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Abstract 13 

For bonded Fibre Reinforced Polymer (FRP) strengthening systems in civil engineering 14 

projects, the adhesive joint performance is a key factor in the effectiveness of the strengthening; 15 

however, it is known that the material properties of structural epoxy adhesives change with 16 

temperature. This present paper examines the implied relationship between the curing regimes 17 

and the storage modulus response of the adhesive using a Machine Learning (ML) approach. 18 

A dataset containing 157 experimental data collected from the scientific papers and academic 19 

theses was used for training and testing an Artificial Neural Network (ANN) model. The 20 

sensitivity analysis reveals that the curing conditions have a significant effect on the glass 21 

transition temperatures (Tg) of the adhesive, and consequently on the storage modulus response 22 

at elevated temperatures. Curing at an extremely high temperature for a long time does not, 23 

however, guarantee a better thermal performance. For the studied adhesive, curing in a warm 24 

(≥ 45 °C) and dry (near 0 % RH) environment for 21 days is recommended for practical 25 

applications. A software with a Graphical User Interface (GUI) was established, which can 26 

predict the storage modulus response of the adhesive, plot the corresponding response curve, 27 

and estimate the optimum curing condition. 28 

mailto:wangsongbo@hbut.edu.cn
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1 Introduction 33 

The civil engineering industry has witnessed a rapid growth in the use of externally bonded 34 

composite materials to strengthen structures across the world [1–3]. This has stimulated the use 35 

of structural epoxy adhesives in civil structures, as it can offer the advantages of low additional 36 

weight, more uniform stress distribution, and design flexibility, when compared to 37 

conventional joining techniques [4–6]. However, when the ambient temperature increases, 38 

adhesive joints may perform differently than at a normal temperature, as the glass transition 39 

behaviour of the adhesive layer will result in a reduction in its strength and stiffness, 40 

consequently reducing the stress transfer capacity of the joint [7–10].  41 

Traditional experimental investigations on the performance of adhesive layers can 42 

sometimes inevitably lack representativeness and generalisation. Using Machine Learning (ML) 43 

approaches enables the incorporation of available experimental results into an unified model, 44 

without the need for individual testing at each data point, which provides a more 45 

comprehensive and systematic understanding on the existing results. Through extracting 46 

complicated relationships between parameters and outputs, ML can further summarise implicit 47 

nonlinear laws and apply them to make new predictions, without involving labour-intensive 48 

work [11–13]. 49 

The first concept of ML was introduced in 1959 by Arthur Samuael [14], who defined ML 50 

as a field of study that enables computers to have the ability to learn without being explicitly 51 

programmed [15]. Since the 1990s, engineers have been using ML techniques to explore the 52 

complex behaviour of structural materials, among which artificial neural network (described 53 
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further in Section 2) in one of the most widely used ML methods. For example, Ghaboussi et 54 

al. [16] successfully used an Artificial Neural Network (ANN) in 1991 to predict the behaviour 55 

of concrete subjected to certain loading paths, while Rao and Mukherjee [17] used an ANN in 56 

1996 to predict the micromechanical response of ceramic matrix composites [12,18]. 57 

Over the last decade, several studies have been carried out using ML ANN approaches to 58 

analyse the response of adhesively bonded joints, particularly for single lap-shear joints. A 59 

back-propagation ANN model for predicting the bond strength of Fibre Reinforced Polymer 60 

(FRP)-to-concrete joints was first proposed by Mashrei et al. [19] in 2013. Tosun and Çalık 61 

[20] developed an ANN model to estimate the strength of aluminum-to-aluminum single lap-62 

shear joints based on their geometric dimensions in 2016, while in 2021, Gu et al. [5] further 63 

developed an upgraded ANN predictive model, which comprehensively considers the 64 

combined effects of continuous and discrete design (geometry and material) variables. Besides 65 

these, ANN approach can also be applied to develop constitutive material models for adhesive 66 

bonds. For instance, the rate dependent response of bonded joints was studied by Zgoul [21] 67 

using a proposed ANN constitutive model; and most recently, a ML material model that can 68 

be used in finite element analysis to estimate the element failure was developed by Sommer et 69 

al. [18]. These studies demonstrate the reliability of the ML ANN approach; however, they 70 

have been constrained to adhesively bonded joints rather than the structural adhesive itself and 71 

neither of them considers the effects of curing conditions or elevated environmental 72 

temperatures. 73 

Studies using ML approaches to explore the thermal performance of structural epoxy 74 

adhesives are rare. Jha et al. [22] and Tao et al. [23] were dedicated to establishing correlations 75 

between the chemical structure and the glass transition behaviour of polymers. Szabelski et al. 76 

