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Channelformer: Attention based Neural Solution for
Wireless Channel Estimation and Effective Online

Training
Dianxin Luan, Student Member, IEEE, John Thompson, Fellow, IEEE

Abstract—In this paper, we propose an encoder-decoder neural
architecture (called Channelformer) to achieve improved chan-
nel estimation for orthogonal frequency-division multiplexing
(OFDM) waveforms in downlink scenarios. The self-attention
mechanism is employed to achieve input precoding for the input
features before processing them in the decoder. In particular, we
implement multi-head attention in the encoder and a residual
convolutional neural architecture as the decoder, respectively. We
also employ a customized weight-level pruning to slim the trained
neural network with a fine-tuning process, which reduces the
computational complexity significantly to realize a low complexity
and low latency solution. This enables reductions of up to
70% in the parameters, while maintaining an almost identical
performance compared with the complete Channelformer. We
also propose an effective online training method based on the
fifth generation (5G) new radio (NR) configuration for the
modern communication systems, which only needs the available
information at the receiver for online training. Using industrial
standard channel models, the simulations of attention-based
solutions show superior estimation performance compared with
other candidate neural network methods for channel estimation.

Index Terms—Channel estimation, attention mechanism, self-
attention mechanism, online learning, deep learning, orthogonal
frequency division multiplexing (OFDM)

I. INTRODUCTION

FOR fifth generation (5G) wireless communication systems
and beyond, the orthogonal frequency division multi-

plexing (OFDM) baseband waveform will be retained [1],
which requires precise channel state information in order
to compensate for the channel distortion and provide robust
communication [2]. Conventional channel estimation methods
are the least-squares (LS) and minimum mean squared error
(MMSE) approaches [3]. However, with the development
of modern communication systems, the LS method cannot
achieve precise estimation and the implementation of the
MMSE method is challenging as the perfect and complete
channel statistics cannot be accessed accurately in advance.
Moreover, conventional channel estimation solutions [4] [5]
also cannot achieve sufficient performance.

Meanwhile, artificial intelligence is impacting on the op-
timization and configuration of 6G [6]. It motivates the re-
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searchers in the field of wireless channel estimation to explore
neural network solutions for improved performance [7] [8]
[9] [10]. Compared with the conventional methods which aim
to find the closed-form expression, neural network methods
are typical data-driven methods aiming for a satisfactory and
local optimum solution. ChannelNet [8], ReEsNet [9] and
Interpolation-ResNet [10] are recently published neural net-
works for wireless channel estimation. The success of the at-
tention mechanism has been demonstrated in recent years [11].
Attention-based solutions have significant advantages over
conventional neural networks, particularly with the release
of the transformer [12]. BERT [13] is a transformer-based
pre-trained model for language processing and has proved to
be efficient and effective. Compared with the convolutional
neural networks, the vision transformer [14] also has superior
performance. The attention mechanism is also investigated to
improve the performance for wireless channel estimation in
[15] [16] [17]. The paper [18] exploits the transformer for
the improved channel estimation. Reference [19] introduces
non-local attention [20] to achieve the channel estimation for
MIMO-OFDM system. A graph attention network is utilized
in [21] for the reconfigurable intelligent surface-assisted com-
munications. An encoder-decoder architecture is also proposed
in [22] by deploying the attention mechanism and the papers
[23] [24] also use the attention mechanism. However, for
the practical communication system, neural network channel
estimation faces severe problems when implemented in the
real world.

A. The challenges for neural network channel estimation

1) Input precoding: For conventional channel estimation
neural networks, LS is widely exploited as the input of the
neural networks and each element of the input features is
directly processed without any pre-processing. However, due
to the fact that the correlation matrix of channel gains at
different subcarriers may not be just diagonal, the importance
of each channel gain is not necessarily equal for all the
subcarriers. It indicates that some elements could have a strong
correlation to the channel prediction while others are not
very correlated, which means that the importance of the input
features will differ. By allowing that some elements of the LS
estimate could be more significant than others in the practical
channels, the neural networks need to focus on a critical subset
of the LS estimates. This is in contrast to most state-of-the

0000–0000/00$00.00 © 2021 IEEE
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Fig. 1. Comparison of the conventional neural network solution for channel estimation (top) and the proposed neural network (bottom).

art networks which process the uncorrelated elements equally
with those key elements, because the low-correlated features
can be considered as a noise in the input. Therefore, neural
networks should pay attention to fewer but more important
features. This paper exploits the property of the correlation
by pre-processing the input features (called input precoding),
aiming to improve the estimate performance. The MMSE
method denoises the LS estimate with the correlation matrix
assisting to improve the performance significantly.

2) Online implementation: The practical online implemen-
tation of neural networks should be capable of generalizing to
extended conditions, supporting the trained neural networks to
maintain consistent performance in the practical channels like
COST 2100 channel [25] or the 3GPP TS38.901 fast fading
channel. When the channel is found to be changed significantly
from the channel for training and the measured performance
is not acceptable, online training [26] [27] [28] [29] [30] is
needed to fine-tune the neural network with online samples,
to compensate for this degradation. However, it is a critical
challenge to realize the online implementation for conventional
neural networks in the real-world communication system.

• Realizability of online training: While online training
is essential for practical implementation, the training
process for many neural network solutions is not feasible
in the real scenarios [8] because a complete, noise-free
channel matrix is not available. Assuming that the input
of the neural network is also LS estimate, neural net-
work solutions achieve both the frequency interpolation
and time interpolation to predict the complete channel
matrix commonly which can improve the performance to
MMSE level or beyond, because these neural networks
have already been trained with the perfect and complete
channel information. When the channel is found to be
changed significantly, the corresponding online training
may require the perfect channel matrix of the complete
data packet for training. The critical challenge is that
this channel knowledge is unavailable from the real-world
noisy receiver waveform.

• Reliability of online training: The online training process
needs to be reliable to achieve superior performance
compared with conventional methods. However, the phys-
ical channel can be non-stationary when collecting the
training samples, while training often needs sufficient
samples to estimate the channel parameters properly.
If the channel varies significantly among the collected

training samples severely, especially in a single mini-
batch, the online training process will randomly update
the parameters. To avoid that, the online training dataset
should be sampled within a controlled period to ensure
the channel’s coherence. Moreover, the training process
should be robust to outlier samples.

3) Complexity and latency of implementing the neural net-
work: The complexity of the practical neural network solution
should be considered carefully for low-latency and low-power
communication systems because 5G often requires low-latency
decoding. As the operation of multiplying matrices can be
accelerated by at least 10 times [31], this work only considers
the reduction of the network parameters and the critical path of
the neural network to minimize the floating-point operations
and the sequential latency. The latency under consideration
involves the forward delay and online training latency. The
forward delay refers to the running time for channel esti-
mation, which depends on the complexity and architecture
of the neural network. Online training delay refers to the
latency of the online training process. Commonly, the training
duration is considerable [32] [33] [34], which means that the
designed neural network solutions should have the property
of fast convergence. Moreover, by using online nuclear norm-
based loss function, the online training solution proposed in
[26] calculates noisy measurements of a linear mapping for
the unseen channels, which provides the channel information
for neural networks to learn. It indicates that online training
introduces an additional computation for the label generation
and training.

