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Abstract This paper presents an innovative technique to synthesize a virtual antenna array (VAA)

that consumes less energy than conventional antenna arrays that are used in mobile communica-

tions systems. We have shown that for a specific spectral efficiency a wireless system using the pro-

posed virtual antenna array consumes significantly less energy per bit (�3 dB) than a wireless

system using a conventional multiple-input multiple-output (MIMO) array. This means the adop-

tion of the proposed VAA technology in smartphones, iPad, Tablets and even base-stations should

significantly reduce the carbon footprint of wireless systems. The proposed VAA is realized by

employing a pair of linear antenna arrays that are placed in an orthogonal configuration relative

to each other. This orthogonal arrangement ensures the radiation is circularly polarized. The size

of the standard radiating elements constituting the VAA were miniaturized using the topology opti-

mization method. The design of the VAA incorporates substrate integrated waveguide (SIW) and

metasurface technologies. The function of SIW in the design was twofold, namely, to reduce energy

loss in the substrate on which the VAA is implemented, and secondly to mitigate unwanted electro-

magnetic interactions between the neighboring radiating elements and thereby enhancing isolation

which otherwise would degrade the radiation characteristics of the array. Metasurface technology
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served to effectively increase the effective aperture of the array with no impact on the footprint of

the array. The consequence of SIW and metasurface technologies was improvement in the gain and

radiation efficiency of the array. The proposed four orthogonal 4-element VAA covers the entire

sub-5 GHz frequency range, and it radiates bidirectional in the azimuth plane and omni-

directional in the elevation plane. Moreover, it is relatively easy to design and fabricate. The pro-

posed VAA has dimensions of 0.96k0 � 0.96k0 � 0.0016k0 at mid-band frequency of 3 GHz. VAA

has a measured gain of 25 dBi and radiates with 90% efficiency. The average isolation between the

linear arrays constituting the virtual array is better than 27 dB.

� 2023 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria

University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

THE mobile industry recognizes the global climate crisis is a for-
midable challenge and it has contributed to this crisis with the
growth in mobile traffic over the past decade by a factor of

almost 300 [1]. However, mobile service providers have accom-
modated the expansion of this traffic by consuming just 64%
of energy, i.e., globally 150 Terawatt-hour (TWh) [2]. This

has been made possible with the recent technological advance-
ments. Nevertheless, mobile networks consume a considerable
amount of energy.

Bit-per-joule energy efficiency is an important design metric
for 5G wireless networks. The key enabler in achieving this
energy efficiency is massive multiple input multiple output
(MIMO) technology [3,4]. With massive MIMO the base-

stations are furnished with numerous radiating elements which
is necessary to realize significant improvement in spectral and
energy efficiency over 4G long-term evolution (LTE) networks.

Massive MIMO in 5G directs base-station energy to the users,
which brings drastic improvements in throughput and effi-
ciency. With this technology 3D beamforming makes possible

dynamic coverage required for users traveling in vehicles and it
appropriately adjusts the transmission towards the user’s loca-
tion. However, by increasing the size of the MIMO system
does not necessarily translate to enhancement in energy effi-

ciency, because the power consumption by the MIMO system
also proportionately increases [5].

As 5G is scaled up to satisfy consumer and industry appe-

tite for new and improved services the energy stakes are
expected to get even higher. By 2025 the mobile traffic is
expected to quadruple. The implication of this is a significant

increase in the energy consumption by wireless mobile net-
works. The challenge is how to reduce the energy without neg-
atively impacting on the system’s performance. Service

providers have begun to integrate artificial intelligence (AI)
into mobile networks. AI is leveraged to optimize network per-
formance including energy efficiency. Moreover, service provi-
ders are applying power-saving solutions using machine

learning techniques without blocking the cells. This is done
by monitor the traffic flow, i.e., data volume and users, across
the whole network.

