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Abstract

Retinitis Pigmentosa (RP) is a heterogeneous group of inherited retinal dystrophies characterised ultimately by the loss of
photoreceptor cells. RP is the leading cause of visual loss in individuals younger than 60 years, with a prevalence of about 1
in 4000. The molecular genetic diagnosis of autosomal recessive RP (arRP) is challenging due to the large genetic and
clinical heterogeneity. Traditional methods for sequencing arRP genes are often laborious and not easily available and a
screening technique that enables the rapid detection of the genetic cause would be very helpful in the clinical practice. The
goal of this study was to develop and apply microarray-based resequencing technology capable of detecting both known
and novel mutations on a single high-throughput platform. Hence, the coding regions and exon/intron boundaries of 16
arRP genes were resequenced using microarrays in 102 Spanish patients with clinical diagnosis of arRP. All the detected
variations were confirmed by direct sequencing and potential pathogenicity was assessed by functional predictions and
frequency in controls. For validation purposes 4 positive controls for variants consisting of previously identified changes
were hybridized on the array. As a result of the screening, we detected 44 variants, of which 15 are very likely pathogenic
detected in 14 arRP families (14%). Finally, the design of this array can easily be transformed in an equivalent diagnostic
system based on targeted enrichment followed by next generation sequencing.
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Introduction

Retinitis pigmentosa (RP, OMIM 26800) is a heterogeneous

group of inherited retinal dystrophies caused by the progressive

loss of photoreceptors. Typically it presents with poor night vision

in early or middle life, followed by the constriction of the visual

field and progressive loss of visual acuity leading to complete

blindness after several decades. On ophthalmic examination, RP

manifests with retinal pigmentation, attenuated retinal blood

vessels, and waxy optic disc pallor associated with a diminished or

abolished electroretinogram. Prevalence of nonsyndromic RP is

approximately 1 in 4000 [1]. The condition may segregate as an

autosomal dominant RP (24%), autosomal recessive (41%), or an

X-linked recessive trait (22%), and the remaining 12% of cases

were presumed to result from non-genetic factors, non-Mendelian

inheritance (for example mitochondrial or de novo mutations) or

complex inheritance (digenic or polygenic inheritance) [2].

To date, 37 loci have been reported being responsible for

autosomal recessive RP (arRP), of which 34 genes have been

identified [3]. However, all together the reported loci are

responsible for only ,35–45% of the recessive RP cases, none

of them independently account for a substantial proportion of

arRP cases [4]. Recently, we have identified a new gene as the

most common single gene that causes arRP: Eyes Shut Homologue

(EYS; 15.9% of cases) [5], almost all causal mutations associated

with arRP are rare (minor allele frequency (MAF) ,,0.01) and

most of the associated genes have hundreds of disease alleles with

potentially different pathogenic effects [2].

The identification of a causative mutation is important to

ascertain the genetic basis of the disease, and thus paves the way

for genetic counselling, family planning and future gene-targeted

treatment. Nevertheless, further strategies such as establishing a

classification of the mutations as loss- or gain-of-function and

assessing the functionality of the mutant proteins, should be
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undertaken to develop a treatment tailored to each of the different

arRP genes.

Molecular diagnosis of arRP mutations is challenging because a

large number of deleterious mutations can be found in each gene,

and multiple genes can be mutated to give the same phenotype.

Thus, the extensive genetic and allelic heterogeneity of retinal

dystrophies makes mutation detection by current molecular

techniques problematic. Pre-screening tools, such as single-strand

chain polymorphism and denaturing high-pressure liquid chro-

matography are economic techniques capable of detecting known

changes, but not to identify new ones. Similarly, there are

commercial genotyping microarrays available, based on the

arrayed primer extension (APEX) technology [6], which enable

the simultaneous screening of multiple genes but they can only

detect a fixed number of known mutations. However, the extensive

genetic heterogeneity along with the still unknown repertoire of

arRP mutations requires of the use of a tool that can identify both,

known and new mutations, in a large number of genes in a fast

manner. Dideoxy sequencing method can identify mutations but

its use for the screening of multiple genes is so time-consuming and

expensive that is inapplicable in this scenario. Recently, emerging

technologies for ultra high throughput sequencing have started to

be applied to diagnostic in a prospective manner [7], [8].

