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STRATEGY COMPLEXITY OF POINT PAYOFF, MEAN PAYOFF AND
TOTAL PAYOFF OBJECTIVES IN COUNTABLE MDPS

RICHARD MAYR AND ERIC MUNDAY

University of Edinburgh, School of Informatics, LFCS, Edinburgh, UK

ABSTRACT. We study countably infinite Markov decision processes (MDPs) with real-
valued transition rewards. Every infinite run induces the following sequences of payoffs:
1. Point payoff (the sequence of directly seen transition rewards), 2. Mean payoff (the
sequence of the sums of all rewards so far, divided by the number of steps), and 3. Total
payoff (the sequence of the sums of all rewards so far). For each payoff type, the objective
is to maximize the probability that the lim inf is non-negative.

We establish the complete picture of the strategy complexity of these objectives, i.e.,
how much memory is necessary and sufficient for e-optimal (resp. optimal) strategies. Some
cases can be won with memoryless deterministic strategies, while others require a step
counter, a reward counter, or both.

1. INTRODUCTION

Background. Countably infinite Markov decision processes (MDPs) are a standard model
for dynamic systems that exhibit both stochastic and controlled behavior; see, e.g., stan-
dard textbooks [Put94, MS96, DS14, RFPV12] and references therein. Some fundamental
results and proof techniques for countable MDPs were established in the framework of
Gambling Theory [DS14, MS96]. See also Ornstein’s seminal paper on stationary strate-
gies [Orn69]. Further applications include control theory [BT00, AN04], operations research
and finance [Now05, AGFPS20, BR11, Sch02], artificial intelligence and machine learn-
ing [SB18, SB13], and formal verification [KMST20, ACM*16, BBET10, EWY10, BBEK13,
EY15, CHVBI18, BK08]. The latter works often use countable MDPs to describe unbounded
structures in computational models such as stacks/recursion, counters, queues, etc.

An MDP is a directed graph where states are either random or controlled. In a random
state the next state is chosen according to a fixed probability distribution. In a controlled
state the controller can choose a distribution over all possible successor states. By fixing a
strategy for the controller (and an initial state), one obtains a probability space of runs of
the MDP. The goal of the controller is to optimize the expected value of some objective
function on the runs. The type of strategy necessary to achieve an e-optimal (resp. optimal)
value for a given objective is called its strategy complezity.

Extended version of results presented at CONCUR 2021.
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Transition rewards and liminf objectives. MDPs are given a reward structure by
assigning a real-valued (resp. integer or rational) reward to each transition. Every run then
induces an infinite sequence of seen transition rewards rori7s.... We consider the lim inf of
this sequence, as well as two other important derived sequences.

(1) The point payoff considers the liminf of the sequence rorirs ... directly.

(2) The mean payoff considers the liminf of the sequence {l Z:‘L;ol ri} . i.e., the mean
ne

n

of all rewards seen so far in an expanding prefix of the run.
(3) The total payoff considers the liminf of the sequence {Z?:_ol ri} N i.e., the sum of all
ne

rewards seen so far.

For each of the three cases above, the lim inf threshold objective is to maximize the probability
that the liminf of the respective type of sequence is > 0.

Our contribution. We establish the strategy complexity of all the lim inf threshold ob-
jectives above for countably infinite MDPs. (For the simpler case of finite MDPs, see the
paragraph on related work below.) We show the amount and type of memory that is
necessary and sufficient for e-optimal strategies (and optimal strategies, where they exist).

Classes of strategies are defined via the amount and type of memory used, and whether
they are randomized or deterministic. Some canonical types of memory for strategies are
the following: No memory (also called memoryless or positional), finite memory, a step
counter (i.e., a discrete clock), a reward counter (i.e., a variable that records the sum of all
transition rewards seen so far) and general infinite memory. Strategies using only a step
counter are also called Markov strategies [Put94]. The reward counter has the same type
as the transition rewards in the MDP, i.e., integers, rationals or reals. Moreover, there can
be combinations of these, e.g., a step counter plus some finite general purpose memory.
Other types of memory are possible, e.g., an unbounded stack or a queue, but they are less
common in the literature.

To establish an upper bound X on the strategy complexity of an objective in countable
MDPs, it suffices to prove that there always exist good (e-optimal, resp. optimal) strategies
in some class of strategies X. Lower bounds on the strategy complexity of an objective can
only be established in the sense of proving that good strategies for the objective do not exist
in some classes Y, Z, etc. See Figure 1 for an example.

-1 -1 -1
S1 » So > S3 > Sq |- > Sk feeeeeee
v U U U U
-1 1 1 1 1
2 3 4 k

Figure 1: Adapted from [Put94, Example 8.10.2]. While there is no optimal MD (memoryless
deterministic) strategy, the following strategy is optimal for lim inf/lim sup mean
payoff: Loop exp(exp(k)) many times in state s for all k. In this particular
example, this can be implemented with either just a step counter or just a reward
counter, but in general both are needed; cf. Table 1.

Note that different classes of strategies are not always comparable, for several reasons.
First, different types of memory may be incomparable. E.g., a step counter uses infinite
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memory, but it is updated in a very particular way, and thus it does not subsume a finite
general purpose memory. Second, randomized strategies are more general than deterministic
ones if they use the same memory, but not if the memory is different. E.g., randomized
positional strategies are incomparable to deterministic strategies with finite memory (or a
step counter). Since strategy classes are not always comparable, there there can be cases
with several incomparable upper/lower bounds.

Moreover, there is no weakest type of infinite memory with restricted use. Hence, upper
and lower bounds on the strategy complexity of an objective can be only be tight relative to
the considered alternative strategy classes, e.g., the canonical classes mentioned above.

Our results are summarized in Table 1. By Rand(X) (resp. Det(X)) we denote the
classes of randomized (resp. deterministic) strategies that use memory of size/type X. SC
denotes a step counter, RC denotes a reward counter and F denotes arbitrary finite memory.
Positional /memoryless means that no memory is used. The simplest type are memoryless
deterministic (MD) strategies. The results depend on the type of objective (point, total, or
mean payoff) and on whether the MDP is finitely or infinitely branching. For our objectives,
the strategy complexities of e-optimal and optimal strategies (where they exist) coincide,
but the proofs are different.

For clarity of presentation, our counterexamples use large transition rewards and high
degrees of branching. However, the results can be strengthened such that the lower bounds
hold even for just binary branching MDPs with rational transition probabilities and transition
rewards in {—1,0,1}; cf. Section 6.

Point payoff Mean payoff Total payoff
e-opt., fin. br. || Det(Positional) 3.5 | Det(SC+RC) 4.1, 4.12, 4.15 Det(RC) 5.1, 5.7
opt., fin. br. Det(Positional) 3.8 | Det(SC+RC) 4.2, 4.20, 4.23 Det(RC) 5.4, 5.8
e-opt., inf. br. || Det(SC) 3.10, 3.13 | Det(SC+RC) 4.1, 4.12, 4.15 | Det(SC+RC) 5.2, 5.7, 5.6
opt., inf. br. Det(SC) 3.12, 3.13 | Det(SC+RC) 4.2, 4.20, 4.23 | Det(SC+RC) 5.5, 5.8, 5.6

|||

Table 1: Combined upper and lower bounds on the strategy complexity of e-optimal (resp.
optimal) strategies for point, mean and total payoff objectives in finitely branching
and infinitely branching MDPs. All strategies are deterministic and randomization
does not help. For each result, we list the numbers of the theorems that show the
upper and lower bounds on the strategy complexity. The lower bounds hold wrt.
the canonical strategies mentioned above. Explicit lower bounds are listed in the
tables in the following sections. The lower bounds hold even for integer transition
rewards. The upper bounds hold even for real-valued transition rewards.

Some complex new proof techniques are developed to show these results. E.g., the
examples showing the lower bound in cases where both a step counter and a reward counter
are required use a finely tuned tradeoff between different risks that can be managed with
both counters, but not with just one counter plus arbitrary finite memory. The strategies
showing the upper bounds need to take into account convergence effects, e.g., the sequence
of point rewards —1/2,—1/3,—1/4, ... does satisfy liminf > 0, i.e., one cannot assume that
rewards are integers.

Related work. Mean payoff objectives for finite MDPs have been widely studied; cf. survey
in [CD11]. There exist optimal MD strategies for lim inf mean payoff (which are also optimal
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for lim sup mean payoff since the transition rewards are bounded), and the associated compu-
tational problems can be solved in polynomial time [CD11, Put94]. Similarly, see [CDHO09]
for a survey on limsup and liminf point payoff objectives in finite stochastic games and
MDPs, where there also exist optimal MD strategies, and the more recent paper by Flesch,
Predtetchinski and Sudderth [FPS18] on simplifying optimal strategies.

All this does mot carry over to countably infinite MDPs. Optimal strategies need
not exist (not even for much simpler objectives), (e-)optimal strategies can require infinite
memory, and computational problems are not defined in general, since a countable MDP need
not be finitely presented [Put94, MS96, DS14, RFPV12, KMSW17]. Moreover, attainment
for lim inf mean payoff need not coincide with attainment for lim sup mean payoff, even for
very simple examples. E.g., consider the acyclic infinite graph with transitions s, — s,11
for all n € N with reward (—1)"2" in the n-th step, which yields a liminf mean payoff of
—oo and a lim sup mean payoff of 4oc.

Mean payoff objectives for countably infinite MDPs have been considered in [Put94,
Section 8.10], e.g., [Put94, Example 8.10.2] (adapted in Figure 1) shows that there are no
optimal MD (memoryless deterministic) strategies for liminf/lim sup mean payoff. [Ros83,
Counterexample 1.3] shows that there are not even e-optimal memoryless randomized
strategies for liminf/lim sup mean payoff. (We show much stronger lower/upper bounds;
cf. Table 1.)

Sudderth [Sud20] considered an objective on countable MDPs that is related to our
point payoff threshold objective. However, instead of maximizing the probability that the
lim inf /lim sup is non-negative, it asks to maximize the expectation of the liminf/lim sup
point payoffs, which is a different problem (e.g., it can tolerate a high probability of a
negative lim inf/lim sup if the remaining cases have a huge positive lim inf/lim sup). Hill &
Pestien [HP87] showed the existence of good randomized Markov strategies for the lim sup
of the expected average reward up-to step n for growing n, and for the expected liminf of
the point payoffs.

2. PRELIMINARIES

Markov decision processes. A probability distribution over a countable set S is a function
f:8 —=[0,1] with ) 5 f(s) = 1. We write D(S) for the set of all probability distributions
over S. A Markov decision process (MDP) M = (S, Sy, S, —>, P, ) consists of a countable
set S of states, which is partitioned into a set Sy of controlled states and a set Sy of random
states, a transition relation — C S x S, and a probability function P : So — D(S). We
write s— s if (s,8') € —», and refer to s’ as a successor of s. We assume that every state
has at least one successor. The probability function P assigns to each random state s € S
a probability distribution P(s) over its (non-empty) set of successor states. A sink in M is
a subset T' C S closed under the — relation, that is, s € T' and s—s’ implies that s’ € T'.

An MDP is acyclic if the underlying directed graph (S, —) is acyclic, i.e., there is no
directed cycle. It is finitely branching if every state has finitely many successors and infinitely
branching otherwise. An MDP without controlled states (Sg = ) is called a Markov chain.

In order to specify our point/mean/total payoff objectives (see below), we define a
function r : S x S — R that assigns numeric rewards to transitions.
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Strategies and Probability Measures. A run p is an infinite sequence of states and
transitions spepsier - -+ such that e; = (si,8;41) € — for all i € N. Let Runs}) be the set
of all runs from so in the MDP M. A partial run is a finite prefix of a run, pRuns} is the

set of all partial runs from sy and pRuns,, the set of partial runs from any state.

We write ps(7) L 5, for the i-th state along p and p. (i) 4 ¢, for the i-th transition

along p. We sometimes write runs as sgsi - - -, leaving the transitions implicit. We say that
a (partial) run p visits s if s = ps(¢) for some i, and that p starts in s if s = ps(0).

A strategy is a function o : pRuns,,-Sp — D(S) that assigns to partial runs ps, where
s € Sp, a distribution over the successors {s’ € S | s—s'}. The set of all strategies in
M is denoted by ¥ (we omit the subscript and write ¥ if M is clear from the context).
A (partial) run spegsie - -+ is consistent with a strategy o if for all ¢ either s; € Sy and
o(spepsier -« - si)(si+1) > 0, or s; € So and P(s;)(si+1) > 0.

An MDP M = (S, S5, S5, —, P,r), an initial state sy € S, and a strategy o induce a
probability space in which the outcomes are runs starting in s and with measure P g0

defined as follows. It is first defined on cylinders soegsier ... s, Runsy: if spepsier ... s,

is not a partial run consistent with o then Pug s, o (So€0S1€1 ... snRunsﬁ(jl) 0. Other-

. def Trn—1 — _ .
wise, P, so.0(S0€051€1 - . . Sp Runsyy) = H?:()l a(speost - - - $i)(8it+1), where & is the map that

extends o by &(ws) = P(s) for all partial runs ws € pRuns,,-So. By Carathéodory’s theo-
rem [Bil95], this extends uniquely to a probability measure Pg s, on the Borel o-algebra
F of subsets of Runs’’. Elements of F, i.e., measurable sets of runs, are called events or

objectives here. For X € F we will write X def Runs{ \ X € F for its complement and
EM,sp,0 for the expectation wrt. Pay s, . We drop the indices if possible without ambiguity.