Another strategy to reduce energy consumption of mobile
systems is by employing MIMO in 5G mobile handsets thus
enabling energy to be focused to the base-station instead of

radiating it omnidirectionally. Several MIMO 5G smartphone
antennas have been reported recently in literature [6–12]. The
disadvantage of these antennas is either a narrow impedance

bandwidth or the use of a single-polarized uniplanar radiating
element. Moreover, most of these antennae do not support

sub-5 GHz 5G bands. MIMO system in existing mobile hand-
sets comprise two or four antennas in a single physical pack-
age, which makes them less resilient to interference. This

issue can be circumvented by using many antennas in the
MIMO system, however the issue with accommodating a large
number of antennas in a finite space is the detrimental effect of
unwanted near-field coupling that can affect the overall perfor-

mance of the MIMO system.
We believe the solution is to implement the MIMO system

with a virtual antenna array (VAA) [13–16]. Compared to tra-

ditional antenna arrays (TAA), VAA use fewer radiators to
generate a more focused beam pattern as though it was gener-
ated from a much larger array. Also, unlike TAA where the

size of the array dictates its angular resolution, in VAA the
angular resolution is determined by the spatial diversity of
the transmit signal. For a large MIMO VAA the angular res-

olution depends on the bandwidth of the array.
In this paper, the feasibility of low energy MIMO VAA is

investigated for future base-stations and smartphone handsets.
The prototype of the proposed MIMO VAA consists of

orthogonal facing pairs of four triangular shaped radiators
arranged in proximity to each other to realize circularly polar-
ized waves. Topology optimization method was used to reduce

the size of the triangular patch radiators. The design of the vir-
tual array included substrate integrated waveguide (SIW) and
metasurface technologies. Each pair of radiators constituting

the array is excited using a network of power dividers. Theo-
retical analysis reveals the virtual array virtual array consumes
significantly less energy per bit than an ideal MIMO. The pro-
posed MIMO VAA was first modelled in a 3D full-wave elec-

tromagnetic solver that used finite integration technique to
define Maxwell’s equations on a grid space in the time and fre-
quency domains. The proposed MIMO VAA is shown to

reduce energy loss that results in increased radiation efficiency
and gain performance. The proposed technology should con-
tribute towards reducing carbon emissions in wireless commu-

nications systems.

2. Virtual antenna array theoritical background

The MIMO VAA can be realized by having a linear antenna
array of M radiating elements and N receiving elements that
are arranged in an orthogonal plane to each other, as illus-
trated in Fig. 1. The orientation of the transmit and receive

antenna arrays and the inter radiator gap dictate the size of
the virtual antenna array. Convolution of the signals at the
transmit and the receive antennas results in a resultant signal

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fig. 1 MIMO virtual antenna array created from orthogonal

linear antenna arrays.
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that is equivalent to a much larger array having a significantly
larger resolution than the constituent linear arrays.

Radiation pattern of the transmit and receive linear arrays
can be represented by

APt h;£ð Þ ¼
XM
m¼1

at;me
jkdtsinhcos£ ð1Þ

Pr h;£ð Þ ¼
XN
n¼1

ar;ne
jkdrsinhcos£ ð2Þ

where at;m and ar;n are the complex excitation coefficients of the

mth and nth antenna in the transmission and receiver arrays,
respectively, dt is the position vector of the transmit array, dr
is the position vector of the receive array, k ¼ 2p=ko, ko is

the free-space wavelength, and h and / are the spherical polar
and azimuth angles, respectively.

The transmit and receive arrays have a gain that is propor-

tional to the square of the array-factor given by

Gt h;/ð Þ / APt h;£ð Þj j2 ð3Þ

Gr h;/ð Þ / APr h;£ð Þj j2 ð4Þ
The radiation pattern of the virtual antenna array can be

found by taking the Kronecker product of the array pattern
of the transmit and receive arrays, which is represented by

