
 

 

 
 

 

Edinburgh Research Explorer 
 
 

 
 

 
 

 
 

 

 
 

 
 

 
 

 
 

 
 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An Unobtrusive Method for Remote Quantification of Parkinson’s
and Essential Tremor using mm-Wave Sensing

Citation for published version:
Gillani, N, Arslan, T & Mead, G 2023, 'An Unobtrusive Method for Remote Quantification of Parkinson’s and
Essential Tremor using mm-Wave Sensing', IEEE Sensors Journal.
https://doi.org/10.1109/JSEN.2023.3261111

Digital Object Identifier (DOI):
10.1109/JSEN.2023.3261111

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Sensors Journal

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 04. Apr. 2023

https://doi.org/10.1109/JSEN.2023.3261111
https://doi.org/10.1109/JSEN.2023.3261111
https://www.research.ed.ac.uk/en/publications/43f59dd0-b9a7-4b34-b44b-bd6ce90ce69e


 1 

 

 

Abstract—Tremor is a primary 
symptom of common movement 
disorders such as Essential tremor 
and Parkinson’s disease. People 
experiencing tremors face 
difficulty in performing everyday 
tasks which negatively impacts 
their independence. Tremor 
quantification helps clinicians in 
evaluating disease progression 
and treatment response. Majority 
of the existing methods include 
cameras or motion sensors 
embedded in wearables and hand-
held devices. The continuous wearing of contact sensors can be uneasy for the patients while the cameras cause 
privacy concerns. This paper proposes a novel method for tremor quantification using a Frequency Modulated 
Continuous Wave (FMCW) radar sensor. In this paper, an off-the shelf, low-cost FMCW radar has been configured to 
capture vibrations induced in distal limbs, a representative feature of Essential and Parkinson’s Tremors. Moreover, a 
signal processing chain is developed to extract characteristic tremor frequency and amplitude by reconstructing the 
tremor signal from the radar return signals. For robustness and increased accuracy, static clutter and voluntary body 
motion are eliminated. Extensive experiments were performed and results were compared to the state-of-the-art 

methods that use accelerometers and gyroscopes. A strong correlation (𝑹𝟐>0.97) is found between the reference 
sensor readings and predicted values for both quantified parameters. The mean error for the frequency and amplitude 
is 0.14Hz and 0.03cm, respectively. Results demonstrate a superior accuracy as compared to the existing non-contact 
techniques, with the added advantage of privacy and integrity preserving for the end-user. Hence, the proposed system 
can provide reliable long-term objective assessment, aiding clinicians in the evaluation of tremor severity and 
treatment effectiveness. 

 
Index Terms— Tremor quantification, FMCW radar, Healthcare, Parkinson’s disease, Essential tremor, Movement 

Disorders, Signal Processing, Remote monitoring, Non-contact sensing, Independent Living 

 

 

I. Introduction 

REMOR is a motor disorder in which unintentional and 

uncontrollable oscillations are experienced in certain parts 

of the body especially in the distal limbs [1],[2]. Globally, 

millions of people are affected by tremors. People suffering 

from tremors experience difficulty in performing simple yet 

essential everyday activities such as eating, drinking or arm 

extension to grasp something. Consequently, tremors not only 

negatively affect  the Quality of Life (QoL) and independence 

but also increase fall risk in patients who have low cognition 

[3], [4]. Tremor is a characteristic feature of progressive 

neurological diseases, such as Essential Tremor (ET) and 

Parkinson’s disease (PD). ET is one of the most widely spread 

movement disorders worldwide [5]. For people aged between 

40 and 60 years, the incidence rate is 4-5%. This increases to 

9% for people aged 60 years or more [6]. Whereas, the statistics 

report of 2019 shows that more than 8.5 million individuals 

 
 

suffer from PD causing 5.8 million disability-adjusted life years 

[7]. This marks an alarming increase of 81% since the year 2000 

[7]. Parkinsonian tremors and other hyperkinetic conditions 

may also occur as a later manifestation in stroke patients [8]. 

With such high incidence rates, and keeping in view the fact, 

that these neurological diseases cannot be cured, effective and 

feasible methods are required for the continuous quantification 

of these patients living independently.  

Disease progression and treatment heavily rely on the 

quantification of key tremor characteristics. Clinically, tremor 

severity is assessed using qualitative rating scales such as 

Quality of Life in Essential Tremor (QUEST) [9], Essential 

Tremor Rating Scale (ETRS) [10] and  Unified Parkinson’s 

Disease rating Scale (UPDRS) [11].  Though these clinical tests 

indicate the disease severity, however, they are time-

consuming, subjective and sporadic, which may cause a 

hindrance in portraying accurate picture of disease progression 
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[12]. Continuous monitoring can lead to an early diagnosis of 

further neurological deterioration, assessment of disease 

progression and help the clinicians in evaluating treatment 

effectiveness [13]. Tremor frequency and amplitude are two 

clinically significant parameters that indicate tremor 

severity[14]–[17]. Both parameters are vital in the differential 

diagnosis of tremor-related diseases, for example, to rule out 

PD versus ET, where symptoms might be confusing [18]. Table 

1 demonstrates the characteristic fundamental frequency of PD 

and ET [19], [20]. However, the amplitude of the tremor 

depends on multiple factors including age, type of tremor and 

the time elapsed since the onset of the disease. In the literature, 

the typical tremor amplitude ranges have been reported to be 

between 0.1 cm for mild tremors going up to 4 cm for severe 

tremors [21], [22]. 
TABLE I 

CHARACTERISTIC FUNDAMENTAL TREMOR FREQUENCY 

 

Aetiology 

 

Rest Tremor 

Action Tremors 

Postural Kinetic 

PD 4-6 Hz 6-8 Hz - 

ET - 5-8 Hz 5-12Hz 

II. RELATED WORK 

Various sensors are used for the quantification of tremor 

parameters. The sensors measure the limb vibrations induced 

as a result of tremors. This section details the various sensors 

and methods that exist in the literature that have been used to 

quantify tremors. 