Objectives. We consider objectives that are determined by a predicate on infinite runs.
We assume familiarity with the syntax and semantics of the temporal logic LTL [CGP99].
Formulas are interpreted on the structure (S, —). We use [¢]° to denote the set of runs
starting from s that satisfy the LTL formula ¢, which is a measurable set [Var85]. We
also write [¢] for (J,cg[¢]®. Where it does not cause confusion we will identify ¢ and [¢]

and just write Pag s () instead of Pay s o([]*). The reachability objective of eventually

visiting a set of states X can be expressed by [FX] & {p|Fi.ps(i) € X}. Reaching X

within at most k steps is expressed by [FSFX] % {p|3i < k. ps(i) € X}. The definitions

for eventually visiting certain transitions are analogous. The operator G (always) is defined
as —F—. So the safety objective of avoiding X is expressed by G—X.
We consider the following objectives.

e The PPy inf>0 objective is to maximize the probability that the lim inf of the point payofts
(the immediate transition rewards) is > 0, i.e., PPliminf>0 e {p | liminf, ey r(pe(n)) > 0}.
e The MPiiminf>0 objective is to maximize the probability that the liminf of the mean
. . def . - .
payoff is > 0, i.e., MPjiminr>0 = {p | iminf, ey % Z?:& r(pe(4)) > 0}.

e The TPiminf>0 objective is to maximize the probability that the liminf of the total

payoff (the sum of the transition rewards seen so far) is > 0, i.e., TPjiminf>0 def {p |

lim infpen 3570 r(pe(4)) = 0}
An objective ¢ is called shift invariant in M if for every run p’p in M with some finite

prefix p’ we have p'p € [p] & p € [¢]. An objective is called a shift invariant objective if it
is shift invariant in every MDP. PPjiyint>0 and MPiyine>0 are shift invariant objectives,
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but TPiimint>0 is not. Also PPiiyint>0 is more general than co-Biichi. (The special case of
integer transition rewards coincides with co-Biichi, since rewards < —1 and accepting states
can be encoded into each other.)

Strategy Classes. Strategies are in general randomized (R) in the sense that they take
values in D(S). A strategy o is deterministic (D) if o(p) is a Dirac distribution for all p.
General strategies can be history dependent (H), while others are restricted by the size or
type of memory they use, see below. We consider certain classes of strategies:

e A strategy o is memoryless (M) (also called positional) if it can be implemented with a
memory of size 1. We may view M-strategies as functions o : Sy — D(S).

o A strategy o is finite memory (F) if there exists a finite memory M implementing o. Hence
FR stands for finite memory randomized.

e A step counter (SC) strategy bases decisions only on the current state and the number of
steps taken so far, i.e., it uses an unbounded integer counter that gets incremented by 1
in every step. Such strategies are also called Markov strategies [Put94].

e k-bit Markov strategies use k extra bits of general purpose memory in addition to a step
counter [KMST20].

e A reward counter (RC) strategy uses infinite memory, but only in the form of a counter
that always contains the sum of all transition rewards seen so far.

e A step counter + reward counter strategy uses both a step counter and a reward counter.

Step counters and reward counters are very restricted forms of memory, since the memory
update is not directly under the control of the player. These counters merely record an
aspect of the partial run.

Memory and strategies. Here we give a formal definition how strategies use memory. Let
M be a countable set of memory modes, and let 7: M x .S — D(M x S) be a function that
meets the following two conditions: for all modes m € M,

e for all controlled states s € Sp, the distribution 7(m, s) is over M x {s' | s—s'}.
e for all random states s € S, and s’ € S, we have Y~ .\ 7(m, s)(m',s") = P(s)(s').

The function 7 together with an initial memory mode mg induce a strategy o, as follows.
Consider the Markov chain with the set M x S of states and the probability function 7. A
sequence p = sq - - - s; corresponds to a set H(p) = {(mo, so) - - - (m;, s;) | mg, ..., m; € M} of
runs in this Markov chain. Each ps € 505* S5 induces a probability distribution p,s € D(M),
the probability of being in state (m,s) conditioned on having taken some partial run
from H(ps). We define o such that o;(ps)(s’) = >_ vem tps(m)7(m,s)(m’,s") for all
ps € S*Sy and all s’ € S.

We say that a strategy o can be implemented with memory M if there exist mg € M
and 7 such that o, = 0.

Optimal and c-optimal Strategies. Given an objective ¢, the value of state s in an
MDP M, denoted by valu,(s), is the supremum probability of achieving ¢. Formally,

valag,,(s) & SUPgex; PMm,s,o () where X is the set of all strategies. For e > 0 and state s € S,
we say that a strategy is e-optimal from s if Py s.5(¢) > valag,(s)—e. A 0-optimal strategy
is called optimal. An optimal strategy is almost-surely winning if valpy ,(s) = 1. Considering
an MD strategy as a function o : Sp — S and € > 0, o is uniformly e-optimal (resp. uniformly
optimal) if it is e-optimal (resp. optimal) from every s € S.
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MDP variants. In order to show our results, we will sometimes use derived MDPs. Given
an MDP M, we define three different MDPs S(M), R(M) and A(M). These new MDPs
will be used in order to reduce objectives to PPy int>0 in a simpler setting with the step
and/or reward counter encoded into the states.

Definition 2.1. Let M be an MDP with a given initial state sqg. We construct the MDP
def

S(M) = (5,80, 55, —rs(m), P') that encodes the step counter into the states as follows:

e The state space of S(M) is §' < {(s,n) | s € § and n € N}. Note that S’ is countable.
We write s, for the initial state (so, 0).

o 5L {(s,n) €S |se Sy} and S LS\ L.

e The set of transitions in S(M) is

—>S(/\/l)d:ef {((87 n)a (3/7 n+ 1)) | (Sa n)7 (Sla n+ 1) € Slv §—rM S,}'

o P': Sl = D(5') is defined such that

P(s)(s") if (s,n) —s) (s',m)
0 otherwise

P'(s,n)(s',m) & {

e The reward r((s,n) —>ga) (8,1 + 1)) d:efr(s —m 8.

By labeling the state with the path length from sy, we effectively encode a step counter into
the MDP S(M).

Lemma 2.2. Let M be an MDP with initial state sg. Then given an MD strategy o’ in
S(M) attaining c € [0,1] for PPlimint>0 from (s0,0), there ezists a strategy o attaining ¢
for PPlimint>0 in M from sg which uses the same memory as o’ plus a step counter.

Proof. Let o’ be an MD strategy in S(M) attaining ¢ € [0,1] for PPiiminr>0 from (sg,0).
We define a strategy o on M from sy that uses the same memory as ¢’ plus a step counter.
Then o plays on M exactly like ¢’ plays on S(M), keeping the step counter in its memory
instead of in the state. Le., at a given state s and step counter value n, o plays exactly as o’
plays in state (s,n) By our construction of S(M) and the definition of o, the sequences of
point rewards seen by ¢’ in runs on S(M) coincide with the sequences of point rewards seen
by o in runs in M. Hence we obtain PS(M),(SU,O),U/(PPHTH infzo) = PM,S(),O’(Pplimian()) D

Definition 2.3. Let M be an MDP. From a given initial state sg, the reward level in
each state s € S can be any of the countably many values rq,rs,... corresponding to the

rewards accumulated along all the possible paths leading to s from sg. We construct the
def

MDP R(M) = (5', S5, S5, — r(m), P') that encodes the reward counter into the state as

follows:

e The state space of R(M) is S’ & {(s,7) | s € S,r € R is a reward level attainable at s}.
Note that S’ is countable. We write s, for the initial state (sg,0).

o 5L L {(s,r) €S | se Sy} and S SN\ SL.

e The set of transitions in R(M) is

—rrn = { ((5,7), (',7) | (s,7), (s,1") € S,

s— s in Mandr &r4r(s— )}
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o P':SL, = D(Y) is defined such that

P(s, ), ") 2 4 D) () —rev (517
’ ’ 0 otherwise

e The reward for taking transition (s,r) — (s,7') is /.

By labeling transitions in R(M) with the state encoded total reward of the target state, we
ensure that the point rewards in R(M) correspond exactly to the total rewards in M.

Lemma 2.4. Let M be an MDP with initial state so. Then given an MD (resp. Markov)
strategy o’ in R(M) attaining ¢ € [0,1] for PPlimint>0 from (so,0), there exists a strategy o
attaining ¢ for TPimint>0 in M from so which uses the same memory as o’ plus a reward
counter.

Proof. Let ¢’ be an MD (resp. Markov) strategy in R(M) attaining ¢ € [0,1] for PPlip inf>0
from (sg,0). We define a strategy o on M from sy that uses the same memory as o’ plus
a reward counter. Then o plays on M exactly like o’ plays on R(M), keeping the reward
counter in its memory instead of in the state. Le., at a given state s (and step counter value
m, in case o’ was a Markov strategy) and reward level 7, o plays exactly as o’ plays in state
(s,7) (and step counter value m, in case o’ was a Markov strategy). By our construction of
R(M) and the definition of o, the sequences of point rewards seen by ¢’ in runs on R(M)
coincide with the sequences of total rewards seen by ¢ in runs in M. Hence we obtain
PRrM),(50,0),0' (PPlimint>0) = P, s0,0( TPlimint>0) as required. (]

Definition 2.5. Given an MDP M with initial state sg, we define the new MDP A(M)
that encodes the mean payoffs of partial runs of M into the seen transition rewards in A(M).
To this end, the states of A(M) encode both the step counter and the total reward of the
run so far. However, the transition rewards in A(M) reflect the mean payoff, i.e., the total

reward divided by the number of steps.
We construct A(M) < (3, S04, 86, — amy; P') as follows:

e The state space of A(M) is

5 4 {(s,n,r)| s € S,neNandr R is a reward level attainable at s at step n}

Note that S’ is countable. We write s, for the initial state (sg,0,0) of A(M).
o S, © {(s,n,r) €8 | s €Sy} and SH o S"\ SE.
The set of transitions in A(M) is

ef
—a= { ((sn,7), (s + 1,1)) |
(s,m,7),(s',n+1,7") €5,
s— s in Mandr' =r+7r(s—s)}.

e P': Sl — D(5') is defined such that

{P(s)(s') it (s,m,7) = 4 (550, 77)

P(s,n,7)(s,n',7") =
(s, 7)(, ', 7) 0 otherwise

The reward for taking transition (s,n,r) — (s',n/,r’) is '/n’, i.e., the transition reward
is the mean payoff of the partial run so far.
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Lemma 2.6. Let M be an MDP with initial state sg. Then given an MD strategy o’ in
A(M) attaining c € [0,1] for PPlimint>0 from (so,0,0), there exists a strategy o attaining c
for MPiimine>0 tn M from so which uses just a reward counter and a step counter.

Proof. The proof is very similar to that of Lemma 2.4. ]

Sums and products. In our proofs we will use the following basic properties of sums and
products (see, e.g., [Brob5]).

Proposition 2.7. Given an infinite sequence of real numbers a, with 0 < a,, < 1, we have

o oo
H(l—an)>0 & Zan<oo.
n=1 n=1

and the ‘=" implication holds even for the weaker assumption 0 < a, < 1.

Proof. If a, = 1 for any n then the “=" implication is vacuously true, but the “<”
implication does not hold in general. In the following we assume 0 < a,, < 1.

In the case where a,, does not converge to zero, the property is trivial. In the case where
an — 0, it is shown by taking the logarithm of the product and using the limit comparison
test as follows.

Taking the logarithm of the product gives the series

Zln(l —ap)

whose convergence (to a finite number < 0) is equivalent to the positivity of the product. It
is also equivalent to the convergence (to a number > 0) of its negation » >, —In(1 — a,).
But observe that (by L’Hopital’s rule)

—In(1 —
lim — 2=
z—0 xT
Since a,, — 0 we have
—1In(1 —
i~ —an)
n—o0o Qn,

By the limit comparison test, the series > >~ | —In(1 — a,) converges if and only if the series
> o2 | an converges. ]

Proposition 2.8. Given an infinite sequence of real numbers a, with 0 < a, <1,

oo oo
Han>0 = V5>03N.Han2(175).
n=1 n=N

Proof. If a,, = 0 for any n then the property is vacuously true. In the following we assume
an > 0. Since []77 an > 0, by taking the logarithm we obtain ) °>° , In(a,) > —oo. Thus
for every ¢ > 0 there exists an N s.t. Y 2 yIn(a,) > —d. By exponentiation we obtain
[,y an > exp(—9d). By picking 6 = —In(1 — ¢) the result follows. ]
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Point Payoff e-optimal Optimal
- . Upper Bound || Det(Positional) 3.5 | Det(Positional) 3.8
Finitely branching Tower Bound n/a n/a
Upper Bound Det(SC) 3.10 Det(SC) 3.12

Infinitely branching Lower Bond —Rand(F) 3.13 —Rand(F) 3.13

Table 2: Strategy complexity of e-optimal /optimal strategies for the point payoff objective
in infinitely /finitely branching MDPs.

3. POINT PAYOFF

3.1. Upper Bounds. In this section we show that for finitely branching MDPs, there exist
e-optimal MD strategies for PPiminf>0. Whereas for infinitely branching MDPs, a step
counter suffices in order to achieve PPjiyinf>0 €-optimally.