[24] applied the ANN method to investigate the influences of adhesive mixing ratios and curing 77 

conditions on the tensile strength of bonded joints. The results indicated that the higher curing 78 
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temperature resulted in a relatively higher tensile strength, but the higher test temperature 79 

resulted in a significantly lower tensile strength. This demonstrates the importance of studying 80 

the mechanical behaviour of adhesives in relation to their curing conditions and service ambient 81 

temperatures. So far, there is a lack of research using machine learning approaches to analyse 82 

the implicit relationship between the modulus response of adhesives and the applied curing 83 

conditions. 84 

The aims of this study are to explore the influence of elevated temperatures on the storage 85 

modulus response of the structural epoxy adhesive, and how the applied curing conditions 86 

related to the thermal performance of the adhesive. This is achieved by utilising the ML 87 

approach, as the traditional curve fitting method is not applicable due to the complexity of the 88 

Tg behaviour, the curing regimes, and the variety of different test data. The ML approach can 89 

enable a better understanding of experimental data and incorporate them into a unified model 90 

for further comprehensive analysis and prediction of the thermal response of the adhesive. The 91 

predictions obtained without conducting time-consuming and expensive experimental tests can 92 

provide reference values for practical engineering applications. 93 

A predictive ANN model is proposed to map the relationship between the modulus response 94 

and the curing conditions. And for the first time, a user-friendly software with a Graphical User 95 

Interface (GUI) which implements the proposed ANN model is developed. 96 

 97 

2 Artificial Neural Network (ANN) 98 

ANN is a machine learning technique with flexible mathematical structures inspired by the 99 

networks of biological neurons in human brains. A typical ANN system comprises one input 100 

layer, one or more hidden layers and one output layer. After training, the system is capable of 101 

identifying complex nonlinear relationships between input and output data [9,25,26].  102 
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As shown in Figure 1, like biological neurons receiving signals from dendrites, all input 103 

parameters obtained from the dataset form the input layer of the ANN. The received parameters 104 

information is gathered in the hidden layer(s) and modulated through an activation function 105 

before being output to the output layer. This process can be expressed as follows [9,26,27]: 106 

𝑦𝑦𝑖𝑖 = 𝜎𝜎 ��  
𝑛𝑛

𝑖𝑖=1

𝑊𝑊𝑖𝑖
𝑘𝑘𝐼𝐼𝑖𝑖 + 𝑏𝑏𝑖𝑖�  (1) 107 

where yi refers to the output of neuron i, Ii refers to its input, σ is the activation function, 108 

𝑊𝑊𝑖𝑖
𝑘𝑘 represents the weight, and bi represents the bias [26].  109 

 110 
Figure 1: The schematic illustration of an ANN structure 111 

The number of neurons varies greatly among different problem cases, and therefore, trial 112 

and error is necessary to determine the structure of the ANN network before the network 113 

training. The goal of training an ANN is to minimise the network error by optimising the weight 114 

factors (𝑊𝑊𝑖𝑖
𝑘𝑘) that represent the strength of connections between neurons. Mean Square Error 115 

(MSE) is one of the criteria used to evaluate the performance of a network [9,26,28]: 116 

MSE =
1
𝑁𝑁
�  
𝑁𝑁

𝑖𝑖=1

(𝑡𝑡𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2 (2) 117 
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where N is the number of data, ti is the target value, 𝑦𝑦�𝑖𝑖 is the predicted value. The training 118 

process is iterative, where 𝑦𝑦�𝑖𝑖 is estimated by assigning a random weight (𝑊𝑊𝑖𝑖
𝑘𝑘) value each time, 119 

and the corresponding MSE is calculated. The initial weight (𝑊𝑊𝑖𝑖
𝑘𝑘 ) value is continuously 120 

updated until the MSE falls within a satisfactory range, and this is known as a back-propagation 121 

algorithm [26,28,29]. 122 

The basic concepts of the ANN machine learning technique have been clarified above, and 123 

more detailed information can be found in the cited references. In the next section, the 124 

development of the datasets is presented. 125 

 126 

3 Data acquisition and pre-processing 127 

Dynamic Mechanical Analysis (DMA) is a widely used technique for measuring the storage 128 

modulus of materials as a function of temperature [30,31], which has been used in a number of 129 

studies to determine the thermal properties of adhesives. In the present paper, the DMA 130 

experimental results of a structural epoxy adhesive (Sikadur-330 [32]) were extracted from a 131 

total of 11 scientific papers and academic theses to form two datasets. Dataset A containing 132 