However, the use of these technologies for screening a set of

disease causing genes is still limited because of the perceived

technical and data-handling challenges. Targeted resequencing

offers a solution of compromise that can have a practical

application in clinics. Nevertheless, the use of a capture system

for the enrichment of the target sequences, followed by ultra-high

throughput sequencing, is still a complex technology not available

in many laboratories and with many problems of standardisation

that needs still to be solved. There are, though, alternative

approaches that can be used while the new sequencing

technologies become applicable in this context. Thus, while the

past decade has witnessed the development of sequencing by

hybridization to oligonucleotides on an array [9], recently

significant improvements have been made in this technology,

and resequencing microarrays offer the potential of determining

the sequence of a large number of genes with a reasonable amount

of effort and cost [10]. Herein, we present the development and

validation of a custom design resequencing microarray which

allows a widespread screening of both, novel and known

mutations, in 16 genes related to arRP. Although this technology

has already been used as a diagnostic test to investigate arRP [10–

13], this is the first report of the application of these resequencing

platforms which involves the study of the most prevalent gene,

EYS. A cohort of 102 arRP patients from Spain was screened with

the new RP genechip, demonstrating the potential clinical utility of

this technology.

Methods

Ethics Statement
The study conformed to the tenets of the declaration of Helsinki

(Edinburgh, 2000) and was approved by the Institutional Review

Board of the Hospital Virgen del Rocı́o, Seville. An informed

consent form was signed by all participants for clinical and

molecular genetic studies.

Subjects and Clinical Data
The study cohort comprises 102 Spanish unrelated patients

affected by arRP. A full ophthalmic examination was performed as

described elsewhere [14]. RP was defined as bilateral visual loss,

initial hemeralopy, restriction of visual field, gradual increased

bone spicule pigmentation and decrease of visual acuity,

attenuation of retinal vessels, reduced or undetectable electroret-

inogram (ERG) and waxy disc pallor. Globally, our cohort

included 98 arRP patients with no known mutations and 4 arRP

patients with 4 pathogenic variants included as positive controls of

mutations, previously identified by dideoxy sequencing (Table 1).

In addition, available samples of proband family members were

tested for co-segregation studies. A group of 100 control

individuals was also recruited which comprised unselected,

unrelated race-, age-, and gender-matched individuals from Spain.

Custom Genome Resequencing Microarray Design
The sequences comprising all coding exons plus 15 bp of

flanking intronic sequence from the arRP genes CERKL, CNGA1,

CRB1, EYS, IDH3B, LRAT, MERTK, NR2E3, PDE6B, PRCD,

PROM1, RGR, RHO, RLBP1, RPE65 and TULP1 were selected to

tile on the resequencing microarray (Affymetrix, Santa Clara, CA).

Repetitive elements and internal duplications that may lead to

cross hybridization were identified by using Repeat Masker [15]

and deleted. For each position of the interrogated sequence, eight

25-mer probes are represented on the array: four probes for each

strand, each with a different nucleotide in the middle (A,G,C,T)—

one perfect match for the reference sequence and three

mismatches—allowing the detection of all possible nucleotide

Table 1. Known Sequence Changes Tested in the Validation and Reproducibility assay.

Family ID Gene

Nucleotide change
Protein change
Genotype

Mutation
Type

Calls of the arrays using the
IUPAC Base Code* Reference

RP 21 TULP1 c.823-4A.G
Heterozygous

Splice site mutation Detected as R [37]

RP 242 TULP1 c.430A.G
p.K96E
Heterozygous

Missense Detected as R Unpublished

RP 57 TULP1 c.1255C.G
p.R419G
Heterozygous

Missense Detected as S Unpublished

RP 60 EYS c.78-79insGC
p.Q27RfsX16
Heterozygous

Insertion frameshift Not Detected [5]

*IUPAC Base Codes: The symbol R to designate PuRine (A or G); S to designate Strong interaction (C or G).
doi:10.1371/journal.pone.0027894.t001

Microarray-Based Mutation Screening
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substitutions of both strands. In total, 45,096 bp features are tiled

on the array and 44,282 bp of double-stranded gene sequences are

analyzed. The remaining oligonucleotides represent control DNA

(Affymetrix control reference sequence; AFFX-TagIQ-EX). Our

custom designed arRP chips were fabricated by Affymetrix using

standard photolithography and solid-phase DNA synthesis [9],

[16], [17].

