
On Secure Ratcheting with
Immediate Decryption

Jeroen Pijnenburg1 and Bertram Poettering2

1 Royal Holloway, University of London, Egham Hill, Egham, Surrey, United
Kingdom

2 IBM Research Europe – Zurich, Säumerstr 4, 8803 Rüschlikon, Switzerland
poe@zurich.ibm.com

Abstract. Ratcheting protocols let parties securely exchange messages
in environments in which state exposure attacks are anticipated. While,
unavoidably, some promises on confidentiality and authenticity cannot
be upheld once the adversary obtains a copy of a party’s state, ratcheting
protocols aim at confining the impact of state exposures as much as pos-
sible. In particular, such protocols provide forward security (after state
exposure, past messages remain secure) and post-compromise security
(after state exposure, participants auto-heal and regain security).
Ratcheting protocols serve as core components in most modern instant
messaging apps, with billions of users per day. Most instances, includ-
ing Signal, guarantee immediate decryption (ID): Receivers recover and
deliver the messages wrapped in ciphertexts immediately when they be-
come available, even if ciphertexts arrive out-of-order and preceding ci-
phertexts are still missing. This ensures the continuation of sessions in
unreliable communication networks, ultimately contributing to a sat-
isfactory user experience. While initial academic treatments consider
ratcheting protocols without ID, Alwen et al. (EC’19) propose the first
ID-aware security model, together with a provably secure construction.
Unfortunately, as we note, in their protocol a receiver state exposure
allows for the decryption of all prior undelivered ciphertexts. As a conse-
quence, from an adversary’s point of view, intentionally preventing the
delivery of a fraction of the ciphertexts of a conversation, and corrupting
the receiver (days) later, allows for correctly decrypting all suppressed
ciphertexts. The same attack works against Signal.
We argue that the level of (forward-)security realized by the protocol
of Alwen et al., and mandated by their security model, is considerably
lower than both intuitively expected and technically possible. The main
contributions of our work are thus a careful revisit of the security notions
for ratcheted communication in the ID setting, together with a provably
secure proof-of-concept construction. One novel component of our model
is that it reflects the progression of physical time. This allows for for-
mally requiring that (undelivered) ciphertexts automatically expire after
a configurable amount of time.

https://orcid.org/0000-0001-6525-5141

1 Introduction

We consider a communication model between two parties, Alice and Bob, as
it occurs in real-world instant messaging (e.g., in smartphone-based apps like
Signal). A key principle in this context is that the parties are only very loosely
synchronized. For instance, a “ping-pong” alteration of the sender role is not
assumed but parties can send concurrently, i.e., whenever they want to. Fur-
ther, specifically in phone-based instant messaging, a generally unpredictable
network delay has to be tolerated: While some messages are received split sec-
onds after they are sent, it may happen that other messages are delivered only
with a considerable delay.3 We refer to this type of communication (with no
enforced structure and arbitrary network delays) as asynchronous. We say that
asynchronous communication has in-order delivery if messages always arrive at
the receiver in the order they were sent (what Alice sends first is received by Bob
before what she sends later); otherwise, if in-order delivery cannot be guaranteed
by the network, we say that the communication has out-of-order delivery.

The central cryptographic goals in instant messaging are that the confiden-
tiality and integrity of messages are maintained. As communication sessions are
routinely long-lived (e.g., go on for months), and as mobile phones are so easily
lost, stolen, confiscated, etc., the resilience of solutions against state exposure
attacks has been accepted as pivotal. In such an attack, the adversary obtains a
full copy of the attacked user’s program state.4 We say that a protocol provides
forward security if after a state exposure the already exchanged messages remain
secure (in particular confidential), and we say that it provides post-compromise
security if after a state exposure the attacked participant heals automatically
and regains full security.

Past research efforts succeeded with proposing various security models and
constructions for the (in-order) asynchronous communication setting with state
exposures [15,28,11,18,19,26,20]. The rule of thumb “the stronger the model
the more costly the solution” applies also to the ratcheting domain, and the
indicated works can be seen as positioned at different points in the security-vs-
cost trade-off space. For instance, the security models of [18,26] are the strongest
(for excluding no attacks beyond the trivial ones) but seem to necessitate HIBE-
like building blocks [6], while [11,15,19] work with a relaxed healing requirement
(either parties do not recover completely or recovery is delayed) that can be
satisfied with DH-inspired constructions.

While the works discussed above exclusively consider communication with
in-order delivery, popular instant-messaging solutions like Signal are specifically
designed to tolerate out-of-order delivery [24, Sec. 2.6] in order to best deal with

3 E.g., delays of hours can occur if a phone is switched off over night or during a
long-distance flight.

4 Program states could leak because of malware executed on the user’s phone, by an-
alyzing backup images of a phone’s memory that are stored insufficiently encrypted
in the cloud, by analyzing memory residues on swap drives, etc. Less technical con-
ditions include that users are legally or illegally coerced to reveal their states.

2

the needs of users who want to effectively communicate despite temporary net-
work outages, radio dead spots, etc. Given this means that the protocols cannot
rely on ciphertexts arriving in the order they were sent, let alone that they arrive
at all, the immediate decryption (ID) property of such protocols demands that
independently of the order in which ciphertexts are received, and independently
of the ciphertexts that might still be missing, any ciphertext shall be decryptable
for immediate display in the moment it arrives.5 The ID property received first
academic attention in an article by Alwen, Coretti, and Dodis (ACD) [2]. As
the authors point out, while virtually all practical secure messaging solutions do
support ID, most rigorous treatments do not. The work of ACD aims at closing
this gap. We revisit and refine their results.

The main focus of ACD is on the Double Ratchet (DR) primitive which is
one of the core components of the Signal protocol [24,14]. DR was specifically
developed to allow for simultaneously achieving forward and post-compromise
security in ID-supporting instant messaging. ACD contribute a formal security
model for this primitive and detail how instant messaging can be constructed
from it. This approach, taken by itself, does not guarantee that their solution is
secure also in an intuitive sense: As everywhere else in cryptography, if a model
turns out to be weak in practical cases, so may be the protocols implementing it.
Indeed, we identified an attack that should not be successful against a secure ID-
supporting instant messaging protocol, yet if applied against the ACD protocol
(or Signal) it leads to the full decryption of arbitrarily selected ciphertexts.

Our attack is surprisingly simple:6 Assume Alice encrypts, possibly spread
over a timespan of months, a sequence of messages m1, . . . , mL and sends the re-
sulting ciphertexts c1, . . . , cL to Bob. An adversary that is interested in learning
the target message m1, arranges that all ciphertexts with exception of c1 arrive
at their destination. By the ID property, Bob decrypts the ciphertexts c2, . . . , cL

delivered to him and recovers the messages m2, . . . , mL. Further, expecting that
the missing c1 is eventually delivered, he consciously remains in the position to
eventually decrypt c1. But if Bob can decrypt c1, the adversary, after obtaining
Bob’s key material via a state exposure, can decrypt c1 as well, revealing the
target message m1. Note that the attack is not restricted to targeting specifi-
cally the first ciphertext; it would similarly work against any other ciphertext,
or against a selection of ciphertexts, and the adversary would in all cases fully
recover the target messages from just one state exposure. That is, for an adver-
sary who wants to learn specific messages of a conversation secured with Signal
or the protocol of ACD, it suffices to suppress the delivery of the corresponding
ciphertexts and arrange for a state exposure at some later time. This obviously
contradicts the spirit of FS.

Main Conceptual Contributions. Our attack seems to indicate that the
immediate decryption (ID) and forward security (FS) goals, by their very nature,
are mutually exclusive, meaning that one can have the one or the other, but not
both. Our interpretation is less black and white and involves refining both the ID
5 In the user interface, placeholders could indicate messages that are still missing.
6 See App. D for a formal treatment.

3

and the FS notions. We argue that, while out-of-order delivery and ID features
are indeed necessary to deal with unreliable networks, it also makes sense to
put a cap on the acceptable amount of transmission delay. For concreteness, let
threshold δ specify a maximum delay that messages travelling on the network
may experience (including when transmissions are less reliable). Then ciphertexts
that are sent at a time t1 and arrive at a time t2 should be deemed useful and
decryptable only if ∆(t1, t2) ≤ δ, while they should be considered expired and
thus disposable if ∆(t1, t2) > δ. Once a threshold δ on the delay is fixed, the
ID notion can be weakened to demand the correct decryption of ciphertexts only
if the latter are at most δ old, and the FS notion can be weakened to protect
past messages under state exposure only if they are older than δ (or already have
been decrypted). As we show, once the two notions have been weakened in this
sense, they fit together without contradicting each other. That is, this article
promotes the idea of integrating a notion of progressing physical time into the
ID and FS definitions so that their seemingly inherent rivalry is resolved and
one can have both properties at the same time.

Our models and constructions see δ as a configurable parameter. The value
to pick depends on the needs of the participants. For instance, if Alice and Bob
are political activists operating under an oppressive regime, choosing δ < 10 mins
might be useful; more relaxed users might want to choose δ = 1 week. Note that
for δ =∞ our definitions ‘degrade’ to the no-expiration setting of ACD.

Main Technical Contributions. We start with a compact description of our
three main technical contributions. We expand on the topics subsequently.

In a nutshell, the contributions of this article are: (1) We introduce the con-
cept of evolving physical time to formal treatments of secure messaging. This
allows us to express requirements on the automatic expiration of ciphertexts
after a definable amount of time. (2) We propose new security models for se-
cure messaging with immediate decryption (ID). Our approach is to have the
security definitions disregard the unavoidable trivial attacks but nothing else;
this renders our models particularly strong. By incorporating the progressing of
physical time into our notions, our FS and ID definitions are not in conflict with
each other. (3) We contribute a proof-of-concept protocol that provably satisfies
our security notions. Efficiency-wise our protocol might be less convincing than
the ACD protocol and Signal, but it is definitely more secure.

(1) Modelling physical time. Among the many possible approaches to for-
malizing evolving physical time, the likely most simple option is sufficient for
our purposes. In our treatments we assume that participants have access to a
local clock device that notifies them periodically through events refered to as
ticks about the elapse of a configurable amount of time.7 The clocks of all par-
ticipants are expected to be configured to the same ticking frequency (e.g., one
tick every one minute), but otherwise our synchronization demands are very
moderate: The only aspect relevant for us is that when Alice sends a ciphertext
7 Modern computing environments provide such a service right away. For instance, in

Linux, via the setitimer system call or the alarm standard library function.

4

https://man7.org/linux/man-pages/man2/setitimer.2.html
https://man7.org/linux/man-pages/man2/alarm.2.html

at a time t1 (according to her clock) and Bob receives the ciphertext at a time t2
(according to his clock), then we expect that the difference ∆(t1, t2) be meaning-
ful to declare ciphertexts fresh or expired. More precisely, we deem ciphertexts
with ∆(t1, t2) ≤ δ, for a configurable threshold δ, fresh and thus acceptable,
while we consider all other ciphertexts expired and thus discardable. Note here
that threshold δ specifies both a maximum on the tolerated network delay and
on a possibly emerging clock drift between the sender’s and the receiver’s clock.
The right choice of threshold δ is an implementation detail which controls the
robustness-security tradeoff.8 See above for a discussion on how to choose δ.

(2) Security models. We develop security models for secure messaging with
out-of-order delivery and immediate decryption (ID). We claim two main im-
provements over prior definitions: (a) We incorporate physical time into all cor-
rectness and security notions. For instance, when formulating the correctness
requirements, we do not demand the correct decryption of expired ciphertexts,
and our confidentiality definitions deem state exposure based message recovery
attacks successful if the targeted ciphertext is expired. (b) We formalize the max-
imum level of attainable security (under state exposures). Recall that ACD was
designed for analyzing Double Ratchet based constructions which were proven
to achieve only limited security already in the in-order delivery setting [18,26].9
In contrast, our models are designed to exclude the unavoidable ‘trivial’ attacks
but nothing else, thus guaranteeing the best-possible security. (In App. C we
review examples of such trivial attacks. We also list attacks that are included in
our model but excluded by the ACD model.)