157 experimental results was used to develop the ANN model, while dataset B containing 6 133 

experimental results was used to carry out subsequent validation work. 134 

The adhesive, Sikadur-330, selected for this study is an ambient-cured epoxy that is 135 

frequently used to apply FRP-bonded strengthening in infrastructure projects. The material 136 

consists of a thixotropic, solvent-free, bi-component epoxy-based adhesive, and its chemical 137 

structure comprises a bisphenol-A based epoxy resin and aliphatic amines as hardeners, with 138 

small amounts of silica-based fillers. The recommended mixing ratio in weight of the resin to 139 

the hardener is 4:1 in the material data sheet [32,33]. 140 
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Establishing a ML model for all types of structural adhesives was not possible within the 141 

scope of the current project, which would require a separate research work to collect an 142 

extremely massive database. Nevertheless, the research methodology demonstrated in this 143 

paper and the obtained implied relationship between parameters and outputs can provide a 144 

useful reference for studying other structural adhesives. 145 

 146 

3.1 Critical points for analysing the modulus response 147 

An indirect data training approach was used in this study, as the modulus response is a 148 

continuous result that cannot be used directly to generate the output part of the dataset. A 149 

summative output part with limited variables is required to prevent overfitting issues [34]. 150 

Figure 2 illustrates an example of the temperature-dependent storage modulus curve (black line) 151 

of the adhesive obtained from a DMA test [35], where the five critical modulus points related 152 

to the glass transition temperature (Tg) of the adhesive are marked: 153 

• Initial modulus (E1): the storage modulus at room temperature (around 20 °C); 154 

• Modulus corresponding to Onset Tg (E2): the intersection of two lines tangent to the 155 

glassy and leathery portions of the modulus response curve [30,36]; 156 

• Modulus corresponding to Inflection point Tg (E3): the point of inflection of the 157 

leathery portion of the curve [30,36]; 158 

• Modulus corresponding to Peak Tan δ Tg (E4): the modulus at which the maximum 159 

Tan δ (the ratio of loss modulus to storage modulus) occurs [30,36]; 160 

• Final modulus (E5): the storage modulus stabilises at the highest temperature 161 

(approximately 100 °C). 162 
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 163 
Figure 2: Simplify the modulus variation at elevated temperatures using the critical points 164 

The entire temperature-dependent modulus response curve can be estimated by connecting 165 

the five critical points. As shown by the blue line in the figure, the estimated curve was 166 

generated using the modified Bezier line connection method in the Origin Lab software [37]. 167 

The corresponding five critical points data were therefore extracted from the experimental 168 

results in the literature to form the summative output parts of the datasets. Note that the 169 

obtained five critical points data were not filtered, which ensured the authenticity of the created 170 

dataset, although there may have been slight errors during the process of extracting the data 171 

(E1-E5) by drawing the auxiliary lines manually. 172 

 173 

3.2 The development of the datasets 174 

Table 1 summarizes the literature used to construct the dataset A and dataset B. 157 DMA 175 

experimental results from 9 references (dataset A) were used to develop (through training and 176 

testing) the ANN model (described in Section 4), and the other 6 results from 2 references 177 

(dataset B) were used to validate the established user-friendly software (described in Section 178 

6). The DMA tests were carried out by applying dynamic flexural loads to the samples. A more 179 

detailed description of each test can be found in the cited references listed in Table 1. The 180 

experimental data from Othman's research at the University of Edinburgh [38] forms a large 181 

part of the datasets, which is due to the lack of other comprehensive experimental studies on 182 
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the effect of different curing conditions on the modulus response of the studied adhesive. 183 

Whilst a more comprehensive dataset would be preferable, additional experimental work was 184 

beyond the scope of this study. 185 

Table 1: Reviewed literature for constructing the datasets 186 
No. Reviewed Literature No. of samples 
1 Othman [38] 144 
2 Wang et al. [10] 3 
3 Wang et al. [35] 1 
4 Sousa et al. [33] 1 
5 Seif et al. [39] 1 
6 Sun et al. [40] 3 
7 Verdet et al. [41] 1 
8 Lartigau et al. [42] 1 
9 Savvilotidou et al. [43] 2 
(Dataset A: 157 samples for developing the ANN model) 
10 Stratford and Bisby [7] 5 
11 Burke et al. [44] 1 
(Dataset B: 6 samples for validating the established software) 