Experimental Procedure and Data Analyses
A total of 93 polymerase chain reaction (PCR) amplicons

(ranging from 300 bp to 7.5 Kbp) were designed and optimized to

amplify under a common set of Short-Range and Long-Range

PCR conditions. Primer sequences and PCR conditions employed

are available upon request. DNA concentration of each amplicon

was measured using a picogreen assay and PCR products were

pooled and purified of residual primers and nucleotides using

Clontech purification plates (Clontech, Mountain View, CA). The

DNA was then fragmented, labeled with biotin, and hybridized to

the chip for 16 hours at 49uC rotating at 60 rpm according to

manufacturer’s protocols (GeneChip CustomSeq Resequencing

Array Protocol, Vers.2; Affymetrix, Santa Clara, CA). The arrays

were subsequently washed and stained on a fluidics station

followed by the scanning on a GeneChip 3000 Scanner

(Affymetrix, Santa Clara, CA), and the raw data were analyzed

using Affymetrix GeneChip Resequencing Analysis Software

(GSEQH v4.0) which enabled alignment of patients sequences

against a reference sequence. All array data is MIAME compliant,

and the raw data has been deposited in EBI Array Express

database, a MIAME compliant database as detailed on the

MGED Society website [18] under accession number E-MTAB-

786.

The novel identified variants were subsequently verified and

screened in healthy controls by dideoxy sequencing and if

additional family members were available, segregation of the

variant with the disease was assessed (Figure 1).

In order to evaluate the pathogenicity of the novel variants, we

analysed the potential impact of a given variant on the function or

structure of the encoded protein based on conservation, physical

properties of the amino acids, or in its possible occurrence in

regulatory or splicing motifs using the software PupaSuite [19],

[20]. To study the EYS variants, the domain architecture

prediction and the alignment of the different orthologs were

performed using bl2seq (NCBI) and EMBOSS Pairwise Alignment

Algorithms: Needle and Water (EBI) alignments. The fully

characterised SPAM proteins were aligned using MUSCLE

(Multiple Sequence Comparison by Log-Expectation) program

at EBI (For more details on the EYS bioinformatic characterization

see [5]).

MLPA Analysis of the EYS Gene
To clarify the molecular genetic cause in those families with just

a single heterozygotic detected change in EYS, MLPA (Multiplex

Figure 1. Analytic workflow. A. Genechip resequencing analysis software output for of the exon 8 of CERKL for 1 sample (index patient of the
Family RP76) compared to reference sequence using GSEQ. The chip data reveals a nonsense mutation in CERKL (c.769C.T; p.R257X) at position 268
in the tiled sequence. The reference sequence carries a homozygous C in that position. The intensity histogram below shows how the mutant sample
with a homozygous T binds most strongly to the probe with A on the forward strand and T on the reverse one. B. Electropherogram depiction of the
members of the family RP76 confirming the co-segregation of the variant with the disease.
doi:10.1371/journal.pone.0027894.g001

Microarray-Based Mutation Screening
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Ligation Probe Amplification) was performed to identify the

second variant as an alternative approach to screen for copy

number variations (CNVs), given that these type of mutations are

particularly frequent in this gene [14]. Thus, 4 of the arRP patients

were analysed by MLPA and gene dosage variations on EYS were

evaluated as described elsewhere [14].

Results

Validation of the Array: Assessment of Positive Controls
The PCR of 3 out of the 93 amplicons (3.2%) could not be

optimized; therefore, hybridization failed and these exons were

excluded from further analysis. The average call rates for

successfully hybridized amplicons were of 92% for the 102 arrays.

Several algorithm parameters regarding this base calling can be

altered, affecting the call rate and accuracy of the base calls [16].

The highest call rate was obtained using a Quality Score

Threshold (QST) of 2 and without Base Reliability Threshold

(BRT) [21]. Therefore, these settings were used for the call rate

assessment. In addition, we observed a call rate constant

improvement as the number of experiments increased. GSEQ

contains a learning algorithm derived from ABACUS, an

adaptative background genotype calling scheme to optimize data

from multiple arrays analyzed together; larger batch sizes in an

analysis are thus expected to have greater accuracy [22], [23]. The

no-calls regions are mainly observed in G-C rich areas and

repetitive elements unsuitable for analysis (ie, SINE, LINE, ALU,

etc). PDE6B and CERKL were particularly rich in such unread

nucleotides. So far, no arRP mutations have been reported in such

regions [24].

To determine the ability of our chip to detect different types of

mutations, we processed the DNA of 4 arRP patients carrying

known mutations in 2 of the genes tiled onto the array (Table 1).