AP h;£ð Þ ¼
XM
m¼1

at;me
jkdtsinhcos£b

XN
n¼1

ar;ne
jkdrsinhcos£ ð5Þ

and the corresponding gain of the virtual array is

G h;£ð Þ ¼ Gt h;/ð ÞbGr h;/ð Þ ð6Þ
The advantage of the virtual array is its ability to reduce the

number of radiators but provide the performance of a signifi-

cantly larger array. A virtual array comprising 12 transmit ele-
ments and 12 receive elements has an equivalent radiation
pattern of the 144 elements. Moreover, it reduces the compli-
cation and the energy losses associated with the excitation feed

network.
Expressions for the energy and spectral efficiency can be

determined by considering the orthogonal linear antenna

arrays in Fig. 1. Let x ¼ x1; x2½ �T represent the transmitter vec-

tor. The receiver vector y1; y2½ �T can be represented by [17]:
y1

y2

� �
¼ Hxþ n;H ¼ d1 d2

d3 d4

� �
ð7Þ

where H represents the array matrix and the noise-vector is

defined by n ¼ nv1; nv2½ �T, where nv1;nv2 � CN 0;N0ð Þ are inde-

pendent and identically distributed zero-mean complex Gaus-
sian noise with N0 ¼ 1 Watts/Hz. With the compress-and-
forward (CF) protocol, the array is comparable to a system

where the two-antenna receiver intercept the signals

yr þ nc; yd½ �T, where nc � CN 0; r2
c

� �
is the compression noise

[17]. Using a regular source coding technique, the variance
of the compression noise can be expressed as [18]

r2
c ¼

E yrj j2
h i

1þ GPr= N0Wrð Þ½ �Wr=W � 1
¼ d1j j2Pt1 þ d2j j2Pt2 þ 1

GPr

ð8Þ

where Pt1 and Pt2 are power applied to the transmit elements,
Pr is the total power at the receive elements, and Rc is the cod-

ing rate given by

Rc ¼ Wrlog2 1þ GPr

N0Wr

� �
ð9Þ

The receiver degrades y1 þ nc by factor g, such thatffiffiffi
g

p
y1 þ ncð Þ, and y2 have identical additive Gaussian noise, i.e.,

y
� ¼ ffiffiffi

g
p

y1 þ ncð Þ; y2
� �T ¼ H

�
xþ n

�
1; n

�
2

h iT
ð10Þ

where

H
�
,

ffiffiffi
g

p
d
1

ffiffiffi
g

p
d2

d3 d4

� �
; g, 1

1þ r2
c

and n
�
1 � independent and identically distributed CN 0; 1ð Þ.

The overall capacity of the system using the CCF protocol is

represented by [19]

CCF ¼ Eflog2det½IþH
�
ðPt

2
IÞH

� þ�g ð11Þ

Hþ denotes the conjugate transpose of H. The energy effi-
ciency is defined as consumption in the transmission energy

per information bit [20], i.e., Eb ¼ P=CCF, where P is the total
consumed power in the system. Because CCF denotes spectral
efficiency as a function of Eb, Eqn. (11) can be used to examine

the energy efficiency of the virtual antenna array as a function
of spectral efficiency however this is a non-trivial problem. It is
therefore necessary to use an approximation of Eqn. (11) given
by

Eb

N0

				
dB

� Eb

N0min

				
dB

þ CCF

10log102

S0

ð12Þ

where

Eb

N0min

¼ 0:69

CCFð Þ0P¼0

;S0 ¼
2: CCFð Þ0P

		
P¼0

h i2
CCFð Þ00P

		
P¼0

where CCFð Þ0P and CCFð Þ00P denote the 1st-order and 2nd-order

derivatives of the function CCF with respect to P. Eqn.(12)
takes into account Rayleigh fading channels. In low spectral
efficiency regime, Eqn.(12) reduces to

Eb

N0

				
dB

� lnð2ÞjdB þ CCF10log102 ð13Þ



Fig. 3 Dual virtual antenna array (VAA) of orthogonal transmit

and receive linear arrays.
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The approximation in Eqn.(13) gives a good insight into the
energy efficiency performance as a function of spectral effi-
ciency. This is shown in the simulation results, see Fig. 2, of

the energy efficiency performance against spectral efficiency
of the virtual antenna array and an ideal MIMO array. The
results show that for a specific spectral efficiency the virtual

array exhibits a better energy efficiency performance by
approximately 3 dB. By adopting VAA technology in smart-
phone handsets and even base-stations it should significantly

reduce the carbon footprint of wireless mobile systems.