 187 
The raw data of the dataset A and dataset B are listed in the supplementary material. Table 188 

2 presents the features of the dataset A used for developing the ANN model. 189 

Table 2: Statistical summary of the dataset A used for developing the ANN model 190 
Variables Min Mean Max Coefficient of variation 
Inputs 
Curing temperature (°C) 13 43.6 80 52.1% 
Curing time (days) 3 13.2 34 73.5% 
Curing humidity (%) 0 49.5 100 97.0% 
Outputs 
E1: Initial modulus (MPa) 1952.9 3136.4 4172.9 14.2% 
Onset Tg (°C) 28.5 52.3 74.9 22.6% 
E2: Modulus corresponding to Onset Tg (MPa) 1111.6 2273.0 3281.7 21.3% 
Inflection point Tg (°C) 34.9 58.8 80.3 21.1% 
E3: Modulus corresponding to Inflection point Tg (MPa) 649.9 1289.4 2107.3 22.9% 
Peak Tan δ Tg (°C) 46.5 67.3 89.1 17.5% 
E4: Modulus corresponding to Peak Tan δ Tg (MPa) 66.5 234.6 575.6 46.2% 
E5: Final modulus (MPa) 19.9 40.2 78.2 34.8% 
 191 
The raw data needs to be normalised at the pre-processing stage, which can accelerate ANN 192 

training and improve prediction accuracy, especially for this study where the ranges of values 193 

of the variables (inputs and outputs) are significantly different. The min-max scaling method 194 

is applied [5,9]: 195 

𝑋𝑋′ =
𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛

𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑋𝑋𝑚𝑚𝑖𝑖𝑛𝑛
(3) 196 
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where X represents the raw data, 𝑋𝑋′ represents the normalised data, Xmin and Xmax refer to 197 

the minimum and maximum values of the target variable in the whole dataset. The full 198 

normalised dataset A is listed in the supplementary material as well. 199 

 200 

4 Establishment of the ANN model 201 

The construction process of the ANN model is shown in Figure 3. The Bayesian 202 

Regularization algorithm was used to train the ANN, which randomly divided the applied 203 

dataset A into two parts, 80% (126 samples) for training and 20% (31 samples) for testing. 204 

Whilst this algorithm usually requires more time, it can minimise the combination of squared 205 

errors and weights to train an ANN that performs reasonable generalisation for difficult, small, 206 

or noisy datasets [45,46]. The proposed ANN consists of one input layer, one hidden layer and 207 

one output layer. The activation functions for the hidden and output layers adopted the 208 

TANSIG (Equation (4)) function and the PURELIN function (Equation (5)), respectively. The 209 

TANSIG function produces data values between [-1, +1], while the PURELIN function keeps 210 

the inputs constant [28,45]. 211 

𝑦𝑦 = TANSIG(𝑥𝑥) =
2

(1 + 𝑒𝑒−2𝑚𝑚) − 1 (4) 212 

𝑦𝑦 = PURELIN(𝑥𝑥) = 𝑥𝑥 (5) 213 



11 

 

 214 
Figure 3: Construction process of the ANN model  215 

The number of hidden-layer neurons was determined through trial and error. As shown in 216 

Figure 4, 20 neurons were applied to construct the ANN model as this resulted in the lowest 217 

MSE (Equation (2)). 218 

 219 
Figure 4: Training mean squared error with different numbers of hidden-layer neurons 220 

 221 

5 Results and discussions 222 

In this section, the performance of the ANN model is presented, and the predicted results of 223 

the modulus response are compared with the experimental results from the literature to verify 224 
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the model. The complex relationship between the curing conditions and the modulus response 225 

is then analysed using the developed ANN model. 226 

 227 

5.1 Model performance evaluation 228 

Figure 5 illustrates the best training performance of the ANN model, which was obtained at 229 

the 363rd epochs with the MSE (Equation (2)) equals to 6.23e-3. The corresponding regression 230 

diagrams of the training set and testing set at the 363rd epochs are shown in Figure 6, where Y 231 

and T refer to the normalised predicted values and target values.  232 

 233 
Figure 5: ANN training performance 234 

 235 
                                         (a) Training data (Tg)                                                            (b) Training data (E) 236 
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 237 
                                         (c) Testing data (Tg)                                                                (d) Testing data (E) 238 