A. Tremor Quantification through Wearables 

Conventional Electroencephalography (EEG) and 

Electromyography (EMG) techniques are used to monitor 

signals from the central nervous system and muscles for 

detecting tremor motor dysfunction [23]–[25]. Recently, 

wearable motion sensors such as accelerometers and 

gyroscopes are widely being adopted for the said purpose. 

These sensors are either used as stand-alone units worn on the 

upper and lower limbs [26]–[29] or are the ones embedded in 

daily-use devices such as smartwatches and smartphones [30]–

[33]. Algorithms are developed to process the raw data 

collected from the accelerometer and gyroscope axes. The 

fundamental frequency is calculated by performing the power 

spectral density analysis. Whereas, the amplitude is calculated 

by either performing a single integration on the gyroscope data 

or a double integration on the accelerometer readings [24]-[34]. 

A gyration computer mouse has also been used to track the 

stability in drawing tasks to quantify tremors [35]. For the EEG 

and EMG recordings, specialized lab equipment is required, 

while the continuous wearing of the contact sensors can result 

in the patient being uncomfortable. Moreover, patients also 

suffering from cognitive issues may altogether forget to wear 

them. Handheld devices such as smartphones or the computer 

mouse can’t be held for too long. Hence these techniques result 

in missing tremor episodes throughout the day, hindering the 

continuous objective monitoring of tremors. 

B. Tremor Quantification through Camera Sensors 

In the literature, a handful of non-contact solutions also exist. 

A recent systematic review [36], cites multiple works that use 

camera-based sensors for the quantification of hand tremors. 

Similarly, [37] and [38] have used Kinect technology using 

colour and depth cameras for detecting and quantifying tremors. 

However, the continuous use of cameras and video recording 

invades the privacy of an individual. Moreover cameras are 

light dependent. Hence, non-contact and privacy preserving 

solutions are required for long-term reliable tremor 

quantification. 

C. Tremor Quantification using Electromagnetic Sensors 

Recently electromagnetic (EM) sensors have gained 

popularity in numerous healthcare applications. This is due to 

their ability to monitor relevant parameters that are indicative 

of health status of an individual such as heartrate detection and 

gait monitoring [39], [40]. Wi-Fi and radar sensors both fall in 

this category. Though EM sensors have been used for a variety 

of healthcare applications, their evaluation for tremor 

quantification due to ET and PD, specific to care-based 

scenarios is non-existent. For example, out of the existing 

studies in the literature, [41] and [45] have quantified tremors, 

whereas [43] and [44] only detect action tremors during 

drinking water. Blumrosen et al. [41] used an Ultra Wideband 

(UWB) radar system to quantify tremor frequency and 

amplitude. The radar system is based on discrete components 

and hence is large in size. Moreover, discrete components 

increase overall system cost and power consumption [42]. A 

Linear Minimum Mean Square Error criteria was used with 

matched filtering. Though the system quantified frequency with 

sensible accuracy however, for the tremor amplitude, the 

accuracy declined with increasing distance from 1m to 1.5 m 

and 2m of the robotic arm from the radar system. In [43], the 

change in variance of the subcarrier amplitude from an S-band 

wireless router and a receiving omnidirectional antenna is used 

to distinguish between tremor and no tremor episodes while a 

person grabs a glass of water. In [44], an FMCW radar has been 

used to detect action tremors employing time-frequency 

analysis. In [43] and [44] though tremor has been identified, 

however, the tremor parameters have not been quantified. More 

recently, a 2x2 array 10 GHz X band Doppler radar sensor was 

developed to quantify hand tremors. [45]. Tremor 

quantification is done for digital hand-writing scenarios for PD 

patients. The system correlated (R2 > 0.85) three time-domain 

parameters: zero crossing, Willison amplitude and waveform 

length to the tremor frequency. The measurement resolution of 

the system is 20-40 cm. Hence, the system is limited to 

quantifying hand tremors at very small range and is not suitable 

for continuous monitoring in independent living scenarios. The 

performance evaluation of the proposed system has been done 

against an Apple pencil, laptop and smartphone. 

Keeping in view the limitations of the current studies, the aim 

of this paper is to quantify tremors for general care-based 

scenarios that encompass all the major activities that can trigger 

tremors throughout the day. This has been done keeping in view 

the needs of the elderly population who suffer from tremors due 

to neurological dysfunction such as Essential Tremor (ET) and 

Parkinson’s disease (PD).  The main objective of this research 
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is to demonstrate the effectiveness, feasibility and accuracy of 

an FMCW radar system to quantify tremor parameters for use 

cases of independent care while preserving the privacy and 

integrity of the patient. In contrast to the existing techniques 

which have been developed to account for hand tremors only, 

the proposed system is a more general purpose specifically 

tailored and designed to quantify Essential and Parkinson’s 

tremors in real-life like settings.  

The system has been designed to account for tremors that 

occur throughout the day while performing certain actions or 

while sitting relaxed in a chair.  . These include actions such as 

eating or drinking (action tremors), a front extension of the 

upper limbs to hold it against gravity (posture tremor) and while 

the patient is relaxing such as sitting in the chair (rest tremors). 

Action and posture tremors are characteristic of ET while rest 

tremors are a key symptom in PD patients. In summary, the key 

contributions of this work are as follows: 

1) This paper presents a novel system that quantifies tremors 

specific to ET and PD patients for general care based 

scenarios with focus on independent living.  

2) The chirp parameters of a commercial off-the-shelf 

CMOS FMCW radar on-chip sensor system, have been 

designed to tailor the sensor specifically to capture 

tremors in the distil limbs. The single chip reduces the 

overall cost and power of the system unlike the discrete 

component systems used in [41] and [43]. The system is 

easily portable making it suitable for deployment for 

continuous remote monitoring of tremor patients in the 

ease of their homes while preserving their privacy and 

integrity. 

3) An algorithm was developed to quantify two clinically 

important tremor parameters, frequency and amplitude. In 

contrast to the existing studies that quantify tremors using 

time series data or numerical analysis techniques using 

radar this algorithm is implements a mathematical 

vibrational model and utilizes phase preservation from the 

radar return signals.  