These two very technical results will form the basis of our upper bound analysis of
MPhimint>0 and TPy inf>0 in later sections.

Lemma 3.1 [KMST20, Lemma 23|. For every acyclic MDP with a safety objective and
every € > 0, there exists an MD strategy that is uniformly e-optimal.

Theorem 3.2 [KMST21, Theorem 7|. Let M = (S, S, S, —, P,r) be a countable MDP,

and let ¢ be an event that is shift invariant in M. Suppose for every s € S there exist

e-optimal MD strategies for ¢. Then:

(1) There exist uniform e-optimal MD strategies for .

(2) There exists a single MD strategy that is optimal from every state that has an optimal
strategy.

3.1.1. Finitely Branching Case. In order to prove the main result of this section, we use the
following result on the Transience objective, which is the set of runs that do not visit any

state infinitely often. Given an MDP M = (S, Sy, S, —>, P,r), Transience &ef Nses FGs.

Theorem 3.3 [KMST21, Theorem 8|. In every countable MDP there exist uniform e-optimal
MD strategies for Transience.

Lemma 3.4. Given a finitely branching countable MDP M, a subset T' C— of the transitions
and a state s, we have

valp,-Fr(s) <1 = k€ Noval y _p<ip(s) <1

i.e., if it is impossible to completely avoid T then there is a bounded threshold k and a fixed
nonzero chance of seeing T within < k steps, regardless of the strategy.

Proof. 1f suffices to show that Vk € N.val,, p<ip(s) = 1 implies valy —fr(s) = 1. Since
M is finitely branching, the state s has only finitely many successors {s1,...,s,}.

Consider the case where s is a controlled state. If we had the property V1 <i <ndk; €
N.val _g<k;p(si) <1 then we would have val, p<rp(s) <1 for k = (maxi<;<n ki) + 1
which contradicts our assumption. Thus there must exist an ¢ € {1,...,n} with Vk €
N.val, p<rp(si) = 1. We define a strategy o that chooses the successor state s; when in
state s.
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Similarly, if s is a random state, we must have Vk € N.val  _p<kp(s;) = 1 for all its
SUCCESSOTS §;.

By using our constructed strategy o, we obtain Pags,(—FT) = 1 and this implies
valp-Fr(s) =1 as required. ]

Theorem 3.5. Consider a finitely branching MDP M = (S, Sg, So, —, P,r) with initial
state so and a PPimint>0 objective. Then there exist e-optimal MD strategies.

Proof. Let € > 0. We begin by partitioning the state space into two sets, Ssafe and S\ Ssate-
The set Sgafe is the subset of states which is surely winning for the safety objective of
only using transitions with non-negative rewards (i.e., never using transitions with negative
rewards at all). Since M is finitely branching, there exists a uniformly optimal MD strategy
Osafe for this safety objective [Put94, KMSW17].

We construct a new MDP M’ by modifying M. We create a gadget Ggafe composed
of a sequence of new controlled states xg,x1,z2,... where all transitions x; — x;41 have
reward 0. Hence any run entering Gsafe is winning for PPy inr>0. We insert Gg,g into M
by replacing all incoming transitions to Sgafe With transitions that lead to xy. The idea
behind this construction is that when playing in M, once you hit a state in Sgute, you can
win surely by playing an optimal MD strategy for safety. So we replace Sgate With the surely
winning gadget Ggate. Thus

valm,ppy, inf>0 (30) = valyy ppy, inf>0 (SU) (3'1)

and if an e-optimal MD strategy exists in M, then there exists a corresponding one in M’,
and vice-versa.

We now consider a general (not necessarily MD) e-optimal strategy o for PPiininf>0
from sy on M’, i.e.,

P 50,0 (PPlimint>0) > VAl PPy inrso (50) — € (3.2)

Define the safety objective Safety; which is the objective of never seeing any point rewards
< —27". This then allows us to characterize PPy inf>0 in terms of safety objectives.

PPimin=0 = [ | F(Safety,). (3.3)
€N
Now we define the safety objective Safety® & F<k(Safety;) to attain Safety, within at

most k steps. This allows us to write

F(Safety;) = | ] Safety?. (3.4)
keN

By continuity of measures from above we get
0 =P spo <F(Safetyi) N Safety§> = lim Parrsp.0 (F(Safetyi) N Safetyf> .
’ k—o0 T
keN
Hence for every ¢ € N and ¢; L .27 there exists n; such that
Pt so.0 (F(Safety;) N Safety]") < e;. (3.5)

Now we can show the following claim.
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Claim 3.6.

PM/,S(),O' (ﬂ Safet},z“) 2 ValM,ypplimianO (80) - 26
1€N

Proof.

P/Vl’,so,a (m Safety;%)

€N

> P so.0 <m F(Safety) N ﬂ Safety?’)

keN €N

=P s0.0 ((ﬂ F(Safety) N ﬂ Safety?i> U (ﬂ F(Safety;) N ﬂ F(Safetyk)>>

keN 1€EN keN keN

= P’ so.0 <ﬂ F(Safety;) N (ﬂ Safety;" U ﬂ F(Safetyk)>>

keN 1€N keN

=1 —Pptr sy (ﬂ F(Safety,) U (ﬂ Safety N () F(Safetyk)>>

keN ieN keN

>1—=Pprr sy o (ﬂ F(Safetyk)> — Pm,so,0 (ﬂ Safety;" N ﬂ F(Safetyk)>

keN €N keN

— PM',SO,CT (Pthinfzo) — ,PM',SO,U <m Safety?i N ﬂ F(Safetyk)> by (33)
ieN keN

> VAl PPy inrso (50) — € — Ptr so.0 <U Safety?" N () F(Safetyk)) by (3.2)
1€EN keN

> Val M/ PPy g0 (50) — € — ZPM’,SO,U <Safety§” N ﬂ F(Safetyk))

ieN keN

> val sy ppy,, infzo(so) — &= Z € by (3.5)
€N

= ValM/vpplim inf>0 (SO) - 28 D

Since M’ does not have an implicit step counter, we use the following construction to
approximate one. We define the distance d(s) from sy to a state s as the length of the

shortest path from sg to s. Let Bubble,(sp) & {s € S| d(s) <n} be those states that can
be reached within n steps from sg. Since M’ is finitely branching, Bubble,(s¢) is finite for
every fixed n. Let

def

Bad; = {t €—rp¢|t =5 —sap ', 5 ¢ Bubble,, (so) and 7(t) < =27}

be the set of transitions originating outside Bubble,,, (sg) whose reward is too negative. Thus
a run from sg that satisfies Safety;” cannot use any transition in Bad;, since (by definition
of Bubble,, (s¢)) they would come after the n;-th step.
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Now we create a new state | whose only outgoing transition is a self loop with reward
—1. We transform M’ into M” by re-directing all transitions in Bad; to the new target
state L for every i. Notice that any run visiting L must be losing for PPiiyinf>0 due to the
negative reward on the self loop, but it must also be losing for Transience because of the
self loop.

We now show that the change from M’ to M” has decreased the value of sq for
PPiimint>0 by at most 2¢, i.e.,

Val M PPiimineso (s0) = Val M’ PPliminto (so) — 2e. (3.6)

Equation (3.6) follows from the following steps.

ValM”,Paninfzo (s0) = P so,0 <m Safety?i>

€N

=P’ 50,0 (ﬂ Safety?i> by def. of M"
ieN

> Val ! PPy inrso (S0) — 26 by Claim 3.6

In the next step we argue that under every strategy o” from sg in M” the attainment
for PPyiminf>0 and Transience coincide, i.e.,

Claim 3.7.
Vo . 'PM//’SOJ//(Pth infzo) = Pm s9,5" (Transience).

Proof. First we show that
Transience C PPlyint>0 in M”. (3.7)

Let p € Transience be a transient run. Then p can never visit the state 1. Moreover, p

must eventually leave every finite set forever. In particular p must satisfy FG(=Bubble,, (so))

for every i, since Bubble,, (s¢) is finite, because M” is finitely branching. Thus p must either

fall into Ggafe, in which case it satisfies PPy inf>0, or for every i, p must eventually leave

Bubble,, (sg) forever. By definition of Bubble,, (so) and M”, the run p must eventually stop

seeing rewards < —27% for every i. In this case p also satisfies PPy, inf>0. Thus (3.7).
Secondly, we show that

Yo" . Pamrr sy,0m (PPlimint>0 N Transience) = 0. (3.8)

i.e., except for a null-set, PPjiyinf>0 implies Transience in M”.

Let 0" be an arbitrary strategy from sg in M” and R be the set of all runs induced by it.

For every s € S, let R, & {p € R | p satisfies GF(s)} be the set of runs seeing state s infinitely

often. In particular, any run p € R, is not transient. Indeed, Transience = |J,c¢Rs. We
want to show that for every state s € S and strategy o”

P sg,0" (PPlimint>0 N Rs) = 0. (3.9)

Since all runs seeing a state in Gg,g are transient, every Rg with s € Ggage must be empty.
Similarly, every run seeing L is losing for PPy inf>0 by construction. Hence we have (3.9)

for any state s where s =1 or s € Ggafe.

Now consider R, where s is neither in Ggafe nor L. Let Theq & {te— | r(t) <0} be

the subset of transitions with negative rewards in M”.
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We now show that vala -fr,,,(s) < 1 by assuming the opposite and deriving a
contradiction. Assume that vala ~fr,,,(s) = 1. The objective ~FTj,¢, is a safety objective.
Thus, since M” is finitely branching, there exists a strategy from s that surely avoids T,
(always pick an optimal move) [Put94, KMSW17]. (This does not hold in infinitely branching
MDPs where optimal moves might not exist.) However, by construction of M”, this implies
that s € Ggate- Contradiction. Thus valye —Fr,,, (s) < 1.

Since M” is finitely branching, we can apply Lemma 3.4 and obtain that there exists a
threshold ks such that val yu _p<k,r,,, (8) < 1. Therefore d, Ly val ygr F<ksm,,, () > 0.
Thus, under every strategy, upon visiting s there is a chance > d5 of seeing a transition
in Tpey within the next < ks steps. Moreover, the subset T};,, C Ty of transitions that
can be reached in < k, steps from s is finite, since M” is finitely branching. The finiteness

of T}, implies that the maximum of the rewards in T}, exists and is still negative, i.e.,

0, max{r(t) | t € Ty.,} <0. (This would not be true for an infinite set, since the sup

over an infinite set of negative numbers could be zero.) Let T<, o {te— | r(t) <Ls} be
the subset of transitions with rewards < ¢, in M".
Thus, under every strategy, upon visiting s there is a chance > d5 of seeing a transition

in T<, within the next < k, steps.

def

For every state s € S, let R, = {p € R | p visits s at least i times}, so we get Ry =

Nien R:. We obtain

sup PM",S(),O’"(PPHminZO N SRs)

g

< sup P 9,07 (FGT<p N Rs) set inclusion
o—//

= sup lim PM/QSO’UN(FS"GﬂTq NR;) continuity of measures
o’ n—oo -

<sup Pmy 5,00 (GT<g N Ry) s visited after > n steps
o—///

= sup 'PM//’S’U///(G—\TSg N ﬂ %g) def. of 9%13
o ieN

= sup lim P g o (G-T<p NRY) continuity of measures
o 1—r00 -

< lim(1—-46,)"=0 by def. of R’ and d,
1—00

and thus (3.9).

From this we obtain Py s o7 (PPlimint>0 N Transience) = Py s o (PPlimint>0 N
UseS R;) < ZseS PM”,SO,O'”(PPlimianO NMR;) =0 and thus (3.8).

From (3.7) and (3.8) we obtain that for every o” we have

Pat,s0,0" (PPliminf>0)
= PM//75070//(PP11m inf>0 M Transience) + ']3'/\/1//’5070//(PPHD[l inf>0 M m)
= P 59,07 (Transience) + 0

= P 59,07 (Transience)

and thus Claim 3.7. []
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By Theorem 3.3, there exists a uniformly e-optimal MD strategy o from s for
Transience in M”, i.e.,

PM/gSO,C}(Transience) > ValM”,Transience(SO) —E&. (310)

We construct an MD strategy o* in M which plays like ogue in Sgafe and plays like o
everywhere else.

P M,s0,0* (PPlimint>0) = Pt 50,6 (PPliminf>0) def. of o™ and ogafe
> Pm,s0,6 (PPrimint>0) new losing sink in M”
= Pmr s0.6(Transience) by Claim 3.7
> val a7 Transience(S0) — € by (3.10)
= Val M/ PPy 0 (50) — € by Claim 3.7
> val ! PPy o (so) —2e—¢ by (3.6)
= val M, PPy im0 (50) — 3€ by (3.1)

Hence o™ is a 3e-optimal MD strategy for PPjiyinr>0 from sgp in M. Since € can be chosen
arbitrarily small, the result follows. ]

Corollary 3.8. Given a finitely branching MDP M and initial state so, optimal strategies,
where they exist, can be chosen MD for PPiimint>0-

Proof. Since PPiipinf>o is shift invariant, the result follows from Theorem 3.5 and Theo-
rem 3.2. ]

Remark 3.9. The proof of Theorem 3.5 (and thus also Corollary 3.8) uses the result about
the Transience objective from Theorem 3.3. This is unavoidable, since, at least for finitely
branching MDPs, Theorem 3.5 also conversely implies Theorem 3.3 as follows.