B. Main contributions and outline

To resolve the challenges mentioned, an encoder-decoder
architecture called Channelformer is proposed for wireless
channel estimation in the downlink scenario. Channelformer
uses the multi-head attention and a convolutional neural net-
work as the encoder and a residual convolutional architecture
for the decoder. It achieves an improved performance to state-
of-the-art neural network solutions and processing complexity
is reduced. Our proposed method should perform robustly
when dealing with some mismatches between the training
and test datasets. However, the neural network needs to be
retrained for significant changes, e.g. the number of subcarriers
used. The major features of the proposed solution are
• To achieve the input precoding, we use an encoder

involving the self-attention attention to pre-process the
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input features. The multi-head attention module helps
capture the valuable information/features (the elements
of LS estimate with a strong correlation to the channel
predictions) and is expected to focus on different parts
in different heads. Unlike conventional neural networks
that process all the LS estimates equally, a pre-processing
architecture is applied to focus on the most critical
elements among the LS estimate. This will ensure that
the subsequent neural network can focus on the critical
features to yield the best channel estimate. Compared
to HA02 [22], the neural architecture of the encoder is
modified for the Channelformer to provide both reduced
complexity and improved performance.

• We propose a simple and effective online training al-
gorithm which can directly exploit the received signals
for online training. The proposed training approach uses
reference symbol information to generate the regression
label. The mini-batch size of the online training process is
reduced to avoid random evolution of the Channelformer
weights, which also simplifies the online training process
and reduces the online training latency. Huber loss [35]
is employed as loss function to balance the resistance to
the outlier training samples and the convergence speed.
Moreover, the encoder (multi-head attention module) is
believed to accelerate the training processing because it
captures the critical elements of features to focus on.
We also investigate the generalization capability of the
Channelformer to extended SNR and Doppler shift cases
and provide more robust performance.

• In order to compress the neural network and reduce
latency, this paper customizes a weight-level pruning
methodology for both the encoder and the decoder in-
dividually and minimizes the layers in the critical path.
The subsequent fine-tuning training process also uses a
smaller mini-batch size. Compared with the complete
neural networks, the compressed neural networks retain
almost identical performance and generalization capabil-
ities.

The rest of the paper is organized as follows. Section. II
presents the description of the baseband, frame structure based
on the 5G New Radio (NR) standardization and the propaga-
tion channels. Section. III introduces the conventional methods
LS and MMSE for channel estimation and describes the
Channelnet, ReEsNet and Interpolation-ResNet networks for
performance comparison. Section. IV proposes the system de-
scription of Channelformer and the online training algorithm.
Section. V discusses the compression of the neural network to
reduce the running latency and memory. Section. VI compares
the simulation results of the individual performance. Finally,
Section. VII summarizes the key findings of the paper.

II. SYSTEM ARCHITECTURE AND CHANNEL MODELS

A. OFDM baseband architecture

At the transmitter, the bit level signal s(i) is processed
in a Quadrature Phase Shift Keying (QPSK) modulator with
Gray coding, and then pilot signals are inserted. Each slot
consists of Ns = 14 OFDM symbols and each OFDM symbol

involves Nf = 72 subcarriers, matching 6 5G NR resource
blocks. The time-domain allocations for the demodulation
reference signal (DM-RS) comprises 2 single symbol DM-
RS waveforms and the 1st and 13th OFDM symbols are
reserved for pilots (Npilot = 2) [36]. For the first pilot OFDM
symbol, the indices of the pilot subcarriers start from the first
subcarrier and are spaced by Ls = 2 subcarriers. For the
second pilot symbol, the pilot subcarriers start at the second
subcarrier and are also spaced by Ls = 2 subcarriers. The
remaining subcarriers in the pilot symbols are set to 0. All
of the data subcarriers in the remaining 12 OFDM symbols
are assigned by QPSK-modulated symbols. The inverse fast
Fourier transform (IFFT) converts the frequency domain data
symbols to the time domain OFDM signal samples where
TSym denotes the duration of each pilot-data symbol. Then the
cyclic prefix (CP) of duration TCP is added to the front of each
symbol to provide resistance to multipath effects. Normally the
fast Fourier transform (FFT) and IFFT operators use scaling
factors of 1 and 1/Nf , but those are changed to 1/

√
Nf to

avoid changing the power of the FFT/IFFT outputs compared
to the inputs. The channel is assumed to be a multipath
fading channel with M resolvable paths. By removing CP
and converting the received data into the frequency domain
by FFT operation, the received signal Y ∈ CNf×Ns , can be
represented by

Y = H ◦X + W, (1)

Where X, W and H ∈ CNf×Ns are the Discrete Fourier
Transforms (DFT) of the transmitted signal, the additive white
Gaussian noise and the channel impulse responses. The opera-
tor ◦ represents the Hadamard product. With the condition that
the maximum delay is less than the duration of CP, the received
pilot signal is extracted to provide a channel amplitude and
phase reference for each data symbol in the complete packet.
Then the recovered data symbols are processed in the QPSK
demodulator to obtain the received bit-level data estimates
ŝ(i).

B. Channel model and frame structure

We consider a single-input-single-output (SISO) downlink
scenario. The deployed channel is modelled as a Rayleigh
fading channel by using the generalized method of exact
Doppler spread method [37]. The power delay profiles (PDP)
are the extended pedestrian A model (EPA), extended vehicu-
lar A model (EVA) and extended typical urban model (ETU)
defined in 3GPP TS 36.101, representing a low, medium, and
high delay spread environment respectively. It is assumed that
the operating frequency is 2.1GHz (sub-6GHz band) and the
subcarrier spacing is 15kHz. Moreover, the sampling rate is
1.08MHz and TCP is 16 samples.

III. CONVENTIONAL METHODS AND NEURAL NETWORKS
FOR CHANNEL ESTIMATION

The conventional channel estimation methods are the least
squares (LS), Decision-directed channel estimation (DD-CE)
and minimum mean squared error (MMSE) used to compare
performance with neural network solutions. The algorithm
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ĤMMSE(j) = Rhhp(j)

(
Rhphp(j) +

σ2
N

σ2
X

I

)−1
ĤLS(j), with j =

{
1, i = 1

2, i = 13
, (4)

implementations of the conventional methods are explained,
and the deployed neural network methods are also introduced.