Figure 6: Regression of the developed ANN model 239 

The correlation coefficients (r) corresponding to the Tg values (Onset Tg, Inflection point Tg, 240 

and Peak Tan δ Tg) were higher than those corresponding to the modulus values (E1 – E5), 241 

which indicates that the trained ANN model was able to predict the adhesive’s Tg values more 242 

accurately. Nevertheless, the overall response with the correlation coefficients close to 1.0 243 

suggested that the training produced the optimal results. 244 

 245 

5.2 Verification of the developed ANN model 246 

The predicted values need to be post-processed to obtain the modulus response of the 247 

adhesive due to the indirect data training approach used in developing the ANN model. The 248 

comparison of the predicted modulus response curves (using the modified Bezier line 249 

connection method in the Origin Lab software [37]) and the experimental results (storage 250 

modulus versus temperature curves) from scientific papers are shown in Figure 7. The three 251 

selected representative comparison results correspond to the glass transition behaviour 252 

occurring in the low, medium, and high temperature ranges. The coefficient of determination 253 

(R2) of each comparison is illustrated in Figure 7. 254 
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 255 
           (a) In the low temperature range            (b) In the medium temperature range            (c) In the high temperature range 256 

Figure 7: Obtained predicted results compared with published results 257 

The predicted modulus response of the adhesive at elevated temperatures is suitably accurate 258 

from the viewpoint of engineering practice. The ANN model developed using the dataset A 259 

(Table 1), which contains a large proportion of data from Othman's experiments [38], can also 260 

be used to accurately predict the results from other experiments, demonstrating the great 261 

generality of the ANN machine learning approach. Note, however, that for the glass transition 262 

behaviour occurring in the low temperature range, if the precise modulus response is of 263 

interests, an extra experiment may still be necessary. 264 

 265 

5.3 The effect of curing conditions on the modulus response at elevated temperatures 266 

The developed ANN model made it possible to obtain a substantial number of predictions 267 

conveniently, which allowed for a comprehensive analysis of the relationship between the 268 

curing conditions (inputs) and the modulus response at high temperatures (outputs). The effects 269 

of curing temperature, curing time, and curing humidity, respectively, on the Tg and modulus 270 

values of the adhesive are visualised in Figure 8. The benchmark curing condition was set at 271 

43.6 °C and 49.5% RH for 13.2 days, based on the mean values of the variables in the dataset 272 

A (see Table 2).  273 
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 274 
                               (a) Effect of curing temperature on Tg                         (b)Effect of curing temperature on E1-E5 275 

 276 
                                   (c) Effect of curing time on Tg                                      (d) Effect of curing time on E1-E5 277 

 278 
                                (e) Effect of curing humidity on Tg                              (f) Effect of curing humidity on E1-E5 279 

Figure 8: The effect of curing conditions on the critical points of modulus response at elevated temperatures 280 

• As shown in Figure 8 (a), by keeping the benchmark curing time and curing humidity 281 

constant, as the curing temperature increases from 13 °C, the crosslinking of the 282 

epoxy adhesive increases and the free volume decreases, which results in the Tg 283 

values growing until an approximate plateau is reached. Note that the slight 284 

reduction occurring during the plateau period is due to the thermal degradation or 285 

oxidative crosslinking behaviour caused by high curing temperatures. This was also 286 

observed experimentally by Carbas et al. [31]. The variation in the modulus values 287 

(Figure 8 (b)) is relatively small (noting the different vertical scale ratios), with a 288 



16 

 

general tendency to increase with increasing curing temperature. The fluctuations in 289 

the modulus values are partly caused by the combined errors in the collected 290 

different experimental data and the training process (see Figure 6 (b) and (d)). 291 

• Similarly, as the curing time increases from 3 days, the predicted Tg values continue 292 

to increase until they approach an approximate plateau, as shown in Figure 8 (c). 293 

The modulus values (mainly E1, E2, and E3), however, decrease firstly and then 294 

increase (see Figure 8 (d)). 295 

• The humidity is detrimental to the thermal performance of the adhesive, as indicated 296 

in Figure 8 (e) and (f). Both the Tg and the modulus reduce as the curing humidity 297 

increases from 0% RH to 100% RH. 298 

The curing conditions have a significantly impact on the temperature at which the glass 299 

transition behaviour of the adhesive begins, however, the impact on the specific modulus values 300 

at different stages of its transition from the glassy state to the rubbery state is limited. Curing 301 

the adhesive at an extremely high temperature over a long period of time is not conducive to 302 

practical engineering applications and this does not necessarily lead to a better thermal 303 

performance due to the thermal degradation or oxidative crosslinking effect. As a result, cured 304 