(3) Our construction. We propose a proof-of-concept construction that prov-
ably satisfies our security definitions. Its cryptographic core is formed by two spe-
cialized types of key encapsulation mechanism (KEM): a KeKEM and a KuKEM.
In a nutshell, our KeKEM (key-evolving KEM) primitive is a type of KEM where
public and secret keys can be linearly updated ‘to the next epoch’, almost like in
forward-secure PKE. In contrast, our KuKEM (key-updatable KEM) primitive
allows for updating keys based on provided auxiliary input strings. In both cases,
key updates provide forward secrecy, i.e., ‘the updates cannot be undone’.10 To-
8 One might wonder about the resilience of computer clocks against desynchroniza-

tion attacks where the adversary aims at desynchronizing participants. We note that
instant messaging apps are typically run on mobile devices that have access to mul-
tiple independent clock sources (e.g., a local clock, NTP, GSM, and GNSS) that can
be compared and relied upon when consistent. Only the strongest adversaries can
arrange for a common deviation of all these clock sources simultaneously and even
in this case our solutions degrade gracefully: If all clocks stop, the security of our
solution doesn’t degrade below the security defined by ACD.

9 In a nutshell, DR provides optimal security only if used for ping-pong structured
communication [18,26]. In contrast, the constructions of [18,26] provide security for
any (in-order) communication pattern, though require stronger primitives than DR.

10 We note that similar KEM variants have been proposed and used in prior work
on instant messaging [18,26,6], so in this article we claim novelty for neither the
concepts nor the constructions.

5

https://en.wikipedia.org/wiki/Clock_drift
https://en.wikipedia.org/wiki/Network_Time_Protocol
https://en.wikipedia.org/wiki/GSM
https://en.wikipedia.org/wiki/Satellite_navigation

gether with additional more standard building blocks like (stateful) signatures,
we finally obtain a secure instant messaging protocol. In addition to the crypto-
graphic core, a considerable share of our protocol specification is concerned with
data management: the KeKEM and KuKEM primitives require that senders and
receivers perform their updates in a strictly synchronized fashion; if ciphertexts
arrive out of order, careful bookkeeping is required to let the receiver update in
the right order and at the right time.

When compared to the constructions of ACD and Signal, our construction
is admittedly less efficient, primarily because (a) we employ the KuKEM and
KeKEM primitives that seem to require a considerable computational overhead,
and (b) the ciphertexts of our protocol are larger. Concerning (a), we note that
prior work like [18,26] that achieves strongest possible security for the much
less involved in-order instant messaging case uses the same primitives, and that
results [6] indicate that their use is actually unavoidable. We conclude from this
that the computational overhead that the primitives bring with them seems to
represent the due price to pay for the extra security. A similar statement can be
made concerning (b): If an instant messaging conversation is such that the sender
role strictly alternates between Alice and Bob, then the ciphertext overhead of
our protocol, when compared to Signal, is just a couple of bytes per message.
If the sender role does not strictly alternate, the ciphertext size grows linearly
in the number of messages that the sender still has to confirm to have arrived.
Recalling that the non-alternating case is precisely the one where Signal fails to
provide best-possible security, the ciphertext overhead seems to be fair given the
extra security that is achieved.

Related Work.
We start with providing a more detailed comparison of our results with those

of the prior work mentioned above. We first remark that our results generalize
the findings of [18,26]: If in our models the physical time is ‘frozen’, messages are
always delivered, and messages are delivered in-order, they express exactly the
same security guarantees as [18,26]. It is clear that as soon as time starts ticking
our model is stronger: We allow state exposures once ciphertexts ‘expire’, while
this concept does not exist in [18,26]. For out-of-order delivery the picture is more
complicated: Note that when messages are delivered in-order, optimal security
demands that user states immediately ‘cryptographically diverge’ when receiving
an unauthentic ciphertext, but for out-of-order delivery the situation becomes
more nuanced. Consider the scenario where Alice sends a message and is then
state-exposed. Using the obtained state information, the adversary could now
trivially and perfectly impersonate Alice towards Bob for the second message.
That is, if Bob receives the second ciphertext first, there is no (cryptographic)
way for him to tell whether it is authentic or not, i.e., to distinguish whether
Alice sent or the adversary injected it. If the ciphertext was indeed sent by Alice,
correctness would require that Bob remains able to decrypt the first ciphertext.
Thus, the latter also has to hold if the ciphertext is unauthentic. Hence, in
contrast to the setting with in-order delivery, in the out-of-order setting there are

6

inherent limits to how much the states of Alice and Bob can ‘cryptographically
diverge’ once unauthentic ciphertexts are processed.

Multiple weaker security definitions for secure messaging have been proposed
[2,11,15,19]. We provide a brief overview about what makes their security notions
suboptimal. In [11,15] the adversary is forbidden to impersonate a user when a
secure key is being established. Hence, in this case the authors do not require
recovery from a state exposure (which enables an impersonation attack). In [2,19]
the construction can take longer than strictly necessary to recover from state
exposures. This is encoded in the security games by artificially labelling certain
win conditions as trivial. See [9] for an extensive treatment of the limitations
of the ACD model. Moreover, in both works the user states are not required to
immediately ‘cryptographically diverge’ for future ciphertexts when accepting
an unauthentic ciphertext. We note that an important difference between our
KuKEM and Healable key-updating Public key encryption (HkuPke) introduced
in [19] is that HkuPke key updates are based on secret update information, while
our KuKEM is updated with adversarially controlled associated data.

The security definitions of [2,18,19] assume a slightly different understanding
of what it means to expose a participant. Our understanding is that exposures
reveal the current protocol state of a participant to the adversary, while their
approach is rather that exposures reveal the randomness used for the next send-
ing operation. The two views seem ultimately incomparable, and likely one can
find arguments for both sides. One argument that supports our approach is that
modern computing environments have RNGs that constantly refresh their state
based on unpredictable events (e.g., the RDRAND instruction of Intel CPUs or the
urandom device in Linux) so that if one of the situations listed in Footnote 4
leads to a state exposure then it still can be assumed that the randomness used
for the next sending operation is indeed safe. A third view considers state expo-
sures to leak a party’s state except for signing keys [1], which seems unrealistic
(to us).

See [13] for a treatment of secure messaging in the UC setting.
Our work is not the first to consider a notion of physical time in a crypto-

graphic treatment. See [27] for modelling approaches using linear counters, or
[12,22,23] for encrypting data ‘to the future’.

Recent work in the group messaging setting [4] similarly designs their proto-
col in a modular way and captures security in game based definitions. A main
component, continuous group key agreement (CGKA) was first defined in [3] and
the analysis of [5] shows, even in the passive case, no known CGKA protocol
achieves optimal security without using HIBE.

Organization. This article considers the security and constructions of what we
refer to as bidirectional out-of-order messaging protocols, abbreviated BOOM.
In Sect. 3 we define the security model. In Sect. 4 we introduce non-interactive
components that we employ in our construction. This includes the mentioned
KuKEM and KeKEM primitives. In Sect. 5 we finally present our construction.

7

https://en.wikipedia.org/wiki/RDRAND
https://en.wikipedia.org/wiki//dev/random

2 Notation

We write T or 1, and F or 0, for the Boolean constants True and False, respec-
tively. For t1, t2 ∈ N we let ∆(t1, t2) := t2 − t1 if t1 ≤ t2 and ∆(t1, t2) := 0 if
t1 > t2. For a, b ∈ N, a ≤ b, we let [a .. b] := {a, . . . , b} and [b] := [0 .. b] and
Ja .. bK := [a .. (b− 1)] and JbK := [0 .. (b− 1)]. We further write J∞K for the set of
natural numbers N = {0, . . .}. Note that J0K represents the empty set.

We specify scheme algorithms and security games in pseudocode. In such
code we write var ← exp for evaluating expression exp and assigning the result
to variable var . If var is a set variable and exp evaluates to a set, we write
var ∪← exp shorthand for var ← var ∪ exp and var ∩← exp shorthand for var ←
var ∩exp. A vector variable can be appended to another vector variable with the
concatenation operator q, and we write var q← exp shorthand for var ← var q exp.
We do not overload the q operator to also indicate string concatenation, i.e., the
objects a q b and ab are not the same. We use [] notation for associative arrays
(i.e., the ‘dictionary’ data structure): Once the instruction A[·]← exp initialized
all items of array A to the default value exp, individual items can be accessed
as per A[idx], e.g., updated and extracted via A[idx] ← exp and var ← A[idx],
respectively, for any expression idx.

Unless explicitly noted, any scheme algorithm may be randomized. We use
⟨ ⟩ notation for stateful algorithms: If alg is a (stateful) algorithm, we write
y ← alg⟨st⟩(x) shorthand for (st, y) ← alg(st, x) to denote an invocation with
input x and output y that updates its state st. (Depending on the algorithm,
x and/or y may be missing.) Importantly, and in contrast to most prior works,
we assume that any algorithm of a cryptographic scheme may fail or abort,
even if this is not explicitly specified in the syntax definition. This approach is
inspired by how modern programming languages deal with error conditions via
exceptions: Any code can at any time ‘throw an exception’ which leads to an
abort of the current code and is passed on to the calling instance. In particular,
if in our game definitions a scheme algorithm aborts, the corresponding game
oracle immediately aborts as well (and returns to the adversary).

Security games are parameterized by an adversary, and consist of a main
game body plus zero or more oracle specifications. The adversary is allowed
to call any of the specified oracles. The execution of the game starts with the
main game body and terminates when a ‘Stop with exp’ instruction is reached,
where the value of expression exp is taken as the outcome of the game. If the
outcome of a game G is Boolean, we write Pr[G(A)] for the probability (over
the random coins of G and A) that an execution of G with adversary A results
in the outcome T or 1. We define shorthand notation for specific combinations
of game-ending instructions: While in computational games we write ‘Win’ for
‘Stop with T’, in distinguishing games we write ‘Win’ for ‘Stop with b’ (where b
is the challenge bit). In any case we write ‘Lose’ for ‘Stop with F’. Further, for
a Boolean condition C, we write ‘Require C’ for ‘If ¬C: Lose’, ‘Penalize C’ for
‘If C: Lose’, ‘Reward C’ for ‘If C: Win’, and ‘Promise C’ for ‘If ¬C: Win’.

8

3 Syntax and Security of BOOM

We formalize Bidirectional Out-of-Order Messaging (BOOM) protocols. The
scheme API assumes the four algorithms init, send, recv, tick and a timestamp
decoding function ts. The init, send, recv algorithms are akin to prior work and
implement instance initialization, message sending, and message receiving, re-
spectively.11 The tick algorithm enables a user’s instance to track the progres-
sion of physical time : It is assumed to be periodically invoked by the computing
platform (e.g., once every second), and has no visible effect beyond updating the
instance’s internal state. This allows us to model physical time with an integer
counter that indicates the number of occurred tick invocations of the corre-
sponding participant. Independently of physical time, a notion of logical time is
induced by the sequence in which messages are processed by a sender: We track
logical time with an integer counter that indicates the number of occurred send
invocations of the corresponding participant. The logical time associated with
a sending operation is also refered to as the operation’s sending index . When-
ever a ciphertext is produced, we assume a production timestamp is attached
to it. Formally, we demand that, given a ciphertext, the timestamp decoding
function ts recovers the physical time and logical time of the sender at the point
when it created the ciphertext by invoking the send algorithm. The timestamp
notion will prove crucial to formulate conditions related to ciphertext expiration.