4) Extensive experiments were performed for action, posture 

and rest tremors. Results were validated through state-of-

the-art conventional methods that use accelerometer and 

gyroscope data [25]-[33]. A detailed statistical analysis is 

performed on the obtained results. The overall signed-

errors ± SD for the predicted frequency and amplitude are 

-0.14 ± 0.4 Hz and -0.03 ± 0.1 cm respectively. The results 

demonstrate a superior accuracy as compared to existing 

unobtrusive methods to accurately quantify tremors. 

For validation purposes, the accelerometer and gyroscope 

sensors embedded in the iPhone were used as a reference. The 

data from these sensors were obtained using a mobile 

application ‘TREMOR12’ [46]. The choice of this application 

as a validation tool is based on the following factors: 

a) The mobile application is compatible with the current 

regulatory oversight by the European Union (MEDDEV) 

guidance and the Food and Drug Administration (FDA) 

for medical mobile applications [46]. 

b) The application has been tested and evaluated on ET 

patients aged 55-71 years [47]. 

c) The application developer and the first author of [46], is a 

neurosurgeon and experienced mobile application 

developer. The co-authors are also associated with the 

departments of Neurology, Psychiatry, and Neurosurgery 

at the Medical centre of Maastricht University, 

Netherlands. 

 

    The subsequent sections of the paper are: Section III 

describes the data acquisition system used for tremor 

quantification. Section IV details the signal processing chain 

developed to extract tremor frequency and amplitude from the 

raw radar data. Section V presents the experimental protocol 

and detailed results. 

III. HARDWARE SYSTEM 

This section discusses the motivation behind the use of the 

FMCW radar and presents the details of the data acquisition 

hardware. Then the customized configuration applied to the 

radar sensor to detect tremors are presented. 

A. Motivation for millimetre Wave FMCW Radar 

Radar sensors are excellent electromagnetic (EM) sensors 

whose performance is not affected by the atmosphere, clothing 

of the patient and light conditions of the room. The radar used 

in this work is a millimetre Wave (mmWave) sensor, with a 

wavelength in the mm range. This gives an advantage of the 

small size of transmitting (Tx) and receiving (Rx) antennas and 

hence, a compact form factor for the sensor, facilitating 

portability, a desired aspect for remote health monitoring. The 

advent of the new generation of low-cost, compact-size 

mmWave sensors has paved the way for various medical, 

military and industrial applications[48], [49],[50].  FMCW 

radars are continuous wave radars that transmit the signal 

continuously as compared to the periodic pulses in pulse radars. 

This improves the signal-to-noise ratio (SNR) [51]. Moreover, 

unlike the simple Continuous Wave (CW) radar, the FMCW 

transmits a frequency-modulated signal with finite bandwidth 

(BW). This facilitates clutter isolation and aids in velocity and 

range measurements of the target in front of the radar [52]. With 

specialized algorithms, these properties can be used to keep 

track of the subtle changes in the range of the object thus 

making the FMCW radar a suitable choice for Tremor 

quantification.  

B. Data Acquisition System 

Traditional radar systems have discrete components such as 

antennas, analogue components e.g. the clock, 

microcontrollers, Analog-to-Digital (ADC) converters and 

Digital signal processors (DSP) [52]. However, using these 

discrete components gives rise to increased energy losses, 

increased power consumption and larger system space 

requirement [42]. The sensor used in the current study is a 77 

GHz CMOS-based, linear FMCW radar system on a chip 

manufactured by Texas Instruments [53]. All the components 

are integrated on a single chip mitigating the above-mentioned 

issues. It has a programmable C674x DSP core and an ARM 

Cortex®-R4F Microcontroller [54]. The board is powered by a 

5V adapter. The sensor is provided with real and quadrature 

mixers. Depending on the target application, the sensor can be 

programmed to select any mixer. The output of the mixers 
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results in continuous beat signals also known as Intermediate 

Frequency (IF), as shown in figure 1.  

 
Fig. 1. FMCW Radar System and IF Signal Generation 

 

The IF signals are then digitized by the Analog-to-Digital 

(ADC) converters. To capture these sampled IF signals a TI 

data capture board DCA1000 is used [55]. The data is 

transferred to the DCA1000 through the 60-pin Samtec cable 

also shown in figure 1. These are then sent to the computer via 

an Ethernet connection.  

C. Customizing the Radar sensor for Tremor Detection 

   As FMCW radars are used for a variety of sensing 

applications, the system requirements vary depending on the 

targeted objective. A sensor configured for autonomous driving 

assistance will vary as compared to medical sensing 

application. The sensor has to be programmed according to the 

range requirements, environmental conditions (indoor versus 

outdoor) and the desired field of view (FOV). In this work, the 

radar sensor system was configured for indoor requirements 

which could detect and monitor small tremor vibrations. 

The radar system used provides flexibility in configuring chirp 

timing parameters. This is done by using the mmWave Studio® 

[56]. Using the mmWave Studio IDE, the digital timing engine, 

local oscillator, ADC sampler and processor are programmed 

to control the chirp start time ‘𝑇𝑠′, idle time (time taken to restart 

the synthesizer for the new chirp), chirp slope ‘S’ and chirp end 

time as shown in figure 2.  

 

 
Fig. 2. Programmable FMCW Chirp 

 

    Suppose an object is at a distance ‘d’ from the radar, then the 

reflected signal is delayed by a time ‘𝑡𝑑’ with respect to the 

transmitted signal, as indicated in figure 1. The time delay is 

given as 𝑡𝑑 =2d/c, where ‘c’ represents the speed of light and 2 

accounts for the round trip in the case of the collocated radar. 

