming gels later.

We match the bulk diffusivity of our particles be-
tween the NH and WH simulations by setting the vis-
cosity of our suspending medium η, such that D =
kBT/(3πησ) = 1.1 × 10−2σ2τ−1, with the thermal en-

ergy kBT ≡ 1, unit time τ ≡
√
mσ2/(kBT ), and particle

mass m = (π/6)ρcσ
3 ≡ 1. A short-ranged attraction

between the colloids is modeled using [36]:

Ugen
LJ (r) =


ε

[(
σ

r

)96

− 2

(
σ

r

)48

+ c

]
r < rc

0 r ≥ rc
, (4)

which mimics an Asakura-Oosawa interaction [49]. Here,
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22.2 47.0 242.2
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H

t/t  = 0.0g

FIG. 1. Snapshots of the colloids in a thin (2σ-wide) slice though the center of the simulation box with the colloids indicated
in red (NH; top) or blue (WH; bottom); Pe = 0.28 and ε = 10kBT . In a single panel, the initial volume fraction of the sample
increases from left to right: φ0 = 0.025, 0.05, 0.075, 0.1, 0.15, and 0.3, respectively, as indicated. Each time series has 4 panels,
showing characteristic behaviors between the initial and final configuration: t/tg = 0, 22.2, 47.0, and 242.2, respectively. For
the hydrodynamic simulations small clusters and single particles are expelled from the forming gel (encircled in green).

r is the separation, rc the cut-off distance, ε the attrac-
tion strength, and c a shift. The confining boundaries
interact with the colloids via Eq. (4), except that r has
been replaced by the center-to-boundary distance and we
use repulsive parameters ε = 10kBT , c = 1, and rc = σ.

The choice for purely repulsive boundaries on the top
and bottom wall of the simulation volume avoids the ad-
ditional complication of the gel ‘hanging off’ the ceiling.
Padmanabhan and Zia [31] reported this to affect the
dynamics in non-hydrodynamic simulations. We verified
that our results are not strongly impacted by neglect-
ing wall attraction, by performing additional simulations
where there was a 10kBT and 20kBT colloid-wall attrac-
tion; both for a colloid-colloid attraction of ε = 10kBT .
The shape of the colloid-wall potential is that of our high-
exponent, shifted Lennard-Jones interaction provided in
Eq. (4); replacing r with the distance between the col-
loid and wall. In these attractive-wall simulations, we
found that for a sufficiently high colloid-wall attraction,
clusters were left behind on the top wall as the gel set-
tled. However, this top-wall deposition did not result in
an appreciable difference in the settling, which is in line
with our finding that the nascent gels are not able to
support their own weight. In view of this, we report only
on purely repulsive walls in the remainder of this paper.

Gravity is introduced by imposing a constant force on
the colloids in the negative z-direction: −FBẑ. The as-
sociated time scale is the gravitational time, the time
it takes a particle to sediment its own radius tg =
3πησ/|FB|. We use a sufficiently small |FB| to stay in
the low-Reynolds-number regime (Re . 0.05 through-
out), i.e., hydrodynamic dissipation dominates inertia.

We consider non-equidistant initial φ0 ∈ [0.01, 0.3] cor-
responding to between 2,503 and 75,098 colloids in our
simulation volume, and four values of Pe = 0.03, 0.06,
0.28, and 1.42, respectively, with the last two chosen to

correspond to recent experiments [28, 50]. Our systems
are equilibrated using a repulsive potential: ε = 10kBT ,
c = 1, and rc = σ, for 50tB before quenching the sys-
tem. Here, tB = σ2/(4D) = 23.5τ is the (Brownian)
time for a particle to diffuse its own radius. At a quench,
we simultaneously switch on gravity and an attraction of
ε = 10kBT (or ε = 20kBT ); c = 0, and rc = 1.5σ. In all
cases, we performed 5 independent simulations.

Our runs typically took several hours to several days
to run on a desktop (i7-8700) with modern GPU (NVidia
RTX 2080 Ti). Smaller values of the gravitational Péclet
number Pe and larger values of the number of particles
N lead to longer simulation times, as expected. The
increases are such that our smallest values of Pe are at the
edge of what is computationally feasible for the largest
number of particles N . The accompanying scripts in the
data package provide the means to reproduce our results.