A. LS method

By minimizing the mean squared error (MSE) between Y
and H ◦X at the pilot positions, i.e. argminH ‖Y−H ◦X‖22
at the pilot positions, to give an estimate of H, the frequency
domain LS estimation is given by

ĤLS =
YPilot

XPilot
, (2)

Where YPilot,XPilot ∈ C
Nf
2 ×Npilot denotes the received and

transmitted pilot signals respectively, and the mathematical
division operation is performed element-wise. LS is easy to
implement with extremely low complexity for all the existing
channels. When we evaluate the MSE of LS method for each
pilot OFDM symbol, MSE is inversely proportional to the
numerical value of SNR from equ. (3),

MSE = E

{(
Href − ĤLS

)H (
Href − ĤLS

)}
=
σ2
N

σ2
X

,

(3)
Where Href is the noise-free channel vector at the LS-
corresponding position and σ2

X

σ2
N

denotes the numerical value

of SNR. The prediction ĤLS is then resized by bilinear
interpolation [38] in both the time and frequency domain to
estimate the complete channel matrix Ĥframe

LS ∈ CNf×Ns .

B. DD-CE method

To provide an alternative non-AI method for comparison, we
implemented an iterative method DD-CE [39]. The Ĥframe

LS

is used to detect the QPSK data symbols using the equation
X̂ = Y/Ĥframe

LS and then hard decisions are applied to
all entries of X̂ to map to the nearest QPSK constellation
point. These QPSK symbols are then fed back to update the
LS estimate Ĥframe

LS = Y/X̂. The iterations continue until
the hard decisions do not change or one hundred iterations
are reached. The final DD-CE prediction is denoised in the
frequency domain by the Wiener filter used in [3]. However,
the DD-CE method still suffers from error propagation under
high Doppler frequency or low SNR conditions.

C. FD-MMSE and 2D-MMSE methods

To minimize the square of Euclidean distance between the
actual channel matrix and the LS estimate for each pilot
symbol, the one-dimensional (1D) frequency domain linear
MMSE channel estimation of the ith OFDM symbol [40]
ĤMMSE ∈ CNf×Npilot is computed by Where j denotes the
index of the pilot symbol, h(i) ∈ CNf is the channel gain
vector for the ith OFDM symbol and hp(i) ∈ C

Nf
2 denotes the

channel gain matrix for the ith OFDM symbol which contains

Nf
2 pilot subcarriers. I is the corresponding identity matrix.

Assuming the noise-free channel vectors at the pilot symbol
locations are known, the correlation matrices are computed by

Rhhp(j) = E
{
h(j)hp(j)H

}
,

Rhphp(j) = E
{
hp(j)hp(j)H

}
.

(5)

To predict the channel matrix for the whole slot, linear inter-
polation [38] is also implemented to achieve time interpolation
for this 1D FD-MMSE method.

To achieve the two-dimensional (2D) FD-MMSE method,
the conventional non-AI methods are challenging because
despite the accuracy, statistical models are cumbersome and
difficult to handle [41] [42]. Therefore, many papers are based
on a basis expansion model (BEM) [41] [43] [44] for the
doubly-selective channels. To interpolate the 1D FD-MMSE
method in the time domain precisely, the correlation matrix
at each data symbol is calculated by equ. (5) by exploiting
each noise-free channel vector at the data OFDM symbols
and the corresponding LS estimates at each OFDM symbol
are also assumed to be known. With the perfect and complete
channel knowledge known, the 2D FD-MMSE method is the
most precise method to compute the channel matrix, which
should give the best performance for methods that use the
mean squared error loss function. By utilizing prior statistical
knowledge of the channel state, the MMSE method improves
the performance of the LS method but requires unavailable
channel information. Therefore, physical implementation of
the MMSE method is difficult which motivates us to research
neural network solutions.

D. ChannelNet, ReEsNet, TR and Interpolation-ResNet

Due to the considerable performance gap between the LS
method and the MMSE method, the neural network solutions
are investigated for the improvement. ChannelNet [8] (670,000
parameters) is one of the first released neural network solutions
for channel estimation. However, conventional deep neural net-
works may not exhibit the potential degeneracy, which inspires
the researchers to utilize a residual architecture to solve this.
ReEsNet [9] is a residual convolutional neural network with
53,000 parameters, which outperforms ChannelNet. Compared
with ReEsNet, Interpolation-ResNet with only 9,442 param-
eters (called InterpolateNet in this paper) [10] achieves a
slightly improved performance and 82% reduced parameters.
However, the generalization capability of InterpolateNet and
ReEsNet trained [10] is quite limited, which motivates us
to research with the attention mechanism to propose HA02
[22]. As the other neural network solutions are much less
complex than ChannelNet, we only consider the state-of-the-
art networks when presenting simulation results. TR [18] is
a transformer-based solution which involves a transformer
encoder [12] and a 1D-CNN. The output is resized by bilinear
interpolation to estimate the channel matrix of the whole slot.
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E. Discussion on the performance of neural networks

Deep learning based channel estimators, which exploit the
LS estimate as input, denoise and interpolate the input in
both the frequency and time dimension to approach the actual
channel matrix. To minimize the distance between the LS
estimate and the actual channel matrix, the neural networks
are believed to find a local optimization while the MMSE
method with perfect channel knowledge is close to global
optimization. Therefore, the 1D FD-MMSE method should
outperform the neural network solutions on denoising and
frequency interpolation. However, accurate time interpolation
provides the possibility to outperform the 1D FD-MMSE
method because it uses linear interpolation in the time domain.
By exploiting the perfect channel matrix of the complete
package for training, the neural networks can outperform
the 1D FD-MMSE method even though it is not a practical
solution. Therefore, we propose two versions of the proposed
method (offline Channelformer and online Channelformer).
For the offline Channelformer, the prediction is the channel
matrix of whole slot. For the online Channelformer, it is only
capable of denoising and frequency interpolation. In this paper,
a united interpolation method for LS, 1D FD-MMSE and
online Channelformer is used to achieve time interpolation
for estimation. Therefore, the online Channelformer cannot
outperform the 1D FD-MMSE method because both methods
exploit same channel information.

IV. CHANNELFORMER

HA02 [22] is an encoder-decoder neural network solution
that uses the transformer encoder [12] to improve performance.
However, the computational complexity can be reduced for
the low-complexity applications and the performance can
be improved further, so this paper shows how this can be
achieved. The self-attention mechanism is also implemented
to focus on the features that are small but important. The
motivation of implementing the self-attention mechanism is to
achieve the input precoding by exploring the significance of
the feature’s elements, instead of processing all the feature’s
elements as being equally important.

