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Abstract—Recently, high-density (HD) EMG electrodes have
been proposed for improving amputees’ movement/grasping in-
tention recognition, exploiting different machine learning tech-
niques. HD EMG electrodes are composed of a large number of
closely spaced channels that simultaneously acquire EMG signals
from different parts of the muscle. Given the topological prop-
erties of these devices, it is important to fully exploit the spatio-
temporal information provided by the electrodes to optimize
recognition accuracy. In this work, we introduce the use of Graph
Neural Networks (GNNs) to process HD EMG data for movement
intention recognition of people with an amputation affecting the
upper limbs and which use a robotic prosthesis. In this initial
investigation of the approach, we conducted experiments using a
real-world dataset consisting of EMG signals collected from 20
volunteers while performing 65 different gestures. We were able
to detect 45 gestures with a classification error rate of less than
10%, and obtained an overall classification error rate of 8.75%
with a standard deviation of 4.9. To the best of our knowledge,
this is the first work in which GNNs are used for processing HD
EMG data.

Index Terms—HD-sEMG, GNN

I. INTRODUCTION

In the last few years, there has been an increasing interest
in exploiting sensors and artificial intelligence algorithms to
support people with disabilities [1]–[3]. In particular, the elec-
tromyogram (EMG) signals acquired with surface electrodes
from the residual muscles after amputation are widely used
in conjunction with machine learning methods to decode the
amputee’s movement/grasping intention and control robotic
prostheses [4], [5].

Of course, the availability of spatial and temporal in-
formation influences the performance of machine learning
systems [6]. However, most of the works conducted until
now have employed a low number of EMG electrodes, which
provide little spatial information [7]. To increase the possibility
of extracting spatial information, high-density EMG (HD-
EMG) electrodes have been proposed [8], [9]. These employ a
large two-dimensional (2D) array of closely spaced electrodes
to acquire a large number of signals simultaneously from
different parts of the muscle [10].

A few previous works have used HD-EMG electrodes
to control robotic hands, including [11]. However, to our
knowledge, no previous studies have used a graph neural
network (GNN), in conjunction with HD-EMG signals, to
identify the movement/grasping that the amputee intends to
perform. GNNs are helpful in a context where a high number
of temporally-correlated spatial information is available [12].
This kind of neural network is composed of several propaga-
tion modules, which propagate information between nodes so
that the aggregated information can capture both feature-based
and topological information [13].

In this paper, we propose the use of a GNN architecture for
amputee movement recognition based on HD-EMG electrodes
data. For building the graph, we considered 32 ms sliding
windows, since shorter window sizes can be processed faster,
leading to shorter controller delays and, consequently, better
experience for the user.

We experimented our methods with a real-world dataset
acquired from 20 participants wearing on the forearm two
HD-EMG electrodes with 64 channels each to recognize 65
gestures. We obtained an average classification error rate of
8.75% with a standard deviation of 4.92, and 45 out of 65
gestures were detected with an error rate of less than 10%.
These results, obtained with a baseline GNN implementation,
are well aligned with the state of the art, and support the
importance of further investigation of our approach.

The rest of the paper is structured as follows. Section II is
divided in Subsection A, B, C and describes the material and
methods used. Subsection A reports some information about
the public HD-EMG dataset we used in our work. Subsection
B explains how, based on the structure of the HD-EMG
electrodes used, the graph was created. Subsection C give
details on the EMG-GNN architecture. Section IV reports our
experimental results. Finally, Section V concludes the paper
and indicates future research directions.



II. MATERIAL AND METHODS

A. HD-EMG Dataset

In order to evaluate our method, we conducted extensive
experiments with a recently released dataset [14]. Data were
recorded at the forearm level from 20 able-bodied participants
(14 men and 6 women) aged between 25 and 57 (mean age
35). Each participant performed five repetitions of 65 gestures,
with a rest period of 5 seconds between each repetition.

The 65 gestures include:
• individual fingers flexions and extensions;
• thumb flexions, extensions, abductions and adductions;
• wrist flexions, extensions, pronations and supinations;
• some combinations of the above movements;
• some of the most common synergistic multi-joint hand

movements.
For EMG data collection, the authors used two HD-sEMG

electrodes, each consisting of 64 channels arranged in an
8 × 8 matrix with an inter-electrode spacing of 10 mm
(ELSCH064NM3, OT Bioelettronica, Turin, Italy). The elec-
trodes were placed approximately 3 cm from the elbow (elbow
to closest electrode corner) and 2 cm from the ulna (edge of
the ulna to edge of the electrode). The sensing device is shown
in Fig. 1

The EMG signals were sampled at 2048 Hz. A hardware
high-pass filter at 10 Hz and a low-pass filter at 900 Hz
were used during recordings. To reduce the noise in the
EMG signal consecutive channels were subtracted during the
registration. Due to the orientation of the electrodes relative
to the underlying muscles, the subtraction of the EMG signals
was done along with the muscle i.e. ch1 signal was calculated
as the difference between EMG signals at electrode contacts
2 and 1, ch2 as the difference between signals at contacts 3
and 2, and so on.

Fig. 1. HD-sEMG electrodes used in [14]

B. Graph-based modeling of HD-EMG data

In our graph-based model, each channel used to collect
EMG data represents a node of the graph. We divided the sig-
nals from the different channels using non-overlapping sliding
windows of 65 samples, corresponding to 32 ms of recording.

Before division into sliding windows, the EMG signals were
standardized, which implies scaling the distribution of values
so that the mean of the observed values is 0 and the standard
deviation is 1. Each node is associated with a feature vector
corresponding to a sliding window containing a time sequence
of 65 samples acquired from the respective channel.