III. BUOYANT SETTLING OF GELS

Figure 1 shows the typical behavior with and with-
out HIs over a range of φ0 (videos are in the supple-
ment [51] and described in Appendix A). The interface
between the colloid-rich and colloid-poor regions settles
at roughly the same rate independent of φ0 in systems
without flow. Apparent differences between the samples
at low φ0 can be attributed to a diffusion-based widening
of the interface during settling, as the network structure
has not yet become fully arrested. With flow, the situa-
tion changes drastically. The systems with the lowest φ0
sediment fastest and fluid backflow causes clusters to be
expelled from the colloid-rich region.

We quantified this difference as follows. The data is
binned and averaged over slices 4σ in height — account-
ing for near-wall density reductions due to excluded vol-
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FIG. 2. The effect of buoyancy on the interface between the
colloid-rich and colloid-poor region for Pe = 0.28 and ε =
10kBT . The reduced height of the colloid-poor region (H −
pc)/H is given as a function of the reduced time t/tg for two
initial colloid volume fractions φ0 = 0.01 and φ0 = 0.3, as
labeled. For φ0 = 0.3, time is multiplied by a factor 10 to aid
the presentation. The dashed lines indicate shifted power-law
fits, see main text. The mean fitted power-law coefficient β+1
is given by the numbers next to each line. The inset defines
the height H and interface position pc.

ume — to obtain the height profile φ(z). We consider
slices with φ(z) > φ0/2 as colloid rich and determine the
position of the interface pc by extracting highest colloid-
rich bin, averaging this over the 5 runs. The interface po-
sition at small t is well described by pc = H−A−Btβ+1,
where H is the initial height and A,B are constants, see
Fig. 2. Appendix B provides evidence that this initial
settling of the interface is not dependent on H.

IV. CRITICAL VOLUME FRACTION

The form of pc(t) implies that the interface velocity
vc scales as tβ . Interestingly, β(φ0) is non-monotonic,
see Fig. 3. Unsurprisingly, β ≈ 0 for the NH system at
low φ0: the interface simply tracks the sedimentation of
individual colloids and vc . σ/(2tg). With HIs and fluid
flow, however, β > 0 for systems at low initial volume
fractions, indicating accelerating sedimentation. We will
return to this in Section V.

At some critical φc, β vanishes and subsequently be-
comes negative, decreasing further with increasing φ0.
This decrease appears to level off and the WH and NH
systems follow nearly the same trend within the error.
Note that the WH system appears to sediment slightly
slower (equal β, smaller vc). This is probably due to
squeeze flows, which hinder the colloids from approach-
ing each other closely [36]. It should be noted that

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  0.05  0.1  0.15  0.2  0.25  0.3

mobility

strength

φcβ

φ0

WH
NH

FIG. 3. The exponent β for Pe = 0.28 and ε = 10kBT
as a function of φ0 with (2) and without (#) HIs, showing
standard errors. Dashed curves: piece-wise fits as guides to
the eye. Arrow: critical crossover volume fraction φc.

our lattice-Boltzmann variant does not resolve lubrica-
tion flows, but an effective increase of the friction upon
approach is nonetheless present. Negative β indicates de-
celerating sedimentation, which is a necessary (but not
sufficient) condition for gelation. In all cases, pc decreases
without showing any plateau or inflection point that can
be linked to a (short-lived) arrested state.

We have fitted a linear function and an exponential
decay to β(φ0) using least squares in the low- and high-φ0
regions, respectively, see Fig. 3. The former is motivated
by the more pronounced linear trend observed for Pe =
1.42, see Appendix C, which provides β(φ0) curves for
different values of Pe.

V. ACCELERATED SEDIMENTATION

Before moving onto our dynamic stability criterion, let
us consider the accelerated nature of the settling of the
interface between the colloid-rich and colloid-poor region
in our suspension for low φ0. We will argue using a mini-
mal theoretical model that this is indicative of anisotropic
collision-based settling and aggregation in the direction
of gravity. In Section VI, we confront this understanding
with our simulation data.

Note that acceleration at low Reynolds numbers (Re .
0.05) is counterintuitive. In this regime, inertia is domi-
nated completely by friction: the fluid and particles sus-
pended therein do not accelerate. However, other simu-
lation studies have shown that for weak attractions be-
tween the colloids, the steady-state sedimentation rate
can be slightly enhanced with respect to that of a single
particle at low φ0 [44, 46, 47]. Clearly, there should be
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a transient regime upon quenching a system between re-
duced settling of ‘free’ particles and that of the settling
steady-state aggregates.

In the case of sufficiently strong interactions to induce
gelation, Turetta and Lattuada [37] indicate the emer-
gence of a steady state with an enhanced settling rate.
In this state, hydrodynamic interactions impact shape
and orientation of the clusters, as well as their ability
to percolate. However, the acceleration of the interface
itself is thus far unaddressed and it is necessary to ex-
plain the absence of a steady-state settling behavior in
our system. We do so by considering an idealized one-
dimensional (1D) argument.