The arrays used in this study were not designed to specifically

identify deletions or insertions and, as expected, the insertion that

was in a heterozygous state could not be detected by the GSEQ

software. However, the substitution variants were detected.

Variants Identified by the arRP Array
A total of 42 sequence changes were identified by the arRP

arrays, of which 13 were potentially pathogenic variants affecting

14 out of the 98 patients (14%) (Table 2). Briefly, 5 of the 13

changes detected were known mutations comprising 1 nonsense

substitution: p.R257X in CERKL (Figure 1) present in two

unrelated families, 3 missense mutations: p.C948Y in CRB1,

p.S297R and p.T342M in RHO and 1 acceptor site mutations:

c.1297-2A.G in MERTK, whereas the other 8 potentially

pathogenic variants were novel sequence changes: 6 missense

and 2 splice site variants, all of them absent in control population.

The potentially pathogenic variants were detected in 10 of the 16

retinal disease genes tiled on the array.

Regarding the missense novel mutations, comparison between

the orthologs from different species revealed a high level of

conservation in 5 out of the 6 substituted residues: Ile384 in

CNGA1, Ile1232 and Cys2668 in EYS, Thr292 in RLBP1 and

Arg180 in TULP1 (Figure 3). In addition, bioinformatic tools

employed to evaluate both the impact of the novel sequence

changes on the transcription or translation mechanisms predicted

that 2 of the missense variants were possibly damaging (p.I384T in

CNGA1 and p.R180H in TULP1), 2 of them were shown to abolish

the splicing acceptor site (c.5928-2A.G in EYS and c.726-3C.A

in RPE65), and 1 disulfide bond of the EYS/SPAM structure

seemed to be compromised by the amino acidic substitution of a

Cysteine to a Phenylalanine in the position 2668.

The 13 identified potentially pathogenic sequence changes were

present in 14 out of the 98 patients included in this study. Of them,

5 patients were homozygous for the mutation and the 9 remainder

Table 2. Potentially pathogenic variants detected by the arRP Array and the MLPA.

Family ID Gene Nucleotide change
Amino acid
change Novel/Reference

Control population
studies (mutant/normal
alleles) Genotype

RP 76 CERKL c.769C.T p.R257X [34] - Homozygous

RP 206 CERKL c.769C.T p.R257X [34] - Homozygous

RP 95 CNGA1 c.1151T.C p.I384T Novel{ 0/200 Heterozygous

RP 29 CRB1 c.2843G.A p.C948Y [38] - Homozygous

RP 234 EYS c.3695T.C p.I1232T Novel 0/200 Heterozygous

RP 234 EYS c.1767-?_2023+?del p.C590YfsX4 [26] - Heterozygous

RP 234 EYS c.1971delT p.S658VfsX4 [26] - Heterozygous

RP 109 EYS c.5928-2A.G - Novele 0/200 Heterozygous

RP 202 EYS c.8003G.T p.C2668F Novel* 0/200 Heterozygous

RP 96 MERTK c.1297-2A.G - [39] - Homozygous

RP 353 PROM1 c.1532C.A p.T520K Novel 0/200 Heterozygous

RP 242 RHO c.891C.T p.S297R [40] - Heterozygous

RP 322 RHO c.1025C.T p.T342M [41] - Homozygous

RP 108 RLBP1 c.875A.T p.T292M Novel 0/200 Heterozygous

RP 193 RPE65 c.726-3C.A - Novele 0/200 Heterozygous

RP 333 TULP1 c.539G.A p.R180H Novel{ 0/200 Heterozygous

*Disulfide Bond Alteration predicted by Dianna 1.1.
{Predicted as possibly damaging by Polyphen (V1).
eSplicing site Mutation by Berkeley Drosophila Genome Project (BDGP) website [42], [43].
doi:10.1371/journal.pone.0027894.t002

Microarray-Based Mutation Screening
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were heterozygous. For patients with a single heterozygotic

potentially pathogenic variant, further analyses of genetic variants

not detectable by our customized resequencing chip would be

valuable for the detection of the second mutation in arRP genes.