We proceed with defining the syntax, the semantics (execution environment
and correctness), and the security notions associated with BOOM protocols.

Syntax. A (two-party) BOOM scheme for an associated-data space AD and a
message spaceM consists of a state space ST , a ciphertext space C, algorithms
init, send, recv, tick, and a timestamp decoding function ts. Algorithm init gener-
ates initial states stA, stB ∈ ST for the participants. Algorithm send takes a state
st ∈ ST , an associated-data string ad ∈ AD, and a message m ∈ M, and out-
puts an (updated) state st′ ∈ ST and a ciphertext c ∈ C. Algorithm recv takes
a state st ∈ ST , an associated-data string ad ∈ AD, and a ciphertext c ∈ C, and
outputs an (updated) state st′ ∈ ST , an acknowledgement set A ⊆ N, and a
message m ∈M. (The understanding of output A is that when c was generated
by the peer, then for all i ∈ A the peer had received the ciphertext with sending
index i.) Algorithm tick takes a state st ∈ ST and outputs an (updated) state
st′ ∈ ST . Function ts takes a ciphertext c ∈ C and recovers a logical timestamp
(sending index) lt ∈ N and a physical timestamp pt ∈ N. If P(N) denotes the
powerset of set N, the BOOM API is thus as follows:

init→ ST ×ST AD×M→ send⟨ST ⟩ → C AD×C → recv⟨ST ⟩ → P(N)×M tick⟨ST ⟩

ts : C → N× N

11 More precisely, our recv algorithm has a dedicated output for reporting to the in-
voking user which of the priorly sent own messages have been received by the peer;
this output does not exist in prior work.

9

Semantics. We give game based definitions of correctness and security. Recall
that the form of secure messaging that we consider supports the out-of-order
processing of ciphertexts. This property, of course, has to be reflected in all
games, rendering them more complex than those of prior works that deal with
easier settings. To manage this complexity, we carefully developed our games
such that they share, among each other, as many code lines and game variables
as possible. In particular, the games can be seen as derived by individualizing a
common basic game body in order to express specific aspects of functionality or
security. This individualization is done by inserting an appropriate small set of
additional code lines.12 (For instance, the game defining authenticity adds lines
of code that identify and flag forgery events.) In the following we explain first
the BASIC game and then its refinements FUNC, AUTH, and CONF.13

Game BASIC. We first take a quick glance over the BASIC game of Fig. 1,
deferring the discussion of details to the upcoming paragraphs. The game body
[G00–G18] initializes some variables [G00–G13], invokes the init algorithm to ini-
tialize states for two users A and B [G17], and invokes the adversary [G18]. The
adversary has access to four oracles, each of which takes an input u ∈ {A, B}
to specify the targeted user. The Tick oracle gives access to the tick algorithm
[T00], the Send oracle gives access to the send algorithm [S00,S07], and the Recv
oracle, besides internally recovering the logical and physical sending timestamps
of an incoming ciphertext [R00], gives access to the recv algorithm [R01,R29].
Finally, the Expose oracle reveals the current protocol state of a user to the
adversary [E06]. The game variables and remaining code lines are related to
monitoring the actions of the adversary, allowing for identifying specific game
states and tracking the transitions between them. In particular we identified the
user-specific states in-sync and authoritative, the ciphertext properties sync-
preserving, sync-damaging, certifying, and vouching, and the transitions losing
sync, poisoning, and healing, as relevant in the BOOM setting. We explain these
concepts one by one.

We say that protocol actors are synchronized if their views on the communi-
cation is consistent. A little more precisely, a participant Alice is in-sync with
her peer Bob if all ciphertexts that Alice received are identical with ciphertexts
that Bob priorly sent. The complete definition, formalized as part of the BASIC
game as discussed below, further requires that the employed associated-data in-
puts are matching, and that the processing of ciphertexts of an out-of-sync peer
also renders the receiver out-of-sync. If Alice is in-sync with Bob, we refer to
ciphertexts that Alice can receive without losing sync as sync-preserving ; the ci-

12 Removing or modifying existing lines will not be necessary. That said, restricting
the options to only add new lines might lead to also introducing a small number of
redundancies that could allow for simplifications.

13 The BASIC game itself is not used to model any kind of functionality or security. It
merely describes the execution environment.

10

Game BASIC(A)
G00 For u ∈ {A, B}:
G01 ltu ← 0
G02 ptu ← 0
G03 isu ← T
G04 SCu ← ∅
G05 CERTu ← ∅
G06 VFu[·]← J∞K
G07 AUu ← J∞K
G13 poisonedu ← F
G17 (stA, stB)← init
G18 Invoke A

Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu ← ptu + 1

Oracle Send(u, ad, m)
S00 c← send⟨stu⟩(ad, m)
S02 If isu:
S03 SCu

∪← {(ad, c)}
S06 ltu ← ltu + 1
S07 Return c

Oracle Expose(u)
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E06 Return stu

Oracle Recv(u, ad, c)
R00 (lt, pt)← ts(c)
R01 (A, m)← recv⟨stu⟩(ad, c)
R06 If (ad, c) ∈ SCū:
R07 If isu:
R08 CERTu

∪← [lt]
R09 AUū

∪← VFū[lt]
R17 If (ad, c) /∈ SCū:
R18 If isu:
R19 If lt /∈ AUū:
R20 poisonedu ← T
R23 isu ← F
R29 Return (A, m)

Fig. 1. Game BASIC. We refer the reader to Footnote 17 for the interpretation of
VFuJltuK in line [E02]. We write ū for the element such that {u, ū} = {A, B}.

phertexts that would render her out-of-sync are referred to as sync-damaging .14

See Fig. 18 in App. B for an example.
As we consider communication algorithms that are stateful, any ciphertext

created by a participant may depend on, and may implicitly reflect, the full prior
communication history of that participant. That is, if from a sequence of sent
ciphertexts only a subset of ciphertexts arrive, then from what did arrive the
receiver should be able to extract information linked to what was sent before
but is still missing. In particular, any ciphertext that is received in-sync should
allow for identifying which earlier-sent though later-delivered ciphertexts are
authentic. We correspondingly say that in-sync received ciphertexts certify the
ciphertexts sent earlier by the same sender. See Fig. 19 in App. B for an example.

Ciphertexts can also make promises about the future: Every received cipher-
text may carry (cryptographic) information that is used to authenticate later
ciphertexts (of the same sender, up to their next exposure). Here we say that
ciphertexts (cryptographically) vouch for the ones sent later by the same par-
ticipant. See Fig. 20 in App. B for an example.

We finally discuss attack classes that are enabled by exposing the states
of users: Once a participant’s state becomes known by exposure, it is trivial
to impersonate the user, simply by invoking the scheme algorithms with the
captured state. We refer to states of a participant as authoritative if their actions
can not be trivially emulated by the adversary in this way. If an impersonation
happens right after an exposure, as the adversary can perfectly and permanently

14 The in-sync notion first surfaced in [7] in the context of unidirectional channels.
It was extended in [25] to handle bidirectional communication and associated-data
strings. Our definitions are based on [25], but adapted to tolerate the out-of-order
delivery of ciphertexts.

11

emulate all actions of the impersonated party, in addition to all authenticity and
confidentiality guarantees being lost, there is also no option to recover into a safe
state. We refer to the transition into such a setting, more precisely to the action
of exploiting the state exposure of one participant by delivering an impersonating
ciphertext to the other participant, as poisoning the latter. See Fig. 21 in App. B
for an example. A second option of the adversary after exposing a state is to
remain passive (in particular, not to poison the partner). In this case the healing
property of ratcheting-based secure messaging protocols shall automatically fully
restore safe operations. See Fig. 22 in App. B for an example.

Coming back to the BASIC game of Fig. 1, we describe how the above con-
cepts are reflected in the game variables and code lines. We start with the game
body [G00–G18]. If u ∈ {A, B} refers to one of the two participants, integer ltu

(‘logical time’) reflects the logical time of u; integer ptu (‘physical time’) re-
flects the physical time of u; Boolean flag isu (‘in-sync’) indicates whether u is
in-sync with their peer ū; set SCu (‘sent ciphertexts’) records the associated-
data–ciphertext pairs sent by u; set CERTu (‘certified’) indicates which of the
peer ū’s sending indices have been certified by receiving an in-sync ciphertext
from them; for each sending index i, set VFu[i] (‘vouches for’) indicates for which
sending indices of u the ciphertext with index i can vouch for; set AUu indicates
for which sending indices participant u is authoritative; flag poisonedu indicates
whether u was poisoned.

We next explain how these variables are updated throughout the game. The
cases of ltu [G01,S06] and ptu [G02,T01] are clear. Flag isu is initialized to T [G03],
and cleared [R23] in the moment that u receives a ciphertext that the peer ū
either didn’t send, or did send but after becoming out-of-sync [R17] (in con-
junction with [S02,S03], see next sentence).15 Set SCu is initialized empty [G04]
and populated [S03] for each sending operation in which u is in-sync [S02].16 Set
CERTu is initialized empty [G05] and, when a sync-preserving ciphertext is re-
ceived [R06,R07], populated with all indices prior to, and including, the current
one [R08]. All entries of array-of-sets VFu are initialized to ‘all-indices’ [G06],
expressing that, by default, each sending index cryptographically vouches for its
entire future (and past). This changes when u’s state is exposed, as imperson-
ating u then becomes trivial; the game reflects this by updating all VFu entries
related to the time preceding the exposure so that the corresponding ciphertexts
do not vouch for ciphertexts that are created after the exposure [E02].17 Set AUu

is initialized to ‘all-indices’ [G07], and indices are removed from it by exposing
u’s state, and added back to it by letting u heal; more precisely, while exposing

15 The mechanism of considering participants out-of-sync once they process (unmodi-
fied) ciphertexts from out-of-sync peers is taken from [25], see Footnote 14.

16 Note that the sending index of any ciphertext is uniquely recoverable (with func-
tion ts), implying that each execution of [S03] adds a new element to the set (colli-
sions cannot occur).

17 Line [E02] should be read as ‘For all 0 ≤ i < ltu: VFu[i] ← VFu[i] ∩ JltuK’ and
expresses that all entries of VFu[·] that correspond with prior sending indices are
trimmed so that they cover no indices that succeed the current one (including).

12

u’s state removes all indices starting with the current one (marking the entire
future as non-authoritative) [E03], receiving a sync-preserving ciphertext from
peer ū [R06,R07] adds the vouched-for entries back [R09] (re-establishing author-
itativeness up to the next exposure). Finally, flag poisonedu is initialized clear
[G13], and set [R20] when a sync-damaging ciphertext is received (i.e., one that
was not sent by peer ū [R17] and is the first one making u lose sync [R18]) that
was trivially injected after an exposure of peer ū’s state (technically: was crafted
for a non-authoritative index [R19]).

This completes the description of the BASIC game. We refine it in the fol-
lowing to obtain three more games, but the basic working mechanisms of the
oracles and variables remain the same.

