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ABSTRACT

Since the first papers published in the late nineties,
including, for the first time, a comprehensive analysis
of microarray data, the number of questions that have
been addressed through this technique have both
increased and diversified. Initially, interest focussed
on genes coexpressing across sets of experimental
conditions, implying, essentially, the use of cluster-
ing techniques. Recently, however, interest has
focussed more on finding genes differentially exp-
ressed among distinct classes of experiments, or
correlated to diverse clinical outcomes, as well as in
building predictors. In addition to this, the availability
of accurate genomic data and the recent implementa-
tion of CGH arrays has made mapping expression and
genomic data on the chromosomes possible. There
is also a clear demand for methods that allow the
automatic transfer of biological information to the
results of microarray experiments. Different initia-
tives, such as the Gene Ontology (GO) consortium,
pathways databases, protein functional motifs, etc.,
provide curated annotations for genes. Whereas
many resources on the web focus mainly on cluster-
ing methods, GEPAS has evolved to cope with the
aforementioned new challenges that have recently
arisen in the field of microarray data analysis. The
web-based pipeline for microarray gene expression
data, GEPAS, is available at http://gepas.bioinfo.
cnio.es.

INTRODUCTION

Gene expression analysis using microarray technology has
opened up a wide range of possibilities for exploring the
biology of cells and organisms. In the early days, interest

was mainly focussed on the behaviour of genes across the
experimental conditions studied (1); recently though, biome-
dical applications [e.g. (2–4)] have fuelled both the use of
available technologies and the development and implementa-
tion of analytical tools. In terms of data analysis methodolo-
gies, it is implied that, in addition to clustering, there is high
demand for efficient methods for class prediction, which
would include the derivation of prognosis predictors, response
to drugs or therapies, or any phenotype or genotype defined
independently of the gene expression profile. The availability
of accurate genome assemblies in public repositories such as
the Ensembl (http://www.ensembl.org) or the NCBI (http://
www.ncbi.nih.gov/Genomes/index.html) allows mapping expres-
sion data over the genome. Moreover, new microarray-related
technologies, such as microarray-based comparative genomic
hybridization [array CGH; (4)] introduce another dimension in
the analysis: the possibility of obtaining precise mapping of
copy number alterations in the genome. Perhaps one of the
most demanded kinds of tools are those that can transfer
biologically relevant information to microarray experiments.
This information can be extracted either from free text (e.g.
Medline abstracts) or from more or less curated repositories.
The use of text mining techniques in studying the coherence of
gene groups obtained from different methodologies has only
recently been addressed (5–7), although its practical applica-
tion still poses many drawbacks (8). Furthermore, availability
to end users is often scarce. Gene Ontology [GO; (9)], which
organizes information for molecular function, biological
processes and cellular components for a number of different
organisms, and KEGG (10), which includes a comprehensive
description of different pathways, are among the most used
curated repositories of information. Different tools, which
generate tables correlating groups of genes to GO terms
regarding biochemical and molecular functions, have been
recently implemented [see (11–13) and the web page of the
GO consortium http://www.geneontology.org]. Among them
is FatiGO (13,14), which provides an appropriate statistical
framework which takes into account the multiple-testing
nature of the statistical contrast [an important fact often
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neglected (15)], and has the advantage of being integrated
within the GEPAS (16) platform.

GEPAS constitutes an integrated web-based pipeline for the
analysis of gene expression patterns where different methods
can be used within an integrated interface, providing a user-
friendly environment to end users. The way in which the
methods are connected guide the user by suggesting all the
available possibilities to continue with analysis. The use of
methods is largely conditioned by its availability as programs.
For example, the overabundance of tools focussing on cluster
analysis has lead to a misuse of this methodology. In fact,
some authors have specifically highlighted the inappropriate
use of clustering for class comparison or class prediction (17).
Given this, it is important to make appropriate methods avail-
able for dealing with different problems such as class predic-
tion, gene selection, data mining of the results, etc. Since the
original version (16) of our tool, GEPAS, the scope and the
number of methods included have been increased signific-
antly, in order to cope with new challenges that have arisen
in the field of microarray data analysis.