For the input of Channelformer, the matrix ĤLS is concate-
nated to be one column vector ∈ C

NpilotNf
Ls and the real and

imaginary parts of the one column vector are split into two
different channels as the second dimension of the input array.
Therefore, the input is the transformed estimation of LS Ĥin

has a size of R
(
NpilotNf

Ls

)
×2. The offline Channelformer is

trained by using the channel matrix of the whole slot and the
corresponding complex estimate of Channelformer is denoted
as ĤChannelformer ∈ CNf×Ns . The online Channelformer
is trained by using the channel matrix at the position of the
pilot symbols instead of the channel matrix of the whole
slot. It is compatible with the realistic online training solution
proposed. Therefore, the output of online Channelformer Ĥout

has a size of R(NpilotNf )×2 where the index 1 of the second
dimension is the real part and index 2 is the imaginary part.
The first Nf samples in each dimension are the prediction
for the first pilot symbol and the second set of Nf samples
are for the second pilot symbol. Therefore, the corresponding

complex estimate, denoted as ĤChannelformer, has a size
of CNf×Npilot . Channelformer shown in Fig. 2 involves two
substructures, which are attention pre-processor and residual
convolutional architecture.

A. Encoder: Attention pre-processor

In this paper, we implement the multi-head attention fol-
lowing [12]. The scaled dot-product attention module has three
inputs named the query (Q), key (K) and value (V) generated
from the same input after a linear transformation realized by
fully-connected layer. By mapping the query Q and key K
to generate the probability of the V, the expectation of V is
calculated by multiplying the computed probability with V’s
corresponding value, where input precoding is achieved. The
encoder is composed of one attention block.

1) Multi-head attention and normalization: The first fully-

connected layer resizes the input x ∈ R
(
NpilotNf

Ls

)
×2 to y ∈

R
(

3NpilotNf
Ls

)
×2 by

y = Wx + b, (6)

where W ∈ R
(

3NpilotNf
Ls

)
×
(
NpilotNf

Ls

)
is the weight, b ∈

R
(

3NpilotNf
Ls

)
×1 is the bias. Multi-head attention splits that

output equally to 3 sub-inputs as the K, Q and V ∈
R
(
Nf
Ls

)
×2×Nhead , for Nheads heads with the constraint that

Nheads = Npilot. In different heads, the attention mechanism
focus on different features. Moreover, we do not apply causal
mask and dropout in the multi-head attention block [12]
because we do not need both. For the ith element of the feature,
it can be correlated to the non-causal elements (position larger
than i) from the correlation matrix of channels, which indicates
that the features may not be sequential. Moreover, the channel
noise can realize regularization. Therefore, we remove the
dropout and the L2 regularization is set to a value close to

0. The scaled dot-product attention ∈ R
(
Nf
Ls

)
×2×Nheads [12]

is computed by

Attention = softmax

(
QKT

√
dk

)
V, (7)

Where dk =
Nf
Ls

is a scaling factor to normalize QKT . After
concatenating the outputs from scaled dot-product attention
for different heads in the first dimension, the concatenated

result ∈ R
(
NfNheads

Ls

)
×2 is forwarded to the second fully-

connected layer to generate the output of the attention module

∈ R
(
NfNheads

Ls

)
×2. The Add & Norm layer adds the linear

transformed output from the scaled dot-product attention and
the skip connection from the first fully-connected layer input,
and applies layer normalization [45] to the superimposed result

∈ R
(
NfNpilot

Ls

)
×2. The operation of layer normalization is

given in equ. (10). For each head’s input x ∈ R
NpilotNf

Ls
×1,

a subset of the superimposed result that only consists of the
whole elements of the superimposed result’s first dimension,
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Fig. 2. A detailed overview of the Channelformer neural network architecture. The bottom right of the figure shows the offline version (top) and the online
version (bottom).

the layer normalization computes the corresponding output y
by

y = w

(
x− µ√
σ2 + ε

)
+ b, (8)

µ = mean(x) =

 Ls
NpilotNf

NpilotNf
Ls∑
i=1

xi

 , (9)

σ2 = mean
(
‖x− µ‖22

)
, (10)

Where ε = 10−5, µ denotes the empirical mean of x and σ2

is the corresponding variance. w, b ∈ NpilotNf
Ls

× 1 is the
weight and bias which achieve the same linear mapping for
each x, which means that w and b is unchanged for each x.

The output of that Add & Norm layer ∈ R
(
NpilotNf

Ls

)
×2 is

then processed by the Pre-Network module.
2) Pre-Network: It involves three layers, which are one

convolutional layer with NEncoder filters kernel size of 2 × 2

× 1 with corresponding output ∈ R
(
NpilotNf

Ls

)
×2×NEncoder ,

one activation layer and another convolutional layer with
one filter kernel size of 2 × 2 × NEncoder in series.
The approximate GeLu [46] is employed as the activa-
tion function for the encoder, which computes the out-

put y ∈ R
(
NpilotNf

Ls

)
×2×NEncoder from the input x ∈

R
(
NpilotNf

Ls

)
×2×NEncoder by

y = 0.5x

(
1 + tanh

(√
2

π

(
x+ 0.044715x3

)))
. (11)

The Add & Norm layer adds the output from the second con-

volutional layer ∈ R
(
NpilotNf

Ls

)
×2×1 and the skip connection

from the input of the Pre-Network ∈ R
(
NpilotNf

Ls

)
×2×1, and

applies the layer normalization [45] to the superimposed result
in the first dimension. That normalized result is the input

∈ R
(
NpilotNf

Ls

)
×2×1 to the decoder. Compared with HA02

[22], the fully-connected layers are replaced by convolutional
layers to reduce the number of parameters for the encoder and
improve the performance.

B. Decoder: Residual convolutional architecture

The encoded features ∈ R
(
NpilotNf

Ls

)
×2×1 are then pro-

cessed by the decoder, as shown in Fig. 2. It is com-
posed of (i) one convolutional layer with an output ∈
R
(
NpilotNf

Ls

)
×2×NDecoder , (ii) one residual convolutional mod-

ule which consists of K stacks of residual convolutional
blocks and the output size is ∈ R

(
NpilotNf

Ls

)
×2×NDecoder ,

and (iii) one upsampling module in series. The first con-
volutional layer has NDecoder filters with kernel size of Γ.
The residual convolutional block consists of one convolutional



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 7

layer with NDecoder filters (the corresponding output size is

∈ R
(
NpilotNf

Ls

)
×2×NDecoder ), followed by one ReLu layer with

the corresponding output size of ∈ R
(
NpilotNf

Ls

)
×2×NDecoder

and one convolutional layer with NDecoder filters (the cor-

responding output size is ∈ R
(
NpilotNf

Ls

)
×2×NDecoder ). The

kernel size of each is Γ. ReLu computes the output y from
input x element-wise by

y =

{
x, x > 0

0, x ≤ 0
, (12)

Where x,y ∈ R
(
NpilotNf

Ls

)
×2×NDecoder . The Add

& Norm layer processes the superimposed result

∈ R
(
NpilotNf

Ls

)
×2×NDecoder of the input and output

∈ R
(
NpilotNf

Ls

)
×2×NDecoder of the residual block to the

upsampling module. The upsampling module consists of one
fully-connected layer and one convolutional layer. Redundant
parameters [47] are found to be capable of resisting the
unknown changes. However, we think redundant architecture,
rather than redundant parameters, is the key for resistance and
we conclude that in Section. VI-B. Therefore, to achieve one-
dimensional upsampling for the first dimension and improve
the generalization to unknown SNR and Doppler shift by
using redundant architecture, we deploy a fully-connected
layer in the resize module. The last coupled convolutional
layer has one filter with the kernel size of Γ to generate the
output Ĥout.
• For the offline Channelformer, we use K = 3, NEncoder

equal to 5, NDecoder equal to 12, and Γ = 5 × 5.
The fully-connected layer resizes the output of resid-
ual block from R