Assume that k spheres in contact form a ‘rod’ of length
l = 2ka, which is aligned in the direction of gravity (k
measures the rod’s aspect ratio). This rod has a longitu-
dinal friction coefficient of

γ‖ ≈
3

2
γsph

k

log k
, (5)

in bulk fluid [52]. Here, γsph = 6πηa is the single-sphere
sedimentation coefficient and log represents the natural
logarithm. Note that the net buoyant force also scales
with k, which implies that the sedimentation velocity of
a single rod is ∝ log k.

Now we assume that this infinite dilution result also
holds for slightly higher densities and we consider several
vertically aligned rods with a distributions of lengths. In
particular, we assume that Eq. (5) holds for densities that
are sufficient to enable accumulation by collision. That
is, longer rods sediment faster, accumulating shorter rods
sedimenting at a lower level as they overtake these. This
increases their length, since the accumulation is in the
length-wise direction, and consequently their sedimenta-
tion rate. This in turn increases the rate of accumulation,
leading to an acceleration of settling.

In our idealized model, the process only terminates
if the initial state permits a steady-state distribution,
wherein rods of equal length sediment with fixed sepa-
rations. Note that hydrodynamic interactions could, in
practice, destabilize such a configuration even if all rods
have fixed length, but are not equidistantly spaced. In
our much more involved simulations, this situation can-
not occur. The nascent gel strands are deformed, reori-
ent, break due to hydrodynamic interaction and back-
flow. But, more importantly, the system densifies lead-
ing to the formation of a network that can support itself.
Both aspects would prevent the formation of a steady
state of settling, which is why we chose to perform our
analysis in a confining geometry, also see Section II.

VI. EARLY-TIME CLUSTERING

We test the validity of our simple argument by study-
ing the early-time clustering in our simulations. In the
following, we use φ0 = 0.05 and Pe = 0.28 to ensure that
we are in a regime of (maximally) accelerated settling.
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FIG. 4. Properties of the clusters that form close to time t = 0
for a sample with Pe = 0.28. In all cases, blue squares indicate
data obtained with hydrodynamics (WH) and red circles the
non-hydrodynamic (NH) data. (a) The probability density
function (PDF) for free clusters of size n at time t ≈ 5tg for
colloid volume fraction φ0 = 0.05. The dashed lines serve as
guides to the eye. (b) The median value n̄ of the PDF for
the cluster size as a function of the initial volume fraction φ0

(t = 5tg) and time t (inset; φ0 = 0.018) for Pe = 0.28. The
error bars provide the standard error of the mean and the
dashed lines are linear fits.

Figure 4a shows a representative example of the differ-
ence in the free-cluster distribution between systems with
and without HIs (t ≈ 5tg). The ‘free’ clusters were ex-
tracted by tallying all clusters of size n in the system
and removing the large, single cluster that constitutes
the sediment and parts of the gel that are forming near
the bottom of the sample. To obtain accurate statistics,
data from all 5 simulation runs were combined, which al-
lowed us to arrive at the probability density function by
normalizing the resulting histogram.

Note that the systems with HIs have smaller clusters,
presumably due to backflows breaking up the nascent gel
strands. This does not invalidate the argument we put
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forward in Section V, however, as the temporal evolu-
tion of the full distribution should be examined to judge
the effect of HIs and flow. Additionally, the small clus-
ters are typically expelled out of the interface by being
carried along with the backflow. That is, these small
clusters are a poor indicator of the net effect. Instead,
we concentrate on the median cluster size n̄ that can be
extracted from the probability density functions (PDFs)
that can be computed for each time t.

Figure 4b shows an example of the behavior of n̄. The
main panel of this graph shows that n̄ ∝ φ0 for low vol-
ume fractions, where there is a small difference in pref-
actor between systems with and without HIs. At slightly
higher volume fractions the trend appears to be linear
still, but within the error, the distinction between the
two systems has blurred. In addition, there is a change
in slope that is not relevant to the discussion to follow.
The linearity n̄ ∝ φ0 could be related to the constant
settling predication proposed by Allain et al. [41]. How-
ever, note that their argument is based on spherical ag-
gregates, which we will shortly see is not appropriate for
describing our system. In addition, as we will also see in
Section VII, our data does not follow the DLCA trend
that Allain et al. base their argument on. Thus, the dif-
ference must be sought in other quantifiers.