SCOPE OF GEPAS

The original design of GEPAS (16), along with the new
additions intends to cover as many experimental situations
as possible and to respond to different scientific and clinical
questions. With this goal in mind, we have implemented a
series of tools (some of them publicly available and others
developed by us) within a web-based pipeline of micro-
array data analysis. The following sections describe the archi-
tecture of the pipeline, the methods included in GEPAS
and the new methods added since the first version in more
depth.

A WEB-BASED PIPELINE FOR MICROARRAY
DATA ANALYSIS

Figure 1 shows how the different modules of GEPAS are inter-
connected and can exchange data. Once the expression pattern
data is introduced within the system, all the available modules
can be used for analysis. The pipeline of microarray data ana-
lysis starts with the results of the quantification of the spots,
corresponding to the hybridizations, provided by the program
that processes the image obtained by the scanner. These inten-
sities are assumed to be proportional to the amount of mRNAs
corresponding to the probes in the microarray. Depending on the
technology used [cDNA microarrays (18) or Affymetrix oligo-
nucleotide arrays (19)], the mRNA amounts are measured as
absolute values or as ratios with respect to another reference
mRNA. Irrespective of this, the first necessary step is normal-
ization. In this step, differences occurring for reasons other than
those sought in the experiment (biases, local effects, differences
in efficiency of the hybridization, etc.) are removed. The matrix
of normalized gene expression values is then sent to the pre-
processor (20), a module that carries out a series of operations
which may be required (such as missing value imputation, filter-
ing of ‘flat’ patterns, etc.) and at the same time acts as a central
hub for distributing the data among the different methods imple-
mented. Depending on the problem, data can be sent to modules
for clustering, gene selection, class (or any phenotypic trait)
prediction, genome mapping and data mining, thus responding
to a significant number of data analysis requirements.

The efficiency of a modular package such as GEPAS lies in
its degree of integration of the different data analysis tools.
Users can cover a complete pipeline of data analysis in a
transparent way, without the necessity of performing any
reformatting operation. In addition, web-based tools guarantee
real cross-platform capabilities. Client-server architecture

Figure 1.The pipeline of microarray data analysis. After the operations of image processing are performed (grey box on top left), the data enters the pipeline through
the data normalization module and after normalization is sent to the pre-processor. Then, depending on the type of analysis the user needs to perform, these can be sent
to different modules that implement different tools. External connectivity to other modules can be achieved from the preprocessor.

W486 Nucleic Acids Research, 2004, Vol. 32, Web Server issue

D
ow

nloaded from
 https://academ

ic.oup.com
/nar/article/32/suppl_2/W

485/1040617 by U
niversity of Edinburgh user on 29 M

arch 2023



provided by web tools means that remote users can access
resources without the hardware support for heavy calculations
that are made on the server side, irrespective of the computer
platform used.

GEPAS—A BRIEF DESCRIPTION

GEPASincorporates several interconnected methods (Figure 1),
implemented as individual modules, that allows to input data
from the scanner, normalize them (currently normalization
is only implemented for cDNA microarrays), performing
preprocessing of data (log-transformations, standardizations,
imputation of missing values, etc.) (21), and also provides
different types of analysis including:

� Unsupervised clustering, comprising different hierarchical
and non-hierarchical methods such as aggregative clustering
(22), SOTA (23,16), SOM (24) (which implements a web
interface to the SOM_PACK, http://www.cis.hut.fi/research/
som_lvq_pak.shtml) and SOM-Tree (20), a mixture of SOM
and aggregative clustering.

