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a b s t r a c t 

Survival models with time-varying covariates (TVCs) are widely used in the literature on credit risk pre- 

diction. However, when these covariates are endogenous, the inclusion procedure has been limited to 

practices such as lagging these variables or treating them as exogenous. That leads to possible biased 

estimators (depending on the strength of the exogeneity assumption) and a lack of prediction frame- 

work that consolidates the joint evolution of the survival process and the endogenous TVCs. The use of 

joint models is a suitable approach for handling endogeneity, however, it comes at a high computational 

cost. We propose a joint model for bivariate endogenous TVCs and discrete survival data using integrated 

nested Laplace approximation (INLA). We illustrate the implementation via simulations and build a model 

for full-prepayment consumer loans. We also propose a methodology for individual survival prediction 

using the Laplace method that leads to more accurate approximations than comparable approaches. We 

evidence the superiority of joint models over the traditional survival approach for an out-of-sample and 

out-of-time analysis. 

© 2023 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

The balance of a loan can be partially or fully paid before it 

s due, which results in unscheduled cash inflows and potential 

oss of interest for a bank. This prepayment risk requires banks to 

losely study their borrowers’ payment behaviour so timely action 

an be taken ( BCBS, 2019 ). We are interested in predicting when 

nd which consumer loans will be paid off before the date agreed 

n the contract and in the presence of endogenous time-varying 

ovariates. 

Many approaches have been proposed to assess the credit risks 

n consumer loans (see Crook, Edelman, & Thomas, 2007 ). For in- 

tance, structural models are based on utility theory where the 

vent of interest is assumed to occur when a latent stochastic pro- 

ess dips below a threshold. This threshold is commonly related 

o the difference between the consumer’s assets and debts (see, 

or example, De Andrade & Thomas, 2007 in the context of con- 

umer loans, and Campbell & Cocco, 2015; Foote, Gerardi, & Willen, 

008 in mortgage loans). Another approach uses mathematical 

rogramming to allocate the resources in a way that minimises a 

pecific cost, for example, the cost of misclassifying applicants in 
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discrete survival data with INLA: An application to credit repayment 

org/10.1016/j.ejor.2023.03.012 
he context of credit default ( Shi, Peng, Xu, & Tang, 2002 ). In this

ork, we are interested in prediction-based approaches, conceiv- 

bly the most used by organisations that wish to make commer- 

ial decisions, which are essentially statistical models that aim to 

redict an event of interest given the characteristics of the loan 

nd the borrower (see, for example, Bhattacharya, Wilson, & Soyer, 

019; Crook & Bellotti, 2010; Fitzpatrick & Mues, 2016 for specific 

pplications, and Thomas, Crook, & Edelman, 2017 for a thorough 

escription of these techniques). 

Survival models are a good approach to predict when an event, 

uch as full-prepayment, will occur and have been widely used in 

he credit risk literature for the last 20 years ( Banasik, Crook, & 

homas, 1999; Bellotti & Crook, 2009; Leow & Crook, 2016; Wang, 

rook, & Andreeva, 2020 ). However, there is little work in this field 

hat addresses how to include time-varying covariates (TVCs) that 

re endogenous to the subject, i.e. the path of the covariate influ- 

nces the time to the event and the event influences the path of 

he covariate. In this context, for example, the movements in the 

alance of the loan can relate to how likely is the full-prepayment 

nd, in turn, once the loan is paid off, the balance should be zero. 

he ubiquitous way to treat these TVCs in the literature is to either 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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ork with their lagged values 1 or simply assume they are exoge- 

ous, so partial likelihood estimation can be carried out. However, 

his latter procedure has two major problems. First, it can lead to 

iased estimators ( Kalbfleisch & Prentice, 2002; Rizopoulos, 2012 ). 

econd, it lacks a prediction framework that could account for the 

utual evolution of the survival process and the endogenous TVCs. 

n addition to correctly including endogenous variables in a sur- 

ival model to reduce any bias in parameter estimates, we also 

ish to increase prediction accuracy given our application to pre- 

ayment risk. 

A rapidly evolving field of medical research known as joint 

odels for longitudinal and survival data (joint models hereafter) 

ddresses the problem of endogeneity by jointly modelling the 

urvival process and the endogenous TVCs ( Henderson, Diggle, & 

obson, 20 0 0; Rizopoulos, 2012; Tsiatis & Davidian, 20 04; Wu 

 Carroll, 1988 ). In this context, we use the terms “endogenous 

VCs” and “longitudinal outcomes” indistinguishably. These mod- 

ls are computationally expensive to estimate, cost that is further 

ncreased if more data and covariates are considered. For this rea- 

on and the lack of adequate software ( Furgal, Sen, & Taylor, 2019 ),

ost of the literature focuses on the case with only one longitu- 

inal outcome ( Hickey, Philipson, Jorgensen, & Kolamunnage-Dona, 

016 ) and/or relatively small datasets ( Brown, Ibrahim, & DeGrut- 

ola, 2005; Chi & Ibrahim, 2006; Rizopoulos & Ghosh, 2011 ). Other 

pproaches to control for endogeneity in survival analysis have 

een proposed in the literature. For instance, Bartus (2017) showed 

ow to estimate multilevel multiprocess models in Stata, includ- 

ng simultaneous hazard equations. However, this implementation 

eems to be restricted to the case where the observed endoge- 

ous covariate is qualitative as opposed to “continuous” or “nu- 

erical”. As described in Section 2 and motivated by the applica- 

ion of Section 4 , we are instead interested in the case where our

bserved endogenous covariates are numerical. 

In credit analysis, the datasets are usually fairly large 2 and con- 

ist of many time-fixed covariates (e.g. amount of the loan, interest 

ate at origination, term, among others) and more than one en- 

ogenous TVC (e.g. balance of the loan, number of instalments in 

rrears, among others). Therefore, to study the possible advantages 

f joint models in credit applications it is relevant to explore fast 

nference methods that can handle more than one TVC (multivari- 

te). Moreover, most joint models are implemented for continu- 

us time but credit data is commonly delivered over discrete pe- 

iods (e.g. monthly accounting data) and many ties occur between 

vents making the discrete time version more appropriate ( Bellotti 

 Crook, 2013; Djeundje & Crook, 2019 ). 

We present two methodological and two empirical contribu- 

ions to the literature. From the methodological point of view, first, 

e propose a joint model for bivariate longitudinal outcomes and 

iscrete survival data using integrated nested Laplace approxima- 

ions (INLA) ( Rue, Martino, & Chopin, 2009 ), a deterministic al- 

orithm for Bayesian inference. We extend Van Niekerk, Bakka, & 

ue (2019) who use INLA to estimate a joint model for the uni- 

ariate case with continuous time. By using this method, we sug- 

est a faster estimation procedure that can easily scale to large 

atasets without compromising accuracy of the estimates and that 

therwise would not be computationally feasible. We illustrate 

he implementation via simulation analysis which shows satisfac- 
1 This approach removes the first lagged observations and therefore assumes that 

here are no events in that period (induced bias). Furthermore, since the event at 

 particular time is related to the lagged observations, the latest information that 

ay be relevant for the prediction may not be used. And finally, the lag is usually 

ecided with respect to the prediction window, limiting the prediction for other 

ime horizons ( Bellotti & Crook, 2013 ). 
2 Around 30,0 0 0 cases in practical application. In our case, we have approxi- 

ately 60,0 0 0 observations, see Section 4 . 

s

c

H

o

t  

h

l

2 
ory recovery of the true parameter values. Second, we propose a 

ethodology for individual survival predictions using the Laplace 

ethod ( Tierney & Kadane, 1986 ) that leads to more accurate ap- 

roximations than the empirical Bayes approach used in the joint 

odel literature ( Rizopoulos, 2012 ). 

From the empirical perspective, our first contribution is to ap- 

ly a multivariate joint model approach in the credit risk context 

or the first time, in particular, for predicting the probability of 

ull-prepayment in a consumer loan portfolio. While Hu & Zhou 

2019) use joint models to predict early mortgage loan repayment 

vents and show performance improvements compared to survival 

odels, the authors consider only the univariate case and time as 

ontinuous. Moreover, the estimation is done by the R package JM 
hich uses the maximum likelihood approach and does not allow 

he multivariate case. 

In addition, Medina-Olivares, Calabrese, Crook, & Lindgren 

2022) , focused on the probability of default rather than on the 

repayment event, they proposed a discrete joint model with one 

ndogenous covariate whose specification allows autoregressive 

erms to be included. This model was estimated with an MCMC 

ampling scheme, which does not scale appropriately for the mul- 

ivariate case (see Appendix B for a computational comparison). 

The second empirical contribution shows that the multivariate 

pproaches result in better discrimination and calibration perfor- 

ances than the traditional survival models used in the literature 

 Thomas et al., 2017 ) for all evaluation times. This consistent result 

long different evaluation times was not demonstrated in the two 

reviously cited papers that studied joint modelling with one lon- 

itudinal outcome with credit applications. This is evidence that 

he little-explored joint modelling framework in this context re- 

ains a promising research area. 