The inset to Fig. 4b reveals that at short times n̄ ∝ t
for small volume fractions (φ0 = 0.018) both with and
without flow and HIs. We conclude that in both cases
the clusters grow and that at these short times, there
appears to be no intrinsic difference between the mecha-
nism of growth. The NH case has slightly faster cluster
growth, again, presumably due to the disruptive effect of
backflow interfering with growth in the WH case. This is
not entirely unexpected, because for a value of Pe = 0.28,
diffusion outstrips sedimentation by a factor of four on
the single-particle level.

For each free cluster, we determined the center (of
mass) and computed the distance vectors ∆r of all par-
ticles in the cluster with respect to this center. Next,
we computed the cosine of the polar angle with respect
to the z-axis (along which gravity is pointed): cos θ =
ẑ ·∆r/|∆r|, where ẑ is a unit vector. Finally, we aver-
aged the value P2(cos θ), where P2 is the second Legendre
polynomial, over all clusters of the same size for a given
time to arrive at the mean cluster orientation p̄2. This
quantity is an indicator of the amount, by which the clus-
ters are elongated along the z-axis. When p̄2 = 0, there
is no intrinsic bias, clusters that have p̄2 ≈ −1/2 are flat-
tened out in the xy-plane, and clusters with p̄2 = 1 are
fully aligned with the z-axis.

Figure 5 shows the value of p̄2 for several times t post
quenching the system. In simulations without HIs and
flow, we find that there is no bias to the cluster orien-
tation within the error for all times. The data obtained
from our hydrodynamic simulations reveals that small
clusters (up to about n = 5 in size) have no intrinsic
bias in their orientation. However, for times t . 17.5tg,
when most of the colloidal clusters have not yet fully
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FIG. 5. The average orientation p̄2 — as defined in the main
text — of the ‘free’ clusters in the sample as a function of
time t (expressed in gravitational times tg) and cluster size n.
Simulations were performed with Pe = 0.28 at φ0 = 0.05, blue
squares indicate data obtained with hydrodynamics (WH)
and red circles the non-hydrodynamic (NH) data. The dashed
black line shows the mean p̄2 value for an isotropic cluster and
the error bars provide the standard error of the mean.

settled, there is a noticeable difference between the sim-
ulations with and without HIs. Around t = 5tg, we find
slightly larger clusters in the system with HIs. These
continue to grow and, around t = 10tg, display a mea-
surable anisotropy, favoring orientation along the z-axis.
The largest clusters reach the bottom sediment before
t ≈ 15tg, but those larger clusters that remain suspended
in the simulation with HIs, show an increased alignment
with gravity. At t ≈ 20tg, most of the large clusters in
the simulations with HIs have sedimented and there no
longer is an appreciable bias.

Combining the understanding that our minimal 1D
model brings with the cluster properties that we have
shown here, we conclude that flow and hydrodynamic
interactions, potentially coupled with mobility-mediated
growth, indeed lead to an orientational bias in suffi-
ciently large clusters. As predicted by our 1D model,
the oriented clusters settle out rapidly, which underlies



7

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.01  0.1  1  10

0.
02

6

0.013

decelerating

accelerating

no gel

φ
c

Pe

DLCA
ε = 10kBT

= 20kBT

FIG. 6. The critical volume fraction φc as a function Pe for
ε = 10kBT (4) and 20kBT (O) showing standard errors. Fit-
ted lines (grey): φc ∝ log Pe labelled by the prefactor. Green
line: the bulk percolation threshold, φ = 0.032 and 0.034 for
ε = 10 and 20kBT , respectively. Purple dashed curve: DLCA
prediction [41] with unit prefactor and d = 1.8.

the accelerated sedimentation of the interface between
the colloid-rich and colloid-poor parts of the suspension.
Our result can be seen as a transient variant of the ob-
servations by Turetta and Lattuada [37].

VII. DYNAMICAL STABILITY CRITERION

Returning to the dynamics of the interface, we can use
the specific value of φ0 for which β = 0 to define the
crossover volume fraction φc. We determine this value
from our exponential fit, see Fig. 3. By doing so for a
range of Péclet numbers and two values of ε, we are able
to create a state diagram for the dynamical stability of a
colloidal gel, see Fig. 6.

We find a regime where φc ∝ log Pe, so that a straight
line demarcates an ‘accelerating’ from a ‘decelerating’
settling region in the (log Pe, φc) state space of gela-
tion/sedimentation. In the ‘accelerating’ region, particle
networks can form in principle, but the nascent struc-
tures are destroyed in practice by buoyancy-induced back
flows, as evidenced by small clusters being expelled from
the gel, see Fig. 1 and supplemental movies [51]. In the
‘decelerating’ region, networks can form that are able to
support their own weight to a certain extent. That is,
mechanical strength in the forming branches is able to
withstand forces generated due to sedimentation flow as
fluid is squeezed out from the holes in the network.