The instantaneous phase 𝜑𝐼𝐹 and frequency 𝑓𝐼𝐹 of the IF signal 

are given by the differences in the corresponding instantaneous 

values of the transmitted and received signals. The phase is 

given as                             

                                   𝜑𝐼𝐹 = 2π𝑓𝐼𝐹𝑡𝑑                                      (1) 

 

Inserting the value of ′𝑡𝑑′ in (1) gives: 

 

                                  𝜑𝐼𝐹 = 4πd/λ                                       (2) 

 

    From (2), it is seen that a small variation in ‘d’ results in a 

corresponding phase change. This can be leveraged to 

approximate the range of the target. To resolve the range values, 

the Fast Fourier transform (FFT) is applied to the sampled 

signals, also called range-FFT. According to FFT theory, the 

frequency resolution increases if the length of the IF signal is 

increased [49]. The phase of the range FFT calculated from the 

reflected signal changes completely by 180 degrees for every 1 

mm of range change [50]. This property is crucial for estimating 

vibration frequencies and algorithms are required for accurate 

phase unwrapping [58]. From figures 1 and 2 it can be seen that 

a larger BW will result in a longer IF signal. The property of the 

radar to distinguish between two near objects is known as 

Range resolution ‘𝑅𝑟𝑒𝑠’ and is given by: 

 

                                 𝑅𝑟𝑒𝑠 = c/2BW                                       (3) 

      

      The range resolution for the radar used is 3.74 cm. Hence, 

two distinct vibrating objects such as dominant and non-

dominant limbs can easily be distinguished. Tremors 

experienced in the limbs can be irregular or regular depending 

on the underlying neurological conditions. For example, in a 

resting tremor, the amplitude may vary over time making it 

irregular. This affects the velocity of the limb. To measure the 

velocity changes, a series of equally spaced chirps are 

transmitted. To monitor the changing velocity ‘𝑣’, the chirp 

time ‘𝑇𝑐ℎ’ should be controlled. The chirp time and phase 

change are related by: 

                               

                          Δ𝜑𝐼𝐹 = 4π𝑣𝑇𝑐ℎ/𝜆                                      (4) 

 

   From figure 2, it can be observed that ′ 𝑇𝑐ℎ′  depends on the 

slope of the chirp ‘S’ and BW. However, the synthesizer takes 

some time to synthesize every new chirp. This time is known as 

idle time. This limits the overall  𝑇𝑐ℎ and the effective BW of 

the sensor. The measurable maximum velocity increases with 

the frame time ′𝑇𝐹𝑟𝑎𝑚𝑒 ′ that is, a greater number of chirps per 

frame. Whereas, the velocity resolution increases with a shorter 

chirp period also known as fast FMCW [59]. For applications 

where the frequency is very low such as breathing detection (0.1 

– 0.5 Hz), a low number of chirps per frame is enough to 

guarantee that no phase rollover occurs. However, a fast chirp 

period along with a higher number of chirps per second is 

required for applications such as heart rate variability [52].  

     In this work, 𝑇𝑐ℎ  (=BW/S) was programmed to be 0.3 msec, 

which means 3333.3 chirps per second are transmitted. This 

ensures the detection of frequency vibrations for tremors (4-12 

Hz). Table II summarizes the designed parameters and their 

values used in this work. 
TABLE II 

PROGRAMMED CHIRP PARAMETERS 

Parameter Symbol Value Units 

Bandwidth used BW 3.60 GHz 

Sampling rate - 5  MSps 

Samples per chirp N 256 - 
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Parameter Symbol Value Units 

Frames nF 200 - 

Chirps in one Frame - 128 - 

Chirp Time  𝑇𝑐ℎ 0.3 ms 

Frame periodicity p 40 ms 

Range Resolution 𝑅𝑟𝑒𝑠 4 cm 

Field of View FOV 120 degrees 

Max. detectable Range Rmax 9.4 m 

Data Capture Time 𝑇𝑇𝑜𝑡𝑎𝑙 8 sec 

IV. SIGNAL PROCESSING CHAIN 

    This section explains the signal conditioning and pre-

processing steps for the received signal. It discusses the FMCW 

signal model for tremor vibrations and finally details the 

algorithm developed to extract tremor frequency and amplitude. 

A. Signal Pre-processing 

    The relative length of the vibrating limb is considerably smaller 

as compared to the full body thus affecting the radar cross section 

(RCS). The reflections from the vibrating limbs are weak as 

compared to the strong interference signals from the surroundings 

and bulk body movements. These strong reflections are 

superimposed on the weak vibrating modulated signal. This 

problem gets pronounced when the vibration frequency 𝑓
𝑣
 is also 

low [49], as in the case of Parkinson’s disease rest tremors.  

     An important consideration is the use of real (I only) versus 

quadrature (I and Q) mixtures. The TI radar sensor allows using 

either [57]. For this work, the sensor was programmed to use a 

quadrature mixer with complex baseband (BB) architecture. 

The received input is mixed with sin and cos versions of the 

transmitted signal.     Real BB signals from real mixers result in 

a double sideband (DSB) signal whereas, complex BB signals 

from quadrature mixers give a single sideband (SSB) spectrum 

[55]. The DSB and SSB receiver signals are given as: 

 

 

        𝑅𝑥𝐷𝑆𝐵 =  cos [(
4𝜋

𝜆
)𝐷𝑣(t) + (

4𝜋

𝜆
)𝑅0]cos (2𝜋𝑓𝐼𝐹𝑡)          (5) 

 

        𝑅𝑥𝑆𝑆𝐵 =  cos [2𝜋𝑓𝐼𝐹𝑡 + (
4𝜋

𝜆
)𝐷𝑣(t) + (

4𝜋

𝜆
)𝑅0]                (6) 

 

    From (5) it can be seen that at a range ′𝑅0′ from the radar, the 

received signal is the sine wave function with frequency 𝑓𝐼𝐹, 

with an envelope modulated by limb tremor vibration function 

𝐷𝑣(𝑡)  =𝐷𝑚𝑎𝑥sin (2𝜋𝑓
𝑣
𝑡). This is illustrated in figure 4. Hence, 

the IF signal spectrum suffers image band noise foldback, reducing 

the SNR. In comparison, the tremor vibration in SSB (6), is 

embedded in the phase part of the received input signal. This, 

unlike the DSB, eliminates the problem of null points and optimum 

points. Moreover, in SSB the in-band (where the signal of interest 

lies) and image-band remain distinguished thus increasing 

performance gain up to 3 dB in noise figure [57]. For these reasons, 

the radar sensor was programmed to use a quadrature mixer and 

complex baseband architecture, resulting in SSB received signal. 