3. Virtual antenna array synthesis

The virtual antenna array proposed here is shown in Fig. 3.
The antenna was fabricated using LPKF ProtoMat system.
The antenna essentially consists of two VAAs where each vir-

tual array is constituted from two orthogonally arranged linear
arrays. Each radiation element is a standard triangular shaped
patch, and each linear array comprises four pairs of antennas.
The physical side length of the equilateral triangular shaped

patch antenna is given by a ¼ 2c=3fr
ffiffiffiffiffiffi
eeff

p
, where c is velocity

of light in free-space, fr is the resonance frequency of the
antenna, and eeff is the effective permittivity of the dielectric

substrate on which the antenna is constructed in [21]. The
patch antenna was miniaturized by 73.6% using the topology

optimization method described in [22] and incorporating a
metamaterial structure.

The VAA was constructed on TF920 PTFE ceramic com-

posite dielectric substrate with a dielectric constant of 9.2,
tan d of 0.001, and thickness of 0.8 mm. The proposed VAA
has dimensions 198.98 � 198.9 � 1.6 mm3. The orthogonal

pair of linear arrays made of eight antennas is equivalent to
a standard MIMO array consisting of 64 elements. The
orthogonal arrangement of linear arrays makes it possible to

include another pair of orthogonal linear arrays as shown in
Fig. 1. This dual VAA arrangement not only improves the gain
performance and the radiation pattern of the VAA but when
located on the smartphone handset it ensures the antennas

are not obscured completely by the user’s hands which is
important to ensure communication is reliable. Also, shown
Fig. 2 Energy efficiency of the virtual antenna array compared

with an ideal MIMO array.
in Fig. 3 is the feed mechanism which consists of a network
of Wilkinson power dividers. The feed network is designed

to assure phase coherence is maintained at the radiators. The
gap between the radiation elements was optimized for gain
and efficiency performance using a commercial 3D full-wave

electromagnetic solver based on finite integration technique.
The underside of the substrate on which the VAA is designed
is a ground-plane.

The radiation characteristics of the fabricated VAA was
measured in a standard anechoic chamber using the set-up
shown in Fig. 4. The antenna was fed RF energy through

SMA connectors. The transmit and receive arrays were con-
nected to the vector network analyzer. The measured S-
parameter responses of the proposed VAA is shown in
Fig. 5. The reflection coefficient (S11) shows that the virtual

array operates between 1.08–2.02 GHz, 2.96–3.36 GHz,
3.76–4.12 GHz, and 4.86–5 GHz for |S11| �-10 dB. The isola-
tion between the adjacent arrays over the operating range is

better than 10 dB. The antenna gain and radiation efficiency
of the VAA are shown in Fig. 6. The gain and efficiency at
mid operating range of 1.55 GHz, 3.16 GHz, 3.94 GHz, and

4.93 GHz are 4.1 dBi & 48.8%, 3.4 dBi & 48%, 1.7 dBi &
49%, and 5 dBi & 47.1%, respectively.

Inter-array isolation of the virtual array was improved by
employing the concept of substrate integrated-waveguide that

involved inserting metallic via-pins between the linear arrays
as shown in Fig. 7. The metallic via-pins are also inserted
between the patches and around the feed network to reduce

energy loss and minimize unwanted mutual coupling caused
by surface waves that would otherwise degrade the array’s
radiation performance. The diameter of the metal posts and

the gap between them were determined using expressions in
[23].

The S-parameter performance of the VAA with SIW is

shown in Fig. 8. The effect of applying SIW on the virtual



Fig. 4 Antenna measurement setup.

Fig. 5 Measured S-parameter responses of the proposed VAA.