Different strategies were proposed in related works to
connect nodes by edges [15]. For the sake of this work, we
decided to use a simple approach, where only nodes closer
than a heuristic distance are connected. The resulting topology
is shown in Fig. 2. As shown in the figure, in order to simul-
taneously consider the data acquired from the two electrodes,
we added edges from the nodes of the first electrode’s last row
to the nearest nodes of the second electrode’s first row.

Fig. 2. The graph consists of 128 nodes and 884 edges. The structure of its
channels is analogous to the organization of pixels in an image.

C. EMG-GNN Structure

The GNN structure is analogous to the one proposed in [15].
Its structure is shown in Fig. 3, and it consists of:

• graph convolutional layers and ReLU non-linearity ap-
plied to the signals mapped onto the graph structure
to embed each node by performing multiple rounds of
message passing;

• a READOUT function to learn the representation vector
of the entire graph through the aggregation of the node
representations from the final graph convolutional layer;

• a multi-layer perceptron (MLP) to classify the graph
representation vector.

SAGEConv implements the GraphSAGE operator proposed
in [16]. GraphSAGE is a general inductive framework that
leverages node feature information to efficiently generate
node embeddings for previously unseen data. This framework
is designed for large graphs with a high number of nodes.
GraphSAGE learns a function that generates embeddings by
sampling and aggregating the local neighborhood features of
a node, unlike most existing approaches that require all nodes



EMG-GNN(
SAGEConv (65, 109)
ReLU Non-linear activation
SAGEConv (109, 109)
ReLU Non-linear activation
SAGEConv (109, 109)
ReLU Non-linear activation
SAGEConv (109, 109)
ReLU Non-linear activation
SAGEConv (109, 109)
ReLU Non-linear activation
SAGEConv (109, 109)
Global Mean Pooling
MLP (109, 109, 109, 109)
Dropout (p=0.5)
Linear (109, 66))

Fig. 3. Schema of the EMG-GNN structure

in the graph to be considered during embedding training.

We used the Adam Optimizer with a starting Learning
Rate (LR) of 0.001. We also used ReduceLROnPlateau, which
reduces the LR when a metric has stopped improving for a
“patience” number of epochs. In our case, we monitor the
Validation Loss, and if its value does not decrease for 10
epochs, the learning rate is reduced by 0.1.

We applied Cross-Entropy Loss and monitored the Valida-
tion Loss to decide when to stop training. The Early Stopping
allows us to speed up learning and to avoid overfitting. If the
Validation Loss value does not decrease for 30 epochs, model
training is stopped; otherwise, the model is trained until the
100th epoch is executed.

We batched the graphs, setting the size to 32, before putting
them into the GNN to ensure full GPU utilisation.

III. EXPERIMENTAL RESULTS

We decided to consider the different subjects’ datasets
separately during the trials. Therefore, before each trial we
shuffled the graphs of a single subject’s dataset, and then
divided them into 60% training set, 20% validation set, and
20% test set.

Table I shows, for each gesture identified by a number
in the first column, the standard deviation and the overall
classification error rate (%) obtained by considering all the
results achieved during the execution of the different trials. As
mentioned above, only one subject’s dataset was used during
each trial. A usable system should achieve error rate levels
less than 10% [17]. Then, we highlighted in red the gesture
classification error rates higher than this percentage value, i.e.,
20 gestures out of 65.

The most difficult gestures to recognize are:
• 10 Thumb: up

• 19 Little finger: bend + Thumb: left
• 24 Little finger: bend + Wrist: rotate clockwise
• 26 Ring finger: bend + Thumb: down
• 27 Ring finger: bend + Thumb: left
• 29 Ring finger: bend + Wrist: bend
• 30 Ring finger: bend + Wrist: stretch
• 31 Ring finger: bend + Wrist: rotate anti-clockwise
• 32 Ring finger: bend + Wrist: rotate clockwise
• 34 Middle finger: bend + Thumb: down
• 35 Middle finger: bend + Thumb: left
• 38 Middle finger: bend + Wrist: stretch
• 43 Index finger: bend + Thumb: right
• 52 Thumb: down + Wrist: rotate anti-clockwise
• 53 Thumb: down + Wrist: rotate clockwise
• 56 Wrist: stretch + Wrist: rotate anti-clockwise
• 57 Wrist: stretch + Wrist: rotate clockwise
• 59 All fingers: bend (without thumb)
• 64 3-digit pinch
• 65 3-digit pinch with Wrist: anti-clockwise rotation

The above list shows that the EMG-GNN has difficulty
detecting mainly complex gestures with 2 or more degrees
of freedom (DoF).

In the last row of Table I, we reported the standard de-
viation and the overall classification error rate (%) obtained
by considering all the results achieved during the execution of
the different trials, without taking into account the subdivision
into gestures.

IV. CONCLUSION AND FUTURE WORK

The use of machine learning and data from EMG sensors
promise to enable novel important applications for people with
disabilities. In this paper, we introduced a novel approach,
using Graph Neural Networks for processing HD EMG data
to support movement intention recognition of amputees. The
use of Graph Neural Networks allows modeling complex
topological relations of the electrodes, which are not captured
by traditional machine learning algorithms or by other deep
learning architectures. An initial investigation of our method,
including experiments with a real-world dataset, show that the
approach is promising.

Future work includes a deeper investigation of the spatio-
temporal characteristics of HD EMG data to refine the graph
structure. We are also considering to use explainable AI
methods to investigate the internal functioning of the deep
learning model to fine-tune the network structure for reduc-
ing the computational cost. Finally, we will experiment our
methods with additional datasets, and perform an experimental
comparison with state of the art techniques.
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