Note that doubling the attraction strength halves the
slope of the boundary line, i.e., the crossover Péclet num-
ber Pec ∝ exp(Cεφ0) with C a constant. This is indica-

tive of attractions dominating the dynamics, or equiva-
lently, of mechanical strength in the emerging network.

The linear trend is bounded from below by an effec-
tive percolation threshold φp ≈ 0.033. It is clear that
the system must be able to percolate to form a network
structure and eventually a gel. However, below the green
bounds, even a system with FB = 0 was not found to
percolate. We obtained the respective ε boundaries by
determining the minimum volume fraction required to
observe percolation within 103tB in bulk for NH gels,
using the methods described in Ref. [36]. Appendix D
provides the details of this analysis.

For all our considered Pe values, the system has equi-
librated its gravitational profile in this time. It should
be noted, however, that for Pe ↓ 0, at some point DLCA
(purple curve in Fig. 6) is expected to hold: we there-
fore did not extend the green lines fully to the left. Our
percolation threshold depends slightly on the value of ε,
see Fig. S6 [51], which controls cluster rearrangement.
Larger ε compacts the forming clusters more and hinders
in-cluster rearrangements, raising φp.

We tested the robustness of our result by preforming
gels without gravity (FB = 0) for 50tB after equilibration.
Subsequently switching on gravity, we found that the sed-
imentation is slightly more rapid at φ0 < φc, see Fig. 7a.
We interpret this as being related to the fact that pre-
forming leads to larger anisotropic clusters, which have a
higher rate of collective settling. Note that β is slightly
lowered for a given φ0, as the cluster growth should be
diminished when the gel is allowed to preform. Nonethe-
less, the trend in β is similar, also see Figs. 3b and 7.
This similarity implies that φc is a meaningful stability
measure, though clearly the value of φc will be shifted to
lower values of φ0 by preforming the gel, as there will be
greater mechanical strength at lower volume fractions.

VIII. PROPERTIES OF THE SEDIMENT

As the nascent gels settle (rapidly or slowly), they be-
come more compact, since both the mechanical strength
and resistance to backflow increase. This eventually
(t� 100tg) leads to structures that are arrested (vc ≈ 0)
and can be characterized as colloidal gels. We do expect
these gels to compact further at times longer than we can
probe numerically.

Figure 8 shows height profiles φ(z) in the gel state
for our standard set of φ0 and Pe = 0.28, i.e., the
typical reference point for our discussion thus far. At
φ0 = 0.30, φ(z) shows a narrow interfacial region at the
top (0.8 & z & 0.7) where the density rises rapidly as
z decreases, followed by the main gel body in which the
density increases slowly from φ ≈ 0.4 to 0.5. The pres-
ence of a density gradient recalls low-Pe results without
HIs [45]. As can be appreciated from Appendix E, the re-
sult is robust with system size. However, Fig. 14 in that
appendix also reveals that the shape of φ(z) depends sen-
sitively on the value of Pe.
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of the associated exponent β as a function of the initial vol-
ume fraction φ0. The dashed lines represent the fitted expo-
nent and linear trend obtained from the full Pe = 1.42 and
ε = 10kBT data without preforming, see Fig. 12.

A clearly demarcated interfacial region is also evident
in the φ(z) data at lower volume fractions. As φ0 de-
creases, the crossover from interface to gel body decreases
linearly, and the density gradient in the latter becomes
progressively less linear. When φ0 has dropped to 0.1,
the crossover from interface to gel body has become a
continuous ‘knee’ rather than an abrupt change in slope.
Interestingly, the cross-over point, in so far as it still can
be discerned, becomes constant at φ0 < 0.1. This feature
is more pronounced for small values of Pe, see Fig. 14a.

It is presently unclear what underlies the change in
trend in φ(z) as a function of the initial volume fraction
and of Pe. However, it is clear that the explanation must
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FIG. 8. The average colloid concentration in a horizontal
slice φ(z) as a function of the height z (normalized by H)
after sedimentation at Pe = 0.28 and ε = 10kBT . The blue
curves show the data with (WH) and the red curves without
hydrodynamic interactions (NH). Results for 14 initial volume
fractions φ0 are provided, from left to right the values are
φ0 = 0.01, 0.018, 0.025, 0.038, 0.05, 0.063, 0.075, 0.088, 0.1,
0.125, 0.15, 0.175 0.2, 0.25, and 0.3. The two straight dashed
lines are guides to the eyes, indicating a crossover in trend.
The standard error is roughly three times the line width; it is
not shown here to improve the presentation.

be sought in terms of a mechanical description, as (sur-
prisingly!) we find no systematic difference between gels
obtained with and without HIs, despite the significant
differences in settling rate between the two at low φ0.