NpilotNf
Ls

×2×NDecoder to the size of
R(NsNf )×2×NDecoder . For each channel of the residual
block’s output xD ∈ R

NpilotNf
Ls

×2, this fully-connected
layer resize each of them by equ. 6 with the weight w ∈
R(NsNf )×

(
NpilotNf

Ls

)
and the bias b ∈ R(NsNf )×1. The

corresponding channel estimation ĤChannelformer ∈
CNf×Ns is the estimate H of the whole slot. The total
number of parameters is 117,659: 21,358 for the encoder
and 96,301 for the decoder. Moreover, the major param-
eters are contributed by fully-connected layers.

• For the online Channelformer, we use K = 1,
NEncoder equal to 5, NDecoder equal to 2, and Γ
= 2 × 2. The fully-connected layer resizes the
output of residual block from R

NpilotNf
Ls

×2×NDecoder

to the size of R(NpilotNf )×2×NDecoder in the same
way with the offline Channelformer by the weight

w ∈ R(NpilotNf )×
(
NpilotNf

Ls

)
and the bias b ∈

R(NpilotNf )×1. The corresponding channel estimation
ĤChannelformer ∈ CNf×Npilot is interpolated linearly
[38] to predict the channel matrix of the whole slot, which
fairly compares with the LS and FD-MMSE methods.
The total number of parameters is 32,069: 21,358 for the
encoder and 10,711 for the decoder. 98.34% parameters
are contributed by fully-connected layers, which indicates
a further complexity reduction by weight-level pruning.

For the configuration of online Channelformer, it is
impossible to exceed the performance of FD-MMSE as
discussed in Section. III-E.

C. Online training algorithm

For the online deployment, online training is required to
track the physical channels and achieve reliable communica-
tion. Instead of replacing the loss function, we propose an
approach which yields a simple and effective online training
algorithm. To improve the performance without access to the
noise-free and complete channel matrix, the proposed online
training process starts with the offline-trained neural network
and exploits the denoised LS estimate ĤLS for the regression
label, which is also synchronous with the transmission of
the data. Rather than the single-symbol DM-RS for offline
training described in Section. II-A, the pilot pattern is changed
to a non-standardized customized double-symbol DM-RS de-
scribed in Fig. 3 for the online training. For the label pilot
symbols in Fig. 3, the pilot signal with higher SNR than the
data signal takes all the subcarriers of that pilot symbol. This
paper considers two different label pilot symbols design to
achieve higher SNR for comparison.
• Power Increased Pilot Symbols: The power increased

pilot label symbols contain data that is known to the
receiver. A power increase of 5dB for the label pilots
compared to the feature pilots is considered to guide the
neural network to denoise by that 5dB gain, because the
SNR of the label pilot symbol is 5dB higher than the
feature pilot symbol for the adjacent pilot symbols of
DM-RS. The average power of the whole slot is increased
by 1.13dB, therefore, the power efficiency consumed is
negligible to achieve the power-enhanced online training.

• MMSE Processing of the label pilot Data: This method
requires the receiver to process the received label pilot
symbols by an estimated MMSE filter with the delay
distribution given by equ. (14) to work. By contrast, the
power of the label pilot symbols is the same as the data
symbols, and an estimated MMSE method is exploited to
denoise the label pilot symbols for training. The channel
gains at the positions of the label pilot symbols are first
estimated by the LS method described in Section. III-A,
to provide the corresponding ĤLS for the FD-MMSE
method described in equ. (4). To compute the correlation
matrix required by equ. (4), the i, jth element of the
correlation matrix is computed by equ. (13) by letting
τrms →∞ and normalizing ri,i = 1, ∀i ≤ Nf . Each τm
for the M different paths is assumed to be independent.
Where θ (τ) = TCP e

−τ/τrms

Mτrms

(
1−e−

TCP
τrms

) is assumed to be the

exponentially decaying power delay profile and fτ (τ) is
the probability density function of each τk given by [3]

fτ (τ) =

{
1/TCP , τ ∈ [0, TCP ]

0, otherwise
. (14)

The resulting FD-MMSE filter can be computed offline to
minimize the online processing of the label data. The feature
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ri,j =

∫
...

∫ M−1∏
m=0

fτm (τm)

[
M−1∑
k=0

θ (τk) e−j2πτk(i−j)/Nf

]
dτ0...dτM−1 =

1− e−2πjTCP (i−j)/Nf

2πjTCP
i−j
Nf

, (13)

Fig. 3. Frame description (double-symbol DM-RS model) on the left and online training process on the right.

pilot symbol and the label pilot symbol of each double-symbol
DM-RS are reserved for the input feature and the regression
label of the feature pilot symbols. Moreover, the Doppler
shift affects the performance of the proposed online training
algorithm. The coherence time should exceed the duration
of the adjacent double-symbol DM-RS signal significantly,
to lessen the effects derived by the shift of the regression
labels in the time domain. For a Rayleigh fading channel, the
variation of the channel’s correlation matrix caused by time
shifts from lth OFDM symbol to l′th OFDM symbol can be
calculated [48] by equ. (15) for the configuration described in
Section. II-B.

rt(l − l′) = J0 (2πfDoppler (TSym + TCP ) (l − l′)) , (15)

Where J0() denotes the zeroth order Bessel function of the
first kind. Even for a very high speed train scenario, where
the Doppler frequencies are in the range 750-972 Hz, the
corresponding rt varies from 0.94 to 0.97 for the adjacent
OFDM symbols (l− l′ = 1). This indicates that the transfer’s
effect on the online training process is not significant because
the channel vectors at the feature pilot OFDM symbol and
the label pilot symbol deployed in this paper are strongly-
correlated. Moreover, the proposed double-symbol DM-RS is
one example of this scheme and other pilot configurations
(l − l′ 6= 1) are possible.

V. COMPRESSION OF THE NEURAL NETWORK

As the neural network should be compressed for online im-
plementation to reduce the latency for low-power applications,
we consider the compression of the neural network as both
decreasing the critical path and reducing the computations of
each layer [49], which then reduce the delay T of a forward
pass from equ. (16).

T =

N∑
i=1

τ(i), (16)

Where N represents the number of layers and τ(i) denotes
the execution time of the ith layer. In this paper, we deploy
the customized weight-level pruning to slim the trained neural
network and reduce the computations of the connection layers
with a high pruning ratio (70% or more). Moreover, the
number of layers is also considered to be minimized.