The remainder of the article is organised as follows. In 

ection 2 , we describe the joint model with multivariate longitudi- 

al outcomes and discrete survival time. We also present the esti- 

ation procedure using INLA and how we compute the individual 

urvival predictions. In Section 3 , we perform a simulation analysis. 

n Section 4 , we apply two multivariate joint models to empirical 

ata and compare them with standard approaches in credit risk 

nalysis. Section 5 concludes. 

. Methodology 

In this section we describe the model (2.1) , the estimation pro- 

edure (2.2) , how the individual survival predictions are obtained 

2.3) and the metrics to assess the models with censored cases and 

iscrete time (2.4) . 

.1. Joint model of multivariate longitudinal outcome and discrete 

urvival data 

We assume that the duration time T i , for subject i ( i = 1 , . . . , N),

as a discrete domain. We model T i in terms of time-fixed co- 

ariates, z i , and a set of M endogenous TVCs, Y (m ) 
is 

for covariate 

 ( m = 1 , . . . , M), that are observed at time s . Also, we assume

hat the study lasts until time T and we observe subject i until 

 = t i (i.e. t i ≤ T and s ∈ { 0 , . . . , t i − 1 } ), at which point either the

vent happens, or it is censored. 3 In principle, the number of ob- 

erved measurements for the endogenous TVCs (longitudinal out- 

omes hereafter) can differ from the number of survival points. 

owever, we assume that for each time t , the immediate previ- 

us realisations of the longitudinal outcomes are provided at time 

 − 1 , so we can express Y (m ) 
i,t−1 

( t = 1 , . . . , t i ) (assuming no events

appen at t = 0 ). 
3 In this context, censoring means that we observe subject i until time t i but not 

ater ( Allison, 1982 ). 
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Following Allison (1982) , we denote the sequence of survival 

oints through a binary random variable X it that takes the value 1 

f subject i experiences the event at time t and 0 otherwise. Using 

his notation, the last observation of the sequence for subject i , i.e. 

 i,t i 
(we denote the realisations of a random variable in lowercase), 

s equal to the event indicator. We consider a logit link between 

he binary random variable X it and the linear predictor ηS 
it 

, then 

he discrete-time survival is 

 it | X i,t−1 = 0 , ηS 
it ∼ Bernoulli ( logit −1 (ηS 

it )) 

ηS 
it = a 0 t + z T  

i 
γ + 

M ∑ 

m =1 

λ(m ) g (m ) (η(m ) 
i,t−1 

) , (1) 

here a 0 t is the baseline discrete event time distribution, usu- 

lly represented by either fixed effects or spline models ( Tutz, 

chmid et al., 2016 ). Here, we follow the smoothing approach 

rom Lindgren & Rue (2008) that is implemented in the INLA 
ackage ( Rue et al., 2009 ). 4 We express a 0 t as a discrete time

econd-order random walk model which is a discretization of a 

ontinuous time integrated Wiener process. This smoothing ap- 

roach depends on one hyperparameter τ0 that denotes the preci- 

ion of the underlying Gaussian white noise. Furthermore, γ is the 

ector of coefficients for the time-fixed covariates z i . λ
(m ) is the as- 

ociation parameter that links the m th endogenous TVC with the 

vent process. The association function g (m ) (·) takes as argument 

he m th latent linear predictor η(m ) 
i,t−1 

(described below) and returns 

ome of its components. For example, a widely used version of 

he function g (m ) is the identity function, i.e. g (m ) (η(m ) 
i,t−1 

) = η(m ) 
i,t−1 

see Hickey et al., 2016 for a comprehensive review of different as- 

ociation functions g (m ) ). 

With respect to the m th longitudinal outcome Y (m ) 
i,t−1 

, we denote 

 

(m ) 
i 

as a vector of time-fixed covariates associated with subject i 

it does not have to be equal to z i ) and q 

(m ) 
i,t−1 

as a vector of lon-

itudinal covariates measured at time t − 1 . Then, the m th longi- 

udinal outcome is assumed as a noisy version of an underlying 

atent predictor η(m ) 
i,t−1 

that can be decomposed into fixed effects, 

 

(m ) T 
i 

α(m ) + q 

(m ) T 
i,t−1 

β
(m ) 

, and random effects, d 

(m ) T 
i,t−1 

U i , where d 

(m ) 
i,t−1 

s the design vector at time t − 1 . This leads to the following linear

ixed-effect model ( Laird & Ware, 1982 ) 

 

(m ) 
i,t−1 

| η(m ) 
i,t−1 

, τ (m ) ∼ N (η(m ) 
i,t−1 

, 1 /τ (m ) ) , m = 1 , . . . , M 

η(m ) 
i,t−1 

= w 

(m ) T  
i 

α(m ) + q 

(m ) T  
i,t−1 

β
(m ) + d 

(m ) T  
i,t−1 

U i , (2) 

here the subject-level U i are assumed as mutually independent 

nd distributed as a zero-mean multivariate Gaussian distribu- 

ion with p × p precision matrix Q U . Note that for the particu- 

ar case of the mixed-effect “intercept-and-slope” model, we write 

 

(m ) T 
i,t−1 

β
(m ) = β(m ) 

0 
+ β(m ) 

1 
(t − 1) and d 

(m ) T 
i,t−1 

U i = U 

(m ) 
0 i 

+ U 

(m ) 
1 i 

(t − 1)

ith U i = [ U 

(1) 
0 i 

, U 

(1) 
1 i 

, . . . , U 

(M) 
0 i 

, U 

(M) 
1 i 

] T . 

.2. Estimation 

The observed data are the longitudinal outcomes {Y i } i =1 , ... ,N 

ith Y i = { y (m ) 
i,t−1 

: t = 1 , . . . , t i ; m = 1 , . . . , M} and the sur-

ival data {X i } i =1 , ... ,N with X i = { x it : t = 1 , . . . , t i } . We denote

he complete observed data as D = ({Y i } i =1 , ... ,N , {X i } i =1 , ... ,N ) .

rom Section 2.1 , the parameters to estimate are 

{ α(m ) } , { β(m ) } , { τ (m ) } , Q U , γ , { λ(m ) } , τ0 } in addition to base-

ine terms a 0 t and the random effects U i . The main assumption 

n the joint model literature is that the longitudinal and survival 

rocesses are conditionally independent given the random effects 

 i , which simplifies the representation of the likelihood (see 
4 The package is hosted on http://www.r-inla.org/ 

t

e

3 
enderson et al., 20 0 0; Tsiatis & Davidian, 20 04; Wu & Carroll, 

988; Wulfsohn & Tsiatis, 1997 ). 

It is possible to implement this model via simulation-based 

CMC schemes (see, for example, Andrinopoulou, Rizopoulos, 

akkenberg, & Lesaffre, 2014 ). The main drawback of this strat- 

gy is that it is computationally expensive or even infeasible for 

ome applications. A faster and accurate alternative is to use the 

NLA methodology proposed by Rue et al. (2009) and implemented 

n the INLA package for the R software. INLA approximates the 

ayesian inference on the class of Latent Gaussian models (LGMs), 

s presented in Rue et al. (2009) . This class comprises a large num- 

er of well-known statistical models (e.g. mixed-effects, dynamic, 

patial-temporal models and more). 

To briefly describe the INLA methodology and frame our model 

s an LGM, we define the following terms 

μ = ({ ηS 
i } , { η(m ) 

i 
} , { a 0 t } , γ, { α(m ) } , { β(m ) } , { U i } ) 

1 = (τ0 , θγ , θα(m ) , θ
β

(m ) , Q U , { λ(m ) } ) 
2 = ({ τ (m ) } ) 
here θγ , θα(m ) and θ

β(m ) are hyperparameters (precision terms) 

or γ , { α(m ) } and { β(m ) } , respectively, and defined by the user as

etailed below. Note also that with this notation, θ1 and θ2 cor- 

espond to the set of hyperparameters of the latent field μ and 

bservation density, respectively. 

Given the conditional dependency assumed in Eqs. 