B. FMCW Signal Model for Vibrating Limb 

    The transmitted FMCW chirp for a single period ‘𝑇𝑐ℎ’ is: 

  

               Tx(t) =  ATexp (j(2πf0t + πSt2 + φ))                  (7) 

 

     Where ′𝜑′ denotes the initial phase, 𝑓
0
 is the start frequency of 

the chirp, 𝐴𝑇 is the transmit power amplitude, ′S′indicates the chirp 

slope and ‘t’ denotes the fast time within one time period ‘𝑇𝑐ℎ’. 

 
Fig. 3. Modeling Radar Return Signal from Vibrating Limb 

 

    ′𝑅0′ is the distance of the subject from the radar system and R(𝜏) 
is the time-varying range which incorporates the varying range 

from the vibrating limbs due to tremors. R(𝜏) of the vibrating 

limb from the radar at any given time will be: 

 

                                 𝑅(𝜏) =  𝑅0 + 𝐷𝑣(𝑡)                              (8) 

                    𝑅(𝜏) =  𝑅0 +  𝐷𝑚𝑎𝑥sin (2𝜋𝑓𝑣𝑡)                        (9) 

       

      𝐷𝑚𝑎𝑥 is the maximum vibrational amplitude. The typical 

maximum value for rest tremors is 2cm while for action tremors 

this can increase to 3 or 4 cm [20], [21]. 𝜏 is the slow radar time 

and depends on the total chirps transmitted. The signal that is 

reflected from the subject is a delayed version of the transmitted 

signal. Hence, the received signal for a single chirp is 

 

                        𝑅𝑥(𝑡) =  𝑇𝑥(𝑡) − 𝑇𝑥∗(𝑡 − 𝑡𝑑))                  (10) 

          𝑅𝑥(𝑡) = 𝐴 ∗ exp (𝑗(2𝜋𝑓0𝑡𝑑 +  2𝜋𝑆𝑡𝑑𝑡 − 𝜋𝑆𝑡𝑑
2))     (11) 

 

  ‘A’ is the amplitude of the signal. This is dependent on the 

RCS and propagation attenuation.  The third term in (11) can be 

ignored because the slope is of the order MHz/s while due to 

the programmed fast FMCW chirps, the 𝑡𝑑 is in nanoseconds. 

For slow-moving targets, such as human motion, the range can 

be considered constant within one time period [58]. This 

assumption cannot be applied to high-speed targets such as the 

rotor blades of a quadcopter or helicopter [59]. Mathematically, 

the change in range in one time period ‘ 𝑇𝑐ℎ’, should be less 

than 𝑐/2𝑓𝑐 [60]. In this case, this approximately comes out to 

be 1.95 mm within 0.3ms, hence, meeting the condition. Thus, 

the received signal can be approximated as: 

 

                Rx(t) = A*exp(j(2πf0td + 2πStdt))              (12) 

 

Inserting the value of 𝑡𝑑 in (12), the beat frequency 𝑓
𝑏
 and 

the standard slow time phase history come out to be: 

 

                  𝑓
𝑏

= 4π
𝑅(𝜏)

λ
 and    𝜑

𝐼𝐹
(t) = 4πS𝑅0/𝑐             (13) 
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Hence, for accurate extraction of the slow time range profile, 

phase preservation is the key [59].  

C. Signal Processing 

    After collecting the raw radar data, the signal processing was 

performed in MATLAB R2022a. The complex ADC sampled 

signals from the radar are obtained in .bin format. These were 

converted to .mat files using a MATLAB snippet. This resulted in 

a column vector. The size of the data vector is dependent on the 

total number of frames, ADC samples and the total number of 

chirps transmitted. From table 2, it can be seen that the size of the 

column vector turns out to be 6553600x1. The column vector is 

then reshaped into a fast versus slow time matrix with a size of 

256x25600. Each column represents distinct chirps (fast time) 

while all the transmitted chirps are stacked together such that 

the rows represent the slow time. The Fast Fourier Transform 

(FFT) is performed on each chirp giving the range profile 

matrix. Static clutter was removed using a low pass filter, 

eliminating high-frequency reflections from the surroundings. 

To identify the target, range gating was performed. This was 

done by selecting the range bin with maximum amplitude after 

comparison along the successive range bins. At this stage, the 

DC offset was also removed for constellation correction as done 

in [61]. The random body motion was cancelled out based on 

signal energy as the voluntary body movements are not 

oscillatory and have a comparatively larger amplitude [62]. 

Hence, the signal was divided into small time frames of one 

second each. The energy for each time segment was calculated 

and if the calculated energy was greater than a certain threshold 

the samples in the segment were discarded. From the identified 

range bin, a 1-D tremor signal is synthesized by selecting the 

optimal range bin and summing the absolute of the selected 

range bin. Arctangent demodulation for phase unwrapping was 

performed. The demodulated signal was smoothed and passed 

through a 3rd order Butterworth band-pass filter. The centre 

frequency is set to 8 Hz while the bandwidth is 4 Hz. This has 

been chosen per the tremor frequency range of 4 Hz to 12 Hz. 

Finally, the spectral analysis of the tremor signal is performed 

by applying zero padding and using a hamming window and 

performing FFT.  The maximum frequency is extracted which 

denotes the tremor fundamental frequency. Finally, the tremor 

amplitude is calculated by using (8) and (9) 𝐷𝑚𝑎𝑥 for the rest 

tremors were taken as 2cm while for action and posture tremors 

it was taken as 4cm, per the existing literature [21], [22]. A flow 

diagram showing the radar signal processing is given in figure 

4 below. 