Consider a finitely branching MDP M = (S, Sy, S, —, P,r) with initial state sq.

Then we can define a reward structure on M such that Transience and PPy, inf>0 coincide.

For each transition ¢ from state s to state s’ let n(t) & min{n | s € Bubble,(sp)} and

r(t) e /n(t). Since M is finitely branching, Bubble, (so) is finite for every n. Transient
runs eventually leave every finite set forever. Thus for all runs starting in sy we have
Transience C PPy inf>0, because lim,_,o —1/n = 0. For the reverse inclusion, consider a
non-transient run from sg. This run visits some state s infinitely often. Since M is finitely
branching, by the Pigeonhole principle, it also visits some transition ¢ from s infinitely
often. So it infinitely often sees some reward r(¢) < 0 and thus does not satisfy PPliy inf>0-
Le., Transience C PPy inf>0. Now, since Transience = PPjiy,inr>0, Theorem 3.5 implies
Theorem 3.3 (for the finitely branching case).

However, the connection between Transience and PPy inr>0 only holds for finitely
branching MDPs. In infinitely branching MDPs, the result about Transience (Theorem 3.3)
still holds, but the result for PPy inf>0 is different, as shown in Theorem 3.10 in the next
section.

3.1.2. Infinitely Branching Case. In this section we consider infinitely branching MDPs. In
this setting, e-optimal strategies for PPy inf>0 require more memory than in the finitely
branching case. In the following theorem we show how to obtain e-optimal deterministic
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Markov strategies for PPiiminf>0. We do this by deriving e-optimal MD strategies in S(M)
via a reduction to a safety objective.

Theorem 3.10. Consider an MDP M with initial state so and a PPymint>0 objective. For
every € > 0 there exist

e c-optimal MD strategies in S(M).

e c-optimal deterministic Markov strategies in M.

Proof. Let € > 0. We work in S(M) by encoding the step counter into the states of M.
Thus S(M) is an acyclic MDP with implicit step counter and corresponding initial state

/
S0 = (507 O)
We consider a general (not necessarily MD) e-optimal strategy o for PPjip int>0 from 56
on S(M), i.e.,
PS(M)»S():U(PthIHfZO) Z valS(M)7PPlimianO (86) — & (311)
Define the safety objective Safety; which is the objective of never seeing any point reward
< —27". This then allows us to characterize PPy inf>0 in terms of safety objectives.

PPyimint>0 = ﬂ F(Safety;) (3.12)
1€N
Now we define the safety objective Safety® o F<k(Safety;) to attain Safety, within at
most k steps. This allows us to write
F(Safety,;) = U Safety”. (3.13)
keN

By continuity of measures from above we get

0 =Ps(M),s).0 (F(Safetyi) N ﬂ Safetyf)
keN

= lim Py 0 (F(Safetyi) N safetyf) .
Hence for every ¢ € N and ¢; L .27 there exists n; such that

Poa) sy  F(Safety;) 0 Safety]" ) < e (3.14)
Claim 3.11.

’PS(M)’S&J (m Safetylm) > ValS(M)vpplimianO(SE)) — 2e.
€N
Proof. The proof is almost identical to the proof of Claim 3.6. Instead of M’ with initial

state so we have S(M) with initial state sj,, and instead of equations (3.3), (3.2) and (3.5)
we use the corresponding equations (3.12), (3.11) and (3.14), respectively. ]

Let ¢ o Nicn Safety;” C PPy int>0. It follows from Claim 3.11 that

ValS(M%@(Slo) Z valS(M)7PPlirninf20 (86) - 28' (315)
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The objective ¢ is a safety objective on S(M). Therefore, since S(M) is acyclic, we can
apply Lemma 3.1 to obtain a uniformly e-optimal MD strategy o’ for . Thus

Psm),sh.0' (PPliminf>0)

= PS(M),sg,a'(QD) set inclusion
> ValS(M),q;(Sf)) —€ o’ is e-opt.
> Val§(p), PPy ineso(50) — 3€- by (3.15)

Thus o’ is a 3e-optimal MD strategy for PPjip in>0 in S(M).
By Lemma 2.2 this then yields a 3e-optimal Markov strategy for PPy inf>0 from sg in
M, since runs in M and S(M) coincide wrt. PPy, inf>0- ]

The following corollary allows us to re-purpose Theorem 3.10 to obtain an upper bound
for optimal strategies.

Corollary 3.12. Given an MDP M and initial state so, optimal strategies, where they
exist, can be chosen with just a step counter for PPy int>0-

Proof. We work in S(M) and we apply Theorem 3.10 to obtain e-optimal MD strategies
from every state of S(M). Since PPiiminf>0 is a shift invariant objective, Theorem 3.2 yields
an MD strategy that is optimal from every state of S(M) that has an optimal strategy. By
Lemma 2.2 we can translate this MD strategy on S(M) back to a Markov strategy in M,
which is optimal for PPiiyint>0 from sg (provided that s admits any optimal strategy at

all). []

3.2. Lower Bounds. We have just showed that finitely branching e-optimal PPiiyinf>0
can be achieved MD, as a result no lower bound exists within the scope of our memory
considerations. For the infinitely branching case, we provide a counterexample in which
PPyimint>0 and co-Biichi coincide.

Theorem 3.13. There exists an infinitely branching MDP M as in Figure 2 with reward
implicit in the state and initial state s such that

o cvery FR strategy o is such that Pa s o(PPlimint>0) =0
o there exists an HD strategy o such that Pagso(PPliminf>0) = 1.

Hence, optimal (and even almost-surely winning) strategies and e-optimal strategies for
PPiinine>0 Tequire infinite memory beyond a reward counter.

Proof. This follows directly from [KMSW17, Theorem 4] and the observation that in Figure 2,
PPimint>0 and co-Biichi objectives coincide. ]

Consequently, when the MDP M is infinitely branching and has the reward counter
implicit in the state, PPy inf>0 requires at least a step counter.

Note that T'Pjiyint>0 also coincides with co-Biichi in the MDP M of Figure 2, hence
we restate this theorem in terms of TPy in>0 later in Theorem 5.6.
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Figure 2: This infinitely branching MDP is adapted from [KMSW17, Figure 3] and aug-
mented with a reward structure. (A very similar example has been described
in [Sud20, Example 2].) All of the edges carry reward 0 except the edges entering
t that carry reward —1 and the edge from t to s carries reward +1. As a result,
entering ¢ necessarily brings the total reward down to —1 before resetting it to 0.
We use a reduction to the co-Biichi objective (i.e., visiting ¢ only finitely often)
to show that infinite memory is required for almost-sure as well as e-optimal
strategies for TPiiminf>0 as well as PPliy inf>0-

Mean Payoff g-optimal Optimal
- . Upper Bound Det(SC+RC) 4.1 Det(SC+RC) 4.2
Finitely branching L ower Bownd | “Fand(F50) 4.12 and | ~Rand(F+50) 4.20 and
ower BOUIE _Rand(F+RC) 4.15 —Rand(F+RC) 4.23
. . Upper Bound Det(SC+RC) 4.1 Det(SC+RC) 4.2
Infinitely branching Lower Bond —Rand(F+SC) 4.12 and | =Rand(F+SC) 4.20 and
Wet POREl _Rand(F+RC) 4.15 —Rand(F+RC) 4.23

Table 3: Strategy complexity of e-optimal /optimal strategies for the mean payoff objective
in infinitely /finitely branching MDPs.

4. MEAN PAYOFF

4.1. Upper Bounds. In order to tackle the upper bounds for the mean payoff objective
MPhim int>0, we work with the acyclic MDP A(M) which encodes both the step counter and
the average reward into the state. Once the average reward is encoded into the state, the
point payoff coincides with the mean payoff. We use this observation to reduce MPiip inf>0
to PPiiminf>0 and obtain our upper bounds from the corresponding point payoff results.

Corollary 4.1. Given an MDP M and initial state sg, there exist e-optimal strategies o
for MPiing>0 which use just a step counter and a reward counter.

Proof. We consider the encoded system A(M) in which both step counter and reward
counter are implicit in the state. Recall that the partial mean payoffs in M correspond
exactly to point rewards in A(M). Since A(M) has an encoded step counter, Theorem 3.10
gives us e-optimal MD strategies for PPiiyint>0 in A(M). Lemma 2.6 allows us to translate
these strategies back to M with a memory overhead of just a reward counter and a step
counter as required. []
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Figure 3: A typical building block with k(n) + 1 choices, first random then controlled. The
number of choices k(n) + 1 grows unboundedly with n. This is the n-th building
block of the MDP in Figure 4. The d;(n) and €;(n) are probabilities depending on
n and the £im,, are transition rewards. We index the successor states of s,, and
¢, from 0 to k(n) to match the indexing of the ¢’s and ¢’s such that the bottom
state is indexed with 0 and the top state with k(n).

Corollary 4.2. Given an MDP M and initial state so, optimal strategies, where they exist,
can be chosen with just a reward counter and a step counter for MPiimyinf>0

Proof. We place ourselves in A(M) and apply Theorem 3.10 to obtain e-optimal MD strate-
gies from every state of A(M). Since MPjipinr>0 is a shift invariant objective, Theorem 3.2
yields a single MD strategy that is optimal from every state of A(M) that has an optimal
strategy. By Lemma 2.6 we can translate this MD strategy on A(M) back to a strategy on
M with a step counter and a reward counter. Provided that sy admits any optimal strategy
at all, we obtain an optimal strategy for MPiiyinf>0 from so that uses only a step counter
and a reward counter. ]

4.2. Lower Bounds. In this section we will show that MPiy, inr>0 always requires at least
a step counter and a reward counter, whether it be for e-optimal or optimal strategies. We
introduce in Figure 3 a building block for an MDP which will form the foundation for all of
our lower bound results for MPjiyint>0. Many of these results also hold for TPjiy, inf>0, SO
we will restate them in Section 5 in due course.

4.2.1. e-optimal Strategies. We construct an acyclic MDP M in which the step counter is
implicit in the state as follows.

The system consists of a sequence of gadgets. Figure 3 depicts a typical building block in
this system. The system consists of these gadgets chained together as illustrated in Figure 4,
starting with n sufficiently high at n = N*. In the controlled choice, there is a small chance
in all but the top choice of falling into a | state. These L states are abbreviations for an
infinite chain of states with —1 reward on the transitions and are thus losing. The intuition
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Figure 4: The buildings blocks from Figure 3 represented by black boxes are chained together
(n increases as you go to the right). The chain of white boxes allows to skip
arbitrarily long prefixes while preserving path length. The positive rewards from
the white states to the black boxes reimburse the lost reward accumulated until
then. The —1 rewards between white states ensure that skipping gadgets forever
is losing.

behind the construction is that there is a random transition with branching degree k(n) + 1.
Then, the only way to win, in the controlled states, is to play the i-th choice if one arrived
from the i-th choice. Thus intuitively, to remember what this choice was, one requires at
least k(n) + 1 memory modes. That is to say, the one and only way to win is to mimic, and
mimicry requires memory. We will present two similar versions of this MDP, initially we
present a version in which the step counter is implicit in the state, then later we will present
a version in which the reward counter is implicit in the state instead.

Remark 4.3. M is acyclic, finitely branching and for every state s € S, dn,s € N such that
every path from sy to s has length ns. That is to say the step counter is implicit in the state.

Additionally, the number of transitions in each gadget grows unboundedly with n
according to the function k(n). Consequently, we will show that the number of memory
modes required to play correctly grows above every finite bound. This will imply that no
finite amount of memory suffices for e-optimal strategies.

Notation: All logarithms are assumed to be in base e.

log; n M ogn, log; 1 & log(log; n)

k(n)—1
e 1 def 1 def
So(n) & i) 213
O(n) logn’ (n) logi_Hn? k(n) (n) = J(n)
def 1 aef €i(n) . 1 def
=V & = ——, Le. gi(n) = s E€k(n =0
fo(n) nlogn’ st (n) log; o n Le. &i(n) n-logn -logyn---log; 4 n #km ()

Tower(0) €' e® =1, Tower(i + 1) & eTvr@ N, < Tower(4)

Lemma 4.4. The family of series Zn>Nj dj(n) - ei(n) is divergent for all i,j € N, i < j.
Additionally, the related family of series ), - . 6i(n) - €i(n) is convergent for all i € N.

Proof. These are direct consequences of Cauchy’s Condensation Test. ]

Definition 4.5. We define k(n), the rate at which the number of transitions grows. We
define k(n) in terms of fast growing functions g, Tower and h defined for i > 1 as follows:
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g(z’)d:Efmin{ <Z di—1(n)ei—1( )) SQ’}, h(l)d:ef2

n>N

m
h(i+1) % [max{ g(i + 1), Tower(i + 2), min{ m + 1 € N : Z gi—1(n) >1
n=nh(%)

Note that function g is well defined by Lemma 4.4, and h(i+1) is well defined since for all
i, Zflo:h(i) gi—1(n) diverges to infinity. k(n) is a slow growing unbounded step function defined

in terms of h as k(n) o h~Y(n). The Tower function features in the definition to ensure that
the transition probabilities are always well defined. g and h are used to smooth the proofs
of Lemma 4.7 and Lemma 4.8 respectively. Notation: N* & min{n € N: k(n) = 1}. This is
intuitively the first natural number for which the construction is well defined.