� Differential gene expression analysis, which involves finding
genes showing significant differences in two or more
experimental conditions or correlated to another phenotypic
trait or experimental condition independent of the expression
values (e.g. drug dosages, survival, level of a metabolite,
etc.). This module, called Pomelo, is a tool that has been
designed to address the problem of multiple testing when
searching for differentially expressed genes. We have imple-
mented four methods to account for multiple testing; two of
them control the Family Wise Error Rate (25) and two others
control de False Discovery Rate (25,27). These methods can
be applied to five different statistical tests: the t-test (to com-
pare expression between two conditions), ANOVA (Analysis
of Variance, to compare expression between two or more con-
ditions), linear regression (to examine if the expression of
genes is related to variation in a continuous variable, e.g. ex-
pression levels of a given metabolite), survival analysis [to
examineifgeneexpressionisrelatedtopatients’survival(28)]
and Fisher’s exact test for contingency tables (when both the
dependent and independent variables are categorical).

� A module for supervised classification based on the powerful
methodology of Support Vector Machines [SVMs http://
www.csie.ntu.edu.tw/~cjlin/libsvm (29,30)]. It allows the
training of the model and further use for classification. SVMs
have been applied successfully to classification problems in
microarray data for both genes (30) and experiments (31).

� A module for data mining, FatiGO (13), that allows finding
significant asymmetrical distributions of GO terms between
groups of genes. This constitutes an extremely useful tool for
exploring the biological meaning of the groups or arrange-
ments of genes found by using the previous methods.

� A module for two-conditions comparison, which is, essen-
tially, a viewer for comparing pairs of experiments.

In addition, new tools are included in this second version,
which are described in the next section.

NEW TOOLS IN GEPAS

Since the original version of GEPAS, a number of new tools
have been implemented to increase data analysis capabilities.

To close the gap between the raw data, as obtained from the
scanner, and the first step of data processing, a normalization
module, DNMAD, has been implemented. There is a growing
interest in obtaining predictors of clinical outcomes such as
disease, resistance to therapies, life expectancy, etc. To obtain
genes or combinations associated to these traits we have
included Tnasas (for ‘This is not a substitute for a statistician’),
a module for building predictors. Translating the arrangements
or clusters of data obtained upon the application of the dif-
ferent methods (clustering, gene selection, etc.) into actual
biological meaning, requires data-mining tools (32). FatiGO
(FAst Transference of Information using Gene Ontology)
(13,14), a tool for extracting significant functional terms,
obtained from Gene Ontology (9), has been fully integrated
in GEPAS and, additionally, new databases and functionalities
have been added to this tool. With the availability of accurate
human and mouse genome maps, the possibility of gaining a
genome-wide picture of the transcriptional process is within
reach. In many cases, alterations in gene expression are due to
amplifications or deletions that are evident when the altered
genes are plotted on their genomic locations. We have devel-
oped InSilicoCGH, a tool that maps gene expression values
over the chromosomes (L. Conde, J.C. Cigudosa and J. Dopazo,
submitted).

Knowledge filtering

This module takes a matrix of expression values, extracts the
gene identifiers and sends a query to the corresponding data-
base. At this stage, queries are made through the FatiGO
engine. It returns an output that allows the selection of genes
based on their gene ontology annotations. Based on the labels
corresponding to the GO terms, genes can be highlighted in the
cluster visualization tools. In this way, functional and biologi-
cal information can be mapped on the clustering results.

Normalization

DNMAD is a web interface to aid the normalization of cDNA
microarray data and constitutes the real starting point for
proper analysis of microarray data. The method implemented
is the print-tip loess as explained in (33,34) . Essentially, the
objective of the normalization is to adjust for effects explained
by variations in the technology rather than the actual biology.
Specifically, the algorithm tries to adjust for differences in the
red and green labeling caused, for example, by differences in
the binding of the labels. Since these differences can be related
to which print-tip printed each spot, the adjustment is carried
out, generally, for each print-tip separately. Thus, the basic
normalization is based on a print-tip loess, which fits a robust
local regression to the relation between M (difference in log
intensities) and A (the ‘average’ staining). The normalized
M-value is the original one minus the loess fitted one, and
thus should correct for spatial effects (as reflected by print-
tips) and for effects related to intensity. Different diagnostic
plots (before and after normalization) are available such as
MA-plots, which show the relationship between A (the ‘aver-
age signal’) and M [the log2 differential ratio: log2(R/G)]; box
plots, which consists of the median, the upper and lower
quartiles, the range, and individual extreme values (http://
www.bioconductor.org), and a set of diagnosis images to
help in the detection of problems due to scanner adjustment,
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positional effects, etc., which include histograms of the raw
pixel intensities, which provide the logarithm of the red and
green mean foregrounds and images of the arrays with red and
green background as well as unnormalized and normalized M.
Finally, it is essential to check that the normalization is work-
ing in terms of scale (approximate variance).