1) and (2) , the joint conditional density of D is p(D| μ, θ2 ) =
 

j∈J p(D j | μ j , θ2 ) with J the set of indices for all observed values

n D and it is coded so that each observation is associated with 

ts respective linear predictor η. We assume the density of μ| θ1 

s zero-mean Gaussian with precision matrix Q ( θ1 ) and denote 

= ( θ1 , θ2 ) . Therefore, the posterior follows 

p( μ, θ|D) ∝ p( θ) p( μ| θ) 
∏ 

j∈J 
p(D j | μ j , θ) 

∝ p( θ) | Q ( θ) | 1 / 2 exp 

[ 

− 1 

2 
μᵀ Q ( θ) μ + 

∑ 

j∈J 
log { p(D j | μ j , θ) } 

] 

. 

e are interested in the posterior marginals, p(μ j |D) and p(θ j |D) , 

pecified by 

p(μ j |D) = 

∫ 
p(μ j | θ, D) p( θ|D) d θ

p(θ j |D) = 

∫ 
p( θ|D) d θ− j . (3) 

he INLA methodology computes these marginals based on the 

aplace approximation ( Tierney & Kadane, 1986 ). For p( θ|D) this 

ollows 

p( θ|D) ∝ 

p( μ, θ, D) 

p( μ| θ, D) 
≈ p( μ, θ, D) 

˜ p G ( μ| θ, D) 

∣∣∣
μ= μ∗( θ) 

=: ˜ p ( θ|D) , 

here ˜ p G ( μ| θ, D) is the Gaussian approximation to the full con- 

itional and μ∗( θ) its mode. A crucial step in the procedure is to 

urther approximate the terms p(μ j | θ, D) by using the Laplace ap- 

roximation one more time as 

p(μ j | θ, D) ∝ 

p( μ, θ, D) 

p( μ− j | μ j , θ, D) 
≈ p( μ, θ, D) 

˜ p G ( μ− j | μ j , θ, D) 

∣∣∣
μ− j = μ∗

− j 
(μ j , θ) 

=: ˜ p (μ j | θ, D) . 

inally, the integrals in Eq. (3) are computed using numerical inte- 

ration. Other computational efficient modifications for ˜ p (μ j | θ, D) 

re also implemented in the INLA package and detailed in Rue 

t al. (2009) . 

To fully specify estimation, we need to define the priors of 

he hyperparameters θ. In particular, we assume that the param- 

ters γ , { α(m ) } and { β(m ) } have independent zero-mean Gaussian 

http://www.r-inla.org/
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riors with precision matrix of θ f I , where I is the identity ma- 

rix with the corresponding dimension for each set of parameters 

nd θ f , a precision parameter, is equal to 0.01 (i.e. θγ , θα(m ) and 

β(m ) are all equal to θ f ). Moreover, for the log scale of { τ (m ) } ,
he precision parameters of the error terms of the longitudinal 

utcomes, we assume weakly informative log-gamma prior distri- 

utions with shape and scale parameters of 1 and 5 × 10 −5 , re- 

pectively. The prior of the p × p precision matrix Q U is assumed 

s a Wishart distribution W p (I , p(p + 1) / 2 + 1) which shows sen-

ible results on the simulation study (see Section 3 ). Finally, for 

he prior of τ0 , the precision parameter of the second-order ran- 

om walk model, we assume a penalising complexity (PC) prior 

s described in Simpson, Rue, Riebler, Martins, & Sørbye (2017) . 

he form of the prior is defined via the influence of the parameter 

n the latent process model, as measured by the deviation from 

 base model with zero variance. The prior is specified by choos- 

ng an upper α-quantile u for the standard deviation of the model, 

o that P (τ−1 / 2 
0 

= σ0 > u ) = α for the choice of α and u . We use a

eakly informative prior by choosing P (σ0 > 1) = 0 . 01 , indicating

 small probability for large standard deviation. 

Despite using weakly-informative priors, we studied the robust- 

ess of the results by estimating the model with even looser pri- 

rs, without finding relevant differences (see Appendix E ). 

.3. Individual survival predictions 

We are interested in estimating the survival probability of a 

ew subject k not originally included in the training data D. As- 

ume we have collected the M longitudinal outcomes for this sub- 

ect up to time c and denote the set of these observations as Y k =
 y (m ) 

k,t−1 
: t = 1 , . . . , c + 1 ; m = 1 , . . . , M} . Since we know that subject

 has survived until at least c, we focus on the conditional prob- 

bility of surviving at the time c + 	c, with 	c ∈ Z + , given that

ubject k has survived until time c. Formally, 

(T k > c + 	c| T k > c, Y k , D) = 

∫ 
P(T k > c + 	c| T k > c, Y k , 
) p(
|D)d
, 

(4) 

here 
 represents all the parameters but the random effects U k 

which are not known), and p(
|D) is the posterior distribution of 

he parameters given the data D. 

Equation (4) does not have a closed form. In addition, in credit 

pplications the interest is in estimating predictions for a large 

umber of out-of-sample borrowers. Therefore, we propose the fol- 

owing procedure to approximate Eq. (4) . 

The first step considers that we have already estimated the pos- 

erior distribution of 
 and we can rely on a point estimate de- 

oted by ˆ 
 (we use the posterior mean). Thus, we can now con- 

entrate on the expression P (T k > c + 	c| T k > c, Y k , 
ˆ 
) which can

e formulated as 

(T k > c + 	c| T k > c, Y k , ˆ 
) = 

∫ 
P(T k > c + 	c| T k > c, U k , ˆ 
) 

× p(U k | T k > c, Y k , ˆ 
)d U k , (5) 

here P (T k > c + 	c| T k > c, U k , 
ˆ 
) can be in turn written as 

 (T k > c + 	c| T k > c, U k , ˆ 
) = 

P (T k > c + 	c| U k , ˆ 
) 

P (T k > c| U k , ˆ 
) 

= 

∏ c+	c 
t=1 (1 − p kt ) ∏ c 
t=1 (1 − p kt ) 

= 

c+	c ∏ 

t= c+1 

(1 − p kt ) , 

ith p kt = logit −1 (ηS 
kt 

) and ηS 
kt 

following Eq. (1) . 

A first order approximation of Eq. (5) is presented in Rizopoulos 

2012) who uses the empirical Bayes estimates for the random ef- 
4

ects U k as follows 

 (T k > c + 	c| T k > c, Y k , ˆ 
) ≈ P (T k > c + 	c| ̂  U k , ˆ 
) 

P (T k > c| ̂  U k , ˆ 
) 

here ˆ U k = argmax U { log P (T k > c, Y k , U | ̂  
) } . 
However, we can get a better approximation of the Eq. (5) by 

sing the Laplace method introduced by Tierney & Kadane (1986) . 

onsider −c · h k (U ) = log P (T k > c, Y k , U | ̂  
) and −c · h ∗
k 
(U ) = −c ·

 k (U ) + log P (T k > c + 	c| T k > c, U , ˆ 
) and denote the vectors that

aximise −h ∗
k 
(·) and −h k (·) as U 

∗ and 

ˆ U , respectively. Hence, Eq. 

5) can be approximated as (see Appendix A for further details) 

 (T k > c + 	c| T k > c, Y k , ˆ 
) ≈ | �∗| 1 / 2 exp {−c · h 

∗
k 
(U 

∗) } 
| ̃  �| 1 / 2 exp {−c · h k ( ̂  U ) } (6) 

here �∗ and 

˜ � are the inverses of the Hessians of h ∗
k 
(·) and 

 k (·) evaluated in U 

∗ and 

ˆ U , respectively. We use this procedure to 

alculate the conditional probabilities needed in the performance 

easures described below. 

.4. Performance measures 

We measure the prediction and accuracy of the models using 

imilar metrics and notation as in Medina-Olivares et al. (2022) . In 

.4.1 and 2.4.2 , we briefly describe the discrimination and calibra- 

ion metrics, respectively, and refer the reader to the mentioned 

ork for more details. 

.4.1. Discrimination 

The AUC is a commonly used metric to evaluate a binary 

lassifier’s ability to differentiate between two classes at various 

hresholds ( Hand, 2009; Thomas et al., 2017 ). It measures the 

rea under the curve of correct predictions versus misclassifica- 

ions. A value of 0.5 represents a random classifier, while 1 in- 

icates a perfect one. Moreover, as shown by Hanley & McNeil 

1982) , the AUC can also be interpreted as for any random pair 

f subjects { i, j} and evaluation times c and c + 	c (with 	c > 0 ),

uch as AUC 	c 
c = P (πi (c + 	c| c) < π j (c + 	c| c) |{ T i ∈ (c, c + 	c] } ∩

 T j > c + 	c} ) , where πi (c + 	c| c) denotes the conditional sur-

ival probability P (T i > c + 	c| T i > c, Y i , D) . The latter follows Eq.

4) when subject i is not included in D. Moreover, censoring is 

ccounted by a model-based approach ( Rizopoulos, Molenberghs, 

 Lesaffre, 2017 ), detailed in Medina-Olivares et al. (2022) for the 

iscrete case. 

Note that the AUC depends on the selected pair of time points 

and c + 	c. Hence, to evaluate the overall performance, we use 

he concordance index ( Harrell, Califf, Pryor, Lee, & Rosati, 1982 ) 

n the version introduced by Rizopoulos (2011) and adapted to the 

iscrete form as 

 

	c 
AUC = 

∑ 

c 

AUC 	c 
c u (c) , (7) 

here u (c) is a weight function to account for not all time 

oints contributing the same. Although the choice of u (c) re- 

ains an open question, Rizopoulos (2011) suggests using u (c) = 

 (T i > c) / 
∑ 

t P (T i > t) , where P (T i > c) represents the marginal

urvival probability, estimated using the Kaplan-Meier estimator 

 Kalbfleisch & Prentice, 2002 ). We also opted for this strategy. 