Game FUNC. We specify the expected functionality (a.k.a. correctness) of a
BOOM protocol by formulating requirements on how it shall react to receiving
valid and invalid ciphertexts. Concretely, in Fig. 2 we specify the corresponding
FUNC game as an extension of the BASIC game from Fig. 1. In the figure, the
code lines marked with neither ◦ nor • are taken verbatim from the BASIC game,
and the lines marked with ◦ are the ones to be added to obtain the FUNC game.
(Ignore the lines marked with • for now.) The FUNC game tests for a total of
seven conditions, letting the adversary ‘win’ if any one of them is not fulfilled.
Five of the conditions are checked for all operations (in-sync and out-of-sync):
The conditions are (1) that the ts decoding function correctly indicates the log-
ical and physical creation time of ciphertexts [S01]; (2) that no sending index
is received twice (single delivery of ciphertexts) [G10,R02,R25] (set RIu records
‘received indices’); (3) that expired ciphertexts are not delivered (the reported
sender’s physical time pt is compared with the receiver’s physical time ptu, toler-
ating a lag of up to δ time units) [R03]; (4) that physical timestamps increase as
logical timestamps do [G11,R04,R26] (set RTu records ‘received timestamps’);18

and (5) that the reported acknowledgement set A never shrinks and never lists
never-sent indices [G12,R05,R27] (set RAu records ‘received acknowledgements’).
Two additional conditions are checked for certified ciphertexts (this includes
all in-sync ciphertexts, as they certify themselves [R06,R07,R08]): The condi-
tions are (6) that the recv algorithm accurately reports the acknowledgement
set A [R13] (recall that set RIu holds the received indices [G10,R25], allowing to
associate this set with each (in-sync) sending operation [G08,S04], so that set
SRū[i] [S04,R13] indicates the indices that participant ū received from u before
ū used sending index i in their sending operation); and (7) that encrypted mes-
sages are correctly recovered via decryption [G09,S05,R14] (array SMu records
‘sent messages’). We say that a BOOM protocol is functional if the advantage
Advfunc(A) := Pr[FUNC(A)] is negligibly small for all realistic adversaries A.

Game AUTH. Our authenticity notion focuses on the protection of the integrity
of ciphertexts (INT-CTXT). In Fig. 2 we specify the corresponding AUTH game
as an extension of the BASIC game from Fig. 1. In the figure, the code lines
18 A relation R ⊆ N × N is monotone [R04] if for all (x, y), (x′, y′) ∈ R we have

x ≤ x′ ⇒ y ≤ y′.

13

Game FUNC(A) �with ◦
Game AUTH(A) �with •
G00 For u ∈ {A, B}:
G01 ltu ← 0
G02 ptu ← 0
G03 isu ← T
G04 SCu ← ∅
G05 CERTu ← ∅
G06 VFu[·]← J∞K
G07 AUu ← J∞K
G08◦ SRu[·]← ⊥
G09◦ SMu[·]← ⊥
G10◦ RIu ← ∅
G11◦ RTu ← ∅
G12◦ RAu ← ∅
G17 (stA, stB)← init
G18 Invoke A
G19 Lose

Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu ← ptu + 1

Oracle Send(u, ad, m)
S00 c← send⟨stu⟩(ad, m)
S01◦ Promise ts(c) = (ltu, ptu)
S02 If isu:
S03 SCu

∪← {(ad, c)}
S04◦ SRu[ltu]← RIu

S05◦ SMu[ltu]← m
S06 ltu ← ltu + 1
S07 Return c

Oracle Recv(u, ad, c)
R00 (lt, pt)← ts(c)
R01 (A, m)← recv⟨stu⟩(ad, c)
R02◦ Promise lt /∈ RIu

R03◦ Promise ∆(pt, ptu) ≤ δ
R04◦ Promise RTu ∪ {(lt, pt)} monotone
R05◦ Promise RAu ⊆ A ⊆ JltuK
R06 If (ad, c) ∈ SCū:
R07 If isu:
R08 CERTu

∪← [lt]
R09 AUū

∪← VFū[lt]
R12◦ If lt ∈ CERTu:
R13◦ Promise A = RAu ∪ SRū[lt]
R14◦ Promise m = SMū[lt]
R17 If (ad, c) /∈ SCū:
R18• If isu:
R21• Reward lt ∈ AUū

R22• Reward lt ∈ CERTu

R23 isu ← F
R25◦ RIu

∪← {lt}
R26◦ RTu

∪← {(lt, pt)}
R27◦ RAu ← A
R29 Return (A, m)

Oracle Expose(u)
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E06 Return stu

Fig. 2. Games FUNC and AUTH. The FUNC game includes the lines marked with ◦
but not the ones marked with •. The AUTH game includes the lines marked with •
but not the ones marked with ◦.

marked with neither ◦ nor • are taken verbatim from the BASIC game, and the
lines marked with • are the ones to be added to obtain the AUTH game. (This
time, ignore the lines marked with ◦.) A BOOM scheme provides AUTH security
if any adversarial manipulation (or injection) of ciphertexts is detected and re-
jected. Taking into account that associated-data strings need to be protected in
the same vein, as a first approximation the notion could be formalized by adding
the instruction ‘Reward isu ∧ (ad, c) /∈ SCū’ to the Recv oracle.19 Note however
that delivering a forged ciphertext to a participant u is trivial if the state of their

19 The instruction should be read as ‘Reward the adversary if it makes an in-sync partic-
ipant accept an associated-data–ciphertext pair for which at least one of associated-
data and ciphertext is not authentic’.

14

peer ū is exposed, and thus a small refinement is due. Recalling that set AUū lists
the sending indices for which participant ū is authoritative, i.e., their actions not
trivially emulatable, we reward the adversary only if the forgery is made for an
index contained in this set [R17,R18,R21]. Recall further that in-sync delivered
ciphertexts certify prior ciphertexts by the same sender, even if the latter cipher-
texts are delivered out-of-sync. In the game we thus reward the adversary also if
it forges on a certified index [R17,R22]. We say that a BOOM protocol provides
authenticity if the advantage Advauth(A) := Pr[AUTH(A)] is negligibly small
for all realistic adversaries A. We refer the reader to App. C for a formalization
of the trivial attack excluded by the AUTH game, and an overview of similar
but non-trivial attacks that are allowed.

Games CONF0, CONF1. Our confidentiality notion is formulated in the style
of left-or-right indistinguishability under active attacks (IND-CCA). In Fig. 3
we specify corresponding CONF0 and CONF1 games. The games are derived
from the BASIC game by adding the lines marked with • plus two new oracles:
The left-or-right Chal oracle [C00–C08], which behaves similar to the Send oracle
but processes one of two possible input messages [C03] depending on bit b that
encodes which game CONFb is played, and the Decide oracle [D00] that lets the
adversary control the return value of the game. (A successful adversary manages
to correlate this return value with bit b.)

Three new game variables keep track of the actions of the adversary: Vari-
able lxu (‘last exposure’, [G14,E04]) indicates the index of the last exposure of
user u. Set CHu (‘challenge’) represents the set of sending indices for which a
challenge query has been posed for u that peer ū still should be able to validly
decrypt. Indices are added to this set in the Chal oracle [G15,C06], and they are
removed from it as a reaction to three events. (1) The corresponding ciphertext
becomes invalid because the receiver already processed a ciphertext (the same
or a different one) with the same index [R28] (see the corresponding guarantee in
the FUNC game [G10,R02,R25]). (2) It becomes invalid because it expired based
on physical time: To capture the latter condition we denote with

ITC(u) := {lt : ∃ad, c, pt s.t. (ad, c) ∈ SCū ∧ ts(c) = (lt, pt) ∧∆(pt, ptu) ≤ δ}

(‘in-time ciphertexts’) for participant u the set of sending indices of ciphertexts
produced by peer ū for which the difference between generation time pt and
the physical time ptu of the receiver is less than δ. With the progression of
physical time the game removes those indices from set CHū that are not an
element of ITC(u) [T02]. (See the corresponding guarantee in the FUNC game
[R03].) (3) Receiving an out-of-sync ciphertext renders u’s state incompatible to
decrypt future challenge queries. Hence all future indices are removed from the
challenge set [R24]. Observe this corresponds with [C06]: indices are only added
to CHu for an in-sync peer. Finally, flag xpu (‘exposed’) indicates whether the
state of u has to be considered known to the adversary after a state exposure.
This flag is initially cleared [G16], set when u’s state is exposed [E05], and reset
if u heals by letting peer ū receive an in-sync ciphertext created after the last
exposure [R10,R11].

15

We next explain how the new variables help identifying four different trivial
attack conditions. The first two conditions consider cases where posing a Chal
query needs to be prevented because the receiver state is known due to imperson-
ation or exposure: (1) if participant ū’s state was exposed and ū is impersonated
to u, i.e., u is poisoned, all future encryptions by u for ū are trivially decryptable,
simply because the adversary can emulate all actions of ū [C01]; (2) encryptions
by an in-sync sender u for a state-exposed receiver ū are trivially decryptable (re-
call that flag xpū traces the latter condition) [C02]. The next condition considers
cases where posing an Expose query needs to be prevented because an already
made Chal query would become trivial to break: (3) if participant ū generated
(challenge) ciphertext c for u, and the latter should still be able to validly de-
crypt c, then exposing u makes c trivially decryptable [E00]. The last condition
is unrelated to exposures: (4) if participant u in-sync decrypts a ciphertext, by
correctness the resulting message is identical to the encrypted message, and thus
has to be suppressed by the Recv oracle by overwriting it [R15,R16]. (Note how
line R16 corresponds with line R14 of FUNC.) This concludes the description
of games CONFb. We say that a BOOM protocol provides confidentiality if the
advantage Advconf(A) := |Pr[CONF1(A)] − Pr[CONF0(A)]| is negligibly small
for all realistic adversaries A. We refer the reader to App. C for a formalization
of the trivial attacks excluded by the CONF game, and similar but non-trivial
attacks that are allowed.

4 Non-Interactive Primitives

In Sect. 3 we defined the syntax and security of BOOM protocols and we will
provide a secure construction in Sect. 5. The current section is dedicated to
presenting a set of cryptographic building blocks, in the spirit of public key en-
cryption (PKE) and signature schemes (SS), that will play crucial roles in our
construction. Recall that a defining property of a BOOM protocol is that it pro-
vides maximum resilience against (continued) state exposure attacks, preventing
all but trivial attacks. If a construction would rely on regular PKE or SS schemes
as building blocks, the secret keys of the latter would leak on state exposure,
which in most cases would inevitably clear the way for an attack on confiden-
tiality or authenticity. We hence employ stateful variants of PKE and SS that
process their internal keying material after each use to an updated ‘refreshed’
version that limits the options of a state-exposing adversary to harm only future
operations. Some of the building blocks proposed here additionally fold an asso-
ciated data input into their state, and the assumption is that sender and receiver
(i.e., signer and verifier, or encryptor and decryptor) update their states with
consistent such inputs.20

20 Unlike regular signature schemes where for each signer there can be many indepen-
dent verifiers, and unlike regular public key encryption where for each decryptor
there can be many encryptors, for the primitives we consider in the current section
a strict one-to-one correspondence between sender and receiver is assumed.

16

Game CONFb(A)
G00 For u ∈ {A, B}:
G01 ltu ← 0
G02 ptu ← 0
G03 isu ← T
G04 SCu ← ∅
G06 VFu[·]← J∞K
G07 AUu ← J∞K
G13 poisonedu ← F
G14• lxu ← 0
G15• CHu ← ∅
G16• xpu ← F
G17 (stA, stB)← init
G18 Invoke A
G19 Lose

Oracle Send(u, ad, m)
S00 c← send⟨stu⟩(ad, m)
S02 If isu:
S03 SCu

∪← {(ad, c)}
S06 ltu ← ltu + 1
S07 Return c

Oracle Chal(u, ad, m0, m1)
C00 Require |m0| = |m1|
C01 Penalize poisonedu

C02 If isu: Penalize xpū

C03 c← send⟨stu⟩(ad, mb)
C04 If isu:
C05 SCu

∪← {(ad, c)}
C06 If isū: CHu

∪← {ltu}
C07 ltu ← ltu + 1
C08 Return c

Oracle Expose(u)
E00• Require CHū = ∅
E01 If isu:
E02 VFuJltuK ∩← JltuK
E03 AUu

∩← JltuK
E04• lxu ← ltu

E05• xpu ← T
E06 Return stu

Oracle Decide(b′)
D00 Stop with b′

Oracle Recv(u, ad, c)
R00 (lt, pt)← ts(c)
R01 (A, m)← recv⟨stu⟩(ad, c)
R06 If (ad, c) ∈ SCū:
R07 If isu:
R09 AUū

∪← VFū[lt]
R10• If lt ≥ lx ū:
R11• xpū ← F
R15• If lt ∈ CHū:
R16• m← ⋄
R17 If (ad, c) /∈ SCū:
R18 If isu:
R19 If lt /∈ AUū:
R20 poisonedu ← T
R23 isu ← F
R24• CHū

∩← JltK
R28• CHū ← CHū \ {lt}
R29 Return (A, m)

Oracle Tick(u)
T00 tick⟨stu⟩
T01 ptu ← ptu + 1
T02• CHū

∩← ITC(u)

Fig. 3. Games CONF0, CONF1. See text for the definition of function ITC [T02].