Since many arrays can be normalized at the same time,
DNMAD provides box plots intra-array to help assess if
there are differences in scale among print-tips within array,
and box plots inter-array to assess if there are differences in
scale among arrays. If there are large differences in scale
among arrays, a further normalization for scale can be per-
formed. This is scarcely required, and introduces additional
noise.

Additional options include the possibility of using spot’s
flags, optional use of background subtraction and the possi-
bility of using global loess (instead print-tip).

Tnasas, a predictor-building tool

Tnasas is a tool that implements a simple, yet often effective
way of building class predictors from microarray data. We use
three basic types of predictors: nearest neighbour, diagonal
linear discriminant analysis and support vector machines. The
user can select the type of predictor. Tnasas finds the number
of genes (from a small set of possible numbers of genes) for
building the predictor that yields the smallest cross-validated
prediction error rate. In other words, Tnasas performs a simple
form of ‘variable selection’ or ‘feature selection’. The error
rate, as it is computed taking into account the effect of gene
selection, is not biased down by the ‘selection bias’ problem,
as is so common in many microarray studies [e.g. (17,35)].
Moreover, Tnasas provides an honest (unbiased) estimate of
the prediction error rate for the predictor built using this
scheme of selecting the number of genes.

Currently our tool does not pretend to build ‘the optimal
predictor’, but it can lead to reasonably effective predictors.
These predictors have repeatedly been shown as good, or even
better than, much more complicated algorithms and/or learn-
ing rules (36,37). Moreover, it has an important pedagogical
value by highlighting the very serious underestimates of error
rate that are caused by not taking the ‘selection bias’ problem
into account. In addition, the set of predictors plus the simple
mechanism for gene selection provide a straightforward and
easy to use benchmark against some (overly) optimistic claims
that occasionally are attached to new methods and algorithms.
This is a particularly important feature, since many new pre-
dictor methods are being proposed in the literature often with-
out careful comparisons with alternative methods; Tnasas can
be used as a simple, effective way of comparing the perform-
ance of the newly proposed methods and can, itself, become a
benchmarking tool.

FatiWise, the expanded FatiGO

The arrangements of genes based on their different behaviours
under distinct experimental conditions (e.g. differential gene
expression between diseased samples and controls, etc.) are a
consequence of the biological roles that the genes are playing
within the cell. To understand the biological processes oper-
ating throughout a given experiment, we developed a simple

but powerful procedure to extract Gene Ontology terms that
are significantly over- or under-represented in sets of genes.
The procedure has been implemented as a web application,
FatiGO (13), allowing for easy and interactive querying.
FatiGO takes the multiple-testing nature of statistical contrast
into account. FatiWise consists of an extension of the statis-
tical framework, implemented in FatiGO, to other types of
relevant biological knowledge rather than GO terms. FatiWise
includes correspondence tables between genes and InterPro
motifs (38), KEGG (10) pathways and SwissProt keywords.
It can be used to study the distribution of genes belonging to
different pathways within groups of genes. InterPro motifs
allow the study of molecular functions of the genes based
on criteria different from GO. In addition to function,
InterPro entries account for structural and physical properties
of proteins, increasing the scope of properties that can be
studied. Something similar occurred with the keywords
associated to SwissProt entries. In addition, the curation
process of this database is known to be among the most
rigorous ones.