(a)

(b)

Fig. 6 Measured radiation characteristics of the VAA, (a) gain,

and (b) efficiency.

Fig. 7 Layout of the VAA with substrate integrated waveguide

(SIW).

(a)

(b)

(c)

Fig. 8 S-parameter responses of the proposed VAA without and

with SIW, (a) reflection coefficient (S11) and isolation between Tx-

1 & Rx-1 arrays (S12), (b) reflection coefficient (S11) and isolation

between Tx-1 & Tx-2 arrays (S13), and (c) reflection coefficient

(S11) and isolation between Tx-1 & Rx-2 arrays (S14).
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array has significantly improved the reflection coefficient and
therefore the impedance matching as well as the isolation
between the linear arrays. The operational range of the virtual

array extends across 1–5 GHz for |S11| �-10 dB. The isolation
between Tx-1 & Rx-1 arrays (S12) is better than 20 dB across
1–5 GHz. The isolation between Tx-1 & Tx-2 arrays (S13) is

better than 20 dB across 1.1–5 GHz, and the isolation between
Tx-1 & Rx-2 arrays (S14) is better 15 dB than across 1.25–
5 GHz.

The effect of SIW on the virtual array’s gain and efficiency

are shown in Fig. 9. Compared to the basic VAA the gain and
efficiency with SIW have improved substantially. The average
gain of the basic VAA is 2.5 dBi and with SIW the average



(a) 

(b)

Fig. 9 The VAA with SIW, (a) gain, and (b) efficiency.

Fig. 10 The VAA with SIW and metamaterial CSRR, (a)

Layout, and (b) Fabricated prototype.

Fig. 11 Equivalent circuit model of the split ring resonator.
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gain is 15 dBi, which constitutes gain improvement of 12.5 dB.

Similarly, the average efficiency of the basic VAA is 48%, and
with SIW the average efficiency jumps to 78%, which is an
improvement in efficiency of 30%. These results demonstrate
the effectiveness of using SIW.

Further reduction in the physical size of the patch antenna
can be achieved by transforming the patch antenna into a
metamaterial surface. This can be achieved by embedding

two concentric split ring slots in the patch antenna where the
slits are located 180 degrees apart as shown in Fig. 10. The slot
gap in the rings acts as a distributed capacitance, while the

metallization ring between the split ring slots acts as an induc-
tor. The equivalent circuit model of the complementary split
ring (CSRR) is shown in Fig. 11 where the capacitive coupling

and inductive coupling between two rings are modeled by a
coupling capacitance (Cm) and by a transformer, respectively.
When the rings are excited by a time varying signal the combi-
nation of the two rings acts as an LC resonance circuit. Dimen-

sions of the proposed VAA are given in Table 1.
The complementary slit ring resonator exhibits a negative

effective permittivity in the vicinity of the fundamental CSRR

resonance. The effective permeability of CSRR is given by [24]

leff ¼ l0
eff � jl0

eff ¼ 1� f2mp � f20

f2 � f20 � jcf
ð14Þ

where f is the frequency of the signal, fmp is the frequency at

which leff ¼ 0; f0 is the frequency at which leff diverges, and

c represents the loss. It is shown in [25] that by applying meta-
material characteristics to the patch its size can be reduced by

42% and its bandwidth increased by 41%.
Fig. 12 shows the S-parameter responses of the proposed

VAA with SIW and loaded with metasurface are compared

with the basic virtual array and the virtual array with SIW
vias. Compared to the previous iterations Fig. 12(a) shows
the virtual array loaded with metasurface provides a superior
impedance match across 1–5 GHz for |S11| �-10 dB. In fact,

the average reflection coefficient is better than �20 dB.
Fig. 12(b)-(d) shows the isolation too is superior between the
linear arrays of the virtual array loaded with metasurface.