IX. CONNECTION WITH EXPERIMENT

Lastly, let us turn to experiments on colloidal gels
in narrow confinement [32, 53]. To the best of our
knowledge, only Razali et al. [53] systematically inves-
tigated the effect of buoyancy on the gelation and set-
tling. They concluded that “in small systems sedimenta-
tion is enhanced relative to non-gelling suspensions, al-
though the rate of sedimentation is reduced when the
strength of the attraction between the colloids is strong.”
Our results suggest that the enhanced sedimentation may
be partially explained by backflow and cluster growth.
The reduction in settling speed with increased attraction
strength aligns with our finding that this shifts the sta-
bility region, thus slowing down the dynamics at fixed
φ0 > φc.

Turning to our sediments, see Figs. 8, 14, and 15, we
note that these are a long-lived metastable ‘gel’ state.
That is, there is an ‘open’ network structure at intermedi-
ate volume fractions that supports its own weight against
gravity for times considerably exceeding the gravitational
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and Brownian time. We note that for the realistic exper-
imental values of Pe = 0.28 [50] and Pe = 1.41 [28],
we have a significant density gradient in our ‘gel’. By
contrast, the initial density profile of experimentally re-
ported colloidal gels is typically homogeneous [27, 28, 50].
However, it should be noted that those measurements are
carried out over much larger length scales. It may be
that our ‘gels’ are too small to exhibit a constant den-
sity regime, even taking into account the substantially
taller simulation volumes reported in Appendix E. The
discrepancy between experiment and simulation may also
be due to the effect of frictional constraints on interpar-
ticle motion [9–11] or aggregation [37]. The source of the
mismatch makes an interesting subject for future study.
However, here, we have chosen not to analyze the origin
of the shape of the φ(z) profiles further, as it does not
capture the experiments of interest [28].

X. CONCLUSION AND OUTLOOK

Summarizing, it is clear that short-time buoyancy-
induced flows can significantly impact colloidal gelation.
We have identified a dynamic stability criterion for the
colloid volume fraction at which the system gels, which
depends on attraction strength and the ratio of buoyant
settling versus diffusion. The stability crossover emerges
as a competition between cluster growth, leading to a
low-volume fraction acceleration of settling, and interme-
diate volume-fraction network formation. The latter im-
parts mechanical strength to the nascent gel, that causes
it to experience hydrodynamic drag as a porous material

rather than a collection of disconnected clusters.
However, interestingly, none of the drastic short-time

dynamics induced by backflows strongly impact the set-
tled transient gel structure. Future work that includes
(lubricated) frictional interparticle interactions and tack-
les the computational challenges of simulating larger sys-
tem sizes, may bring better agreement with experimen-
tal observations. This is a necessary first step toward
predicting and subsequently improving the shelf life of
colloidal gel products.
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Appendix A: Description of Accompanying Videos

The two videos accompanying Fig. 1 from the main
text show the evolution of the colloidal suspension
in a thin (2σ) slice though the center of the sim-
ulation box with the colloids indicated in red (NH;
collapse lv.mp4) or blue (WH; collapse lb.mp4);
Pe = 0.28 and ε = 10kBT . In both movies the initial
volume fraction of the sample increases from left to right:
φ0 = 0.025, 0.05, 0.075, 0.1, 0.15, and 0.3, respectively.
The frame rate is such that for each second 10tg elapses,
with tg the gravitational time (see main text).

The video compare preform.mp4 shows the sedimen-
tation for the colloidal suspension WH in a similar rep-

resentation for φ0 = 0.1, Pe = 1.42, and ε = 10kBT . The
difference between the blue representation (left) and the
cyan one (right) is that the latter is preformed for 50tB
with tB the Brownian time. It should be noted that the
interface of the preformed gel sediments faster.