InSilicoCGH

Alterations in the genome that lead to changes in DNA
sequence copy number are a characteristic of solid tumours
and are found in association with developmental abnormalities
and/or mental retardation. CGH methodologies can be used to
detect and map these changes. Recent improvements in the
resolution and sensitivity of CGH have been possible through
implementation of microarray-based CGH (array CGH) (4).
The InSilicoCGH tool allows mapping the results of micro-
array hybridizations onto the chromosome coordinates . A
number of different array platforms have been used for
CGH measurements in mammalian genomes. The various
approaches have employed large insert genomic clones,
such as bacterial artificial chromosomes (BACs) (39),
cDNA clones (40) and oligonucleotides for array spots. In
any case, the tool retrieves the chromosomal coordinates of
the probes in the array (irrespective of their nature—clones or
BACs) and plots the hybridization values over the correspond-
ing positions in the chromosome. Different identifiers for the
probes are accepted by the program including Ensembl IDs,
accession, EMBL accession, unigene codes, hugo names,
refseq, BAC names, Ensembl’s external IDs and internal
CNIO IDs. The output provides three different views (Figure 2):
CGH, which mimics a CGH representation by plotting in
different colours over- and under-represented matches
(Figure 2A); lines, which correspond to a bar graph of the
hybridization values, plotted in the coordinate chromosomes
(Figure 2B); and karyotype, that generates a representation
with the appearance of a karyotype (Figure 2C) in which
probes with hybridization values over a given threshold
are mapped. There are different options for the representa-
tions, and plotting multiple arrays is possible. Figure 2D
shows the magnifier tool, which provides a magnified
view of any part of the representation.

The tool can be used for visualizing the hybridization of
mRNA or genomic DNA on the chromosomal positions. The
connectivity provided by GEPAS allows mapping not only
complete arrays on the genome, but also clusters of coexpres-
sing genes from the tree viewer.
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COMPARISON TO OTHER WEB-BASED TOOLS
FOR MICROARRAY DATA ANALYSIS

Despite the growing number of tools available for the analysis
of gene expression data, only a few are web based. Obviously,
in web-based solutions graphical interface and interactivity
are, to some extent, sacrificed. Nevertheless, this is in
exchangeforanumberofadvantagesthat includecross-platform
usage and availability of the calculation power of the server
irrespective of the client used.

The website of Y. F. Leung is probably among the
most complete ones and, more importantly, it is updated
(http://ihome.cuhk.edu.hk/~b400559/arraysoft.html). The
site has a comprehensive list of programs for microarray
data analysis. Another important source of information is
the Stanford Microarray Database page (http://genome-
www5.stanford.edu/). Among the tools listed are several
web-based applications:

Cleaver (http://classify.stanford.edu/) a web tool which
allows classification (discriminant analysis) and clustering
by K-means.

ENGENE (http://www.engene.cnb.uam.es/). This is an
exploratory tool that includes several clustering methods as
well as visualization procedures.

EP (http://www.ebi.ac.uk/expressionprofiler/) (1). A set of
tools for clustering, analysis and visualization of gene expres-
sion and other genomic data.

GEDA (http://bioinformatics.upmc.edu/GE2/GEDA.html).
A gene-expression data-analysis web application with a vari-
ety of preprocessing steps, tests for differentially expressed
genes and clustering algorithms.

CTWC (http://ctwc.weizmann.ac.il/ ). Performs coupled
Two-Way Clustering (42), a biclustering method for finding
subsets of genes and samples of interest.

INCLUSive (http://www.esat.kuleuven.ac.be/%7Edna/Biol/
Software.html). A suite of web-based tools that is aimed at the
automatic multistep analysis of microarray data (clustering and
motif finding). Currently, adaptive quality-based clustering,
retrieval of upstream sequences and the motif sampler are
accessible from this website.

R Cluster (http://genomics.biochem.uci.edu/cgi-bin/
genex/rcluster/index.cgi). Web interface to a collection of
clustering routines written in the R statistical programming
language.