at an adequate warm temperature (≥ 45 °C) for around 21 days is sufficient for the studied 305 

adhesive, and the curing is preferably conducted in a dry environment. 306 

 307 

6 Graphical User Interface (GUI) design 308 

Applying the original ANN model requires further coding work, which could be an obstacle 309 

for civil engineers. Establishing a user-friendly software that implements the developed ANN 310 

model can facilitate turning machine learning results into practical applications. The designed 311 

software with a GUI was programmed using MATLAB, and the source code is publicly 312 

available in the supplementary material.  313 
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As shown in Figure 9, the software is capable of predicting the different modulus responses 314 

of the adhesive according to the different applied curing conditions. The modulus response 315 

curve can be generated based on the selected set of output values. In addition, the optimum 316 

curing condition can be calculated with respect to the maximum onset, Tg, at which the modulus 317 

of the adhesive starts to drop significantly. The optimum curing condition is estimated to be 318 

cured at 56.6 °C and 0% RH for 23.2 days, which agrees with the recommendation proposed 319 

at the end of Section 5. Utilising these functions of the software can provide more 320 

comprehensive results on the response of the adhesive.  321 

 322 
Figure 9: GUI for estimation of the modulus response at elevated temperatures 323 

The effectiveness of the software was validated by comparing the predicted results with the 324 

experimental results from two references separately, as shown in Figure 10. The results in these 325 

2 references were not used in training the ANN model (unlike in Figure 7), which ensures a 326 

reasonable validation. 327 
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 328 
                    (a) compared with the experimental results in [7]         (b) compared with the experimental results in [44] 329 

Figure 10: Validation of the established software 330 

Whilst the errors in the specific Tg values are approximately ± 5 °C, the shape of the curve 331 

representing the tendency of the modulus to decrease at elevated temperatures can be well 332 

estimated. The software can be upgraded when more data is available to train a more robust 333 

ANN model and to include consideration of different chemical formulations for different types 334 

of structural adhesives. The current version can be used as a simple tool to conveniently 335 

estimate the approximate modulus response of the adhesive based on the applied curing 336 

condition, without the need for experimentation; however, caution is necessary in applying this 337 

software to obtain specific Tg or modulus values.  338 

 339 

7 Conclusions 340 

This study proposes using the machine learning approach for analysing and predicting the 341 

storage modulus response of the structural epoxy adhesive (Sikadur-330 [32]) at elevated 342 

temperatures. By utilising its powerful data processing and inductive learning capabilities, the 343 

links between parameters and results are inferred and analysed, which enables us to gain a 344 

deeper understanding of the patterns implied in the extensive experimental results. 345 

An artificial neural network model was developed to map the relationship between the 346 

modulus response and the applied curing conditions, and to provide predicted reference values 347 

for practical engineering applications. The analytical results of the ANN model were verified 348 
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against the published experimental studies, demonstrating the powerful generalisation and 349 

prediction capabilities of the ML model. The sensitivity analysis of variables was performed 350 

based on the massive prediction results generated using the ANN model. 351 

• The effects of curing conditions on the Tg results of the adhesive are more significant 352 

than those on the modulus results. As the curing temperature or curing time increases, 353 

the Tg values will increase until the thermal energy is sufficient to complete the 354 

crosslinking, leading to an approximate plateau. 355 

• Increasing curing humidity can result in a decrease in the Tg and modulus, which is 356 

detrimental to the thermal performance of the adhesive. 357 

• It is recommended to cure the studied adhesive at a warm temperature (≥ 45 °C) and 358 

in a dry environment (close to 0% RH) for around 21 days in practical applications. 359 

A user-friendly software with a Graphical User Interface (GUI) has been established by 360 

implementing the ANN model. The efficiency and capability of this simple tool have been 361 

illustrated. Using its powerful computational capabilities, the optimum curing condition for the 362 

examined adhesive was estimated to be 23.2 days at 56.6 °C and 0% RH. However, 363 

experimental confirmation would be required when using the software for design purposes. 364 

Like any other machine learning method, the generalisability of the ANN model might be 365 

limited to the range of the dataset used. The dataset is expected to be updated as more 366 

experimental data becomes available to train a more robust ANN model and to consider 367 

different chemical formulations for different types of structural adhesives. Nevertheless, the 368 

present study demonstrates the use of a machine learning approach to comprehensively analyse 369 

and predict the modulus response of a structural epoxy adhesive according to the applied curing 370 

condition. 371 
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