 

 
Fig. 4. Radar Signal Processing Flow Chart 

 

 

 

                          
                                            (a)                                                             (b)                                                                          (c)  
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                                                                        (d)                                                                                    (e)  

Fig. 5. Radar Signal Processing for Action Tremor Trial (a) raw data (b) Range Profile (c) Range Bin Selection (d) 1-D Tremor Signal (e) Tremor 
Frequency 

 

    
                               (a)                                                                           (b)                                                                            (c)  
Fig. 6. Tremor12 Mobile Application Signal Processing for Action Tremor Trial (a) Raw Gyroscope Data (b) Noise Filtering (c) Tremor Frequency 

 

V. EXPERIMENTAL VALIDATION AND RESULTS 

     Tremors are majorly classified as either resting tremors, 

which occur while the muscles are relaxed or action tremors. 

Action tremors are further classified as kinetic and postural 

tremors [63]. Kinetic tremors occur when an individual 

performs voluntary tasks such as eating and posture tremors can 

get triggered when patients extend their arms and hold them in 

a position against gravity. ET and PD, though both are 

neurological diseases that cause tremors, however, their 

presentations are noticeably different. Action tremor is more 

associated with ET while rest tremor is one of the earliest signs 

in PD patients [64]. However, as the diseases progress, ET 

patients might develop rest tremors. While, in the case of PD, 

as the disease progresses motor dysfunction worsens thus 

patients experience action tremors as well [18].  

     A total of 60 experiments were conducted for various 

tremors. Activities were performed that induce action, postural 

and rest tremors. For each kind of tremor quantification, a total 

of 15 experiments were performed. Out of these 15 

experiments, five involved no tremor trials and 10 experiments 

involved tremor-induced experiments. Each experiment lasted 

about 8 seconds. For true comparison between the proposed 

methodology and the base sensor random movements were 

excluded that arose when the button for the mobile application 

is pressed to start and stop data capture for the mobile 

application. Hence, a longer reading was taken for the mobile 

application. The table below details the list of experiments 

performed for data collection. 

 
TABLE III 

 EXPERIMENT DETAILS 

 

Tremor Type 

Without 

Tremor 

Trials 

With tremors Induced Trials 

Dominant 

Limb 

Non-Dominant  

Limb 

Action 5 10 - 

Postural 5 5 5 

Rest 

 (Upper limbs) 

 

5 

 

5 

 

5 

Rest  

(Lower limbs) 

 

5 

 

5 

 

5 

Sub-Total 20 25 15 

Total 60 

     

    For this proof of concept study, the subjects involved are 

healthy. They were advised to simulate tremors. The study was 

approved by the university’s School of Engineering ethical 

review board. Data was collected simultaneously from the radar 

sensor, placed at position A and iPhone, placed at position B, 

as shown in figure 7. The mobile was securely attached to the 

distal limbs of the subject using a mobile holder as shown in 

figure 7. The radar is programmed for near-field application 

which allows a maximum of 9.4 m range detection. However, 

keeping in view the average room dimensions in homes, the 

subject was asked to sit at a distance of more than 3 m and less 

than 9 m from the sensor. From figure 5 (b) the range of the 



8   

 

subject can be observed to be slightly greater than 6 m. A 

varying distance was advised to check the robustness of the 

tremor quantification system.  

 
Fig. 7. Data Acquisition for (a) Rest tremor (Upper limb) 

  (b) Postural tremor (c) Action Tremor (d) Rest tremor (Lower limb) 

 

     The mobile application gives the three axes raw data for the 

accelerometer, gyroscope and magnetometer. However, signal 

processing was performed on the gyroscope and accelerometer 

readings only. This was done to develop a comparison model as 

is used in the extant literature. After cleaning and filtering the 

raw signals, power spectral density analysis was performed to 

extract frequency while integration was performed on the 

gyroscope data to calculate amplitude. Algorithms from [21] 

were adopted for reference amplitude calculation while for 

reference frequency measurement algorithm described in [46] 

was implemented. Snapshots of signal processing from both the 

sensors are given in figures 5 and 6. The data is for a trial of an 

Action tremor is presented where the frequency calculated for 

the radar sensor is 6.71 Hz (figure 5e) and the reference sensor 

is 6.92 Hz (figure 6c). Detailed statistical analysis was 

performed on the results obtained from both sensors. To 

evaluate the performance agreement between the proposed 

methodology and reference sensor, Bland-Altman plots for 

frequency and amplitude are used [65]. The value of the bias 

(middle line parallel to the x-axis) in the plots indicates the 

average value by which the reference method measures more 

than the proposed one.  Corresponding correlation plots are also 

shown to validate the linear relationship between the predicted 

value and the reference sensor value for tremor frequency as 

well as amplitude. The errors for frequency and amplitude 

values have been calculated for each trial as: 

 

                        𝐹𝑒𝑟𝑟𝑜𝑟 =  𝑓
𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑

− 𝑓
𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒

                  (14) 

                        𝐴𝑒𝑟𝑟𝑜𝑟 =  𝑎𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 − 𝑎𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒                  (15) 

 

        A negative value in the error thus indicates that the 

predicted value by the radar is smaller than the value quantified 

by the reference sensor. Moreover, the quantified frequency and 

amplitude have been compared for each tremor type using mean 

signed error ± standard deviation (ME±SD). The results for 

each tremor type are first presented separately and then an 

overall assessment of the proposed method has been carried out. 

For further analysis, the system performance is also evaluated 

for dominant and non-dominant limb tremor quantification. 

Finally, in table X a comparison of the accuracy between our 

proposed method and the existing non-contact methods is 

presented. The following sections explain the experimental 

protocol and the statistical analysis results. 

A. Action Tremors 

     A total of 10 experiments were performed in which the 

subject was asked to simulate tremor while performing an 

action as shown in figure 7(c). The subject sat in a chair and 

acted grabbing an object placed on the table in front of the chair. 

For the no tremor trials, the subject performed the same action 5 

times without simulating tremor. For action tremors, the predicted 

frequency was found to be in the range of 6 to 10 Hz while the 

amplitude was calculated to be between 1 and 2 cm. This can be 

seen in figure 8 which shows the Bland Altman and correlation 

plots for the 10 trials in which the subject simulated tremor. The 

bias in frequency is -0.18 Hz, which demonstrates that the overall 

predicted frequency is slightly lower than the base sensor values. 

Similarly for the amplitude, the bias is -0.036 cm.   Table IV 

presents the mean signed error for the frequency and amplitude. 