.4.2. Calibration 

The commonly used measure to evaluate the accuracy of pre- 

ictions in survival models is the expected error of predicting fu- 

ure events ( P E) ( Rizopoulos et al., 2017 ). It is defined as P E(c +
c| c) = E (L I(T i > c + 	c) , πi (c + 	c| c) ) . L represents a loss func- 

ion, such as logarithm, Brier score, absolute error, etc. A lower 

alue of P E indicates a better-calibrated model. 
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Fig. 1. Time-events distribution for the simulated sample of 1500 subjects. 

Fig. 2. Both longitudinal outcomes for the simulated sample of 1500 subjects. For 

visual purposes, we highlight ten subjects that experience the event (dashed line) 

and ten subjects that are censored (dotted line). 
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To account for censoring, we follow Henderson, Diggle, 

 Dobson (2002) who propose the estimate ̂ P E (c + 	c| c) = 

 (c) −1 
∑ 

i : T i >c { S i (c + 	c| c) + E i (c + 	c| c) + C i (c + 	c| c) } , where 

 (c) is the population at risk at time c. S i , E i , and C i are the

ontribution to the loss function, evaluated between c and c + 	c, 

hen i either survives, experiences the event or is censored (see 

edina-Olivares et al., 2022 , for further details). 

Analogous to Eq. (7) , we assess the overall calibration perfor- 

ance with 

 

	c 
PE = 

∑ 

c 

P E(c + 	c| c) u (c) . (8) 

n this work, we use the logarithmic score ( Good, 1952 ) as the loss

unction L instead of the widely used Brier score because it is con- 

istent with the use of likelihoods (or log-likelihoods) to measure 

he models ( Winkler, 1969 ). 

. Simulation 

In this section we perform a simulation study of the discrete 

ultivariate joint model with INLA presented in Section 2 . The aim 

s to check how well the proposed implementation works under 

ifferent sam ple sizes. The simulated data is inspired by the appli- 

ation described in Section 4 and generated from a joint model 

ith two longitudinal outcomes, both of them with a fixed in- 

ercept plus random intercept and slope. The four random effects 

two intercepts and two slopes) are assumed zero-mean multivari- 

te Gaussian distributed. Moreover, the event process has an ad- 

itional covariate, fixed in time, and the baseline hazard rate is 

rawn from a cubic polynomial function. Formally, the generated 

ata for the longitudinal processes follows 

Y (m ) 
i,t−1 

| η(m ) 
i,t−1 

, τ (m ) ∼ N (η(m ) 
i,t−1 

, 1 /τ (m ) ) , m = 1 , 2 , 

η(m ) 
i,t−1 

= β(m ) 
0 

+ U 

(m ) 
0 i 

+ U 

(m ) 
1 i 

(t − 1) , 

U 

(1) 
0 i 

, U 

(1) 
1 i 

, U 

(2) 
0 i 

, U 

(2) 
1 i 

) T  ∼ N 4 (0 , Q 

−1 
U ) , 

nd the corresponding event process is 

 it | X i,t−1 = 0 , ηS 
it ∼ Bernoulli ( logit −1 (ηS 

it )) , 

ηS 
it = a 0 t + γ z i + λ(1) η(1) 

i,t−1 
+ λ(2) η(2) 

i,t−1 
, 

a 0 t = at 3 + bt 2 + ct + d. 

e simulate this data considering a maximum of 36 periods for 

hree different numbers of subjects (50 0, 10 0 0 and 150 0) which

orrespond to 15,183, 30,187 and 44,971 observations, respectively. 

igure 1 shows the distribution of events versus time for the sam- 

le with 1500 subjects. Figure 2 shows both simulated longitudinal 

utcomes and, for visual purposes, we highlight ten subjects that 

xperience the event (dashed line) and ten that are censored (dot- 

ed line). 

Despite that the baseline hazard rate a 0 t is originally generated 

rom a cubic polynomial function, we estimate it under a second- 

rder random walk model ( Lindgren & Rue, 2008 ) to evaluate how 

uitable this assumption is in this context. The solid line in Fig. 3 

hows the true baseline hazard rate (after the logistic transforma- 

ion) versus the estimated 95% credible intervals for the three sam- 

les. We observe a good fit for all three samples and, as we in-

rease the sample size, the interval narrows around the true value. 

he same behaviour is observed in Table 1 , where we show the 

rue values of all the parameters in the simulations versus those 

stimated under each setting. The covariance matrix Q 

−1 
U 

is pa- 

ameterised via marginal precisions τU 01 
, τU 11 

, τU 02 
, and τU 12 

, and 

airwise correlations ρ12 , ρ13 , ρ14 , ρ23 , ρ24 , and ρ34 , giving 

 

−1 
U = 

⎛ ⎜ ⎝ 

1 /τU 01 
ρ12 / 

√ 

τU 01 
τU 11 

ρ13 / 
√ 

τU 01 
τU 02 

ρ14 / 
√ 

τU 01 
τU 12 

ρ12 / 
√ 

τU 01 
τU 11 

1 /τU 11 
ρ23 / 

√ 

τU 11 
τU 02 

ρ24 / 
√ 

τU 11 
τU 12 

ρ13 / 
√ 

τU 01 
τU 02 

ρ23 / 
√ 

τU 11 
τU 02 

1 /τU 02 
ρ34 / 

√ 

τU 02 
τU 12 

ρ14 / 
√ 

τU 01 
τU 12 

ρ24 / 
√ 

τU 11 
τU 12 

ρ34 / 
√ 

τU 02 
τU 12 

1 /τU 12 

⎞ ⎟ ⎠ 

. 
5 
Finally, with the purpose to show how precise and fast is the 

NLA methodology for our model in comparison with an MCMC 

cheme, in Appendix B we carry out a comparative analysis, show- 

ng, for instance, that for the simulation with N ids = 500 the infer- 

nce takes more than 4 hours when is performed by MCMC sam- 

ling, whereas with INLA takes less than 3 minutes using exactly 

he same computational resources. 

. Application: Full-prepayment model 

.1. Data 

The complete dataset is formed by two different cohorts of con- 

umer loans granted by a bank. In the first cohort the loans were 

riginated in April, 2012 and in the second the loans were origi- 

ated in August, 2015. Each cohort has 40 consecutive months of 

erformance. We use the first cohort as the training dataset and 

he second as the out-of-time dataset. 

The training dataset corresponds to 2397 consumer loans with 

 total of 59,415 observations. The number of full-prepayment 

vents is 470 and its distribution over time is shown in Fig. 4 .

he first longitudinal outcome is the cumulative sum of the ra- 

io between the actual balance and the scheduled balance of each 

oan. This longitudinal outcome accounts for how different the bal- 
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Fig. 3. Simulated baseline hazard (solid stepped line) and the estimated 95% credible intervals for the three sample sizes. 

Fig. 4. Distribution of the full-prepayment events in time for the training dataset. 

a

e

s

b

i

Fig. 5. Evolution of both longitudinal outcomes for the full-prepayment dataset. For 

visual purposes, we highlight borrowers that full-prepay the loan (dashed line) and 

borrowers that are censored (dotted line). 

n

b

a

i

nce of the loan is from what was originally scheduled. This gives 

arly signals, for example, if the loan is under or over paid. The 

econd longitudinal outcome is an internal score calculated by the 

ank (in logarithmic scale) which measures the borrower’s cred- 

tworthiness. Figure 5 shows the evolution of the two longitudi- 
Table 1 

Estimations for the three simulation settings. 

N id = 500 N id = 10 0 0 

true mean sd 2.5% 97.5% mean sd

β(1) 
0 

−1.00 −1.02 0.02 −1.06 −0.98 −0.99 0

β(2) 
0 

1.00 0.98 0.02 0.94 1.02 0.99 0

γ −0.50 −0.60 0.06 −0.71 −0.49 −0.49 0

τ (1) 25.00 24.97 0.33 24.27 25.55 25.13 0.

τ (2) 25.00 25.08 0.30 24.47 25.65 25.14 0.

τU 01 
4.00 4.18 0.27 3.68 4.73 4.09 0.

τU 11 
25.00 25.58 1.60 22.63 28.91 22.55 0.

τU 02 
4.00 3.81 0.24 3.35 4.30 4.01 0.