The average isolation between Tx-1 & Rx-1 arrays (S12) is bet-
ter than 30 dB, between Tx-1 & Tx-2 arrays (S13) is better than
40 dB, and between Tx-1 & Rx-2 arrays (S14) is better than

27 dB.
The radiation characteristics of the VAA iterations are
compared in Fig. 13. It is evident from these results that the
virtual array that incorporates a combination of SIW and
metasurface provides superior gain and efficiency performance

compared to the basic VAA. In fact, across 1–5 GHz the aver-
age gain is improves by 21 dBi to 25 dBi, and the efficiency
increases by 42% to 90%. The improvement in the array’s per-

formance with SIW is due to reduction in the dielectric loss
and the high isolation between the adjacent radiators, as evi-
dent in Fig. 12, thereby preventing unwanted mutual coupling

that would otherwise negatively impact on the array’s charac-
teristics. In fact, with SIW the radiators can be tightly
arranged thus reducing the array’s footprint [26]. The metasur-



Table 1 Geometrical Design Parame-

ters of the VAA.

Parameter Value (mm)

a 96

b 96

c 48

d 20

e 4.2

f 5

g 5

h 12.6

i 11.8

j 25.3

k 2.8

Patch sides 9

Inner ring radius 1.53

Outer ring radius 2.35

Ring width 68

Ring gap 0.3

Feedline width 0.8

Vias radius 0.2

Vias gap 1.8

(a)

(b)

(c)

(d)

Fig. 12 S-parameter response comparison of the proposed

metasurface-based VAA with SIW, VAA loaded with SIW vias,

and the basic VAA, (a) reflection coefficient (S11) responses, (b)

reflection coefficient (S11) and isolation between Tx-1 & Rx-1

arrays (S12), (c) reflection coefficient (S11) and isolation between

Tx-1 & Tx-2 arrays (S13), and (d) and reflection coefficient (S11)

and isolation between Tx-1 & Rx-2 arrays (S14).

(a)

(b)

Fig. 13 Comparison of the radiation characteristics of the

proposed metasurface-based VAA with SIW, VAA loaded with

SIW vias, and the basic VAA, (a) gain, and (b) efficiency.
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face essentially enlarges the effective aperture area of the VAA
to improve its performances with no impact on the array’s
physical size. These results are summarized in Table 2.

Envelope correlation coefficient (ECC) specifies the correla-
tion among the radiating antenna elements in an antenna array
and is defined as [27]

ECC ¼

RR
4p

E1ðh;/Þ:E�
2ðh;/ÞdXR

4p E1ðh;/Þ:E�
1ðh;/ÞdX

RR
4p

E2ðh;/Þ:E�
2ðh;/ÞdX

ð15Þ

where E1 and E2 are far-field radiation patterns, emanating
from the two respective ports. Antenna arrays with a low cor-

relation can support high data throughput. ECC can be deter-
mined from S-parameters measurements using [27]

ECC ¼ S�
11S12 þ S�

22S21

		 		2
1� S11j j2 þ S21j j2


 �h i
1� S22j j2 þ S12j j2


 �h i ð16Þ

The corresponding diversity gain (DG) can be determined

using

DG ¼ 10
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ECC

p
ð17Þ

In an ideal situation the magnitude of ECC should equate

to zero. In practical applications, however, an ECC < 0.5 is
permissible. Fig. 14 show how the measured ECC and DG vary
across the proposed array’s frequency range. The correlation
is < 0.06 between the antennas in the array, and DG is > 9.

7 dB. This verifies the diversity of the proposed array is excel-
lent and applicable for high data rate transmission systems.

The radiation patterns of the VAA were measured in a

standard anechoic chamber using the set-up shown in Fig. 4.
The virtual array was fixed on a platform with rotational facil-
ity in the azimuth and elevation planes. Fig. 15 shows the mea-

sured radiation patterns of the proposed VAA loaded with
both SIW and metasurface. The radiation patterns are shown
in the azimuth and elevation planes at spot frequencies within

the operating range of the virtual array. The results show the
proposed virtual array radiates energy bidirectionally in the
azimuth plane and effectively omni-directionally in elevation
plane.



Table 2 Comparison of Radiation Characteristics.