While performing action tremor trials the data was not collected 

separately for dominant and non-dominant limbs. This is because 

the action is always performed using the dominant limb.  

 

 
 

 
 

 
 

Fig. 8. Bland-Altman and Correlation Plots for Action Tremor 

 
TABLE IV 

MEAN ERROR AND STANDARD DEVIATION FOR ACTION TREMOR TRIALS 

Tremor 

Type 

 

Limb 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

Action Dominant -0.182 ± 0.50 -0.035 ± 0.16 
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B. Posture Tremors 

     For posture tremor, the subject was asked to extend both 

arms and hold them straight against gravity as shown in figure 

7(b). The same was repeated for no tremor trials 5 times, where the 

subject maintained the extended arm posture without simulating 

tremor. Figure 9 demonstrates the Bland-Altman and correlation 

plots for the 10 trials performed for the posture tremors in which 

the tremor was simulated. It can be seen in figure 9, that the 

predicted frequency for posture tremor for the trials lies between 6-

8 Hz while in two trials it was 9 and 9.8 Hz. The amplitude values 

are between 1.3 and 2 cm. The mean error values (bias) for 

frequency and amplitude are -0.15 Hz and -0.115 cm.  

 

 
 

 
 

 
Fig. 9. Bland Altman and Correlation Plots for Posture Tremor 

 

    The mean error for the frequency and amplitude of posture 

tremor trials is given in table V.  

 
TABLE V 

MEAN ERROR AND STANDARD DEVIATION FOR POSTURE TREMOR TRIALS 

Tremor 

Type 

 

Limb 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

Posture Both -0.156 ± 0.21 -0.115 ± 0.13 

C. Rest Tremors (Upper Limb) 

      To quantify the rest tremors in the upper limbs, the subject sat 

relaxed in the chair at resting position as shown in figure 7(a). For 

tremor-induced trials, the subject simulated tremors in the upper 

limbs while maintaining a sitting position. In the no-tremor trials, 

the subject kept on sitting relaxed in the chair without simulating 

tremors. The Bland-Altman plots and the corresponding 

correlation plots are shown in figure 10. The mean error values for 

frequency and amplitude are 0.2 Hz and -0.018 cm respectively. 

The bias in the upper limb tremor frequency is positive indicating 

that the predicted frequency value is slightly higher than the 

reference sensor. The predicted frequency values are between 4 

and 6 Hz, whereas the amplitude values have been calculated to be 

between 0.65-1 cm. These ranges are lesser as compared to the 

action and postural tremor values which shows agreement with the 

literature as mentioned in table 1.  

 

 

 
 

 
 

 
Fig. 10. Bland-Altman and Correlation Plots for Upper limb Rest 

Tremor 

    
TABLE VI 

MEAN ERROR AND STANDARD DEVIATION FOR REST TREMOR IN THE UPPER 

LIMBS 

Tremor Type  

Limb 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

Rest Upper Limb Both 0.202 ± 0.43 -0.018 ± 0.09 

 

D. Rest Tremors (Lower Limb) 

     For the quantification of rest tremors experienced in the 

lower limbs, the subject was asked to sit in the chair in a relaxed 

position. The subject induced tremors in the lower limbs. The 

mobile is attached to the lower limb as shown in figure 7(d). For 

the no-tremor trials, the subject sat in a relaxed position in the chair 

without inducing tremors. Figure 11 illustrates the Bland-Altman 

and the corresponding correlation graphs for rest lower limb 

tremors. The frequency and amplitude range for lower limb 

tremors was found to be between 4 - 6 Hz and 0.6 - 1 cm, 

respectively.  Table VII lists the mean errors for the overall lower 

rest tremor trials.  
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Fig. 11. Bland-Altman and Correlation Plots for Lower limb Rest Tremor 

 
TABLE VII 

Mean Error and Standard deviation for Rest tremor in the Lower Limbs 

Tremor Type  

Limb 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

Rest Lower Limb Both -0.399 ± 0.38 -0.014 ± 0.07 

E. No Tremor Trials 

    For each type of tremor, experiments were performed where 

the subject simulated the action without tremor. The frequency 

and amplitude in no tremor trials are significantly smaller than 

those in which the tremor was induced. This is evident from the 

Bland-Altman and correlation plots as demonstrated in figure 

12. It can be observed that the values for frequency and 

amplitude are 1-2 Hz and 0.2 -0.3 cm respectively. These 

indicate the slightest body movements or hand movements have 

given some measurements. This has also been demonstrated 

through micro-Doppler calculations in the previous work of the 

authors [44]. 

 

 
 

 
 

 
  Fig. 12. Bland-Altman and Correlation Plots for No Tremor Trials 

 
TABLE VIII 

Mean Error and Standard deviation for No Tremor-Induced Trials 

Tremor  

Type 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

All trials -0.166 ± 0.21 -0.0004 ± 0.01 

Action -0.048 ± 0.13 -0.0024 ± 0.01 

Posture -0.098 ± 0.08 0.011 ± 0.004 

Upper Limb Rest -0.146 ± 0.15 -0.006 ± 0.01 

Lower Limb Rest -0.372 ± 0.26 -0.004 ± 0.005 

        

      Table VIII presents a summary of the overall mean error and 

standard deviation for no-tremor trials. It also lists these values for 

no tremor trials for action, posture, and upper and lower limb 

tremors. 

F. Dominant and Non-Dominant Limbs 

     To further evaluate the performance of the proposed method, 

the mean errors for the dominant and non-dominant limbs were 

calculated separately. Figure 13 visually demonstrates the 

distribution of normalized errors for the frequency and 

amplitude values. The errors were normalized for a fair 

comparison between the dominant and non-dominant sides. 

From the Interquartile Ranges (IQR) mentioned in the figure 

13, it can be observed that mostly the overall spread of the 

errors is same for both dominant and non-dominant sides. 

However, the error spread is pronounced for lower limb tremor 

frequency. Median error bias has also been marked in the box 

plots. The maximum median bias difference can be observed in 

the upper limb tremor, with a frequency median bias difference 

of 0.55 Hz and an amplitude median bias difference of 0.62 cm.  