The remaining 29 detected sequence changes comprised 9

amino acid substitutions, 1 59UTR variant, 6 synonymous

changes, and 13 intronic variants that do not have any predicted

deleterious effect on splicing, can be considered as unreported

SNPs (Table S1). Among the novel nonsynonymous changes,

p.G618S in EYS was initially reported as disease-causing variant

[25], but the segregation studies results in the Spanish family

discarded their pathogenic role. The detection of these SNPs is a

good validation test for the array as it illustrates the ability of the

chip to detect single base pair substitutions

MLPA Analysis of the EYS Gene
The present study led to the identification of one intragenic EYS

rearrangement in the family RP 234 that carries a novel very likely

pathogenic change (p.I1232T, absent in controls). MLPA analysis

revealed 0% dosage in exon 12 of EYS whereas 50% dosage was

shown in the adjacent intron 12. The resequencing data of that

exon showed an apparently normal readout suggesting that at least

one allele is present. This situation could be explained by the co-

existence of two independent pathogenic events occurring in

different alleles. One of them is the heterozygous deletion of the

exon12-intron12, and the other one would be an underlying defect

on the DNA sequence where the MLPA probe should hybrid. As

we expected, further dideoxy sequencing showed a homozygous

deletion of 1 bp disabling the correct hybridization of the MLPA

probe (Figure 2). It is noteworthy that both the large deletion

(c.1767-?_2023+?del; p.C590YfsX4) and the 1 bp deletion

(c.1971delT; p.S658VfsX4) are known mutations previously

described by our group in other unrelated RP families [14], [26]

(Table 2).

In an attempt to define a characteristic profile that may detect

these heterozygous mutations by our resequencing approach, the

Figure 2. Mutations identified in the RP 234 family using several detection approaches. A. Schematic representation of the MLPA
hybridization probe regions of EYS exons 11–14. The asterisks show the location of the mutations and how they affect the hybridization process. The
MLPA dosage readouts and the fragment sizes for the exon-intron 12 are also represented in a box. B. Resequencing trace graph of the five bases
interval including the mutated single nucleotide (c.1971delT). Forward and reverse strands correspond to each of the patient alleles. Manual
examination of signal intensity data (Y axis) is coherent with the two mutations. The asterisk points the deleted base in the forward allele. The
intensity in reverse strand is 10-fold lower than forward (circle in red) suggesting that this allele is deleted (c.1767-?_2023+?del). C. Dideoxy
sequencing electropherogram of exon 12 of the index patient confirming the deletion of a T (c.1971delT).
doi:10.1371/journal.pone.0027894.g002

Microarray-Based Mutation Screening
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intensity signal of each strand was evaluated. Forward and reverse

strands correspond to each of the patient alleles. The results of the

manual interrogation were coherent with the two mutated alleles.

The deleted T appeared as an unclear nucleotide in the forward

strand whereas the deletion of the whole allele manifested as a

drop in the intensity signal in the reverse strand (Figure 2).

Discussion

Molecular diagnosis of RP is a challenging task given the huge

genetic heterogeneity of this disease. The large number of

deleterious mutations that can be found in each gene, and the

multiple genes that can be mutated to give the same phenotype,

make the detection of mutations by traditional screening methods

costly and time consuming. Thus, there is an urgent need for a

validated screening method that allows the detection of mutations

simultaneously in several genes in a single high-throughput

platform. Microarray sequencing technology offers a rapid method

for detecting mutations in patients with genetically heterogeneous

diseases such as arRP. Using the resequencing technology to read

comprehensive nucleotide sequence of a number of genes presents

some advantages in comparison with other available techniques.

The resequencing chip is 5 to 10 times less expensive than

conventional sequencing [12] and although the APEX array is

cheaper, the resequencing chip provides the significant benefit of

detecting novel variants.

The detection of known and novel mutations in this study

establishes array-based resequencing as an effective tool with

potential to improve diagnosis, which hopefully may help to

provide genetic counselling and give a more reliable prognosis in

patients and their families.

Mutational screening of arRP patients using resequencing

array-based technology has been previously reported [11–13],

but our arRP sequencing array offers for the first time an

opportunity to screen for sequence alterations in the EYS gene.

The high number of EYS mutations detected by PCR based direct

dideoxy genomic sequencing published in different arRP patients

and the diverse ethnic origins of these families [5], [25–30] set this

gene as the most prevalent one in arRP (15.9% in Spanish families)

[5]. The combination of the large size of this gene and the lack of

hot spots of disease-causing mutations make the screening of this

gene using traditional methods slow and expensive, but these

disadvantages can now be overcome by the implementation of the

array-based resequencing technology.

The call rates for the arrays in this study (92%) are within the

range of previous studies (90–99%). Considering that this study

utilised higher numbers of arrays than previous studies, we would

have expected the call rates to be higher but the main problem here

was due to hybridization failures resulting in no-called regions.