While the specifics of our building blocks might be different from those of
prior work, it can be generally considered well-understood how to construct such
primitives. For instance, a forward-secure SS [8], which is a primitive close to
one of ours, can be built by coupling each signing operation with the generation
of a fresh signature key pair, the public component of which is signed and thus
authenticated along with the message; after the signing operation is complete,
the original signing key is disposed of and replaced by the freshly generated
one. Adding the support of auxiliary associated-data strings into such a scheme
is trivial (just authenticate the string along with the message) and is less a
cryptographic challenge than an exercise of maintaining the right data struc-
tures in the sender/receiver state. Similarly, forward-secure PKE [12], which is a
primitive close to one of ours as well, is routinely built from hierarchical identity-
based encryption (HIBE) by associating key validity epochs with the nodes of
a binary tree. Variants of forward-secure PKE that support key updates that
depend on auxiliary associated-data strings have been proposed in prior work as
well [18,26], using design approaches that can be seen as minor variations of the
original tree-based idea from [12].

For our BOOM construction in Sect. 5 we require three independent forward-
secure public key primitives which we refer to as updatable signature scheme,
key-updatable KEM, and key-evolving KEM, respectively. We specify their syn-
tax and explain the expected behaviour below. We formalize the details and

17

propose concrete constructions in App. A. We note that our security definitions
and constructions can be seen as following immediately from the syntax and
expected functionality: While the security definitions give the adversary the op-
tion to expose the state of any participant any number of times, and formalize
the best-possible security that is feasible under such a regime (i.e., maximum
resilience against state exposure attacks), the constructions, which all follow the
approaches of [8,12,18,26] discussed above, are engineered to re-generate fresh
key material whenever an opportunity for this arises.

4.1 Updatable Signature Schemes (USS)

Like a regular signature scheme, a USS has algorithms gen, sign, vfy, where sign
creates a signature on a given message and vfy verifies that a given signature is
valid for a given message. The particularity of USS is that signing and verification
keys can be updated, and that signatures only verify correctly if these updates
are performed consistently. More precisely, signing and verification keys are re-
placed by signing and verification states, and update algorithms updss, updvs
(for ‘update signing state’ and ‘update verification state’, respectively) can up-
date these states to a new version, taking also an associated-data input into
account. Multiple such update operations can be performed in succession, on
both sides. Signatures of the signer are recognized as valid by the verifier only
if the updates of both parties are in-sync, i.e., are performed with the same
sequence of update strings. Our security model provides the means to the ad-
versary to expose the state of the parties between any two update operations,
and requires unforgeability with maximum resilience to such exposures.

Formally, a key-updatable signature scheme for a message space M and an
associated-data space AD consists of a signing state space SS, a verification
state space VS, a signature space Σ, and algorithms gen, sign, vfy, updss, updvs
with APIs

gen→ SS × VS M→ sign⟨SS⟩ → Σ VS ×M×Σ → vfy

AD → updss⟨SS⟩ AD → updvs⟨VS⟩ .

Note that the vfy algorithm doesn’t have an explicit output. The assumption
behind this is that the algorithm signals acceptance by terminating normally,
while it signals rejection by aborting. (See Sect. 2 on the option of any algorithm
to abort.) We expect of a correct USS that for all (ss, vs) ∈ [gen], if ss and vs
are updated by invoking updss⟨ss⟩(·) and updvs⟨vs⟩(·) with the same sequence
ad1, . . . , ad l ∈ AD of associated data, then for all m ∈M and σ ∈ [sign⟨ss⟩(m)]
we have that vfy(vs, m, σ) accepts. See App. A.4 for examples of the expected
functionality a formalization of correctness and security, and a construction.

4.2 Key-Updatable KEM (KuKEM)

A key-updatable key encapsulation mechanism is a stateful KEM variant with
algorithms gen, enc, dec and update properties like for USS: both the encapsu-
lator and the decapsulator can update their public/secret state material with

18

algorithms updps, updss (for ‘update public state’ and ‘update secret state’,
respectively) that also take an associated-data input into account. The decap-
sulator, if updated in-sync with the encapsulator, can successfully decapsulate
ciphertexts. Our security model formalizes IND-CCA-like security in a model
supporting exposing the state of both parties, with the explicit requirement that
state exposures neither harm the confidentiality of keys encapsulated for past
epochs, nor the confidentiality of keys encapsulated with diverged states.

Formally, a key-updatable key encapsulation mechanism for a key space K
and an associated-data space AD, consists of a secret state space SS, a public
state space PS, a ciphertext space C, KEM algorithms gen, enc, dec and state
update algorithms updps, updss with APIs

gen→ SS × PS PS → enc→ K× C SS × C → dec→ K

AD → updps⟨PS⟩ AD → updss⟨SS⟩ .

We expect of a correct KuKEM that for all (ss, ps) ∈ [gen], if ss and ps are
updated by invoking updps⟨ps⟩(·) and updss⟨ss⟩(·) with the same sequence
ad1, . . . , ad l ∈ AD of associated data, then for all (k, c) ∈ [enc(ps)] and k′ ∈
[dec(ss, c)] we have that k = k′. See App. A.5 for a formalization of correctness
and security, and a construction.

4.3 Key-Evolving KEM (KeKEM)

A key-evolving key encapsulation mechanism consists of algorithms gen, enc, dec
like a regular KEM, but, as above, public and secret keys are replaced by public
and secret states, respectively, that can be updated. More precisely, the en-
capsulator’s and decapsulator’s states can be updated ‘to the next epoch’ by
invoking the evolveps (for ‘evolve public state’) algorithm and the evolvess (for
‘evolve secret state’) algorithm, respectively. Note, however, that if a secret state
is updated, the decryptability of ciphertexts generated for older epochs is not
automatically lost; rather, ciphertexts associated to multiple epochs remain de-
cryptable until epochs are explicitly declared redundant by invoking the expire
algorithm.21 Our security model formalizes IND-CCA-like security in a model
supporting exposing the state of both parties, with the explicit requirement that
state exposures do not harm the confidentiality of keys encapsulated for expired
epochs. Note that our formalization of KeKEMs does not support updating
states with respect to an associated-data input.

Formally, a key-evolving key encapsulation mechanism for a key space K
consists of a secret state space SS, a public state space PS, a ciphertext space C,
KEM algorithms gen, enc, dec and state update algorithms evolveps, evolvess, expire
with APIs

N→ gen→ SS × PS PS → enc→ K× C SS × N× C → dec→ K
21 The expire algorithm expires always to oldest currently supported epoch. That is,

active epochs of KeKEMs always span a continuous interval.

19

evolveps⟨PS⟩ evolvess⟨SS⟩ expire⟨SS⟩ .

In the KeKEM setting it makes sense to number the epochs. Note that the dec
algorithm expects, besides the secret state and the ciphertext, an explicit indi-
cation of the epoch number for which the ciphertext was created. For simplicity,
one would like to provide an absolute time to the dec algorithm, e.g. Unix time,
rather than the time offset relative to the generation time. For this reason, the
gen algorithm takes in an epoch number which can be used to specify the gen-
eration time and thus the first epoch need not necessarily start at zero. Then
the state can internally compute the relative offset on decapsulation. As the full
definition is quite involved and thus deferred to App. A.6, we illustrate the func-
tionality of a correct KeKEM using an example: If we invoke (ss, ps) ← gen(5)
to generate a state pair (and associating the number 5 with the first state), then
invoking 2-times evolveps⟨ps⟩ followed by (k, c) ← enc(ps), and then 4-times
evolvess⟨ss⟩, then invoking dec(ss, 7, c) will return k until expire⟨ss⟩ has been
invoked for the third time (expiring epochs 5, 6, and finally 7). See App. A.6 for
a formalization of correctness and security, and a construction.

5 Interactive Primitives and BOOM
This section exposes our Bidirectional Out-of-Order Messaging (BOOM) pro-
tocol, in three steps. In Sect. 5.1 we first present a BOOM-signature scheme,
which uses the USS introduced in Sect. 4.1 as building block. This scheme will
be used by our final BOOM construction in a black box manner by calling its
sign and vfy procedures on each message to add an authenticity layer. Next, we
present a BOOM-KEM scheme in Sect. 5.2. Our final BOOM construction will
query the BOOM-KEM in a black box manner by calling its enc and dec pro-
cedures to obtain encryption keys for each message. The BOOM-KEM uses the
KuKEM and KeKEM building blocks introduced in Sect. 4.2 and Sect. 4.3, to
ensure the BOOM scheme can achieve confidentiality with its keys. The BOOM
construction will additionally invoke its upd procedure to reflect the passing of
time and the expire procedure to indicate we no longer wish to be able to obtain
‘old’ decryption keys.

Despite the strong building blocks defined in Sect. 4, our BOOM protocols
are complex and involved. These difficulties stem from the data structures re-
quired to manage out-of-order delivery of ciphertexts. These data structures
obscure the cryptographically novel core of our construction and render it dif-
ficult to interpret. Therefore, we have separated the authenticity tool and the
confidentiality tool and present them in their own right. Note that this modu-
larization implies certain data structures will be duplicated across each tool, but
an implementation could consolidate them.

5.1 BOOM-Signature Scheme
In Sect. 5.3 we will use a specialized signature scheme to achieve authenticity
for our BOOM construction. In this section we describe the inner workings of
this cryptographic tool.

20

Syntax. A BOOM-signature scheme for a message spaceM consists of a state
space ST , a signature space Σ, algorithms init, sign, vfy, and a (logical) time-
stamp decoder ts as follows:

init→ ST ×ST M→ sign⟨ST ⟩ → Σ M×Σ → vfy⟨ST ⟩ ts : Σ → N .

Construction. We provide a construction for a BOOM-signature scheme in
Fig. 4. The construction consists of four procedures: init, sign, vfy and ts. The
init procedure initializes the states for two users A and B. The sign procedure is
stateful and will output a signature σ for any message m, updating its state in
the process. The vfy procedure is also stateful and will verify any pair (m, σ) ∈
M × Σ. If σ is a correct signature on m, the state will update and vfy will
return control to the caller. If the signature does not correctly verify, the vfy
procedure will abort. The ts function returns the logical time (measured in signer
invocations).

On a very high level, sign generates a fresh USS key pair every iteration to
recover from (potential) state exposures and signs the hash of its sent transcript,
while vfy updates its state with the messages that have been received, so states
will diverge if the adversary injects a message, while managing out of order
delivery. We will now describe the variables and code lines in more detail.

For each user u ∈ {A, B} we initialize the signing index ltu and the verifying
index lt∗

u [i01], and the arrays Su and Vu, which will store information about
signed and verified messages, respectively [i02]. We generate pairs of USS signing
and verification keys [i03] and initialize the set Pu of messages processed by
the current signing key to be empty [i04]. We initialize the accumulated signed
transcript ASu [i05], set the first index [i06] and initialize the accumulated verified
transcript avu [i07]. Finally, we store everything in the users’ states [i08].