Appendix B: Scale-Independent Settling Dynamics

Figure 9 reveals that the box size in which we per-
formed the simulations did not measurably impact the
settling coefficient β. Here, we specifically focused on
the initial density φ0 = 0.1 for Pe = 0.28 and ε = 10kBT ,
because this is where we locate φc (β ≈ 0). If there was a
significant effect of the system size/shape on the critical
volume fraction, it would have been revealed here. We
note that there is a slightly better defined initial power-
law behavior for the larger systems. From the cumulative
results we obtain a value of β ≈ 0.05, which is sufficiently
close to our original measurement.
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FIG. 9. The effect of system size on the initial power-law
behavior of the interface between the colloid-rich and colloid-
poor region for Pe = 0.28, φ0 = 0.1, and ε = 10kBT . The
height of the colloid-poor region (H−pc) is given as a function
of the reduced time t/tg for five different box sizes, as labelled.
The dashed lines indicates a power-law fit that works well for
all box sizes, from which we find β ≈ 0.05. All simulations in
this figure were performed with HIs.

In addition to the analysis performed using simula-
tions accounting for HIs and flow, we performed regular
Langevin dynamics simulations for two additional box
sizes: effective heights H = 125σ and H = 253σ, respec-
tively, with a square base of length 48σ in both cases.
The effect on the β parameter that follows from these is
minimal, as can be appreciated from the inset to Fig. 12.
This is unsurprising, any effects would be most strongly
expressed in simulations with HIs. We mention the result
here for completeness. The goal of these simulations was
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to chart the effect of box height H on the heigh profile
φ(z) in the long-time sediment. The profiles we obtained
were qualitatively similar, as shown in Appendix E.

Appendix C: Additional Sedimentation Exponents

In this appendix, we provide additional information on
the exponent β that describes the power-law dependence
of the initial settling velocity. Here, we present this as a
function of φ0 for Pe = 0.03, 0.06, and 1.42 in Figs. 10, 11,
and 12, respectively, where Pe indicates the gravitational
Péclet number.
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FIG. 10. The exponent β as a function of φ0 for Pe = 0.03.
Blue squares indicate data obtained with hydrodynamics
(WH). Due to the long run-time of the simulations, the non-
hydrodynamic (least insightful) curves were not computed for
this value of Pe. The error bars provide the standard error
and the dashed curve is an exponential fit that additionally
serves as a guide to the eyes.

Only the ε = 10kBT result is shown in Fig. 10, the
result for ε = 20kBT is analogous. Accelerated sedimen-
tation is found for all values of Pe in systems with HIs.
The guides to the eye are a composite between a fitted
linear function for small φ0 and an exponential decay, re-
spectively. Both fits were obtained using a least-squares
approach. Note the pronounced linear trend of the low-
φ0 data for Pe = 1.42 in Fig. 12, which is referenced in
the main text.

Appendix D: Percolation Measurements

Figure 13 shows the result of our analysis of the perco-
lation threshold, on which we base our vertical gelation
boundaries in Fig. 3 of the main text. To obtain this
quantity, we simulated 1,000 colloids in a cubic simula-
tion volume for several edge lengths, such that we ob-
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FIG. 11. The exponent β as a function of φ0 for Pe = 0.06.
Blue squares indicate data obtained with hydrodynamics
(WH) and red circles the non-hydrodynamic (NH) data. The
error bars provide the standard error and the dashed curves
are piece-wise fits of a linear and exponential function.
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FIG. 12. The exponent β as a function of φ0 for Pe = 1.42 in a
box of height H = 125σ and width of 32σ. Blue squares indi-
cate data obtained with hydrodynamics (WH) and red circles
the non-hydrodynamic (NH) data. The error bars provide the
standard error and the dashed curves are piece-wise fits of a
linear and exponential function. The inset shows two addi-
tional NH simulation results for effective heights H = 125σ
(orange, 4) and H = 253σ (green, O), respectively, with a
square base of length 48σ.

tained the desired values of φ0 shown in the figure. The
systems were prepared in the usual manner (main text
and Ref. [36]) and were allowed to gel for the somewhat
arbitrary, but very long time of 103tB. At this point, we
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determined whether the system had percolated, which we
define by asserting that a cluster exists that self-connects
in one direction across the periodic simulation volume.
We use an inter-particle spacing of 1.05σ to determine
whether a particle is part of a cluster or not, with σ the
diameter in our high-exponential Lennard-Jones poten-
tial (see main text). This measurement was repeated 20
times for each point in our data set, from which we ob-
tained our error bars, as shown in Fig. 13.
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FIG. 13. Estimation of the percolation threshold. The prob-
ability of percolating Pperc as a function of the initial volume
fraction φ0 for two interaction strengths: ε = 10kBT (blue)
and ε = 20kBT (red). Error bars indicate the standard error
of the mean and the dashed lines are fits to the data with the
function tanh[A(φ0 −B)] where A and B are constants.