τU 12 
25.00 26.09 1.61 23.06 29.40 25.26 1

ρ12 −0.30 −0.20 0.04 −0.28 −0.11 −0.29 0

ρ13 0.30 0.36 0.04 0.28 0.44 0.32 0

ρ14 0.30 0.24 0.04 0.15 0.32 0.30 0

ρ23 0.30 0.32 0.04 0.24 0.40 0.33 0

ρ24 0.30 0.32 0.04 0.23 0.39 0.29 0

ρ34 −0.30 −0.29 0.04 −0.37 −0.21 −0.26 0

λ(1) 0.50 0.57 0.04 0.49 0.65 0.55 0

λ(2) −0.50 −0.55 0.04 −0.64 −0.47 −0.50 0

6 
al outcomes and, analogously to Fig. 2 , we have highlighted some 

orrowers that experience the full-prepayment event (dashed line) 

nd borrowers that do not (dotted line). The rationale for choos- 

ng these two longitudinal outcomes is that we would expect that 
N id = 1500 

 2.5% 97.5% mean sd 2.5% 97.5% 

.01 −1.02 −0.97 −1.00 0.01 −1.02 −0.98 

.01 0.96 1.02 0.99 0.01 0.97 1.01 

.04 −0.56 −0.41 −0.53 0.03 −0.58 −0.47 

26 24.55 25.56 25.13 0.18 24.75 25.44 

22 24.74 25.61 25.09 0.19 24.77 25.51 

18 3.75 4.46 4.22 0.15 3.93 4.52 

99 20.61 24.49 23.62 0.81 22.06 25.24 

18 3.65 4.35 3.79 0.13 3.54 4.05 

.10 23.07 27.41 23.70 0.81 22.15 25.34 

.03 −0.35 −0.24 −0.25 0.02 −0.30 −0.21 

.03 0.26 0.37 0.30 0.02 0.26 0.34 

.03 0.24 0.35 0.28 0.02 0.23 0.32 

.03 0.27 0.38 0.34 0.02 0.29 0.38 

.03 0.24 0.34 0.30 0.02 0.26 0.34 

.03 −0.32 −0.20 −0.33 0.02 −0.38 −0.29 

.03 0.49 0.60 0.52 0.02 0.48 0.56 

.03 −0.56 −0.45 −0.48 0.02 −0.52 −0.44 
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 borrower who pays more than what is scheduled (slope be- 

ow from the diagonal in Fig. 4 ) and whose internal score is high,

ould have a higher probability of paying the loan in full. This is 

urther confirmed in the results shown in Section 4.3 . 

We mentioned that the joint model approach offers two ad- 

antages over traditional survival models. First, it can handle en- 

ogenous TVCs reducing possible estimation bias and, second, it 

resents a prediction framework that incorporates the mutual evo- 

ution of both the survival and the longitudinal processes. We can- 

ot analyse the bias because we do not know the true data gen- 

ration process. However, we can compare the predictions of each 

odel. 5 

To validate and compare the models described in Section 4.2 , 

e perform a 10-fold cross-validation analysis. For each validation 

et (out-of-sample), we assess the performance in terms of the dis- 

rimination and calibration metrics described in Section 2.4 . More- 

ver, to assess the robustness of the results, we use the out-of- 

ime dataset mentioned above. This dataset corresponds to 2516 

orrowers with a total of 65,928 observations and there is no over- 

apping times with the data used in the cross-validation. 

.2. Models 

In the analysis of a full-prepayment dataset, a bank is particu- 

arly interested in understanding how accurate is the model to cor- 

ectly predict full prepayment. To investigate the predictive power 

f the joint model framework we propose here, we estimate four 

odels. The first one is a discrete survival model where both longi- 

udinal outcomes are included as standard TVCs (observed value), 

o no joint model framework is used. We denote this model as 

ox model. 6 This model relates the event at month t with the last 

vailable observation of the longitudinal outcomes at month t − 1 . 

he limitation of this model is that when we are interested in pre- 

icting the probability of the event, for example, at t + 12 , we as-

ume the longitudinal outcomes remained constant from the last 

vailable observations in t until t + 11 . The second model Cox_Lag 

s also a discrete survival model. The difference with the Cox model 

s that the event at month t is now related with the observations 

f the longitudinal outcomes lagged in 12 months 7 , so when we 

redict the probability of the event at t + 12 the model is already

stimated to consider the observed values at t . These two mod- 

ls are the traditional survival approaches in credit literature when 

VCs are present and, thus, are seen as our natural benchmarks 

see, for example, Bellotti & Crook, 2013; Calabrese & Crook, 2020; 

ross & Souleles, 2002; Wang et al., 2020 ). 

The third and fourth models ( JM1 and JM2 , respectively) are 

oth multivariate joint models for discrete survival data. The only 

ifference between them is in the assumed correlations for the 

andom effects. The JM1 model assumes correlation between the 

andom effects belonging to each of the longitudinal outcomes, but 

o correlation between the random effects of different longitudi- 

al outcomes. The JM2 model, however, assumes correlation within 

nd between the random effects of both longitudinal outcomes 

fully correlated). This last setting aims to investigate if substan- 

ial improvements are gained when a more complex relationship 

etween the longitudinal outcomes is used. 
5 Few works ( Dafni & Tsiatis, 1998; Sweeting & Thompson, 2011; Tsiatis & Da- 

idian, 2001; Wu & Carroll, 1988 ) show under simulation studies, that ignoring the 

oint evolution of the processes produce biased results. For example, Wu & Carroll 

1988) illustrates the bias produced when the dependence between the two pro- 

esses is not controlled for and is the first work to argue for the use of shared 

andom effects as a mechanism to control for this dependence. 
6 The model follows the discrete survival approach proposed in Cox (1972) . 
7 This lag responds strictly to the time window of interest in the predictions and 

s a limitation in terms of flexibility for other time horizons. 
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7 
Following the notation introduced in Section 2 , we define Y (1) 
i,t−1 

nd Y (2) 
i,t−1 

as the cumulative ratio between the balances and the 

ogarithm of the internal score, respectively, at time t − 1 for bor- 

ower i . Moreover, we denote X it as the binary variable that equals 

 if the borrower i fully prepays the loan at time t and 0 other-

ise. z i is the vector of time-fixed covariates for borrower i (for 

ore details about these covariates, see Appendix C ) and a 0 t is the 

aseline hazard. The four models’ specifications of the event pro- 

ess follow X it | X i,t−1 = 0 , ηS 
it 

∼ Bernoulli ( logit −1 (ηS 
it 
)) , the differ- 

nces come in the assumed predictor ηS 
it 

( Eq. (1) ). Moreover, both 

ongitudinal processes assume Y (m ) 
i,t−1 

| η(m ) 
i,t−1 

, τ (m ) ∼ N (η(m ) 
i,t−1 

, 1 /τ (m ) ) 

or m = 1 , 2 , therefore, we only need to describe the corresponding

redictors to fully specify the models. These are the following 

Cox . Discrete survival model with TVCs. The event predic- 

or is described as ηS 
it 

= a 0 t + z T 
i 
γ + λ(1) y (1) 

i,t−1 
+ λ(2) y (2) 

i,t−1 
. Cox_Lag .

iscrete survival model with lagged TVCs. The event predic- 

or is described as ηS 
it 

= a 0 t + z T 
i 
γ + λ(1) y (1) 

i,t−12 
+ λ(2) y (2) 

i,t−12 
. JM1 .

oint model not fully correlated. The event predictor is de- 

cribed as ηS 
it 

= a 0 t + z T 
i 
γ + λ(1) (U 

(1) 
0 i 

+ U 

(1) 
1 i 

(t − 1)) + λ(2) (U 

(2) 
0 i 

+
 

(2) 
1 i 

(t − 1)) and the corresponding longitudinal processes as 

η(1) 
i,t−1 

= β(1) 
0 

+ β(1) 
1 

(t − 1) + U 

(1) 
0 i 

+ U 

(1) 
1 i 

(t − 1) 

η(2) 
i,t−1 

= β(2) 
0 

+ U 

(2) 
0 i 

+ U 

(2) 
1 i 

(t − 1) 

U 

(1) 
0 i 

, U 

(1) 
1 i 

) T  ∼ N 2 (0 , Q 

−1 
U 1 

) 

U 

(2) 
0 i 

, U 

(2) 
1 i 

) T  ∼ N 2 (0 , Q 

−1 
U 2 

) . 

M2 . Joint model fully correlated. The event predictor has the same 

tructure as the JM1 model. However, the assumption over the ran- 

om effects in the longitudinal outcomes is 

η(1) 
i,t−1 

= β(1) 
0 

+ β(1) 
1 

(t − 1) + U 

(1) 
0 i 

+ U 

(1) 
1 i 

(t − 1) 

η(2) 
i,t−1 

= β(2) 
0 

+ U 

(2) 
0 i 

+ U 

(2) 
1 i 

(t − 1) 

U 

(1) 
0 i 

, U 

(1) 
1 i 

, U 

(2) 
0 i 

, U 

(2) 
1 i 

) T  ∼ N 4 (0 , Q 

−1 
U ) . 