The sign procedure first generates a new USS key pair [s00]. Next, it computes
the hash of the message m, the signing index ltu, the set of processed messages
Pu, the verification state, and the array Su [s01]. It signs the hash with its old
key [s02]. It accumulates the new hash and signature in ASu [s03] and stores the
hash, processed set, verification key and signature in Su [s04]. The signing index,
processed set, verification key and array Su are appended to the signature [s05].
It increments the signing index ltu [s06] and stores the new signing key along
with an empty processed set [s07], before returning the signature [s08].

The vfy procedure parses the additional information embedded in the sig-
nature [v00] and recomputes the hash [v01]. If the verifying index lt∗

u is less or
equal than lt, the verifier will iteratively check signatures until it catches up
[v02–v17]. To be concrete, if lt∗

u = lt it will use the current value for the hash and
signature [v05] or if lt∗

u < lt it will obtain these values from S[lt∗
u] [v07]. It will

update a copy of its verification key for all indices the signer has processed since
generating its signing key [v08–v10] and verify the signature [v11]. Note it uses
the transcript for its signed messages to update its verification key, which should
match the transcript for the verified messages the signer has used to update its
signing key. If signature verification passes, it will replace the verification key
[v12]. Note that if USS.vfy failed the verification key remains unchanged, as if

21

Proc init
i00 For u ∈ {A, B}:
i01 ltu ← 0; lt∗

u ← 0
i02 Su[·]← ⊥; Vu[·]← ⊥
i03 (ssu, vs∗

u)← USS.gen
i04 Pu ← ∅
i05 ASu[·]← ⊥
i06 ASu[ltu]← H()
i07 avu ← H()
i08 stu := (. . .)
i09 Return (stA, stB)

Proc sign⟨stu⟩(m)
s00 (ss, vs)← USS.gen
s01 h← H(m q ltu q Pu q vs q SuJltuK)
s02 σ ← USS.sign⟨ssu⟩(h)
s03 ASu[ltu + 1]← H(ASu[ltu] q h q σ)
s04 Su[ltu]← (h, Pu, vs, σ)
s05 σ

q← ltu q Pu q vs q SuJltuK
s06 ltu ← ltu + 1
s07 (ssu, Pu)← (ss, ∅)
s08 Return σ

Proc ts(σ)
t00 Parse σ q lt q P q vs q SJltK← σ
t01 Return lt

Proc vfy⟨stu⟩(m, σ)
v00 Parse σ q lt q P q vs q SJltK← σ
v01 h← H(m q lt q P q vs q SJltK)
v02 While lt∗

u ≤ lt:
v03 If lt∗

u = lt:
v04 (P′, vs′)← (P, vs)
v05 (h′, σ′)← (h, σ)
v06 Else:
v07 (h′, P′, vs′, σ′)← S[lt∗

u]
v08 vs∗ ← vs∗

ū

v09 For i ∈ P′:
v10 USS.updvs⟨vs∗⟩(ASu[i])
v11 Require USS.vfy(vs∗, h′, σ′)
v12 vs∗

ū ← vs′

v13 avu ← H(avu q h′ q σ′)
v14 Vu[lt∗

u]← (h′, σ′)
v15 USS.updss⟨ssu⟩(avu)
v16 lt∗

u ← lt∗
u + 1

v17 Pu
∪← {lt∗

u}
v18 If lt∗

u > lt:
v19 Require Vu[lt] ̸= ⋄
v20 Require Vu[lt] = (h, σ)
v21 Vu[lt]← ⋄

Fig. 4. BOOM-signature construction. We use an updatable signature scheme (USS)
as building block. Function H is assumed to be a collision-resistant hash function. The
vfy procedure aborts if parsing fails.

[v09–v10] were never executed. Next, it accumulates the hash and signature in
its verified transcript avu [v13], stores the hash and signature in Vu[lt∗

u] for later
comparison [v14] and it will update its signing state with avu [v15]. It increments
the index lt∗

u [v16] and add lt∗
u to Pu to indicate it has processed this message

into its signing key [v17]. If the verifying index lt∗
u was strictly greater than lt,

the verifier will check if an entry exists for this index [v19] and compare whether
it is equal to the value of the hash and signature [v20]. At last, the verifier will
remove the entry in Vu for index lt to prevent double delivery [v21].

Note for simplicity we omit code lines to ‘clean up’ variables that are no longer
needed. These lines are not required for security, but would help for efficiency.
For example, if a party learns its peer has processed signature i, it will no longer
have to include the first i entries of Su in its next signature.

22

5.2 BOOM-KEM Scheme

In Sect. 5.3 we will use a specialized KEM to achieve confidentiality for our
BOOM construction. In this section we describe the inner workings of this cryp-
tographic tool.

Syntax. A BOOM-KEM scheme for a key space K consists of a state space ST ,
a ciphertext space C, and algorithms init, upd, expire, enc, dec and the timestamp
decoder ts that recovers the logical and physical time.

init→ ST × ST upd⟨ST ⟩ expire⟨ST ⟩ ts : C → N× N

AD → enc⟨ST ⟩ → K × C AD × C → dec⟨ST ⟩ → K .

Construction. Internally our BOOM-KEM construction will invoke the KuKEM
primitive introduced in Sect. 4.2, the KeKEM primitive introduced in Sect. 4.3,
and a secure KEM combiner K such that if at least one of the input keys is
indistinguishable from a uniformly random string of equal length, then so is the
output key. In this article we will consider K a random oracle. An implementa-
tion could use the CCA secure combiner presented in [17].

We noted both our KuKEM and KeKEM building block can be built generi-
cally from hierarchical identity-based encryption (HIBE, [16]). This strong com-
ponent, while inefficient, should come as no surprise as it has already been pro-
posed by [18] and [26] in the much simpler setting where every message is always
delivered, and always in order. Moreover, recent work [6] shows that if an ex-
posure additionally reveals the random coins used for the next send operation,
the use of KuKEM is required to achieve confidentiality. They hypothesize the
same implication holds without revealing the random coins and provide a strong
intuition, but a formal proof remains an open problem.

We remark that both our KuKEM and KeKEM can be built from a single
HIBE instance if one immediately delegates the master secret key to a ‘KuKEM
identity’ and to a ‘KeKEM identity’. We avoid doing so for two reasons. First
of all, these primitives correspond to two perpendicular security goals. It is con-
ceptually easier to grasp if we do not intertwine them. Secondly, KeKEM can be
built from a forward-secure KEM, which is a simpler primitive than the HIBE-
KEM used for KuKEM. Thus it may also be more efficient to separate them.

We provide a construction for a BOOM-KEM in Fig. 5. The construction
consists of six procedures: init, enc, dec, expire, upd and ts. A correct decryp-
tion procedure dec is determined by the encryption procedure: it mirrors the
operations in enc. As deriving the dec procedure is a rather vacuous technical
exercise we have omitted it from Fig. 5 to focus on the more interesting crypto-
graphic procedures instead. We have also omitted the ts procedure which simply
parses the timestamps embedded in each ciphertext. A full reconstruction of all
BOOM-KEM procedures is provided in App. F. The construction is quite techni-
cal but the general idea is to generate a new KuKEM and a new KeKEM instance
with every enc invocation for post-compromise security. We update the KeKEM
for forward secrecy in physical time, and the KuKEM for forward secrecy in

23

logical time. The enc procedure will output a key dependent on the output of
the KuKEM encapsulation procedure, the KeKEM encapsulation procedure and
the associated data input.

We remark the physical time updates must be a separate primitive as simply
updating the KuKEM would render the users out-of-sync. For example, consider
the scenario where Alice sends a message, updating her KuKEM. Now physical
time advances and both Alice and Bob would update their KuKEM. Finally,
Bob receives Alice’s message and updates his KuKEM. Clearly the updates have
occurred in a different order, hence correctness would fail.

We note our security notion implies ciphertexts must contain information
about prior ciphertexts. To see that ciphertexts cannot be independent, consider
an adversary that exposes Alice and creates two ciphertexts. The adversary
will deliver the second ciphertext to Bob, rendering Bob out-of-sync. Now the
adversary can challenge Alice, making her send her first ciphertext, and since
Bob is out-of-sync, expose Bob. If Bob were able to decrypt any ciphertext with
logical index 1, the adversary could now decrypt Alice’s challenge ciphertext and
win the confidentiality game. Hence, the second ciphertext must ‘pin’ the first.

We achieve this with the KEM/DEM encryption paradigm. The enc proce-
dure will embed past KuKEM ciphertexts in the current ciphertext. When re-
ceiving a ciphertext, the dec procedure will decapsulate all embedded KuKEM
ciphertexts, store the DEM keys and destroy its capability to decapsulate again.
Reconsidering our example above, Bob is now only able to decrypt the first
ciphertext if it was encrypted with the same DEM key he obtained from the
second ciphertext, and Bob has no capability to decapsulate another KuKEM
ciphertext. The probability that Alice and the adversary had generated the same
KuKEM ciphertext for the first ciphertext is negligible.

We now discuss the procedures in more detail, starting with init. For each
user the init procedure initializes a sending index ltu, a receiving index lt∗

u, the
first physical time that is still recoverable ftu and the current physical time ptu

[i01–i02]. It initializes the array AS for the accumulated sent transcript and AR
for the accumulated received transcript [i03–i06]. The accumulated transcripts
will be used to update the KuKEM states, ensuring the user states diverge when
users go out-of-sync. Because ciphertexts may be delivered out-of-order, or not
at all, each user will be maintaining several instances of each primitive, ready
to decapsulate ciphertexts for any of them. However, it will always encapsulate
to the latest one. Hence we initialize storage for multiple secret states, but only
one public state, and we store the first KeKEM and KuKEM instance [i07–i10].
Finally, we intialize the array KC to store KuKEM ciphertexts [i11] and the array
DK to store DEM keys [i12], as described in the general construction overview.

The enc procedure encapsulates keys for both the KeKEM and the KuKEM
[e00–e01], and stores the KuKEM ciphertext in KC, along with its receiver in-
dex lt∗

u, indicating which public states were used for encapsulation [e02]. Next,
it generates a new instance for both the KeKEM and the KuKEM [e03–e04].
It will immediately update the secret state for the KuKEM with the received
transcript [e05], as the adversary is allowed unrestricted expose queries if we are

24

Proc init
i00 For u ∈ {A, B}:
i01 ltu ← 0; lt∗

u ← 0
i02 ftu ← 0; ptu ← 0
i03 ASu[·]← ⊥
i04 ARu[·]← ⊥
i05 ASu[ltu]← H()
i06 ARu[lt∗

u]← H()
i07 Eu[·]← ⊥
i08 Uu[·]← ⊥
i09 (Eu[ltu], ε∗

ū)← ke.gen(ptu)
i10 (Uu[ltu], υ∗

ū)← ku.gen
i11 KCu[·]← ⊥
i12 DKu[·]← ⊥
i13 stu := (. . .)
i14 Return (stA, stB)

Proc expire⟨stu⟩
x00 ftu ← ftu + 1
x01 For i ∈ [ltu]:
x02 ke.expire⟨Eu[i]⟩

Proc enc⟨stu⟩(ad)
e00 (k0, c0)← ke.enc(ε∗

u)
e01 (k1, c1)← ku.enc(υ∗

u)
e02 KCu[ltu]← (lt∗

u, c1)
e03 (Eu[ltu], ε)← ke.gen(ptu)
e04 (Uu[ltu], υ)← ku.gen
e05 ku.updss⟨Uu[ltu]⟩(ARu[lt∗

u])
e06 c← ltu q ptu q ε q υ

e07 c
q← c0 q KCu[∗] q ASu[∗]

e08 adc ← ad q c
e09 k ← K(k0, k1; adc)
e10 ltu ← ltu + 1
e11 ASu[ltu]← H(ASu[ltu − 1] q adc)
e12 ku.updps⟨υ∗

u⟩(AS[ltu])
e13 Return (k, c)

Proc upd⟨stu⟩
u00 ptu ← ptu + 1
u01 ke.evolveps⟨ϵ∗

u⟩
u02 For i ∈ [lt]u:
u03 ke.evolvess⟨Eu[i]⟩

Fig. 5. BOOM-KEM construction. Building blocks are a KeKEM, whose algorithms
are prefixed with ‘ke.’, a KuKEM, whose algorithms are prefixed with ‘ku.’ and a KEM
combiner K.

out-of-sync. The enc procedure combines the KEM ciphertexts into one cipher-
text, adds the freshly generated public states, and includes the indices and the
sending transcript such that the receiver can correctly update its state [e06–e07].
Subsequently, it uses the KEM-combiner K to produce a key, using the asso-
ciated data and ciphertext as context [e09]. Finally, it increments the sending
index ltu [e10], accumulates the associated data and ciphertext into its transcript
[e11] and updates its public KuKEM state with it [e12].