In addition, there are other web-based tools for specialized
tasks such as normalization and functional annotation of

Figure 2. Results of the InSilicoCGH module. Three different views are available: (A) CGH, which mimics a CGH representation by plotting in different colours
overrepresented and underrepresented matches; (B) lines, which correspond to a bar graph of the hybridization values, plotted in the coordinate chromosomes; and
(C) karyotype, that generates a representation with the appearance of a karyotype in which probes with hybridization values over a given threshold are mapped. There
are different options for the representations, and plotting multiple arrays is possible. (D) Within the circle the effect of the magnifier tool can be seen. The magnifier
allows to obtain a magnified view a any part of the representation.
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microarray experiments:

OntoTools (http://vortex.cs.wayne.edu/Projects.html).Onto-
Tools is composed of Onto-Express, translate differentially
regulated genes into functional profiles; Onto-Compare,
comparisons of any sets of commercial or custom arrays;
Onto-Design, select genes that represent given functional
categories; and Onto-Translate, translate lists of accession
numbers, UniGene clusters and Affymetrix probes into one
another.

Multi Microarray Normalization (http://genome1.beatson.
gla.ac.uk/Rweb/anova.html). An ANOVA based normaliza-
tion of dye-swapped experiment, taking pin-tip effect into
account.

SNOMAD (http://pevsnerlab.kennedykrieger.org/
snomadinput.html). Standardization and NOrmalization of
Micro Array Data is a collection of algorithms directed at
the normalization and standardization of DNA microarray
data.

Many of the tools focus on clustering or, in general, on unsu-
pervised classification methods and only one of them (GEDA)
provides support for differential gene expression analysis.
Features such as a search method for putative transcription
factor binding sites are available in EP (only for yeast) and
INCLUSive. Normalization and functional annotation can
only be found as separate applications. The trend is similar
for stand-alone tools, although there are more possibilities for
differential gene expression analysis and other types of ana-
lysis. Nevertheless, none of the programs or packages provides
tools for obtaining predictors. The number of tools, the degree
of integration and the scope makes GEPAS one of the most
complete packages for microarray data analysis, even when
compared with stand-alone packages or with commercial
solutions.

In addition, GEPAS modules can be invoked from other
web resources and vice versa. This allows other designers of
web tools to use partial or full GEPAS resources. At present,
GEPAS can send data files, in the proper format, to Expression
Profiler (41), and to HAPI, a data-mining tool based on hier-
archies of MESH terms (43).

Usage of GEPAS

In addition to remote web usage, GEPAS is freely distributed
upon request. If remote usage is a problem because of excessive
Internet traffic, GEPAS can be locally installed. The require-
ments are simple: an apache web server, linux OS, PERL, R and
some free packages (see GEPAS information http://gepas.
bioinfo.cnio.es/mirrors.html). Also, the source code of the
modules developed by us are publicly available in our down-
loads web page (see http://bioinfo.cnio.es/downloads/).

Our records show that, since April 2003, GEPAS has been
used more than 24 000 times, with a daily average of more than
80 uses. The approximate distribution of users is as follows:
25% Spain, 15% US (domains .edu, .com, and .net), 10%
France, 5% UK, and lower percentages of 1–2%, depending
on the month, are due to users from Japan, The Netherlands,
Italy, Germany, Portugal and Chile mainly. FatiGO usage,
not included in the above figures, accumulates itself
more than 11 000 uses, with a daily average of more than
50 uses.

CONCLUSIONS

Despite the growing number of programs and packages avail-
able for microarray data analysis, there are still many aspects
of data analysis with poor or incomplete coverage. Most of the
software available for microarray data analysis focusses on
unsupervised cluster methods that, in many cases, are used for
inadequate purposes (17). Since the first release (16), GEPAS
has evolved to cope with new challenges arising in the field of
microarray data analysis.

Connectivity is also a problem: different tools perform dif-
ferent tasks that constitute consecutive steps of analysis. This
causes problems with input/output formats. GEPAS provides
the user with an integrated environment in which modules for
different types of analysis, which respond to real analysis
demands, can be found.

From a technical point of view, GEPAS has been designed
with the intention of taking full advantage of the web proper-
ties: connectivity, cross-platform and remote usage. The
modular architecture allows the addition of new tools and
facilitates the connectivity of GEPAS from and to other
web-based tools.
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