The reward m,, which appears in the n-th gadget is defined such that it outweighs
any possible reward accumulated up to that point in previous gadgets. As such we define

my & 2k(n) Y1 n. my, with mpy- 41 and where k(n) is the branching degree.
To simplify the notation, the state sg in our theorem statements refers to sy«.
Lemma 4.6. For k(n) > 1, the transition probabilities in the gadgets are well defined.

Proof. Recall that Tower(7) is 7 repeated exponentials. Thus, log(Tower(i)) =Tower(i — 1).

When checking whether probabilities in a given gadget are well defined, first we choose
a gadget. The choice of gadget gives us a branching degree k(n) + 1 which in turn lower
bounds the value of n in that gadget. So for a branching degree of k(n) + 1, we have n lower
bounded by Tower(k(n) + 1) by definition of k(n).

We need to show that ngé)*l di(n) < 1. Indeed, we have that:

i=0 i+l =1 =1 =1

Hence, for k(n) > 1, the transition probabilities are well defined, i.e. do(n), §1(n), . . ., Og(n)(n)
do indeed sum to 1. ]

Lemma 4.7. For every € > 0, there exists a strategy o. with Py sy,o. (MPlimint>0) > 1 — ¢
that cannot fail unless it hits a L state. Formally, P sy 0. (MPiimint>0 A G(— 1)) =
P,so,0-(G(= L)) > 1 —¢. Soin particular, valp mpy, o (S0) = 1.

Proof. We define a strategy ¢ which in ¢, always mimics the choice in s,. We first prove
that playing this way gives us a positive chance of winning. Then we show that there are
strategies o, that attain 1 — ¢ from s¢ without hitting a | state. This implies in particular
that ValeMPIimianO (So) =1.

Playing according to o, the only way to lose is by dropping into the L state. This
is because by mimicking, the player finishes each gadget with a reward of 0. In the n-th

gadget, the chance of reaching the L state is Zk(n 0j(n) - €j(n). Thus, the probability of
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surviving while playing in all the gadgets is
k(n)—

11 Z 9

n>N*

However, by Proposition 2.7, this product is strictly greater than 0 if and only if the sum

k(n)—1
S smem

n>N* \ =0

is finite. With some rearranging exploiting the definition of k(n) we see that this is indeed
the case:

k(n)—1
> 5
n>N* \ =0
SZ di—1(n)ei—1(n) by definition of k(n)
i1 \n=g(i)
< Z 27 by definition of g(n)
i>1
<1

Hence the player has a non zero chance of winning.

When playing with the ability to skip gadgets, as illustrated in Figure 4, all runs
not visiting a 1 state are winning since the total reward never dips below 0. Hence
P, so.00 (MPilimine>0 A 7 L) = Pa,sp,o. (7 L). Thus the idea is to skip an arbitrarily long
prefix of gadgets to push the chance of winning ¢ close to 1 by pushing the chance of visiting
a | state € close to 0. From the N-th state, for N > N*, the chance of winning is

k(n)—1

11 Z(S >0

n>N
By Proposition 2.8 this can be made arbltrarlly close to 1 by choosing N sufficiently large.
Let N. % min {N EN[[L>n (1 - Zf(:%)_l di(n) - ej(n)) >1- 5}. Now define the
strategy o. to be the strategy that plays like o after skipping forwards by N. gadgets. Thus,

by definition o, attains 1 — ¢ for all £ > 0.
Thus, by playing o. for an arbitrarily small ¢ the chance of winning must be arbitrarily

close to 1. Hence, valy, MPyy, inss0 (so) = 1. ]
1
Lemma 4.8. 377 1o 56]-(”) (n)einy(n) diverges for all i(n),j(n) € {0,1,...,k(n) — 1}

with i(n) < j(n).

Proof. This result is not immediate, because the indexing functions i(n) and j(n) may grow
with k(n) as n increases.
Under the assumption that i(n) < j(n) we have that

8i(n) (M)€in) (M) = 0j(n)(M)Ej(n)—1(1) = Sp(n)—1(M)ER(n)—2(N) = Ep(m)—1(n)-
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Thus it suffices to show that Z;:O:kfl(Q) Ek(n)—1(n) diverges:

00 ) k= a+1)—-1
Z = Z Z €a—1(n) splitting the sum up
n=k—1(2) a=2 n=k~1(a)
o0 h(a+1)—1
=> ) eaan) k(n) =h~"(n)
a=2 n=h(a)
> Z 1 definition of h(n)
Note that the definition of h(i) says exactly that a block of the form a;r(i €a—1(n)
1
is at least 1. Hence 377 1) 55]-(”) (n)€;(n)(n) diverges as required. []

Lemma 4.9. For any sequence {ay}, where o, € [0,1] for all n, and any functions

i(n),j(n) : N = N with i(n),j(n) € {0,1,...,k(n) — 1},2’(71) j(n) for all n, the following
sum diverges:

> <5j(n) (n)(angjn)(n) + (1 = an)eim) (n)) + Giny (1) (om + (1 — an)ﬁi(n)(n))) (4.1)

n=k—1(2)

Proof. We can narrow our focus by noticing that

> (5j(n) (n)(@ngjn)(n) + (1 = an)eim)(n)) + diny () (an + (1 = an)eim) (n))>
n=k~1(2)

[e.o]

= Z ndj(n)(N)€jmn)(n) + (1 — an)dim)€in) (1) Convergent by def. of d;(n),e;(n)
n—k—1(2)

+ Z 1 - an n)Ei(n) (n) + anéz(n) (TL)
n=k—1(2)

Hence the divergence of (4.1) depends only on the divergence of

o0

Z (1 = an)dj(m)€i(n) () + andi(ny(n).

n=k—1(

No matter how the sequence {an} behaves, for every n we have that either oy, > 1/2 or
1 — a;, > 1/2. Hence for every n it is the case that

1
(1 = an)djm)(n)eimy(n) + andimy(n) > 395 (n)ei(n)(n)
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Define the function f as follows:
1

551»(”)(71) if a, > 1/2

fn) =
§5j(n)(n)5z‘(n) (n) otherwise
Hence no matter how {«,} behaves, we have that

> (5j(n) (n)(angj(n)(n) + (1 = an)ein) (1)) + digny (1) (an + (1 — an)gi(n) (n)))
n=k—1(2)
> > fn).

n=k—1(2)
. 1 . 1 ,
We know that both }77, 1) 55]-(”) (n)eimy(n) and 377 19 561»(”) (n) diverge for all
i(n),j(n) € {0,1,...,k(n) — 1}, i(n) < j(n), as shown in Lemma 4.8.
1
Thus Zflo:kq@) 56]-(”) (n)€i(ny(n) and fo’:w(g) §6l-(n) (n) must also diverge no matter

how i(n) and j(n) behave. As a result it must be the case that fo:k_l(z) f(n) diverges.
Hence (4.1) must be divergent as desired as i(n) and j(n) vary for n > k=1(2). ]

Lemma 4.10. For any FR strategy o, almost surely either the mean payoff dips below —1
infinitely often, or the run hits a L state, i.e. P .50 (MPlimint>0) = 0.

Outline of the proof. Let o be some FR strategy with £ memory modes. We prove a lower
bound e, on the probability of a local error (reaching a L state, or seeing a mean payoff
< —1) in the current n-th gadget. This lower bound e,, holds regardless of events in past
gadgets, regardless of the memory mode of o upon entering the n-th gadget, and cannot be
improved by ¢ randomizing its memory updates.

The main idea is that, once k(n) > k + 1 (which holds for n > N’ sufficiently large) by
the Pigeonhole Principle there will always be a memory mode confusing at least two different
branches i(n), j(n) # k(n) of the previous random choice at state s,,. This confusion yields
a probability > e, of reaching a L state or seeing a mean payoff < —1, regardless of events
in past gadgets and regardless of the memory upon entering the n-th gadget. We show
that ) < v en is a divergent series. Thus, by Proposition 2.7, [, y/(1 — e,) = 0. Hence,

Pm,o,s0(MPlimint>0) < [[,>n/(1 —€n) = 0. O

Full proof. Let o be some FR strategy with £ memory modes. Our MDP consists of a linear
sequence of gadgets (Figure 3) and is in particular acyclic. The n-th gadget is entered at
state s, and takes 4 steps. Locally in the n-th gadget there are 3 possible scenarios:

(1) The random transition picks some branch i at s, and the strategy then picks a branch
j > at cp.

By the definition of the payoffs (multiples of m,,; cf. Definition 4.5), this means that
we see a mean payoff < —1, regardless of events in past gadgets. This is because the
numbers m,, grow so quickly with n that even the combined maximal possible rewards
of all past gadgets are so small in comparison that they do not matter for the outcome
in the n-th gadget, i.e., rewards from past gadgets cannot help to avoid seeing a mean
payoff < —1 in the above scenario.
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(2) We reach the losing sink 1 (and thus will keep seeing a mean payoff < —1 forever). This
happens with probability €;(n) if the strategy picks some branch j at ¢, regardless of
past events.

(3) All other cases.

As explained above, due to the definition of the rewards (Definition 4.5), events in past
gadgets do not make the difference between (1),(2),(3) in the current gadget. It just depends
on the choices of the strategy o in the current gadget.

Let Bad,, be the event of seeing either of the two unfavorable outcomes (1) or (2) in the

n-th gadget. Let p, be the probability of Bad, under strategy ¢. Since ¢ has memory, the
probabilities p,, are not necessarily independent. However, we show lower bounds e, < p,
that hold universally for every FR strategy ¢ with < k memory modes and every n such
that k(n) > k + 1. The lower bound e,, will hold regardless of the memory mode of ¢ upon
entering the n-th gadget.
Memory updates. First we show that ¢ randomizing its memory update after observing
the random transition from state s,, does not help to reduce the probability of event Bad,,.
I.e., we show that without restriction o can update its memory deterministically after
observing the transition from state s,,.

Once in the controlled state ¢, the strategy o can base its choice only on the current
state (always ¢, in the n-th gadget) and on the current memory mode. Thus, in state ¢,
in each memory mode m, the strategy has to pick a distribution D3 over the available
transitions from ¢,. By the finiteness of the number of memory modes of o (just < k by our
assumption above), for each possible reward level z (obtained in the step from the preceding
random transition from s,,) there is a best memory mode m(z) such that Dcm"(m) is optimal

(in the sense of minimizing the probability of event Bad,,) for that particular reward level x.
(In case of a tie, just use an arbitrary tie break, e.g., some pre-defined linear order on the
memory modes.)

Therefore, upon witnessing a reward level x in the random transition from state s,
the strategy o can minimize the probability of event Bad, by deterministically setting
its memory to m(x). Thus randomizing its memory update does not help to reduce the
probability of Bad,, and we may assume without restriction that ¢ updates its memory
deterministically.

(Note that the above argument only works because it is local to the current gadget where
we have a finite number of decisions (here just one), we have a finite number of memory
modes, and a one-dimensional criterion for local optimality (minimizing the probability
of event Bad,,). We do not claim that randomized memory updates are useless for every
strategy in every MDP and every objective.)

Claim 4.11. Assume that the transitions i(n) and j(n) (with i(n) < j(n)) leading to state
¢, are confused in the memory of the strategy. Then we can assume without restriction that
the strategy only plays transitions ¢(n) and j(n) with nonzero probability from state ¢,
since every other behavior yields a higher probability of the event Bad,, (cf. Figure 5).

Proof. When confusing transitions i(n) and j(n) with i(n) < j(n), the player’s choice of
transition from ¢, can be broken down into 5 distinct cases. The player can choose transition
z(n) as follows.

(1) x(n) =i(n)
(2) x(n) = j(n)
(3) x(n) > j(n)
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Uﬂ Oy, _j (n)mn
%) ()

Figure 5: When transitions i(n) and j(n) are confused in the player’s memory, the player’s
choice is at least as bad as the reduced play in this simplified gadget.

(4) z(n) <i(n)
(5) i(n) < z(n) <j(n)
Case 1 leads to a probability of Bad, of §;(n)(n)€imn) (1) + 03y (n)€in) (1)
Case 2 leads to a probability of Bad, of §;(,)(n)€;mn)(n) + 0in)(n).
Case 3 leads to a mean payoff < —1 (and thus Bad,,) with probability 1. This is the worst
possible case.
Case 4 leads to a probability of Bad,, of §;(n)(n)ex(n) (1) + () (N)€x(ny (1) > 5(n) (n)Ei(n) (1) +
di(n) (M)Ei(ny(n), i.e., this is worse than Case 1.
Case 5 leads to a probability of Bady, of 4;(,)(12)e4(n) (1) +0i(n) (1) > 6;(n)(1)€j(n) (1) +0i(n) (1),
i.e., this is worse than Case 2.

Hence, without restriction we can assume that only cases 1 and 2 will get played with
positive probability, that is to say that in state ¢, the strategy will only randomize over the
outgoing transitions i(n) and j(n). []

The lower bounds e,. Now we consider an FR strategy ¢ that without restriction updates
its memory deterministically after each random choice (from state s,) in the n-th gadget. It
can still randomize its actions, however.