The upd procedure is quite straightforward: it simply updates the public
state and evolves the secret states for all its KeKEM instances as physical time
advances. Similarly, the expire procedure will update all secret states.

Note that for simplicity we have omitted code lines to ‘clean up’ variables that
are no longer needed. These lines are not required for security, but would help for
efficiency. For example when a user has either received or expired all messages
encapsulated for its i-th KeKEM and KuKEM instance, it can drop instance i,
as later keys will always be encapsulated to later instances. As another example
we remark that, after receiving an acknowledgement from the other user they
have received message i, a user would no longer have to embed all their KuKEM
ciphertexts for indices less than or equal to i in their current ciphertext.

25

5.3 BOOM Construction

We first introduce a functional protocol and discuss it in detail before delving
into the full BOOM construction that achieves authenticity and confidentiality.
The functional protocol consists of all the unmarked code lines in Fig. 6. The
protocol has four procedures: the initialization procedure init, which initializes
the users’ initial states; the sending procedure send, which takes a state, as-
sociated data and a message, updates the state and outputs a ciphertext; the
receiving procedure recv, which takes a state, associated data and a ciphertext,
updates the state and outputs a message; and the time progression algorithm
tick, which updates the state.

Proc init
i00◦ (stBS

A , stBS
B)← BS.init

i01• (stBK
A , stBK

B)← BK.init
i02 For u ∈ {A, B}:
i03 ltu ← 0; lt∗

u ← 0
i04 ptu ← 0; RIu ← ∅
i05 RTu ← ∅; RAu ← ∅
i06 HSu[·]← ⊥; HRu[·]← ⊥
i07 stu := (. . .)
i08 Return (stA, stB)

Proc send⟨stu⟩(ad, m)
s00 ctx← ltu q ptu q HSu[∗] q RIu

s01◦ (sk, vk)← OTS.gen
s02◦ σ1 ← BS.sign⟨stBS

u ⟩(vk)
s03◦ ctx q← vk q σ1
s04• (k, c′)← BK.enc⟨stBK

u ⟩(vk)
s05• ctx q← c′

s06• m← E.enc(k, m)
s07 c← ctx q m
s08◦ σ2 ← OTS.sign(sk, ad q c)
s09◦ c

q← σ2
s10 HSu[ltu]← H(ad q c)
s11 ltu ← ltu + 1
s12 Return c

Proc ts(c)
t00 Parse ltu q ptu q . . .← c
t01 Return (ltu, ptu)

Proc tick⟨stu⟩
u00 ptu ← ptu + 1
u01• BK.upd⟨stBK

u ⟩
u02• If ∆(0, ptu) > δ: BK.expire⟨stBK

u ⟩

Proc recv⟨stu⟩(ad, c)
r00 h← H(ad q c)
r01◦ c q σ2 ← c
r02 Parse ctx q m← c
r03• Parse ctx q c′ ← ctx
r04◦ Parse ctx q vk q σ1 ← ctx
r05 Parse lt q pt q HS[∗] q R← ctx
r06◦ BS.vfy⟨stBS

u ⟩(vk, σ1)
r07◦ OTS.vfy(vk, ad q c, σ2)
r08 Require lt /∈ RIu

r09 Require ∆(pt, ptu) ≤ δ
r10 Require RTu ∪ {(lt, pt)} monotone
r11 Require R ⊆ JltuK
r12 While lt∗

u ≤ lt:
r13 If lt∗

u < lt: HRu[lt∗
u]← HS[lt∗

u]
r14 Else: HRu[lt∗

u]← h
r15 lt∗

u ← lt∗
u + 1

r16 If lt∗
u > lt: Require HRu[lt] = h

r17 RIu
∪← {lt}

r18 RTu
∪← {(lt, pt)}

r19 RAu
∪← R

r20• k ← BK.dec⟨stBK
u ⟩(vk, c′)

r21• m← E.dec(k, m)
r22 Return (RAu, m)

Fig. 6. The functional construction consists of the unmarked lines. The authentic con-
struction adds the lines marked with ◦. The BOOM construction consists of all lines.
BS is the BOOM-signature scheme construction in Fig. 4, BK is the BOOM-KEM
construction in Fig. 5, OTS is a (one-time) signature scheme as defined in Sect. A.2,
and E is a symmetric encryption scheme as defined in Sect. A.1.

26

For each user u, the init procedure initializes the logical time ltu and lt∗
u

[i03], the physical time ptu [i04], the set of received indices RIu [i04], the set of
received timestamps RTu [i05], the set of received acknowledgements RAu [i05],
and the arrays of hashed sent ciphertexts HSu and hashed received ciphertexts
HRu [i06]. The tick procedure increments the user’s physical time ptu [u00].

The send procedure takes associated data ad and message m as input. It
creates context ctx which includes the user’s current time (ltu, ptu), the hashes
of previously sent ciphertexts HSu[∗] and the set of received indices RIu [s00].
The context ctx together with the message m will form the ciphertext c [s07].
Finally, it stores the hash H(ad q c) of the associated data and the ciphertext
[s10], increments the logical time ltu [s11] and returns the ciphertext [s12].

The recv procedure first hashes the ciphertext [r00] and subsequently parses it
to obtain the message m [r02] and the context variables lt, pt, HS[∗] and R [r05].
Now, recall that ‘Require C’ is short for ‘If ¬C: Abort’. Thus the recv procedure
performs four sanity checks to guarantee functionality. (1) A ciphertext has not
yet been received for this logical time lt [r08]. (2) The ciphertext is fresh, that is
the ∆ difference between its physical creation time pt and the user’s time ptu is
‘small’ [r09]. (3) Time is monotonic: a message that is newer in logical time must
be newer in physical time [r10]. (4) Only sent messages can be acknowledged [r11]:
Bob cannot acknowledge having received a message that Alice never sent. Next,
recv handles the out-of-order delivery. While u’s receiving index lt∗

u is smaller or
equal than lt, it will iteratively update its array HRu with the received hashes
that it obtains from HS[∗] or the current ciphertext itself [r12–r15]. If u’s receiving
index is greater than lt, it will require the hash h of the current ciphertext is
equal to the stored value for that index HRu[lt] [r16]. Finally, it will update its
set of received indices RIu [r17], its set of received timestamps RTu [r18], its set
of received acknowledgements RAu [r19], and return (RAu, m) [r22].

We extend the functional protocol to an authentication protocol by including
the lines marked with ◦. The init procedure now initializes a BOOM-signature
scheme BS [i00]. The send procedure generates a fresh one-time signature key
pair (sk, vk) [s01], and calls BS.sign to obtain a signature σ1 on the verification
key vk [s02]. We add vk and σ1 to the context ctx [s03]. We use the signing
key sk to sign the associated data ad and ciphertext c [s08], and append the
signature σ2 to c [s09]. The recv procedure will parse the newly added signatures
and verification key [r01,r04]. It will first verify the signature on the verification
key vk by calling BS.vfy [r06]. Then it uses vk to verify the signature on the
associated data and ciphertext [r07].

It may appear peculiar not to sign the ciphertext directly with the BOOM-
signature. However, this design decision is made to simplify the confidentiality
construction. If we sign the ciphertext directly, the adversary could expose the
user to obtain its signing key and generate a new signature for the ciphertext.
Indeed, this would not break authenticity as the forgery is trivial. Nonetheless,
if the adversary submits the ciphertext to the Recv oracle with a different signa-
ture, the oracle will decrypt and return the (challenge) message. Now, because
the one-time signature key pair is generated during the send procedure, it can-

27

not be exposed. Thus, if the adversary succeeds in creating a valid but different
signature, this would break the strong unforgeability property.

This brings us to the lines marked with •. Including these lines provides
confidentiality, resulting in our BOOM protocol. The init procedure now also
initializes a BOOM-KEM BK [i01]. The send procedure provides the BOOM-
KEM with the verification key as context when requesting (k, c′) [s04], appends
c′ to the context [s05], and uses k to encrypt the message [s06].

The adversary could have exposed the sender’s state and created a (trivial)
forgery by generating its own one-time signature pair. The Recv oracle would
accept the ciphertext and attempt to decrypt it. Therefore, it is critical for
confidentiality that the key derivation is dependent on the verification key [s04].
The recv procedure parses the newly added c′ [r03] and inputs it, along with vk,
to BK.dec to retrieve k [r20]. Subsequently, recv uses k to decrypt m [r21].

The tick procedure now calls BK.upd [u01] because its state must advance
over time, even when no messages are exchanged, to achieve forward secrecy in
physical time. Once time has advanced δ times it will start calling BK.expire [u02]
to indicate we no longer desire to be able to decrypt ‘old’ messages. Neither of
these procedures require the physical time as input because they advance linearly
over time, with the expire procedure lagging behind the update procedure. This
completes the description of our BOOM protocol in Fig. 6.

Our construction provides authenticity (Thm 1) and confidentiality (Thm 2).
Here we will only state the theorems and we provide the proofs in App. E.

Theorem 1. Let π be the BOOM construction in Fig. 6, let AUTH be the
authenticity game in Fig. 2 that calls π’s procedures in its oracles, let H be
a perfectly collision resistant hash function, and let A be an adversary that
makes at most qs Send queries. Then there exists an adversary A′ of comparable
efficiency such that

AdvAUTH
π (A) ≤ qs ·

(
AdvSUF

OTS(A′) + AdvAUTH
USS (A′)

)
.

Theorem 2. Let π be the BOOM construction in Fig. 6, let CONF be the
confidentiality game in Fig. 3 that calls π’s procedures in its oracles and let A
be an adversary that makes at most qc Chal queries and ϵ the probability that
the adversary successfully computes a pre-image of the random oracle. Then
there exists an adversary A′ of comparable efficiency such that

AdvCONF
π (A) ≤ 2qc·

(
AdvCONF

keKEM(A′) + AdvCONF
kuKEM(A′) + AdvCONF

E (A′)
)

+AdvAUTH
π (A′)+ϵ .

6 Conclusion

After ACD [2] observed that research on secure messaging protocols routinely
only considers settings with a guaranteed in-order delivery of messages, while
most real-world protocols like Signal are actually designed for out-of-order deliv-
ery, we reassess the model and construction of ACD and argue that the intuitive
notion of forward secrecy is not provided. We identify that the reason for this is

28

the lack of modelling of physical time, which is required to express that cipher-
texts may time out and expire. We hence develop new security models for the
out-of-order delivery setting with immediate decryption. Our model incorporates
the concept of physical clocks and implements a maximally strong corruption
model. We finally design a proof-of-concept protocol that provably satisfies it.