A. Reducing the critical path length: reduce number of layers

The layer-level critical path of the neural network is reduced
by decreasing the number of layers, as sequential delay cannot
be parallelised because the next layer needs the output of the
previous layer to proceed. Online Channelformer minimizes
the layers by using one attention block at the encoder and one
residual convolutional block at the decoder.
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B. Slim the trained neural networks: reduce the execution time
of each layer

To reduce the computations of the activation layers, GeLu
is replaced by ReLu to lower the computations in the decoder
as the computations compared by equ. (11) and equ. (12). For
the computations of the connection layers, the optimization is
achieved by applying the customized weight-level pruning in
this paper. Weight-level pruning is the complexity reduction
method that removes the redundant neural connections, and
is widely discussed [50] [51] [52]. Removing a significant
number of neurons degrades the performance, therefore, the
pruning method often uses a fine-tuning process to compen-
sate. The conventional pruning method [53] is complicated
for the online low-latency and low-power deployment. There-
fore, we customize the weight-level pruning to accomplish
the parameter diminution for the trained neural networks.
Specifically, we remove the feedback loop from the compres-
sion procedure pipeline and filter the neural connections in
the different regions, to reduce the running complexity. The
customized weight-level pruning method combines the pruning
and fine-tuning process, as shown in Fig. 4.

Fig. 4. The customized weight-level pruning method used in this paper.

Pruning is applied to both the encoder and decoder respec-
tively, because the corresponding parameters’ distribution may
be significantly different (encoder and decoder have different
functions and number of parameters). The parameters with
insignificant magnitude are advised to be pruned since the
neurons firing together wire together. After the trained neural
network is pruned with a certain ratio, the pruned neural
network is retrained by the fine-tuning dataset to compensate
for the degradation derived by pruning. We keep the pruned
neural connections activated when calculating the gradients
for back-propagation and then set the gradients of the pruned
parameters to 0 when updating the parameters. Therefore, the
remained parameters are updated by the fine-tuning process to
smooth the pruned neural network while the pruned parameters
are kept to be 0. It also provides insights into whether the
pruned neural connections are not essential. If the pruning is
applied appropriately, these gradients of the pruned parameters
should not have a very critical magnitude when the training
process is saturated. The pruned parameters with a significant
gradient will be reactivated to avoid pruning the vital con-
nections, which is proved biologically to damage the neural
activity critically and the critical synapse is often enhanced
[54]. Otherwise, the gradient of pruned parameters will be kept
to 0. Moreover, the compensation provided by the fine-tuning
process is leaked by the gradient of pruned parameters and the

degradation should be minimized if the pruned parameters is
not essential.

Therefore, neural networks should be firstly designed with
large-scale parameter space and then slimmed by weight-level
pruning, rather than proposing a compact design. Efficiency
is a relative concept to the tasks the neural networks face,
which weight-level pruning is exploited to balance with. The
trade-off depends on whether the improved performance is
essential compared with the computation cost derived. The
paper [55] also discusses the effect of the pruning on the
overall performance of neural networks.

VI. SIMULATION RESULTS

MSE is a key performance metric that evaluates the distance
between the actual channel and the estimate of channel for
each resource element in the slot, which is defined as

MSE(Ĥ,H) =
1

NfNs

Nf∑
i=1

Ns∑
j=1

wwwĤij −Hij

www2

2
, (17)

Where Hij is the exact channel at subcarrier i and OFDM
symbol j and Ĥij is the corresponding estimate. The Denois-
ing gain (DG) measured in dB is another performance metric
which evaluates the ability of the neural network to improve
the quality of the LS estimate. Equ. (18) is a modified version
of equ. (2) in [52] to ensure a positive gain in dB when the
channel estimate is improved by the neural network.

DG = 10 log
‖ĤLS −H‖22

‖ĤChannelformer −H‖22
(dB). (18)

The bit error ratio (BER) is also a performance metric to
evaluate the system performance. The offline training datasets
for both the non-attention solutions and the attention-based
solutions are generated by the hyperparameters from Table. II.
The major difference between offline and online training
relates to the regression label. For offline training, the channel
matrix of the complete slot ∈ RNf×Ns×2 and is used for
InterpolateNet, HA02, offline Channelformer and ReEsNet.
The regression label for the TR method is the actual channel
matrix at the pilot positions. The regression label for the
online-trained Channelformer method is the channel matrix
at the pilot symbols ∈ RNpilotNf×2. The hyperparameters for
training ReEsNet and InterpolateNet are extracted from the
original papers [9] [10]. To average out the Monte Carlo effects
for all the simulation plots, each point is measured by 5000
independent channel realizations.

The loss function deployed for InterpolateNet and ReEsNet
is MSE, which is consistent with [9] [10]. By implementing
the MSE loss function, the model converges rapidly with the
drawback that the outlier samples in the training dataset can
degrade the trained neural networks significantly. Compared
with MSE, MAE is more robust to outlier samples with
compromise on the convergence speed. For practical training,
training scenarios with low SNR and time-varying channels,
outlier samples exist in the training dataset. For online training,
the neural network should converge rapidly to reduce the
training latency. Therefore, the loss function employed for



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS 10

TABLE I
OFFLINE TRAINING HYPERPARAMETERS AND MODEL SIZE INFORMATION

Online (Offline) Channelformer HA02 InterpolateNet ReEsNet TR
Number of parameters 32,069 (117,659) 105,607 9,442 53,000 31,829

Optimizer Adam (Adam) Adam Adam Adam Adam
Maximum epoch 20 (100) 100 100 100 100

Initial learning rate (lr) 0.002 (0.002) 0.002 0.001 0.001 0.002
Drop period for lr every 10 (every 50) every 10 every 20 None every 20
Drop factor for lr 0.5 (0.5) 0.5 0.5 None 0.5

Minibatch size 128 (128) 128 128 128 128
L2 regularization 1e-7 (1e-7) 1e-7 1e-7 1e-7 1e-7

TABLE II
PARAMETERS FOR OFFLINE-TRAINING DATASET GENERATION

SNR values Doppler frequency Training dataset size Channel Type
From 5dB to 25dB From 0Hz to 97Hz 125,000 (95% for training and 5% for validation) ETU

TABLE III
AVERAGE EXECUTION TIME OF THE DEPLOYED METHODS IN MILLISECONDS

LS DD-CE 1D (2D) FD-MMSE Online (Offline) Channelformer HA02 InterpolateNet ReEsNet TR
0.5954 15.8698 1.2260 (3.9597) 20.5003 (31.0372) 23.4283 10.3835 8.9523 11.5869

Channelformer, TR and HA02 is the Huber loss [35] defined
in equ. (19) with the transition δ set to 1.