Certain probes as those with higher than average GC content or

those containing repeat regions can be problematic for resequencing

arrays and are more likely to be no-called. Analysis of the sequence

on RepeatMasker revealed that some regions of the genes CNGA1,

TULP1 and PDE6B are particularly rich in repeat sequences

resulting in decreased signal and increased chance of being no-

called. Extreme caution must be exerted in designing the probes

content of the chip in order to avoid a call rate decrease.

The arRP chip reported herein can screen for most known

disease causing mutations due to single nucleotide changes but as

expected, heterozygous deletions, insertions and CNVs have been

the main problem for the array. In part, some of these limitations

can be overcome with improvements in the chip design like

including specific probes for known insertions and deletions [21],

[31], [32] but they only allow the detection of known changes and

it would be convenient to periodically update the resequencing

design with newer insertions and deletions. For that reason and for

the high prevalence of CNVs recently reported in the EYS gene in

Spanish families [14], we decided to use the MLPA technology in

those families where only one pathogenic change had been

identified by the resequencing approach in that gene. Despite the

reduced number of families included on the MLPA study, the

results obtained were very interesting and allowed the identifica-

tion of two independent pathogenic events in one patient (Family

RP 234) affecting two different alleles. These results evidenced that

the MLPA technique is able to detect not only CNVs but also

short deletions of 1 bp if they are located within the hybridization

region of the probe. In our opinion, the combination of the two

screening strategies is currently the most rapid and efficient

method for mutation screening of arRP in clinical practice.

Regarding the family RP 234, a third heterozygous variant was

detected in the EYS gene (c.3695T.C; p.I1232T) absent in

controls and evolutionarily conserved. Possibly, this variation could

represent a rare SNP but also a mutation that may modify the

phenotype. Such mechanisms involving the presence of modifier

alleles have been suggested to explain variability in disease

phenotype among affected family members with retinal dystrophies

[33]. Great caution must be exerted when interpreting the

functional effect of such novel variants and a more comprehensive

study in additional members of the family would reveal them to be

disease causing, modifier or polymorphic variants.

In addition to mutations detected in the genes routinely tested

for arRP, we identified two mutations (p.T342M and p.S297R)

typically associated with autosomal dominant cases of RP (adRP)

in the rhodopsine gene, Rho. This evidenced that Rho not only

plays an important role in the pathogenesis of adRP, but it is also

involved in a number of arRP cases and its routine analysis in

those families should be considered.

Most of the RP associated genes have hundreds of disease alleles

but sometimes one predominates. A few examples are the

deleterious c.769C.T allele of CERKL that causes a substantial

proportion of sporadic and arRP Spanish cases [34], [35], and the

c.2688T.A allele of CRB1 described as a frequent mutation by

Vallespin et al. [36]. The EYS variants c.1971delT and c.1767-

?_2023+?del have also been detected in unrelated Spanish and

French families [14], [26]. Yet haplotype analyses would be

valuable to determine the origin of these mutations, identifying

recurrent mutations in Caucasian and especially specific popula-

tions such as the Spanish one provides an essential source for the

molecular and clinical diagnosis of such a heterogeneous disease.

Although further refinements in array design, analysis algo-

rithms or both would need to be performed to improve this tool

and optimise research translation into the clinical setting, this work

shows that resequencing array-based technology can be used as a

rapid screening tool. The large amount of data generated by this

high-throughput methodology is an estimable resource not only

for the establishment of genotype-phenotype correlations, but also

for the identification of modifier alleles that could be responsible of

the significant phenotypic variability of RP. Furthermore, this

technology has provided new information and enhances our

Figure 3. ScanProsite predicted domains of the proteins and ClustalW alignment of the orthologs from different species. A. CNGA1
(p.I384T). B. EYS (p.I1232T). C. EYS (p.C2668F). D. PROM1 (p.T520K). E. RLBP1 (p.T292M). F. TULP1 (p.R180H).To study the EYS variants, we have used
the orthologs alignment performed in Barragan et al. [5]. The residue highlighted is mutated.
doi:10.1371/journal.pone.0027894.g003
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understanding of the aetiology and pathogenesis of such as

genetically heterogeneous disease, and ultimately may lead to

better clinical management of patients and their families.

Finally, the design of this array can easily be transformed in an

equivalent diagnostic system based on targeted enrichment

followed by next generation sequencing.

Supporting Information
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