Basic VAA VAA loaded with SIW vias VAA loaded with SIW & MTS Improvement

Average gain 4 dBi 15 dBi 25 dBi 21 dBi

Average efficiency 48% 78% 90% 42%

Fig. 14 The measured envelop correlation coefficient (ECC) and

diversity gain (DG) of the proposed antenna array.

 @ 1.25 GHz                                   @ 2.1 GHz

@ 3.2 GHz                       @ 4.35 GHz

(a)

 @ 1.25 GHz                                       @ 2.1 GHz  

            @ 3.2 GHz                                     @ 4.35 GHz

(b)

Fig. 15 Measured radiation patterns of the VAA loaded with

both SIW and metasurface in (a) azimuth plane, and (b) elevation

plane at spot frequencies of 1.25 GHz, 2.1 GHz, 3.2 GHz, and

4.35 GHz.

446 M. Alibakhshikenari et al.
4. State-of-the-art comparisons

Relevant metrics of the proposed VAA are compared with
antenna arrays recently reported in Table 3. Compared to
other works cited in the table the proposed virtual antenna

array exhibits the widest impedance bandwidth, the largest
gain, the second highest radiation efficiency, and the lowest
ECC variation. Moreover, the dimensions of the proposed
array are much smaller than the arrays cited. These attributes

demonstrate the viability of the proposed virtual antenna array
for wireless mobile applications.

5. Conclusion

The feasibility of the proposed virtual antenna array is shown
to be viable for low energy consumption wireless communica-

tions systems. The adoption of this innovative technology
should greatly contribute to reduction of greenhouse gases that
can adversely impact the global climate. Although in this study

the size of the VAA is applicable for mobile handsets however
the design can be used to implement massive MIMO in base-
stations. The design of the proposed virtual array amalgamates

various techniques and technologies. This was necessary to (i)
shrink the physical size of the array, (ii) reduce energy loss and
thereby enhance the array’s radiation characteristics, (iii) mit-
igated mutual coupling between radiators that can otherwise

degrade the radiation characteristics of the array, and (iv)
increase the arrays aperture size without affecting the array’s
size. The proposed 16-element array is shown to operate across

the entire sub-5 GHz frequency range, and radiate energy bidi-
rectional in the azimuth plane and omni-directional in the ele-
vation plane. The VAA is shown to have a measured gain of 25

dBi and radiation efficiency of 90%. The average isolation
between the linear arrays forming the VAA is better than
27 dB.



Table 3 Performance Comparison Between the Proposed VAA and Other State-of-the-Art Antenna Arrays.

Ref. Antenna layout er Size

(ko)
2

Imp. BW

(GHz)

Center freq. (GHz) Gain

(dBi)

Eff.

(%)

ECC

(%)

[28] Reflectarray and patch 3.55 1.82 � 1.82 0.5 3.5 13.7 74 –

[29] Planar array (4 � 4) 2.97 2 � 2 0.5 5.6 11.5 65 –

[30] Ground surrounded patch/slot (8 � 8) 2.2 1.55 � 1.35 0.17 3.6 10.9 72.8 –

[31] Dual-feed patch (2 � 2) 2.5 4 � 4 0.8 9.4 4.51 – –

[32] Slot MIMO 2.2 0.65 � 1.34 0.6/

0.2

1.9/

2.6

3.25/

6.5

65/

70

14–4

[33] Circle-slotted parasitic (8 � 8) 2.17 4.5 � 4.95 1.5 5.3 18.9 30.6 –

[34] Nonuniform array 3.5 10.12 � 10.12 0.36 25.3 12 – –

[35] MIMO using metamaterial mushroom (1 � 8) 3.5 0.96 � 0.96 0.054 2.4 4 – 8–1

[36] Dielectric Resonator MIMO (1 � 2) 9.8 1.33 � 0.97 0.34 4 4 93 10–3

This Work SIW + Metasurface

(4 � 4) Rx, (4 � 4) Tx

4.3 0.96 � 0.96 4 3 25 90 6–1.8
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