Lδ(a) =

{
1
2a

2 if |a| ≤ δ
δ
(
|a| − 1

2δ
)

otherwise
. (19)

It is a combination of MSE and MAE, which provides a
compromise between the outlier impact and the convergence
speed of the training process. The model is trained on a
single NVIDIA GeForce RTX 2080 Super with Max-Q Design
using MATLAB 2020a. For the neural networks updating the
parameters online, only denoising and frequency interpolation
can be achieved because time interpolation needs the noise-
free channel matrix at the data OFDM symbols as mentioned.
The average execution time of each method is provided in
Table. III.

A. MSE performance over the extended SNR range and
Doppler shift

We evaluate the MSE performance over an extended SNR
range compared with the training dataset, to investigate the
generalization capability for the unseen SNR values. The test
dataset is generated on the ETU channel with extended SNR
range from -10dB to 30dB and Doppler shift from 0Hz to
97Hz. Each SNR is tested with 5000 independent channel
realizations.

Fig. 5a compares the MSE performance of each method
over the extended SNR range. As in Fig. 5a, the offline
Channelformer outperforms all the other methods. Compared
with HA02 and offline Channelformer, the MSE of online
Channelformer increases by 0.0012 and 0.0020 for 30dB
SNR respectively. However, it outperforms both InterpolateNet
and ReEsNet for the whole SNR range. It should be noted
that online Channelformer and TR are trained with part of
channel information and interpolated by the linear method,

which should degrade performance compared with offline neu-
ral networks trained with the complete channel information.
However, the conventional neural networks are still worse than
offline Channelformer and HA02. These results also show
that the channel prediction of InterpolateNet and ReEsNet
is not as precise when compared with the attention-based
neural networks. Finally, we see that the performance of TR
is significantly worse than other solutions and the 2D FD-
MMSE method provides the most precise estimate among
these methods. Compared with LS method, the DD-CE method
has only a slightly improved performance.

We also evaluate the MSE performance of each method
over the extended Doppler shift range compared with the
training dataset, to investigate the generalization capability
to the Doppler shift. The test dataset is generated on the
ETU channel with the condition that the SNR = 10dB and
the Doppler shift is now from 0Hz to 194Hz (mobile speed
from 0km/h to 100km/h). When the Doppler shift is set to
100Hz, it means that the maximum Doppler shift for each
channel realization is randomly selected from 0Hz to 100Hz.
Fig. 5b compares the MSE performance of each method over
the extended Doppler shift range. As in Fig. 5b, the HA02 and
offline Channelformer methods outperform the InterpolateNet
and ReEsNet for the whole Doppler shift range. For maximum
Doppler shifts below 125Hz, the online Channelformer method
outperforms the conventional neural networks but the perfor-
mance reduces as the maximum Doppler shift increases. At the
high Doppler shift range, the online Channelformer achieves
similar MSE results to the 1D FD-MMSE method but degrades
compared with the InterpolateNet and ReEsNet. The effect of
Doppler shift impacts the channel variation in the time domain
and the linear method exploits absolutely no information of
the Doppler shift to achieve the time domain interpolation.
Therefore, HA02 and offline Channelformer can outperform
1D FD-MMSE at the high Doppler shift range when the
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(a) MSE performance over the extended SNR range (b) MSE performance over the extended Doppler shift range

Fig. 5. MSE performance of all channel estimation methods on the ETU channel

effects of Doppler shift are significant, while non-attention
solutions (InterpolationNet and ReEsNet) are worse than the
1D FD-MMSE method. Moreover, TR achieves much poorer
performance when compared with the other solutions while
the 2D FD-MMSE method still has the best MSE performance
among these methods. Compared with LS method, the DD-CE
method also provides an slightly improved performance.

B. Complexity reduction: customized weight-level pruning

To investigate the impact of the customized weight-level
pruning on the generalization to the extended SNR range,
we apply that to the online Channelformer to reduce the
complexity further. For the fine-tuning process, most training
settings and hyperparameters from Table. I are retained. The
maximum epoch is changed to 10 with lr = 0.001, the batch
size is reduced to 32 and the training dataset is composed
of 15,000 samples. The test dataset for Fig. 6 is generated
identically with Section. VI-A. Each SNR is also tested with
5000 channel realizations to average out Monte Carlo effects.

Fig. 6a compares the DG of each pruning ratio for cus-
tomized weight-level pruning over the extended SNR range.
The performance of each customized-slimmed Channelformer
is almost unchanged while the pruning ratio ≤ 70%. However,
80% pruning leads to a 7dB gain lost on average while 90%
pruning degrades the performance completely. Fig. 6b provides
the results that apply the pruning to the trained neural network
without fine-tuning. Compared with customized weight-level
pruning, the performance degrades significantly at the prun-
ing ratio of 30% because the pruned neural network is not
retrained to compensate for the loss. The 70% customized
weight-level pruned online Channelformer has a 0.3dB degra-
dation approximately compared with the online Channelformer
without pruning and the number of parameters is 9,620.

To investigate the impact of the customized weight-level
pruning on the generalization to the extended Doppler shift

range, Fig. 7 compare the MSE performance of slimmed online
Channelformer. The test dataset is identical to the test dataset
in Section. 5b. Even 70% pruning only gives an extremely
slight increase in MSE performance, which is almost same
as the online Channelformer without pruning. Therefore, 70%
customized weight-level pruned Channelformer is observed to
have a robust performance to the extended SNR and Doppler
shift, which should be sufficient for the practical implemen-
tation. It also indicates that redundant parameters do not
significantly affect the neural network’s robust performance
with the extended SNR and Doppler shift ranges. Therefore,
the redundant architecture may have resistance to the unknown
changes because the customized weight-level pruning removes
the redundant parameters and the performance is retained for
a pruning ratio under 70% when compared with the complete
online Channelformer. This is in contrast to findings in [47] for
the field of image processing, as the customized weight-level
pruning removes the redundant parameters. We also simulate
the offline Channelformer applied by the customized weight-
level pruning shown in Figure. 8.

C. BER performance over the extended SNR range

We also evaluate the BER performance of each method
over the extended SNR range. The test dataset for Fig. 9a
is generated identically with Section. VI-A.