    Finally, table IX presents the mean errors for frequency and 

amplitude for dominant and non-dominant limbs for posture, 

upper and lower limb tremors. The maximum frequency mean 

error 0.59 Hz, is observed in the dominant rest lower limb 

tremor.  However, the overall frequency mean errors for 

dominant and non-dominant sides are smaller than 0.3 Hz. 

Similarly, the overall amplitude mean errors for dominant and 

non-dominant sides are smaller than 0.13 cm. This shows that 

the algorithm can quantify unilateral and bilateral tremors with 

sensible accuracy. 
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Fig. 13. Box-Plots for Posture, Upper Limb Rest and Lower Limb Rest 
Tremor for Dominant and Non-Dominant Limbs 

 
TABLE IX 

Mean Error and Standard deviation for Dominant and Non-Dominant 
Limbs 

Tremor Type  

Limb 

ME ± SD 

Frequency (Hz) Amplitude (cm) 

 

Posture 

Dominant -0.146 ± 0.22 -0.134 ± 0.09 

Non-Dominant -0.166 ± 0.42 -0.096 ± 0.15 

Rest Upper 

Limb 

Dominant 0.102 ± 0.28 -0.013 ± 0.06 

Non-Dominant 0.302 ± 0.53 -0.023 ± 0.11 

Rest Lower 

Limb 

Dominant -0.592 ± 0.38 0.011 ± 0.06 

Non-Dominant -0.206 ± 0.27 -0.038 ± 0.07 

G. System Performance Summary 

     The overall mean error (±SD) for the tremor frequency for 

all 60 experiments was calculated to be -0.144 ± 0.4 Hz while 

for amplitude it was -0.03 ± 0.1 cm. From tables IV-IX, it can 

be observed that the mean error calculated by (14) and (15), is 

mostly negative. The predicted frequency is slightly lower than 

the reference sensor value 70% of the time (42 trials out of the 

60 experiments). Similarly, the predicted tremor amplitude was 

55% of the times (33 out of the 60 experiments) marginally less 

than the reference sensor value. This is evident from tables IV 

– IX. From these tables, it is also evident that the mean errors 

in frequency are smaller than 0.4 Hz in all cases except for 

Upper limb dominant side tremor where the error was 0.59 Hz. 

For amplitude, the maximum error of 0.13 cm has been 

observed in the dominant limb Posture tremor. The coefficient 

of determination was also calculated for both the tremor 

frequency and amplitude. Overall 𝑅2 > 0.966 for both of the 

parameters and is shown in figures 14 and 15. This indicates a 

strong correlation between the predicted tremor parameters and 

the base sensor values.  

 

 
 

 
 

Fig. 14. Bland Altman and Correlation Plots All trials Frequency 

 

 

 
 

Fig. 15. Bland Altman and Correlation Plots All Trials Amplitude 

 

     The box plots in figure 16 give a descriptive statistical 

summary of the frequency and amplitude errors. The overall 

spread of the errors for both parameters is significantly small, 

as evident from their small IQR values also mentioned in the 

figure.  

 
Fig. 16. Box-Plots for Tremor Frequency and Amplitude 
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H. Comparison with Existing Non-Contact Methods in 
the Literature 

      As mentioned in Section II, the non-contact methods that 

exist in literature are mostly based on cameras. However, this 

study aimed to develop a methodology which can quantify 

tremor continuously in a remote setting without invading the 

privacy of the patient. Hence, a radar sensor was used for the 

purpose. Table X demonstrates the accuracy comparison 

between this study and the existing studies that use EM sensors. 

The studies have also been compared on the type of tremors 

detected, the maximum range at which the experiments were 

performed and the tremor parameters quantified. From the 

table, it is evident that the accuracy achieved by the algorithm 

developed and the programmed FMCW chirp parameters for 

the current study is greater than those existing in the literature. 

Moreover, this study involves extensive experiments performed 

to quantify various tremors including action, posture and rest 

tremors. Whereas, existing studies have only quantified hand 

tremors. The range selected in the current study is comparable 

to real-home settings. This is also significantly more than those 

existing in the literature. A summary comparison of this study 

and existing literature is provided in the table below. 

 
 
 
 
 

TABLE X 
Comparison With Existing Non-Contact Radar Sensor Studies 

 

Study 
Range (m) 

Tremor 

Measured 
Sensor used 

Parameters 

Quantified 

Algorithm 

Used 
Accuracy resolution 

 
 

This Study 

 
 

3-6 

Action, 

Posture, 
Upper Limb 

Rest & Lower 

Limb Rest 

 
77 GHz 

FMCW Radar 

 
Amplitude and 

Frequency 

Vibrational analysis 

model 0.14 Hz; 

0.03 cm 
𝑅2 > 0.966 

 

 

[45] 

 
0.2-0.4 

 
Hand Tremor 

X Band 

Doppler radar 

2x2 Array 

 
Frequency 

Time series data 
𝑅2 > 0.85 

 
 

[41] 

 
 

1-2 

 
 

Robotic arm 

 
 

UWB radar 

 
Amplitude and 

Frequency 

Numerical analysis 
Linear Minimum Mean 

Square Error 

0.1 cm which 
decreased as distance 

increased; 0.01Hz 

 

VI. CONCLUSION 

Tremors deteriorate the ability of a patient to perform everyday 

simple tasks. The severity of tremors affects the independence 

and confidence of the patient.  Continuous remote monitoring can 

help in evaluating tremor severity, underlying neurological 

disease progression and treatment response. This study aimed to 

develop a system that could unobtrusively quantify tremors while 

maintaining the integrity and privacy of the patient. For this 

purpose, the radar was customized to detect tremors and an 

algorithm was developed to reconstruct tremor trajectories and 

quantify clinically important parameters pertaining to tremors. 

The quantified parameters were compared to a reference sensor. 

Results show a superiority of the proposed methodology with 

increased accuracy. Moreover, the robustness of the approach is 

evident from the maximum range at which the tremors can be 

detected and the comprehensive situations in which tremors are 

triggered. 
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