The data revealed a lower-bound to φ0 beyond which
we did not find any instances of systems that had perco-
lated. Clearly, our data shows finite-size and finite-time
effects, as there is a sizeable transition zone where the
system has a finite, non-unity probability to percolate.
In principle, the percolation analysis can be improved by
scaling out the finite system size, which should reveal a
sharper transition. However, we chose not to do so here,
as obtaining this level of data is a costly process and
further improving it does not serve the purpose of our
work. We fitted the data using tanh[A(φ0 − B)], where
A and B are constants, to determine the point where the
system did not percolate. The shape appeared to cap-
ture our trend well, but is otherwise not physically mo-

tivated. The fitting gave the following transition points
φp = 0.034±0.001 and φp = 0.032±0.001 for ε = 10kBT
and ε = 20kBT , respectively, see main text.

Note that surprisingly, the ε = 20kBT system has a
slightly lower percolation threshold than the ε = 10kBT
system. We suspect that the higher interaction strength
leads to slower rearrangements of the forming gel strands.
As a consequence, the clusters that form remain more
extended, allowing them to percolate more readily. How-
ever, the effect is subtle since the shift in the average
trend is less than 10% of the signal.

Appendix E: Additional Sedimentation Profiles

Figure 14 show a crossover in the shape of the sedi-
mented suspension that mirrors that shown in Fig. 8 for
values of the Péclet number of Pe = 0.03 and Pe = 1.42,
respectively. This crossover is located at φ0 ≈ 0.08.

Note that depending on the value of Pe, the shape
of the sediment below the meniscus — to the left of the
sharp increase in density — differs substantially. In Fig. 8
of the main text, the profile is clearly linear, while in
Fig. 14a there is a concave quality to it and Fig. 14b
presents a convex shape. To give context to this, a linear
density profile is similar to the density trend found for an
initially homogenous, linearly elastic solid under gravita-
tional compression. The flattening off of the profile for
low values of the Péclet number indicates that above a
certain volume fraction, for low gravitational strength,
the gel can support (some of) its own weight without
becoming strongly compressed. Conversely at high Pe,
compaction at low values of z is needed to support the
weight that is rests on top of the network.

Finally, we consider the effect of box dimensions on the
sediment in Fig. 15. Here, we used the highest gravita-
tional strength and volume fractions up to φ0 = 0.15 in
simulations without HIs to have the gel sediments form
in a reasonable time. We note from the main panel that
widening the box has little effect on the shape of the
sediment. However, within the error, the upward turn in
‘knee’ in φ(z) that indicates the crossover between the gel
body and the colloid-dense and colloid-poor interface is
less pronounced; we have extended the horizontal guide
to the eye to indicate this. The shape of the profile for a
box that is nearly double the height (H = 253σ) is sim-
ilar, but the presence of a knee is even less pronounced.
We conclude that — at least for the simulations that we
have checked in this manner — the system size does not
appreciably impact the qualitative trend in observed for
the φ(z) profile of the sediment.
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FIG. 14. The average colloid concentration in a horizontal
slice φ(z) as a function of the height z (normalized by H)
after sedimentation at (a) Pe = 0.03 and (b) Pe = 1.42, re-
spectively; in both cases ε = 10kBT . The blue curves show the
data with (WH) and the red curves without hydrodynamic in-
teractions (NH). Results for 14 initial volume fractions φ0 are
provided, from left to right the values are φ0 = 0.01, 0.018,
0.025, 0.038, 0.05, 0.063, 0.075, 0.088, 0.1, 0.125, 0.15, 0.175
0.2, 0.25, and 0.3. The two straight dashed lines are guides
to the eyes, indicating a crossover in trend. The standard
error it is not shown here to improve the presentation, but
comparable to the fluctuations on the trends.
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FIG. 15. The average colloid concentration profile φ(z) as a
function of the reduced height z/H in the sediments that form
at Pe = 1.42 and ε = 10kBT . The red data in the main panel
is for our standard box dimensions of H = 125σ and basal
length 32σ, while the orange dashed curve shows the result
for a basal width of 48σ and the same height H. The inset
shows data (purple curves) for an effective height of H = 253σ
and a basal width of 48σ. All data was obtained without ac-
counting for HIs. Results for 5 initial volume fractions φ0 are
provided, from left to right the values are φ0 = 0.025, 0.050,
0.075, 0.100, 0.125, and 0.150. The two straight dashed lines
are guides to the eyes, indicating a crossover in trends. The
standard error it is not shown here to improve the presenta-
tion, but comparable to the fluctuations on the trends.
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