Fig. 9a compares the BER performance of each method
and the offline Channelformer method achieves the best per-
formance. It also indicates a possible opposed result compared
with Fig. 5a that both InterpolateNet and ReEsNet can outper-
form 1D FD-MMSE and online Channelformer for the SNR
above 20dB. The reason is that, for online Channelformer
and 1D FD-MMSE, the prediction at the pilot symbols is
extremely precise althrough the capability of time interpolation
for the linear method is much worse than that achieved by
neural networks (InterpolateNet and ReEsNet). Therefore, the
MSE performance in Fig. 5a is still better than InterpolateNet
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(a) Customized weight-level pruning (b) Weight-level pruning without fine-tuning

Fig. 6. Denoising gain performance when tested on the ETU channel

(a) Customized weight-level pruned Channelformer (b) Weight-level pruned Channelformer without fine-tuning

Fig. 7. Generalization to the extended Doppler shift range

and ReEsNet. However, the linear interpolation introduces the
degradation as mentioned, compared with the neural network
trained using the complete set of channel coefficients for the
whole slot. The BER performance depends on the precision
of the channel matrix prediction at all of the data symbols.
InterpolateNet and ReEsNet are trained with the channel
matrix of the whole slot while online Channelformer and 1D
FD-MMSE only exploit the channel matrix at the pilot sym-
bols. When predicting the channel for the data symbols, time
interpolation achieved by linear interpolation is significantly
worse than that achieved by neural networks. Therefore, the
BER performance of InterpolateNet and ReEsNet is superior
to 1D FD-MMSE and online Channelformer for the SNR
above 15dB. Compared with the InterpolateNet and ReEsNet,
the offline Channelformer trained with the same labels out-
performs the InterpolateNet and ReEsNet. The gain achieved

by neural network methods would be limited under the fair
comparison that the neural networks are also trained by the
channel matrix at the pilot symbols and all approaches use the
same time interpolation method. It should be noted that online
training cannot access the channel matrix at the data symbols.
Moreover, the BER of the 2D FD-MMSE method is the lowest
among these methods. When the trained neural networks are
tested on the channel defined in Table. IV, the degradation
of each neural network is clearly observed in Fig. 9b, which
motivates the application of online training.

D. Dynamic online adaptation

We simulate the dynamic adaptation of online Chan-
nelformer, which is synchronous with the transmission of the
data. Different from collecting sufficient samples for training,
the neural network tracks the channel by training with a batch
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(a) Denoising gain performance on the extended SNR (b) MSE performance on the extended Doppler shift

Fig. 8. Customized weight-level pruned offline Channelformer when tested on the ETU channel

(a) BER performance on the extended SNR (ETU channel) (b) BER performance on the extended SNR (customized channel)

Fig. 9. BER performance on the ETU and customized channels

TABLE IV
THE PDP OF THE CUSTOMIZED CHANNEL

Path Delays [0, 30, 200, 300, 500, 1500, 2500, 5000, 7000, 9000] ns
Average Path Gain [-1.0, 0, 0, -1.0, -2.0, -1.0, -1.0, -1.5, -3.0, -5.0] dB

of 3 online samples before predicting the channel matrix (each
iteration of online training takes 99.8ms for the complete
online Channelformer and approximately 29.9ms for the 70%
pruned online Channelformer). These times are too slow for
real time implementation, but could be speeded up using
dedicated hardware. The online Channelformers are trained
offline first because starting with the initialized parameters
just takes more time, and the pruned online Channelformer
is fine-tuned by the online samples rather than the offline
dataset. In the test period, the dynamic channel alternates to
other candidate channels every 10000 channel realisations. The

channel assemble involves ETU, the customized channel, EVA
and an advanced channel with the extended SNR from 15dB
to 25dB and the mobile speed is from 0km/h to 50km/h. The
advanced channel is a SISO version of the channel deployed in
[56] following 3GPP TS38.901 section 7.5 to generate the fast
fading channel, representing a more realistic scenario. Each
MSE sample is averaged over blocks of 50 channel realisa-
tions. The fine-tuning procedure of the customized weight-
level pruning is substituted by the online training process.

Fig. 10a gives the dynamic performance and the MSE for
offline training only is averaged over each block of 10000 sam-
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(a) Dynamic adaptation simulation (b) Averaged label precision of both label pilot symbols

Fig. 10. Online neural network simulation. The simulation channel alternatives among the ETU channel, the customized channel, EVA channel and the
advanced channel

ples, as the neural network is not updated with the new channel
information. When the channel is changed to the customized
channel in Table. IV, the MSE converges to a stable value of
0.01 within first 50 samples while the online training process
is synchronous with the transmission of the data. The 70% cus-
tomised weight-level pruned online Channelformer converges
to a stable MSE loss of 0.02 within 550 samples, which is
slower than the complete online Channelformer because 70%
neural connections are pruned (reduced capacity). When the
channel is alternated to the EVA channel, the MSE is equal
for both the untrained online Channelformers and the trained
online Channelformers. It proves that online Channelformer
can generalize to EVA channel and the customized weight-
level pruning has negligible impact on that generalization.
When the channel is alternated to the fast fading channel
[56], the considerable mismatch in channel modelling leads
to a significant increase in MSE at the start. The stable MSE
of both unpruned neural networks decreases to 0.02 within
5000 channel realizations while the pruned neural networks
converge to approximately 0.035 because pruning reduces their
capability to adapt to previously unseen channels.

E. Attention analysis

The attention mechanism is employed to achieve the input
precoding forming the encoded features. We collect the scaled
dot-product attention defined by equ. (7) for each head when
the online Channelformer is tested on the EPA, EVA, ETU
and customized channels. Fig. 11 compares the mean of the
corresponding attention’s magnitude. The attention for each

head ∈ R
(
Nf
Ls

)
×2 has 2 channels, which is the 2nd dimension

of the attention.
Fig. 11 provides the mean of the scaled dot-product attention

when predicting the channel matrix for the EPA, EVA, ETU
and customized channels. It is not uniform, which proves
that the input precoding is achieved as expected. The scaled

dot-product attention for the EPA, the EVA channel and the
ETU channel are almost similar. For head 1, the 1th, 2th

and 25th elements are more important than other elements
while the impact of the 8th element is negligible. For head
2, the 29th element has the most significant magnitude. For
the customized channel, the 1th, 2th and 25th elements are
more important than other elements for head 1 and the 12th,
22th and 29th element has the most significant magnitude for
head 2. It also proves that the scaled dot-product attention’s
magnitude differs for different heads because the multi-head
attention focuses on the different parts of the signal in different
heads. Moreover, the mean of the scaled dot-product attention
is almost same for channel 1 and channel 2.

VII. CONCLUSION

We have proposed an encoder-decoder neural architecture
called Channelformer for wireless channel estimation in out-
doors downlink scenarios. Channelformer integrates the self-
attention mechanism to achieve input precoding in the encoder.
The encoded features are processed by the residual convolu-
tional architecture to predict the channel matrix in the decoder.
We study the performance of both offline-trained and online-
trained variants of the Channelformer network, and investigate
the complexity reduction by customized weight-level pruning
and apply that to the online training algorithm proposed. From
the simulation results, Channelformer outperforms the other
baseline neural solutions on the extended SNR range and
Doppler shift when tested on the ETU channel. For complexity
reduction, the 70% weight-level pruned online Channelformer
(9,620 parameters) retains an almost identical performance
compared with the complete neural network when tested on
extended channel conditions. For online training, the proposed
algorithm is effective when tested in a practical environment.
The input precoding achieved by the self-attention mechanism
is also analysed.
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(a) Head 1, channel 1 (b) Head 1, channel 2

(c) Head 2, channel 1 (d) Head 2, channel 2

Fig. 11. Mean of scaled dot-product attention for EPA, EVA, ETU and the customized channels
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