Let N’ be the minimal number such that for all n > N’ we have k(n) > k+ 1. In
particular, this implies N’ > k~!(2), and thus we can apply Lemma 4.9 later.

Once n > N’, then by the Pigeonhole Principle there will always be a memory mode
confusing at least two different transitions i(n),j(n) # k(n) from state s, to c,. Note
that this holds regardless of the memory mode of o upon entering the n-th gadget. (The
strategy might confuse many other scenarios, but just one confused pair i(n), j(n) # k(n)
is enough for our lower bound.) Without loss of generality, let j(n) be larger of the two
confused transitions, i.e., i(n) < j(n). Let i(n) and j(n) be two functions taking values in
{0,1,...,k(n) — 1} where i(n) < j(n) for all n.

Confusing two transitions i(n) and j(n) from s, to ¢, (where without restriction
i(n) < j(n)), the strategy is in the same memory mode afterwards. However, it can still
randomize its choices in state ¢,. To prove our lower bound on the probability of Bad,, it
suffices to consider the case where the strategy only randomizes over the outgoing transitions
i(n) and j(n) from state ¢,. This is because, by Claim 4.11, every other behavior would
perform even worse, in the sense of yielding a higher probability of Bad,,.

That is to say that the strategy picks the higher j(n)-th branch with some probability
ay, and the lower i(n)-th branch with probability 1 — a,,. (We leave the probabilities o,
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unspecified here. Using Lemma 4.9, we’ll show that our result holds regardless of their
values.)
The local chance of the event Bad,, is then lower bounded by

en % 6(m) (1) (@) (1) + (1 = @n)ei) (1)) + Gy (1) (0 + (1 = @n)ei) (m)-

The term above just expresses a case distinction. In the first scenario, the random transition
chooses the j(n)-th branch (with probability d;(,)(n)) and then the strategy chooses the
j(n)-th branch with probability a,, and the lower i(n)-th branch with probability 1 — a,,
and you obtain the respective chances of reaching the sink 1. In the second scenario, the
random transition chooses the i(n)-th branch (with probability d,,)(n)). If the strategy
then chooses the higher j(n)-th branch (with probability «,,) then we have outcome (1),
yielding a mean payoff < —1. If the strategy chooses the i(n)-th branch (with probability
1 — ay,) then we still have a chance of &;(,)(n) of reaching the sink.

Since, as shown above, randomized memory updates do not help to reduce the probability
of Bad,,, the lower bound e,, for deterministic updates carries over to the general case. Thus,
even for general randomized FR strategies ¢ with k memory modes, the probability of event
Bad,, in the n-th gadget (for n > N’) is lower bounded by e,, regardless of the memory
mode m upon entering the gadget and regardless of events in past gadgets. We write o[m]
for the strategy ¢ in memory mode m and obtain

Vn > N'.Vm. Prgoimls, (Bady) > ey 4.2
M,o[m],sn

The final step. Let Bad dof U, Bad,,.

Since i(n), j(n) # k(n) and N’ > k=1(2), we apply Lemma 4.9 to conclude that the series
Do €n = 2 pi N Oy (M) (@€ iny () + (1 — an)Ei(n) (1)) + Gi(ny (n) (an + (1 — )i (1))
is divergent, regardless of the behavior of i(n), j(n) or the sequence {c,}.

Finally, we obtain

P,o,50 (MPrimint>0)

< Pm,o,s0(FG-Bad) set inclusion
= PM,o,s0 (U F<IG—|Bad> def. of F
!
= llim Pr.o.so(FS'G-Bad) continuity of measures
— 00
< Iim P60 ﬂ - Bad,, 4 steps per gadget
=00
n>1/4
linear sequence of gadgets,
< lim H (max Py o(m],s, (7 Bady)) finite memory and past events
AN'<l—00 m ’ o .
n>1/4>N' do not help to avoid Bad,,
< I — .
Sl 1L @=ed by (42
n>l/4>N’
o
= M[/lglnﬁOO 0 divergence of z]:\,/ en and Proposition 2.7
n=

=0 L]
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zo(n)

Figure 6: All transition rewards are 0 unless specified. Recall that > d;(n)-g;(n) is convergent
and ) d;(n)-e;(n) is divergent for all ¢, j with j > 7. The negative reward incurred
before falling into the L state is reimbursed. We do not show it in the figure
for readability. In the state before s,1, if the correct transition was chosen, the
mean payoff is —1/n. If the incorrect transition was chosen, then either the mean
payoff is < —m,,/n, or the risk of falling into L is too high.

Lemma 4.7 and Lemma 4.10 yield the following theorem.

Theorem 4.12. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which val g mpy, o0 (S0) = 1 and any FR strategy
o is such that P sg.o(MPlimint>0) = 0. In particular, there are no e-optimal k-bit Markov
strategies for any k € N and any € < 1 for MPiiminf>0 @n countable MDPs.

Proof. Proved by Lemma 4.7 and Lemma 4.10. []

Theorem 4.12 shows that even if the step counter is implicit in the state, infinite memory
is still required. We now adapt our construction from Figure 3 such that instead the current
total reward is implicit in the state, in order to show that a reward counter plus arbitrary
finite memory does not suffice for (e-)optimal strategies for MPiiy,inf>0 either.

We use the example from Figure 6. It is very similar to Figure 3, but differs in the
following ways.

e The current total reward level is implicit in each state.
e The step counter is no longer implicit in the state.
e In the random choice, instead of changing the reward levels in each choice, it is the path
length that differs.

e The definition of m,, is different, it is now m,, gef Z?:_]%, mf(n) with mpy+ def
We construct a finitely branching acyclic MDP Mgy (Reward Implicit) which has the total
reward implicit in the state. We do so by chaining together the gadgets from Figure 6 as is
shown in Figure 4.

In order to convince ourselves that the history of the play in past gadgets does not
affect the outcome of the current gadget, we do a brief analysis of the path length and
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total reward involved in a run going through the nth gadget. Consider the scenario where
the play took the i-th random choice. In this case, the path length is upper bounded by

(ZZL:_]%, 4+ mf(i)) +4+mf < 2mi. In the case where the player chooses the jth controlled
choice with j > 4, this gives us an average reward of

m]

o
2nm},

This is < —1 when j > ¢ and converges to 0 with —% when j = ¢. The choices j < i are
losing due to the risk of falling into the losing sink as described previously.

Hence, the analysis within each gadget still reduces to mimicking the random choice
in the controlled choice. This allows us to simply reuse the results from the step counter
encoded case in order to obtain symmetrical results for the reward counter encoded case.

Lemma 4.13. valpy, MPyiy, inrso ((50,0)) = 1.

Proof. We define a strategy o which, in ¢, always mimics the random choice in s,. Playing
according to o, the only way to lose is by dropping into the bottom state. This is because
by mimicking, the mean payoff in each gadget is lower bounded by —1/n. The rest of the
proof is identical to Lemma 4.7. ]

Lemma 4.14. Any FR strategy o in Mgy is such that Pag,,so,0(MPlimint>0) = 0.

Proof. When playing with finitely many memory modes, there are two ways for a run in
Mgy to lose. Either it falls into a losing sink, or it never falls into a sink but its mean
payoff is < —1. The proof that either of these occurs with probability 1 is the same as in
Lemma 4.10. L]

Theorem 4.15. There exists a countable, finitely branching, acyclic MDP Mgy with initial
state (so,0) with the total reward implicit in the state such that

b ValMRIuMPIimianO((s()?0)) =1,
e for all FR strategies o, we have Ppqy, (s0,0),0(MPlimint>0) = 0.

Proof. This follows from Lemma 4.13 and Lemma 4.14. []

Remark 4.16. The MDPs from Figure 3 and Figure 6 show that good strategies for
MP1iminf>0 require “at least” a reward counter and a step counter, respectively. There does,
of course, exist a single MDP where good strategies for MPiy, int>0 require at least both a
step counter and a reward counter. We construct such an MDP by ‘gluing’ the two different
MDPs together via an initial random state which points to each with probability 1/2.

4.2.2. Optimal Strategies. Even for acyclic MDPs with the step counter implicit in the state,
optimal (and even almost sure winning) strategies for MPiipyinf>0 require infinite memory.
To prove this, we consider a variant of the MDP from the previous section which has been
augmented to include restarts from the L states. For the rest of the section, M is the MDP
constructed in Figure 7. Initially the gadgets used are like Figure 3, then we present similar
results using Figure 6 as the gadgets instead.

Remark 4.17. M is acyclic, finitely branching and the step counter is implicit in the state.
We now refer to the rows of Figure 7 as gadgets, i.e., a gadget is a single instance of Figure 4
where the L states lead to the next row.
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Row 2

Figure 7: Each row represents a copy of the MDP depicted in Figure 4. Each white circle
labeled with a number i represents the correspondingly numbered gadget (like in
Figure 3) from that MDP. Now, instead of the bottom states in each gadget leading
to an infinite losing chain, they lead to a restart state r; ; which leads to a fresh
copy of the MDP (in the next row). Each restart incurs a penalty guaranteeing
that the mean payoff dips below —1 before refunding it and continuing on in the
next copy of the MDP. The states r; ; are labeled such that the j indicates that if
a run sees this state, then it is the jth restart. The ¢ indicates that the run entered
the restart state from the ¢th gadget of the current copy of the MDP. The black
states are dummy states inserted in order to preserve path length throughout.

Lemma 4.18. There exists a strategy o such that Pa,o.so(MPlimint>0) = 1.

Outline of the proof. Recall the strategy oy/y defined in Lemma 4.7 which achieves at least
1/2 in each gadget that it is played in. We then construct the almost surely winning strategy
o by concatenating oy, strategies in the sense that o plays just like o/, in each gadget
from each gadget’s start state.

Since o achieves at least 1/2 in every gadget that it sees, with probability 1, runs
generated by o restart only finitely many times. The intuition is then that a run restarting
finitely many times must spend an infinite tail in some final gadget. Since ¢ mimics in
every controlled state, not restarting anymore directly implies that the total payoff is
eventually always > 0. Hence all runs generated by ¢ and restarting only finitely many
times satisfy MPiiminf>0. Therefore all but a nullset of runs generated by o are winning, i.e.
,PM,SO,U(MPliminfEO) =1. L]

Full Proof. We will show that there exists a strategy o that satisfies the mean payoff objective
with probability 1 from sp. Towards this objective we recall the strategy oy, defined in
Lemma 4.7. In a given gadget of this MDP with restarts, playing oy, in said gadget, there
is a probability of at most 1/2 of restarting in that gadget. We then construct strategy o by
concatenating o/, strategies in the sense that o plays just like 0y /5 in each gadget from
each gadget’s start state.
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Let R be the set of runs induced by ¢ from sg. We partition R into the sets 9R; and
Moo of runs such that R = (|J;2, Ri) URoo. We define for i = 0

def

Ro & {p e R| V0 eN ~F(re1)},

fori>1
R {peR|IjeNF(rj) AV e N ~F(ris)}
and
R ©{peR|VieNIjeNF(r)h

That is to say for all i € N, fR; is the set of runs in SR that restart exactly ¢ times and R, is
the set of runs in R that restart infinitely many times.

We go on to define the sets of runs R>; oo U;”;Z R; which are those runs which restart
at least 7 times. In particular note that R, = ﬂ;’io R>; and R>i11 C Ry

By construction, any run p € R is losing since the negative reward that is collected
upon restarting instantly brings the mean payoff below —1 by definition of m,. Thus
restarting infinitely many times translates directly into the mean payoff dropping below —1
infinitely many times and thus a strictly negative lim inf mean payoff. As a result it must
be the case that Rog © " MPlim inf>0-

After every restart, the negative reward is reimbursed. Intuitively, going through finitely
many restarts does not damage the chances of winning. We now show that, except for a
nullset, the runs restarting only finitely many times satisfy the objective. Indeed, every run
with only finitely many restarts must spend an infinite tail in some final gadget in which it
does not restart. In this final gadget, the strategy plays just like oy/5, which means that
it mimics the random choice in every controlled state. Since, by assumption, there are no
more restarts, we obtain Pags).0(Ri) = Pm,sp,0(Ri AV € N, G(—rj41)). We then apply
Lemma 4.7 to obtain that

P.so,o0(Ri) = Pr,so,o(Ri AVG €N, G(—75,i11)) = Pr,so,0(Ri A MPlimint>0)- (4.3)

In other words, except for a nullset, the runs restarting finitely often (here i times) satisfy
MP1im inf>0. Furthermore, notice that from this observation, the sets R; partition the set of
winning runs.

We show now that Pays).0(PRec) = 0. We do so firstly by showing by induction that
P .so.o(R>i) <27 for i > 1, then applying the continuity of measures from above to obtain
that 77/\/1730,0(9%00) =0.

Our base case is ¢ = 1. R, by definition of o, is the set of runs induced by playing oy /5
in every gadget. By Lemma 4.7, o attains > 1/2 in every gadget. Therefore in particular the
probability of a run leaving the first gadget is no more than 1/2, i.e. Pay 59,0(R>1) < 1/2.

Now suppose that Py sy.0(R>i) < 278 After restarting at least i times, the probability
of a run restarting at least once more is still < 1/2 since the strategy being played in every
gadget is 0y /5. Hence

Pitsoo(Rzit1) < Prtsoo(Psi) - = < 270D

N -

which is what we wanted.
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Now we use the fact that Ry, = ﬂ;’io R>; and R>; 41 C R>; to apply continuity of
measures from above and obtain:

PM,SO,U(moo) = PM,SQ,O’ (m %21> = zllglo ,P./\/l,so,a(mZi) < lim 2_i =0.