We observe that the cumulative ratio has a linear trend (see 

ig. 4 ) which explains the extra fixed effect term β(1) 
1 

(t − 1) in 

omparison with the internal score. Moreover, as we mention in 

ection 2 , there is flexibility in how we link the event and the lon-

itudinal processes. We find that linking them only through the 

andom effects provides a good performance but this, by no means, 

s a restriction of this approach and further exploration can be 

ursed. 

.3. Results 

.3.1. Cross-validation 

We show in Section 2.4 that the performance metrics depend 

n the pair of evaluation times we choose ( c and c + 	c denoted 

bove). To make the comparison less arbitrary, we evaluate the full 

ange of available starting points ( c = 12 , . . . , 28 ) with a fixed time

indow of 12 months ( 	c = 12 ), commonly used in the industry. 

ote that the starting point could have been c = 1 but the Cox_Lag 

odel limits the comparison due to the lagged observations. 

In each validation fold we calculate the ̂ AUC and 

̂ P E metrics pre- 

ented in Section 2.4 for all the pairs of evaluation times { (c, c +
2) : c = 12 , . . . , 28 } . Then, we summarise the metrics for the dif-

erent pairs of times by calculating C 	c=12 
AUC 

and C 	c=12 
PE 

( Eqs. (7) 

nd (8) , respectively). Table 2 shows these metrics where each row 

epresents one of the ten folds, the same for all models, so the 

esults are comparable. The best performance out of the four mod- 

ls is marked in bold. The last row is the average among the 10 

olds (Avg). First, we observe that in general terms the joint mod- 

ls outperform survival models in both discrimination and calibra- 

ion metrics. Second, whenever one of the survival models predicts 
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Table 2 

Comparison of the discrimination ( C 12 
AUC ) and calibration ( C 12 

PE ) metrics between the four models 

for a prediction window of 12 months. Each fold number represents the validation fold in the 

cross-validation analysis. The last row is the average (Avg) among the 10 folds and the bold 

number is the best performance metric within each validation fold. 

Cox Cox_Lag JM1 JM2 

Fold C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE 

1 0.6081 0.5111 0.5874 0.3139 0.5853 0.3119 0.5869 0.3119 

2 0.6352 0.4850 0.6240 0.4422 0.6125 0.4047 0.6135 0.4048 

3 0.5504 0.4766 0.5499 0.3215 0.6053 0.3155 0.6051 0.3156 

4 0.6156 0.4982 0.6301 0.3887 0.6228 0.3672 0.6191 0.3675 

5 0.5523 0.5066 0.5170 0.3973 0.5416 0.3689 0.5408 0.3691 

6 0.6136 0.7152 0.6741 0.3044 0.6996 0.3089 0.7009 0.3084 

7 0.6459 0.4635 0.5850 0.2713 0.6716 0.2825 0.6764 0.2835 

8 0.5944 0.5168 0.5976 0.3105 0.5995 0.3094 0.6016 0.3092 

9 0.7076 0.4832 0.6890 0.3169 0.7702 0.3047 0.7703 0.3046 

10 0.5721 0.5494 0.5653 0.3410 0.6178 0.3268 0.6195 0.3263 

Avg 0.6095 0.5206 0.6019 0.3408 0.6326 0.3301 0.6334 0.3301 

Fig. 6. Bayesian correlated t -test for the discrimination metric ( C 12 
AUC ). It shows a 3 

by 3 matrix of bar plots, where each plot is a comparison between the reference 

model named in the row (A) and the model we are comparing to in the column 

(B). The bars represent the posterior probabilities of the three possible decisions: 

A better than B (left bar in red), A practically equivalent to B (centre bar in green) 

and B better than A (right bar in blue). (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 7. Bayesian correlated t -test for the calibration metric ( C 12 
PE ). It shows a 3 by 3 

matrix of bar plots, where each plot is a comparison between the reference model 

named in the row (A) and the model we are comparing to in the column (B). The 

bars represent the posterior probabilities of the three possible decisions: A better 

than B (left bar in red), A practically equivalent to B (centre bar in green) and B 

better than A (right bar in blue). (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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t

ore accurately than the joint models, the difference in the met- 

ics does not seem to be as significant as when we have the oppo-

ite 8 . 

We perform a Bayesian correlated t -test ( Benavoli, Corani, 

emšar, & Zaffalon, 2017 ) for both metrics ( C 12 
AUC 

and C 12 
PE 

) in order

o test the statistical validity of the differences shown in Table 2 . 

he test is correlated because the metrics in each fold are not 

ndependent from each other since we have overlapping training 

ets ( Nadeau & Bengio, 20 0 0 ). 

Following the recent work Gunnarsson, Vanden Broucke, Bae- 

ens, Óskarsdóttir, & Lemahieu (2021) , we also consider two clas- 

ifiers as practically equivalent when the mean difference of the 

etric is less than 0.01 and define the Region of Practical Equiva- 

ence (ROPE) as the interval [ −0 . 01 , 0 . 01] . In Figs. 6 and 7 we show

he results for all combinations of model pairs for discrimination 

nd calibration, respectively. On the left side of the figures are the 
8 We also compare the multivariate joint model with the univariate versions (see 

ppendix D ). The main results are, first, the univariate joint models are superior 

o both Cox models (similar results are shown in Hu & Zhou (2019) ). Second, the 

ultivariate version can improve the performance in this data when compared to 

he univariate versions. 

U

e

t  

f

t

8 
eference models (A) and on top, the models we are comparing to 

B). For instance, we estimate that the Cox model has a probability 

f 0.44 of being better in terms of discrimination than the Cox_Lag 

odel, a probability of 0.43 of being equivalent and only 0.13 of 

eing worse. We also observe that the joint models in compari- 

on to both survival models are superior and there is no difference 

etween the two joint models (ROPE-probability 1). 

In terms of calibration ( Fig. 7 ), we see that the Cox model per-

orms poorly with respect to the three other models. When we 

ompare the Cox_Lag model against the joint models, we observe 

hat the probability that these models have the same calibration 

etrics is 0.45 and a probability of 0.54 in favour of the joint mod- 

ls. Moreover, since we strictly estimate the Cox_Lag model for pre- 

icting in a 12-month window (unlike the joint models), we expect 

t to do well in terms of calibration, but the evidence suggests that 

his model is not better than the joint models (probability of 0.01). 

ltimately, we again see no difference between the two joint mod- 

ls (ROPE-probability 1). 

So far, we have seen that the benchmarks cannot outperform 

he joint models for a 12-month forecast horizon ( 	c = 12 ) for dif-

erent starting months ( c), but it is also of interest to study how 

hese models behave when we vary the forecast horizon. For a 
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Fig. 8. Average difference in the ̂ AUC with respect to the Cox model, for fixed c = 12 

and variable 	c. 

Fig. 9. Average difference in the ̂ PE with respect to the Cox_Lag model, for fixed 

c = 12 and variable 	c. 
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Fig. 10. Bayesian correlated t -test for the discrimination metric ( C 12 
AUC ) shown as in 

Fig. 6 and applied to the out-of-time dataset. 

Fig. 11. Bayesian correlated t -test for the calibration metric ( C 12 
PE ) shown as in 

Fig. 7 and applied to the out-of-time dataset. 
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xed c we obtain the prediction for [ c + 1 , c + 	c] for different val-

es of 	c. Figure 8 shows the average difference in the ̂ AUC with 

espect to the Cox model for 	c ranging from 3 to 24 months and 

 = 12 , which is the first period the Cox_Lag model can predict. In

eneral, we observe that both joint models have better discrimi- 

ation for all time windows, a difference that is even more pro- 

ounced for longer horizons. 

Analogously to Figs. 8 , in 9 we show the average difference in 

he ̂ P E with respect to the Cox_Lag model. 9 We observe that both 

oint models have practically the same calibration metric (overlap- 

ing lines) and that for almost all horizons this value is below 

better) than the Cox_Lag level, especially for longer horizons. It 

s not surprising that for 	c = 12 the calibration of the reference 

odel is better in comparison with the joint models since it was 

stimated for this 	c, but this only includes c = 12 and we have

hown above that this result does not generalise when we consider 

ll c. 

To study the robustness of these results, in the next section we 

erform an out-of-time data analysis. 
9 We discard the Cox model from this plot because its performance is consider- 

bly inferior concerning the others. 

(

t

o

9 
.3.2. Out-of-time validation 

In practice, models are applied to new data that comes at later 

eriods than the ones used in the construction stage. This for ex- 

mple happens when a bank is interested in classifying new cus- 

omers. We study and compare how these models perform in an 

ut-of-time scenario following a similar analysis to the previous 

ne. We could estimate a model per specification using all the 

raining data but since we have already estimated 10 models per 

pecification, we use each of them to calculate the out-of-time per- 

ormance. 