! 1—00
i=0

Hence R4, is a null set.
We can now write down the following:

1= ,P/VLSO,U (m)
o0
= (Z ,PM780,O'(mi>> + ,P./VLS(),O'(mOO) by partition of R
i=0
o0
= (Z PM,so,0 (R A MPIimianO)) + P,so,0 (Roo) by Equation (4.3)
i=0
o0
= (Z PM,so,0(Ri A MPlimianO))
i=0
+ PM,SQ,O’(EROO A MPlimianO) by PM,SO,G’(Z}{OO) =0
= PM,s0,0(MPlimint>0) by partition of MPjiyint>0
Thus P, se.0(R) = P, so.0(MPlimint>0) = 1, i.e. o wins almost surely. O

Lemma 4.19. For any FR strategy o, P e,s0(MPlimint>0) = 0.

Outline of the proof. Let o be any FR strategy. We partition the runs generated by o into
runs restarting infinitely often, and those restarting only finitely many times. Any runs
restarting infinitely often are losing by construction. The runs restarting only finitely many
times spend an infinite tail in a given gadget, letting the mean payoff dip below —1 infinitely
many times with probability 1 by Lemma 4.10. Hence we have that Pay s so (MPliminf>0) =
0. []

Full proof. There are two ways to lose when playing in this MDP: either the mean payoff
dips below —1 infinitely often because the run takes infinitely many restarts, or the run only
takes finitely many restarts, but the mean payoff drops below —1 infinitely many times in
the last copy of the gadget that the run stays in. Recall that in Lemma 4.10 we showed
that any FR strategy with probability 1 either restarts or lets the mean payoff dip below —1
infinitely often.

Let o be any FR strategy and let $R to be the set of runs induced by o from sg. We
partition R into the sets i; and Mo of runs such that R = (U2, Ri) U Reo. Where we
define for i =0 o

Ro = {peR|VLeEN,-F(re1)},

fori>1
def

mi = {p €ER ’ HJ € N7 F(TJ,Z) AV € Na _‘F(Tf,iJrl)}

and

Roo = {p €eR ’ Vi, 3j F(rj,i)}'
That is to say for all 7 € N, fR; is the set of runs in fR that restart exactly 7 times and R is
the set of runs in R that restart infinitely many times.



Vol. 19:1 STRATEGY COMPLEXITY OF POINT, MEAN AND TOTAL PAYOFF 16:33

We go on to define the sets of runs R>; o Ujoi@ R; which are those runs which restart
at least 7 times. In particular note that R, = ﬂ?io R>; and R>i41 C Ry

Note that any run in SR is losing by construction. The negative reward that is collected
upon restarting instantly brings the mean payoff below —1 by definition of m,. Thus
restarting infinitely many times translates directly into the mean payoff dropping below
—1 infinitely many times. Thus Ree € " MPlipinf>0 and so it follows that P s,,0(Reo) =
P, so.0(Roo A "MPlimint>0). Since the sets R; and R partition R we have that:

,P./\/l,so,cr(m) = (Z PM,so,a(mi)> +,P/vl,so,cr(%oo)'
=0

It remains to show that every set P; is almost surely losing, i.e. Pugsp0(Ri) =
P so.0(Ri A 7 MPripying>0). Consider a run p € R;. By definition it restarts exactly ¢
times. As a result, it spends infinitely long in the i+ 1st gadget. Because o is an FR strategy,
it must be the case that any substrategy ¢* induced by o that is played in a given gadget is
also an FR strategy. This allows us to apply Lemma 4.10 to obtain that

Pr,so,oc(Ri) = P,so,o (Ri A (" MPrimine>0 V 35 € N, F(rj41))) - (4.4)

However, any run p € R; never sees any state r;;,1 for any j by definition. Therefore it
follows that

Pi,so,c (Ri A (mMPriming>0 V 37 € N, F(75541))) = Pmso,0 (Ri A (mMPliming>0))

Hence P sy,0(Ri) = P,so,o0 (Ri A "MPlimint>0) as required.
As a result we have that

1= PM,SO,U(%)
= <Z PM,SO,O’(mi)> + PM,S(),O’(%OO) by partition of R
i—0
= <Z PM,so.o0(Ri A —'Mthmfzo)> + P, s0,0(Roo A "MPrimint>0) by Equation (4.4)
=0
= PM,s0,0 (" MPlimin>0) by partition of R

That is to say that for any FR strategy o, Pat,sg,o (MPlimint>0) = 0. ]
From Lemma 4.18 and Lemma 4.19 we obtain the following theorem.

Theorem 4.20. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which sg is almost surely winning MPliminf>0, €.,
36 P, so,6 (MPrimint>0) = 1, but every FR strategy o is such that P sy,o(MPlimint>0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k € N for countable MDPs.

Proof. Proved by Lemma 4.18 and Lemma 4.19. []

Now we construct the MDP MRestart by using Figure 7, but we substitute the instances
of Figure 3 gadgets with instances of Figure 6 gadgets. This allows us to obtain the following
results which state that optimal strategies for MPjiy, inr>0 requires infinite memory, even
when the reward counter is implicit in the state.
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Lemma 4.21. There exists an HD strategy o such that Pag..one.s0,0(MPliminf>0) = 1.
Proof. The proof is identical to that of Lemma 4.18. ]
Lemma 4.22. For any FR strategy o, Pmgciar,s0,0 (MPlimint>0) = 0.

Proof. The proof is identical to that of Lemma 4.19. []

Theorem 4.23. There exists a countable, finitely branching and acyclic MDP MRestart
whose total reward is implicit in the state where, for the initial state sg,

e there exists an HD strategy o s.t. Ppecias,s0.0(MPlimint>0) = 1.
o for every FR strateqy 0, Pmpeares0,0(MPlimint>0) = 0.

Proof. This follows from Lemma 4.21 and Lemma 4.22. []

5. ToTAL PAYOFF

Total Payoff e-optimal Optimal
. : Upper Bound Det(RC) 5.1 Det(RC) 5.4
Finitely branching Lower Bound —Rand(F+SC) 5.7 —Rand(F+SC) 5.8
Upper Bound Det(SC+RC) 5.2 Det(SC+RC) 5.5

Infinitely branching

—Rand(F+SC) 5.7 and | "Rand(F+SC) 5.8 and

Lower Bond | _pond(F+RC) 5.6 | ~Rand(F+RC) 5.6

Table 4: Strategy complexity of e-optimal/optimal strategies for the total payoff objective
in infinitely /finitely branching MDPs.

5.1. Upper Bounds. In order to tackle the upper bounds for the total payoff objective
TPliminf>0, we work with the derived MDPs R(M) and S(M) which encode the total reward
and the step counter into the state respectively. Once the total reward is encoded into the
state, the point payoff coincides with the total payoff. We use this observation to reduce
TPiiminf>0 t0 PPlimint>0 and obtain our upper bounds from the corresponding point payoff
results.

Corollary 5.1. Given a finitely branching MDP M, there exist e-optimal strategies for
TPlimint>0 which use just a reward counter.

Proof. We place ourselves in R(M) where TPy inf>0 and PPl inf>0 coincide. Thus we
can apply Theorem 3.5 to obtain e-optimal MD strategies for T'Pjiy, inr>0 from every state
of R(M). By Lemma 2.4 we can translate these MD strategies on R(M) back to strategies
on M with just a reward counter. L]

Corollary 5.2. Given an MDP M with initial state sq,

o there exist e-optimal MD strategies for TPiimint>0 i S(R(M)),
o there exist e-optimal strategies for TPlimint>0 which use a step counter and a reward
counter.
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Proof. We consider the encoded system R(M) in which the reward counter is implicit in
the state. Recall that total rewards in M correspond exactly to point rewards in R(M).
We then apply Theorem 3.10 to R(M) to obtain e-optimal MD strategies for PPjiminf>0
in S(R(M)). Lemma 2.2 allows us to translate these MD strategies back to R(M) with
a memory overhead of just a step counter. Then we apply Lemma 2.4 to translate these
Markov strategies back to M with a memory overhead of just a reward counter. Hence
e-optimal strategies for TPy inr>0 in M just use a step counter and a reward counter as
required. ]

Remark 5.3. While e-optimal strategies for mean payoff and total payoff (in infinitely
branching MDPs) have the same memory requirements, the step counter and the reward
counter do not arise in the same way. Both the step counter and reward counter used in
e-optimal strategies for mean payoff arise from the construction of A(M). However, in the
case for total payoff, only the reward counter arises from the construction of R(M). The
step counter on the other hand arises from the Markov strategy needed for point payoff in

R(M).

Corollary 5.4. Given a finitely branching MDP M and initial state sg, optimal strategies,
where they exist, can be chosen with just a reward counter for TPy int>0-

Proof. We place ourselves in R(M) where TPiiyin>0 is shift invariant. Moreover, in R(M)
the objectives T'Piim int>0 and PPiiyinr>0 coincide. Thus we can apply Theorem 3.5 to obtain
e-optimal MD strategies for TPy int>0 from every state of R(M). From Theorem 3.2 we
obtain a single MD strategy that is optimal from every state of R(M) that has an optimal
strategy. By Lemma 2.4 we can translate this MD strategy on R(M) back to a strategy on
M with just a reward counter. []

Corollary 5.5. Given an MDP M and initial state so, optimal strategies, where they exist,
can be chosen with just a reward counter and a step counter for TPiimint>0-

Proof. We place ourselves in S(R(M)) and apply Corollary 5.2 to obtain e-optimal MD
strategies for TPiminf>0 from every state of S(R(M)). While TPipyinf>o is not shift
invariant in M, it is shift invariant in S(R(M)), and thus we can apply Theorem 3.2 to
obtain a single MD strategy that is optimal from every state of S(R(M)) that has an optimal
strategy. The result then follows from Lemma 2.2 and Lemma 2.4. []

5.2. Lower Bounds.
5.2.1. e-optimal strategies.

Theorem 5.6. There exists an infinitely branching MDP M as in Figure 2 with reward
implicit in the state and initial state s such that

o cvery FR strategy o is such that Pag,so( TPlimint>0) = 0
o there exists an HD strategy o such that Pa.so(TPlimint>0) = 1.

Hence, optimal (and even almost-surely winning) strategies and e-optimal strategies for
TPyiminf>0 Tequire infinite memory beyond a reward counter.

Proof. This follows directly from [KMSW17, Theorem 4] and the observation that in Figure 2,
TPiiminf>0, and co-Biichi objectives coincide. L]
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The statements and proofs of Lemma 4.7 and Lemma 4.10 also hold for TPiiy inf>0,
giving us the following theorem.

Theorem 5.7. There exists a countable, finitely branching and acyclic MDP M whose step
counter is implicit in the state for which vala, p, .;o(S0) = 1 and any FR strategy o
is such that Pa.sy,o(TPlimint>0) = 0. In particular, there are no e-optimal k-bit Markov
strategies for any k € N and any € < 1 for TPyminf>0 n countable MDPs.

5.2.2. Optimal strategies. The statements and proofs of Lemma 4.18 and Lemma 4.19 also
hold for TPiimint>0, giving us the following theorem.

Theorem 5.8. There exists a countable, finitely branching and acyclic MDP M whose
step counter is implicit in the state for which sg is almost surely winning TPiiminf>0, €.,
36 P, so,6 (TPrimint>0) = 1, but every FR strategy o is such that P sg.o( TPlimint>0) = 0.
In particular, almost sure winning strategies, when they exist, cannot be chosen k-bit Markov
for any k € N for countable MDPs.

Proof. Proved by Lemma 4.18 and Lemma 4.19. ]

6. STRENGTHENING RESULTS

The counterexamples we present in Section 4 feature finite but unbounded branching degree,
unbounded rewards and irrational transition probabilities. In this section we show that the
hardness does not depend on these aspects by strengthening the counterexamples to have
binary branching, bounded rewards and rational transition probabilities.

Consider a new MDP M based on the MDP constructed in Figure 3 which now undergoes
the following changes. First we bound the branching degree by 2. We do so by replacing
the outgoing transitions in states s, and ¢, of each gadget by binary trees with accordingly
adjusted probabilities such that there is still a probability of d;(n) of receiving reward i - m,,
in each gadget for i € {0,1,...,k(n)}.

To adjust for the increased path lengths incurred by the modifications to each gadget,
the construction in Figure 4 is accordingly modified by padding each vertical column of white
states with extra transitions based on the number of transitions present in the matching
gadget. As a result, path length is preserved even when skipping gadgets. The construction
in Figure 7 is similarly modified.

Second, we restrict the transition probabilities to rationals. The transition probabilities
di(n) and &;(n) are replaced by close rationals in (d;(n), d;(n)+27") and in (g;(n), g;(n)+27"),
respectively. These rationals are constructible, for example by approximation of §;(n) and
g;(n) themselves. Since these new rational probabilities are so close to the original ones, all
of the relevant convergence and divergence of series is preserved.

Definition 6.1 (Binary branching). We formally define how to modify the MDPs in
Section 4.2 such that they have a branching degree of no more than 2.