In Table 3 we show the results for each model. We note that 

one of the traditional survival approaches can outperform the 

oint models, a result that is further supported by the Bayesian cor- 

elated t -test shown in Figs. 10 and 11 for discrimination and cali- 

ration, respectively. From these figures we note the following: the 

urvival models are practically equivalent in terms of discrimina- 

ion (ROPE-probability 1) but the Cox_Lag model outperforms the 

ox in terms of calibration. Moreover, both joint models have es- 

entially a probability of 1 of being better than the survival models, 

or both metrics, and there is not much difference between them 

ROPE-probability 1). 

The discrimination and calibration performances for different 

ime windows 	c are shown in Figs. 12 and 13 , respectively. We 

bserve that both joint models have better ̂ AUC than the survival 
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Table 3 

Comparison of the discrimination ( C 12 
AUC ) and calibration ( C 12 

PE ) metrics between the four models 

for a prediction window of 12 months. Each fold number represents the hold-out fold when 

training the model. The predictions are done in the out-of-time dataset. The last row is the 

average (Avg) among columns and the bold number is the best performance metric per row. 

Cox Cox_Lag JM1 JM2 

Fold C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE 

1 0.5531 0.5030 0.5520 0.4001 0.5668 0.3755 0.5664 0.3761 

2 0.5531 0.4573 0.5523 0.4025 0.5647 0.3761 0.5647 0.3766 

3 0.5533 0.4639 0.5525 0.4118 0.5640 0.3749 0.5629 0.3755 

4 0.5532 0.4756 0.5521 0.4079 0.5676 0.3763 0.5689 0.3755 

5 0.5549 0.4917 0.5523 0.4082 0.5707 0.3749 0.5710 0.3751 

6 0.5509 0.6729 0.5520 0.4005 0.5704 0.3770 0.5691 0.3767 

7 0.5534 0.4816 0.5513 0.4016 0.5662 0.3759 0.5629 0.3754 

8 0.5519 0.5097 0.5520 0.4069 0.5692 0.3766 0.5694 0.3761 

9 0.5506 0.4970 0.5527 0.4020 0.5665 0.3752 0.5658 0.3754 

10 0.5532 0.5274 0.5522 0.4293 0.5701 0.3762 0.5687 0.3765 

Avg 0.5528 0.5080 0.5521 0.4071 0.5676 0.3759 0.5670 0.3759 

Fig. 12. Average difference in the ̂ AUC with respect to the Cox model, for fixed c = 

12 and variable 	c. Results from the out-of-time analysis. 

Fig. 13. Average difference in the ̂ PE with respect to the Cox_Lag model, for fixed 

c = 12 and variable 	c. Results from the out-of-time analysis. 
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odels for basically all the horizons. In terms of calibration we 

ow see that for all the 	c, the ̂ P E for each joint model is lower

han for the Cox_Lag model. Also, the minimum difference is again 

btained at 	c = 12 and it increases for longer horizons. 
10 
. Conclusions 

Survival models have been widely used in the credit risk lit- 

rature since they can handle censored cases and answer when 

nd which borrower is likely to experience the event. The inclu- 

ion of time-varying covariates (TVCs) into these models is very 

ommon. However, when the TVCs are endogenous to the bor- 

ower, the inclusion procedure has been limited to practices such 

s lagging these variables or simply considering their observed 

alue as if they were exogenous. That leads to possible estima- 

ion biases and a lack of prediction framework that incorporates 

he mutual evolution of the survival process and the endogenous 

VCs. 

Joint models of longitudinal and survival data present a novel 

pproach in this context, which allows one to not only incorporate 

hese endogenous TVCs in sound statistical practice but also per- 

its one to build a dynamic prediction framework that properly 

pdates the probabilities once new information is collected. How- 

ver, when maximum likelihood or MCMC schemes are used to es- 

imate joint models, these approaches are computationally expen- 

ive. Cost that is further increased for large datasets and if more 

han one endogenous TVC is included (multivariate). This is com- 

only the case of credit risk applications. 

In this paper, we make two methodological and two empiri- 

al contributions. First, we propose a fast and accurate joint model 

f bivariate longitudinal outcomes and discrete survival data based 

n the INLA framework. We study this model via simulation anal- 

sis. Second, we introduce a methodology for individual survival 

redictions using the Laplace method that leads to more accurate 

pproximations than comparable approaches. From the empirical 

evel, first, we introduce a multivariate joint model in the credit 

isk literature, specifically, for predicting the probability of full- 

repayment in a consumer loan portfolio. Second, we show that 

or this particular application the multivariate joint models out- 

erform standard survival approaches in both out-of-sample and 

ut-of-time analyses. 

As a new approach to credit risk modelling, many open ques- 

ions remain that we believe could further enhance its use. For ex- 

mple, relaxing the assumption of linearity in the longitudinal pro- 

ess that could allow modelling challenging variables such as in- 

ome (discrete changes in distant periods, missing or incorrect ob- 

ervations, etc.). We could also study new link structures between 

he event and longitudinal processes where the effect among them 

hanges depending on the stage of the credit. The joint models ap- 

roach offers the flexibility to explore these and other interesting 

opics. 
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Fig. B.1. Credible intervals ( 2 . 5% − 97 . 5% ) obtained by the MCMC and INLA implementations, for each parameter in the simulation analysis. The solid vertical line corresponds 

to the true parameter value. 
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10 As additional experiments, we also implemented the model in Stata, using the 

merlin package ( Crowther, 2020 ). However, we faced convergence problems and 

longer computation periods than the MCMC approach. 
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ppendix A. Individual survival prediction under Laplace 

pproximation 

We aim to detail Eq. (6) . The first approximation considers that 

e have already estimated the posterior distribution of the com- 

lete set of parameters 
 and we can rely on a point estimate 

enoted by ˆ 
. Then, note that P (T k > c + 	c| T k > c, Y k , 
ˆ 
) can be

arginalised by the random effects U as follows 

 (T k > c + 	c| T k > c, Y k , ˆ 
) 

= 

∫ 
P (T k > c + 	c| T k > c, U , ˆ 
) P (U | T k > c, Y k , ˆ 
) dU 

here we have used that T k and Y k are conditional indepen- 

ent given U . Furthermore, P (U | T k > c, Y k , 
ˆ 
) can be expressed

s P (T k > c, Y k , U | ̂  
) /P (T k > c, Y k | ̂  
) and the term P (T k > c, Y k | ̂  
)

an be marginalised as 
∫ 

P (T k > c, Y k , U | ̂  
) dU . This lets us write

he following expression 

 (T k > c + 	c| T k > c, Y k , ˆ 
) 

= 

∫ 
P (T k > c + 	c| T k > c, U , ˆ 
) P (T k > c, Y k , U | ̂  
) dU ∫ 

P (T k > c, Y k , U | ̂  
) dU 

. 

efine −c · h k (U ) = log { P (T k > c, Y k , U | ̂  
) } and g(U ) = P (T k > c +
c| T k > c, U , ˆ 
) . This brings us to the following 

 (T k > c + 	c| T k > c, Y k , ˆ 
) = 

∫ 
g(U ) exp {−c · h k (U ) } dU ∫ 

exp {−c · h k (U ) } dU 

. (A.1)

ince g(U ) > 0 , this last expression can be further approximated 

sing the Laplace method described by Tierney & Kadane (1986) , 

s follows 

 (T k > c + 	c| T k > c, Y k , ˆ 
) = 

| �∗| 1 / 2 exp {−c · h 

∗
k 
(U 

∗) } 
| ̃  �| 1 / 2 exp {−c · h ( ̂  U ) } + O 

(
1 

c 2 

)

k 

11 
here −c · h ∗
k 
(U ) = −c · h k (U ) + log g(U ) . The vectors U 

∗ and 

ˆ U are

he arguments of the maxima of −h ∗
k 
(·) and −h k (·) , respectively. 

∗ and ˜ � are the inverse of the Hessians for h ∗
k 

and h k , respec- 

ively, evaluated at U 

∗ and 

ˆ U . 

Note also that we can recover the approach of Rizopoulos 

2012) described in Section 2.3 as the first order approximation of 

q. (A.1) by applying the Laplace method separately in the numer- 

tor and denominator of Eq. (A.1) . Explicitly, ∫ 
g( U ) exp {−c · h k ( U ) } d U ∫ 

exp {−c · h k ( U ) } d U 

= 

g( ̂  U k )(2 π/c) p/ 2 | ̃  �| 1 / 2 exp {−c · h k ( ̂  U k ) } [1 + O 1 (1 /c)] 

(2 π/c) p/ 2 | ̃  �| 1 / 2 exp {−c · h k ( ̂  U k ) } [1 + O 2 (1 /c)] 

= g( ̂  U k ) 

[
1 + 

O 1 (1 /c) − O 2 (1 /c) 

1 + O 2 (1 /c) 

]
= g( ̂  U k ) + O 

(
1 

c 

)
= 

P (T k > c + 	c| ̂  U k , ˆ 
) 

P (T k > c| ̂  U k , ˆ 
) 
+ O 

(
1 

c 

)

ppendix B. Comparison between MCMC and INLA estimations 

The purpose of this section is to illustrate how fast and ac- 

urate is the INLA methodology in comparison with an MCMC 

ampling scheme for the multivariate joint model presented in 

his manuscript. To this extend, we implement the multivariate 

oint model using the platform for statistical modelling Stan with 

he No-U-Turn Sampler (NUTS Hoffman & Gelman, 2014 ), which 

s regarded as a faster extension to Hamiltonian Monte Carlo al- 

orithm. 10 To assess convergence of the NUTS sampler, we per- 

ormed the sampling from 3 independent chains with overdis- 

https://mc-stan.org/
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Table B.1 

Time required, in minutes, for model 

estimation through MCMC and INLA 

schemes, as a function of the num- 

ber of loans ( N id ). 