In each gadget in Figure 3 and Figure 6, we do as is shown in Figure 8. I.e. the outgoing
transitions from s, and ¢, are replaced by a binary tree of depth at most [lg(k(n) + 1)].
Because ¢, is player controlled, we do not need to define any new transition probabilities. For
the outgoing transitions from s,, new probabilities must be defined such that the probability
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Figure 8: Schema for replacing arbitrary finite branching with binary branching in Figure 3.

of receiving reward im(n) is still ;(n). For illustrative purposes, the transition probabilities
for the initial branching are as follows.

k(n)
%] )

= ) 4in) and pa(n 5i(n
=0

All other transition probabilities are obtained inductively.
The extended path lengths are mirrored in a modified Figure 4 by padding the path
lengths by 4+ 2[lg(k(n))] steps instead of 4 steps. Similarly, in Figure 7 we pad the length of

the chains of black states by an extra 2[lg(k(n))] steps. So the step counter is still implicit
in the state.

Definition 6.2 (Rational probabilities). We define the probabilities 7;(n) and 6;(n) as
follows. We set ~;(n) € (0;(n), d;(n)+27")NQ and similarly set 6;(n) € (g;(n),e;(n)+27")NQ.

Furthermore, we define new functions g*, h* and £* as follows. We set

g* (1) & min {N : (Z yil(n)eil(n)) < 2—1} . h(1) Lo

n>N

h*(i+1) L | max g" (i +1), Tower(i +2),min¢{ m+1 € N: Z 0i—1(n) >1
n=h* (1)

which yield k*(i) < h* ' (n).
Note that ¢g*(i) is well defined since

Z Yi—1(n)0i—1 Z di—1(n)ei—1(n) +27"(6i—1(n) +&i—1(n) +277)

n>N n>N

<Z511 611 )+2_n'3

n>N
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is convergent for all i. Similarly, h*(7) is also well defined since

91‘_1(71) > Z Ei_l(n)
n=h*(i) n=h*(i)

which diverges for all 7.

Remark 6.3. We now make sure that the results from Section 4 still hold when we change
Figure 3 by replacing the transition probabilities d;(n) and g;(n) with ~;(n) and 6;(n),
respectively. To this end we must check that some crucial results still hold. Namely, that
Lemma 4.6 and Lemma 4.9 still hold given the modified transition probabilities.

In order to show that Lemma 4.6 still holds, we must show that Zfi%)_l vi(n) < 1. Le.

we get

k(n)—1 k(n)—1 k(n)—1
Z Yi(n) < Z di(n) + Z 27"
i=0 i=0 i=0
k(n)—1
= > i(n) + (k(n) —1)27"
i=0

(n)
< Z 9—i + 2k(n)—1 .9—n
1=1

k(n)
. n
< Z 27'+272 <1 since k(n) <
i=1

n
2
That is to say that the transition probabilities are indeed well defined using rational

probabilities 7;(n) in lieu of 0;(n).
Similarly, we must now show that the following sum diverges.

S (v () @iy () + (1= )iy () + oy (0 + (1= ) ()

n=k—1(2)

We do so by noticing that

> <7j(n)(n)(an9j(n) (n) 4+ (1 = )iy (1)) + Yign) (n) (a4 (1 — )0y (n))>
n—k—1(2)

> (5j(n) (n)(angjn)(n) + (1 — an)eimy (1)) + Giny (1) (an + (1 — an)ein) (n)))

since v;(n) > 6;(n) and 0;(n) > &;(n) for all 1.

Hence Lemma 4.9 yields the desired divergence result.
Putting both of the above results together, we can obtain rational probability versions
of Lemma 4.7 and Lemma 4.10.

Combining these constructions allows us to obtain the following properties.

Theorem 6.4. There exists a countable, acyclic MDP M, whose step counter is implicit in
the state, whose transition probabilities are rational and whose branching degree is bounded by 2
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Figure 9: Schema for replacing large rewards with bounded rewards in Figure 3.

for which val g mpy, o (50) = 1 and any FR strategy o is such that Pag,se.o (MPlimint>0) =
0. In particular, there are no e-optimal step counter plus finite memory strategies for any
e <1 for the MPimint>0 objective for countable MDPs.

Proof. This follows from Lemma 4.7, Lemma 4.10 by modifying the constructions in Figure 3
and Figure 4 as detailed in Definition 6.1 and Definition 6.2. []

Theorem 6.5. There exists a countable, acyclic MDP M, whose step counter is implicit in
the state, whose transition probabilities are rational and whose branching degree is bounded
by 2 for which sg is almost surely winning for MPyimint>0 and any FR strategy o is such
that Pa,so,o0 (MPlimint>0) = 0. In particular, almost sure winning strategies, when they exist,
cannot be chosen with a step counter plus finite memory for countable MDPs.

Proof. This follows from Lemma 4.18, Lemma 4.19 by modifying the constructions in Figure 3
and Figure 7 as detailed in Definition 6.1 and Definition 6.2. []

We now further alter Figure 3 by bounding the rewards. The rewards on transitions
are now limited to —1, 0 or 1. To compensate for the smaller rewards, in the n-th gadget,
each transition bearing a reward is replaced by k(n) - m, transitions as follows. If the
original transition had reward j - m, then that transition is replaced with j - m,, transitions
with reward 1, and (k(n) — j) - m,, transitions with reward 0. Symmetrically all negatively
weighted transitions are similarly replaced by transitions with rewards —1 and 0. The extra
padding with the transitions with reward 0 is done in order to preserve the path length, i.e.,
such that the step counter is still implicit in the state.

Definition 6.6 (Bounded rewards). We formally define how to modify the MDPs in
Section 4.2 such that their rewards are either —1, +1 or 0. In each Figure 3 gadget, we do
as illustrated in Figure 8. I.e. the incoming transitions to ¢, and s, carry rewards +im,, for
some i with 0 < ¢ < k(n). We then split this transition carrying reward +im,, into a chain
of k(n)m,, transitions. The first im,, of which carry reward +1, and the last (k(n) — i)m,,
of which carry reward 0.

The extended path lengths are mirrored in a modified Figure 4 by padding the path
lengths by an extra 2k(n)m,, steps. Because skipping ahead in Figure 4 reimburses reward
-+ upon entering state sy=y;11, we replace these transitions with ¢ transitions bearing reward
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+1 and reflect this increased path length by padding the incoming transitions to sy=4i+1
with an extra ¢ transitions bearing reward 0.

The extended path lengths must also be reflected in Figure 7. This is done by replacing
transitions carrying reward +m,; by m; transitions carrying reward 1. We also increase the
number of black states from 3 to 2k(n)m,, + 3 to match the number of steps taken inside
the nth gadget.

Theorem 6.7. There exists a countable, acyclic MDP M, whose step counter is implicit
in the state, whose transition probabilities are rational, whose rewards on transitions are in
{—1,0,1} and whose branching degree is bounded by 2 for which valag, rp,,, .o (S0) = 1 and
any FR strategy o is such that Pag,sy,o( TPlimint>0) = 0. In particular, there are no e-optimal
step counter plus finite memory strategies for any € < 1 for the TPjimint>0 objective for
countable MDPs.

Proof. This follows from Lemma 4.7, Lemma 4.10 by modifying the constructions in Figure 3
and Figure 4 as detailed in Definition 6.1, Definition 6.6 and Definition 6.2. []

Theorem 6.8. There exists a countable, acyclic MDP M, whose step counter is implicit
in the state, whose transition probabilities are rational, whose rewards on transitions are in
{—1,0,1} and whose branching degree is bounded by 2 for which sg is almost surely winning
for TPlimint>0 and any FR strategy o is such that Pp g0 (TPlimint>0) = 0. In particular,
almost sure winning strategies, when they exist, cannot be chosen with a step counter plus
finite memory for countable MDPs.

Proof. This follows from Lemma 4.18, Lemma 4.19 by modifying the constructions in Figure 3
and Figure 7 as detailed in Definition 6.1, Definition 6.6 and Definition 6.2. []

Remark 6.9. We draw attention to the fact that we could state the total payoff theorems
using bounded rewards, but we did not do so for the equivalent mean payoff results. In the
case of mean payoff, with the step counter implicit in the state, having bounded transition
rewards, e.g. bounded by +b, means that the average reward in any given state will always
be bounded by £b. In the context of our example in Figure 3, this means that if we used
the construction in Definition 6.6, the absolute worst the average reward can be is ~ —1,

this can only happen going from the Oth random transition to the k(n)th choice. But even
worse, using only one bit of memory to remember whether the random transition was > @
or not, the mean payoff is suddenly at worst ~ —ﬁ which converges to 0.

In general it would be interesting to consider the mean payoff objective with step counter

encoded and bounded rewards since our results do not obviously carry over to this case.

Some extra care is needed to convince ourselves that Theorem 4.15 and Theorem 4.23
can also be strengthened. Consider the construction in Figure 6. In the random choice, the
transition rewards are already all 0, so only the branching degree needs to be adjusted by
padding the choice with a binary tree as above. In the controlled choice, the transitions
carrying reward +m!, are replaced by m! transitions each bearing reward +1 respectively.
Therefore, the path lengths increase in the following way in the n-th gadget. In s, and c,,
the binary trees increase path length by up to [lg(k(n) + 1)| (where lg is the logarithm to
base 2) and after ¢, the path length increases by up to mﬁ(n) twice.

Consider the scenario where the play took the i-th random choice and the player makes
the ‘best’ mistake where they choose transition ¢ + 1. We show that, even in this best error
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case (and thus in all other error cases), the newly added path lengths do still not help to
prevent seeing a mean payoff < —1/2 in the n-th gadget. In this case, in the state between
¢y and s, 1, the total payoff is —mi*! and the total number of steps taken by the play so
far is upper bounded by

n—1
B & < 3" 2Mg(k(i) +1)] + 2mf“‘)> +2[lg(k(n) + 1)] + mt + mE.
i=N*

Recall that m,, dof Z?;]%,* mf(n) with m = def 1, and this is the definition of m,, from Figure 6

which is different from the definition of m,, in Figure 3. Note that k(n) is very slowly growing,
so it follows that ' ' ‘
Bn < 3my, +mt +mitt < 2mitt
i+l
That is to say that the mean payoff is < % = —1/2. As a result, in the case of a bad
Lz

aggressive decision, the mean payoff will still drop below —1/2 in this modified MDP (instead
of dropping below —1 in the original MDP). This is just as good to falsify MPip, inf>0-

Thus we obtain the following two results.

Theorem 6.10. There exists a countable, acyclic MDP M, whose reward counter is implicit
in the state, whose transition probabilities are rational, whose rewards on transitions are in
{=1,0,1} and whose branching degree is bounded by 2 for which valyq pmp,,, ;.o (S0) =1
and any FR strategy o is such that P syo(MPlimint>0) = 0. In particular, there are
no e-optimal step counter plus finite memory strategies for any € < 1 for the MPiiminf>0
objective for countable MDPs.

Proof. This follows from Lemma 4.13, Lemma 4.14, Definition 6.1, Definition 6.6 and
Definition 6.2. []

Theorem 6.11. There exists a countable, acyclic MDP M, whose reward counter is implicit
i the state, whose transition probabilities are rational, whose rewards on transitions are in
{—1,0,1} and whose branching degree is bounded by 2 for which so is almost surely winning
for MPyimint>0 and any FR strategy o is such that P sy,o(MPlimint>0) = 0. In particular,
almost sure winning strategies, when they exist, cannot be chosen with a step counter plus
finite memory for countable MDPs.

Proof. This follows from Lemma 4.21, Lemma 4.22, Definition 6.1, Definition 6.6 and
Definition 6.2. []

Remark 6.12. The result from Lemma 4.10 holds even for strategies o whose memory grows
unboundedly, but slower than k(n) — 1. That is to say that there exists a countable, acyclic
MDP M, whose step counter is implicit in the state such that valamp,, .0 (50) = 1 and
any strategy o with number of memory modes < k(n) — 1 in the nth gadget is such that
P,o,s0(MPiimint>0) = 0. This follows from a slightly modified version of Lemma 4.9 which
considers the situation where states i(n) and k(n) are confused in the player’s memory. Then
the argument used in Lemma 4.10 can be modified to include i(n), j(n) : N — {0,1,...,k(n)}.
The result then follows since in every gadget at least one memory mode will confuse at least
two states i(n),j(n) : N — {0,1,...,k(n) — 1}, which as we have shown is enough to falsify
MPim inf>0-

This is in contrast to examples such as Figure 10 where the only requirement on the
memory is that it grow unboundedly.
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Figure 10: An MDP where e-optimal strategies for MPip, inf>0 require only memory that
grows unboundedly with the number of steps taken so far.

7. CONCLUSION AND OUTLOOK

We have established matching lower and upper bounds on the strategy complexity of lim inf
threshold objectives for point, total and mean payoff on countably infinite MDPs; cf. Table 1.

The upper bounds hold not only for integer transition rewards, but also for rationals
or reals, provided that the reward counter (in those cases where one is required) is of
the same type. The lower bounds hold even for integer transition rewards, since all our
counterexamples are of this form.

Directions for future work include the corresponding questions for lim sup threshold
objectives. While the lim inf point payoff objective generalizes co-Biichi (see Section 2), the
lim sup point payoff objective generalizes Biichi. Thus the lower bounds for lim sup point
payoff are at least as high as the lower bounds for Biichi objectives [KMST19, KMST20].
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