N id T MCMC (min) T INLA (min) 

250 106.03 1.07 

300 127.79 1.31 

350 159.52 1.50 

400 187.70 1.99 

450 207.00 2.00 

500 256.12 2.42 
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ersed starting points and, following the general diagnosis detailed 

n Betancourt (2017) , no convergence problems were detected. 

For the simulation setting described in Section 3 , we estimate 

he model via MCMC and INLA using exactly the same computa- 

ional resources (6 CPU cores, each with 4 GB of memory). We 

easure the times each procedure takes for different numbers 

f simulated loans ( N id ), ranging from 250 to 500. The times, in

inutes, are shown in the Table B.1 . We can observe that con- 

idering, for example, a sample with 300 simulated loans, which 

s fairly small, the time required by the MCMC estimation is 

ore than 2 hours, whereas for the INLA version is less than 

 minutes. 

Moreover, for the biggest sample size simulated in this anal- 

sis ( N id = 500 ), we save the marginal posterior distributions for 

ach parameter in the simulation setting (see Section 3 ), and es- 

imate their credible intervals obtained by both implementations. 

he comparison of the 2 . 5% − 97 . 5% credible intervals are shown

n Figure B.1 . First, we notice that both implementations estimate 

ntervals that include the true parameter value for all the param- 

ters in the simulation setting and, second, both interval estima- 

ions are fairly similar which evidences and supports the quality of 

he Bayesian inference approximation performed by INLA for our 

odel specification. 

In the original paper ( Rue et al., 2009 ), it is demonstrated how

ccurate and fast INLA is compared to MCMC schemes. However, 

NLA is not considered a replacement for MCMC. As we mentioned 

n Section 2.2 , INLA is used on the class of latent Gaussian mod- 

ls (LGMs) and, although this is a broad class, if the purpose is to 
ig. C.1. Distribution of the time-fixed covariates included in the survival model. For the 

ign of the parameters estimates. 

12 
stimate a model outside the realm of LGMs, we would need to 

se other approaches. Furthermore, the computational cost is ex- 

onential with respect to the number of hyperparameters. Thus, 

he main computational advantage is obtained when the number 

f hyperparameters is moderate as in our case (15). Further com- 

arisons in this regard can be found in Rue et al. (2009) , Held,

chrödle, & Rue (2010) , Carroll et al. (2015) . 

ppendix C. Time-fixed covariates distributions 

Figure C.1 shows the distribution for the six fixed covariates 

hat were provided: 4 continuous and 2 categorical. These covari- 

tes are in addition to the TVCs mentioned in Section 4.1 . Due to

ata confidentiality agreements, not all covariates can be named 

nd the x-axis of the plots are omitted. We also show next to the 

ovariate name, in parentheses, the parameter estimate sign. The 

igns are consistent among all the estimated models. Note that the 

ffect of age and debt-to-income is negative for the probability of 

repayment, however, the effect is positive for the interest rate 

iven at origination and for the amount of the loan. 

Similar consumer loan datasets can be found, for example, in 

ong, Mues, & Thomas (2012) , Luong & Scheule (2021) . 

ppendix D. Univariate versus multivariate joint models 

To complement our empirical analysis, in this section we es- 

imate two additional joint models. Both are univariate versions 

f the proposed model described in Section 2 , where each incor- 

orates one of the two longitudinal processes. Namely, Uni_1 and 

ni_2 include the first and the second longitudinal outcome, re- 

pectively. 

The aim of this analysis is to illustrate what is the advantage 

f using a joint model that includes both longitudinal processes 

ompared to the univariate version. Table D.1 shows the results of 

he metrics used in Section 4 . In this respect, we can mention two 

hings. First, if we compare the results obtained above ( Table 2 ), 

e observe that the univariate joint models applied to this data 

re superior to both Cox models. These results are consistent with 

hose shown in Hu & Zhou (2019) . Second, we see that when using 

he joint models with both longitudinal processes, on average, the 
bank privacy concerns, some information is omitted. The sign in parentheses is the 
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Table D.1 

Comparison of the discrimination ( C 12 
AUC ) and calibration ( C 12 

PE ) metrics between the uni- and 

multivariate versions of the joint models for a prediction window of 12 months. Each fold 

number represents the validation fold in the cross-validation analysis. The last row is the aver- 

age (Avg) among the 10 folds and the bold number is the best performance metric within each 

validation fold. 

Uni_1 Uni_2 JM1 JM2 

Fold C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE C 12 
AUC C 12 

PE 

1 0.5691 0.3193 0.5806 0.3152 0.5853 0.3119 0.5869 0.3119 

2 0.6012 0.4090 0.6071 0.4075 0.6125 0.4047 0.6135 0.4048 

3 0.6098 0.3169 0.5981 0.3201 0.6053 0.3155 0.6051 0.3156 

4 0.6132 0.3715 0.6154 0.3706 0.6228 0.3672 0.6191 0.3675 

5 0.5208 0.3738 0.5391 0.3727 0.5416 0.3689 0.5408 0.3691 

6 0.6985 0.3105 0.6970 0.3096 0.6996 0.3089 0.7009 0.3084 

7 0.6639 0.2849 0.6706 0.2865 0.6716 0.2825 0.6764 0.2835 

8 0.6344 0.3106 0.5921 0.3137 0.5995 0.3094 0.6016 0.3092 

9 0.7752 0.3082 0.7664 0.3075 0.7702 0.3047 0.7703 0.3046 

10 0.5971 0.3298 0.6181 0.3285 0.6178 0.3268 0.6195 0.3263 

Avg 0.6283 0.3334 0.6285 0.3332 0.6326 0.3301 0.6334 0.3301 

m

v
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S

d

p

b

o

t

w

Q

w

d

o

e

t

d

s

u

S

f

R

A

A

odels’ performance increases in comparison with their univariate 

ersions. 

ppendix E. Robustness checks 

Despite using weakly-informative priors in this work (see 

ection 2.2 ), we want to study how robust the results are un- 

er different prior specifications. We re-estimate the most com- 

lex joint model ( JM2 ) using laxer priors over the parameters. To 

e precise, for all fixed effects, we use zero-mean Gaussian pri- 

rs with a precision parameter equal to 0.001, instead of 0.01. For 

he precisions of the longitudinal outcomes and the baseline terms, 

e preserve the already weakly priors and for the precision matrix 

 U we assumed a less informative Wishart distribution than before 

ith W 4 (I , 6) . 

Table E.1 shows the difference for the mean and the standard 

eviation between the estimations obtained with the different pri- 
Table E.1 

The difference in parameters and standard de- 

viations between the estimations done with 

the chosen priors and laxer ones. Due to confi- 

dentiality issues, the difference is expressed in 

percentage relative to the estimations obtained 

with the priors used in this work. 

Mean (%) SD (%) 

β(1) 
0 

0.01 0.03 

β(1) 
1 

0.00 0.02 

β(2) 
0 

0.00 0.02 

Interest rate 0.04 0.03 

Age 0.21 0.01 

Debt-to-Income 0.23 0.03 

Categorical 1 0.23 0.01 

Original Amount 0.37 0.00 

Employment Status 0.01 0.01 

τ (1) 0.00 0.20 

τ (2) 0.00 0.01 

τ0 0.63 0.85 

τU 01 
0.03 0.38 

τU 11 
0.02 0.22 

τU 02 
0.02 0.01 

τU 12 
0.03 0.07 

ρ12 0.02 0.33 

ρ13 0.20 0.03 

ρ14 0.03 0.03 

ρ23 0.39 0.05 

ρ24 0.00 0.03 

ρ34 0.02 0.14 

λ(1) 0.11 0.15 

λ(2) 0.30 0.01 

B  

B

B

B

B

B  

B

B

B  

C

C  

C  

C

C

C

C  

13
rs. Due to confidentiality concerns, we cannot disclose parameter 

stimates, hence the difference is expressed in percentage relative 

o the estimations obtained with the priors used in this work. The 

ifferences suggest that the results obtained with the priors de- 

cribed in Section 2.2 are consistent with the results obtained by 

sing less informative ones. 

upplementary material 

Supplementary material associated with this article can be 

ound, in the online version, at doi: 10.1016/j.ejor.2023.03.012 . 
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