References

1. Alwen, J., Auerbach, B., Noval, M.C., Klein, K., Pascual-Perez, G., Pietrzak,
K., Walter, M.: CoCoA: Concurrent continuous group key agreement. In: EU-
ROCRYPT 2022 (2022)

2. Alwen, J., Coretti, S., Dodis, Y.: The double ratchet: Security notions, proofs, and
modularization for the Signal protocol. In: Ishai, Y., Rijmen, V. (eds.) EURO-
CRYPT 2019, Part I. LNCS, vol. 11476, pp. 129–158. Springer, Heidelberg (May
2019). https://doi.org/10.1007/978-3-030-17653-2_5

3. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Security analysis and improve-
ments for the IETF MLS standard for group messaging. In: Micciancio, D., Risten-
part, T. (eds.) CRYPTO 2020, Part I. LNCS, vol. 12170, pp. 248–277. Springer,
Heidelberg (Aug 2020). https://doi.org/10.1007/978-3-030-56784-2_9

4. Alwen, J., Coretti, S., Dodis, Y., Tselekounis, Y.: Modular design of secure group
messaging protocols and the security of MLS. In: Vigna, G., Shi, E. (eds.) ACM
CCS 2021. pp. 1463–1483. ACM Press (Nov 2021). https://doi.org/10.1145/
3460120.3484820

5. Alwen, J., Coretti, S., Jost, D., Mularczyk, M.: Continuous group key agreement
with active security. In: Pass, R., Pietrzak, K. (eds.) TCC 2020, Part II. LNCS,
vol. 12551, pp. 261–290. Springer, Heidelberg (Nov 2020). https://doi.org/10.
1007/978-3-030-64378-2_10

6. Balli, F., Rösler, P., Vaudenay, S.: Determining the core primitive for optimally
secure ratcheting. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020, Part III.
LNCS, vol. 12493, pp. 621–650. Springer, Heidelberg (Dec 2020). https://doi.
org/10.1007/978-3-030-64840-4_21

7. Bellare, M., Kohno, T., Namprempre, C.: Authenticated encryption in SSH: Prov-
ably fixing the SSH binary packet protocol. In: Atluri, V. (ed.) ACM CCS 2002.
pp. 1–11. ACM Press (Nov 2002). https://doi.org/10.1145/586110.586112

8. Bellare, M., Miner, S.K.: A forward-secure digital signature scheme. In: Wiener,
M.J. (ed.) CRYPTO’99. LNCS, vol. 1666, pp. 431–448. Springer, Heidelberg (Aug
1999). https://doi.org/10.1007/3-540-48405-1_28

9. Bienstock, A., Fairoze, J., Garg, S., Mukherjee, P., Raghuraman, S.: A more com-
plete analysis of the Signal double ratchet algorithm. In: Dodis, Y., Shrimpton, T.
(eds.) CRYPTO 2022, Part I. LNCS, vol. 13507, pp. 784–813. Springer, Heidelberg
(Aug 2022). https://doi.org/10.1007/978-3-031-15802-5_27

10. Boneh, D., Boyen, X.: Efficient selective-ID secure identity based encryption with-
out random oracles. In: Cachin, C., Camenisch, J. (eds.) EUROCRYPT 2004.
LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (May 2004). https://doi.
org/10.1007/978-3-540-24676-3_14

11. Caforio, A., Durak, F.B., Vaudenay, S.: On-demand ratcheting with security aware-
ness. Cryptology ePrint Archive, Report 2019/965 (2019), https://eprint.iacr.
org/2019/965

29

https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-17653-2_5
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1007/978-3-030-56784-2_9
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1145/3460120.3484820
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64378-2_10
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1007/978-3-030-64840-4_21
https://doi.org/10.1145/586110.586112
https://doi.org/10.1145/586110.586112
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/3-540-48405-1_28
https://doi.org/10.1007/978-3-031-15802-5_27
https://doi.org/10.1007/978-3-031-15802-5_27
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://doi.org/10.1007/978-3-540-24676-3_14
https://eprint.iacr.org/2019/965
https://eprint.iacr.org/2019/965

12. Canetti, R., Halevi, S., Katz, J.: A forward-secure public-key encryption scheme.
In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 255–271. Springer,
Heidelberg (May 2003). https://doi.org/10.1007/3-540-39200-9_16

13. Canetti, R., Jain, P., Swanberg, M., Varia, M.: Universally composable end-to-end
secure messaging. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022, Part II.
LNCS, vol. 13508, pp. 3–33. Springer, Heidelberg (Aug 2022). https://doi.org/
10.1007/978-3-031-15979-4_1

14. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P). pp. 451–466 (2017)

15. Durak, F.B., Vaudenay, S.: Bidirectional asynchronous ratcheted key agreement
with linear complexity. In: Attrapadung, N., Yagi, T. (eds.) IWSEC 19. LNCS,
vol. 11689, pp. 343–362. Springer, Heidelberg (Aug 2019). https://doi.org/10.
1007/978-3-030-26834-3_20

16. Gentry, C., Silverberg, A.: Hierarchical ID-based cryptography. In: Zheng, Y. (ed.)
ASIACRYPT 2002. LNCS, vol. 2501, pp. 548–566. Springer, Heidelberg (Dec 2002).
https://doi.org/10.1007/3-540-36178-2_34

17. Giacon, F., Heuer, F., Poettering, B.: KEM combiners. In: Abdalla, M., Dahab,
R. (eds.) PKC 2018, Part I. LNCS, vol. 10769, pp. 190–218. Springer, Heidelberg
(Mar 2018). https://doi.org/10.1007/978-3-319-76578-5_7

18. Jaeger, J., Stepanovs, I.: Optimal channel security against fine-grained state
compromise: The safety of messaging. In: Shacham, H., Boldyreva, A. (eds.)
CRYPTO 2018, Part I. LNCS, vol. 10991, pp. 33–62. Springer, Heidelberg (Aug
2018). https://doi.org/10.1007/978-3-319-96884-1_2

19. Jost, D., Maurer, U., Mularczyk, M.: Efficient ratcheting: Almost-optimal guar-
antees for secure messaging. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019,
Part I. LNCS, vol. 11476, pp. 159–188. Springer, Heidelberg (May 2019). https:
//doi.org/10.1007/978-3-030-17653-2_6

20. Jost, D., Maurer, U., Mularczyk, M.: A unified and composable take on ratch-
eting. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019, Part II. LNCS, vol.
11892, pp. 180–210. Springer, Heidelberg (Dec 2019). https://doi.org/10.1007/
978-3-030-36033-7_7

21. Lewko, A.B., Waters, B.: Unbounded HIBE and attribute-based encryption. In:
Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer,
Heidelberg (May 2011). https://doi.org/10.1007/978-3-642-20465-4_30

22. Li, C., Palanisamy, B.: Timed-release of self-emerging data using distributed hash
tables. In: 2017 IEEE 37th International Conference on Distributed Computing
Systems (ICDCS). pp. 2344–2351 (2017)

23. Liu, J., Jager, T., Kakvi, S.A., Warinschi, B.: How to build time-lock encryption.
Designs, Codes and Cryptography 86(11), 2549–2586 (2018)

24. Marlinspike, M., Perrin, T.: The Double Ratchet Algorithm (November 2016),
https://signal.org/docs/specifications/doubleratchet/doubleratchet.
pdf

25. Marson, G.A., Poettering, B.: Security notions for bidirectional channels. IACR
Trans. Symm. Cryptol. 2017(1), 405–426 (2017). https://doi.org/10.13154/
tosc.v2017.i1.405-426

26. Poettering, B., Rösler, P.: Towards bidirectional ratcheted key exchange.
In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018, Part I. LNCS, vol.
10991, pp. 3–32. Springer, Heidelberg (Aug 2018). https://doi.org/10.1007/
978-3-319-96884-1_1

30

https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/3-540-39200-9_16
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/978-3-030-26834-3_20
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/3-540-36178-2_34
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-76578-5_7
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-319-96884-1_2
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-17653-2_6
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-030-36033-7_7
https://doi.org/10.1007/978-3-642-20465-4_30
https://doi.org/10.1007/978-3-642-20465-4_30
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://signal.org/docs/specifications/doubleratchet/doubleratchet.pdf
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.13154/tosc.v2017.i1.405-426
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1
https://doi.org/10.1007/978-3-319-96884-1_1

27. Schwenk, J.: Modelling time for authenticated key exchange protocols. In:
Kutylowski, M., Vaidya, J. (eds.) ESORICS 2014, Part II. LNCS, vol. 8713,
pp. 277–294. Springer, Heidelberg (Sep 2014). https://doi.org/10.1007/
978-3-319-11212-1_16

28. Yan, H., Vaudenay, S.: Symmetric asynchronous ratcheted communication with
associated data. In: Aoki, K., Kanaoka, A. (eds.) IWSEC 20. LNCS, vol.
12231, pp. 184–204. Springer, Heidelberg (Sep 2020). https://doi.org/10.1007/
978-3-030-58208-1_11

31

https://doi.org/10.1007/978-3-319-11212-1_16
https://doi.org/10.1007/978-3-319-11212-1_16
https://doi.org/10.1007/978-3-319-11212-1_16
https://doi.org/10.1007/978-3-319-11212-1_16
https://doi.org/10.1007/978-3-030-58208-1_11
https://doi.org/10.1007/978-3-030-58208-1_11
https://doi.org/10.1007/978-3-030-58208-1_11
https://doi.org/10.1007/978-3-030-58208-1_11

A Supplementary Material to Sect. 4

Besides USSs, KeKEMs, and KuKEMs, in this section we further recall notions
of symmetric encryption, (regular) signatures and KEMs.

A.1 Symmetric encryption

Syntax of symmetric encryption. A symmetric encryption scheme for a
message spaceM consists of a key space K, a ciphertext space C, and algorithms
enc, dec with APIs

K ×M→ enc→ C K × C → dec→M .

We say that algorithm dec accepts if it terminates normally (outputting a mes-
sage); otherwise, if it aborts, we say it rejects. For correctness we require that
for all k ∈ K and m ∈ M, for all c ∈ [enc(k, m)] we have dec(k, c) = m. We
assume a one-time IND-CPA secure encryption scheme.

A.2 Signatures

We briefly recall the syntax of signature schemes and for reference we produce
the standard security notion of strong unforgeability (SUF).

Syntax. A signature scheme for a message space M consists of a signing key
space SK, a verification key space VK, a signature space Σ, and algorithms
gen, sign, vfy with APIs

gen→ SK × VK SK ×M→ sign→ Σ VK ×M×Σ → vfy .

We say that algorithm vfy accepts if it terminates normally; otherwise, if it
aborts, we say it rejects. We expect of a correct signature scheme that for all
(sk, vk) ∈ [gen] and m ∈ M and σ ∈ [sign(sk, m)] we have that vfy(vk, m, σ)
accepts.

Strong Unforgeability. We define the authenticity notion of strong un-
forgeability via the game in Fig. 7. The advantage of adversary A is defined as
Advauth(A) := Pr[AUTH(A)].

Game AUTH(A)
G00 SM← ∅
G01 (sk, vk)← gen
G02 Invoke A(vk)
G03 Lose

Oracle Sign(m)
S00 σ ← sign(sk, m)
S01 SM ∪← {(m, σ)}
S02 Return σ

Oracle Vfy(m, σ)
R00 vfy(vk, m, σ)
R01 If (m, σ) /∈ SM:
R02 Reward

Fig. 7. Game AUTH for signature schemes, defining strong unforgeability.

32

A.3 Key Encapsulation Mechanisms

We briefly recall the syntax of KEMs and for reference we reproduce the standard
security notion of confidentiality against active attacks (IND-CCA),

Syntax. A key encapsulation mechanism scheme for a key space K consists of a
secret key space SK, a public key space PK, a ciphertext space C, and algorithms
gen, enc, dec with APIs

gen→ SK × PK PK → enc→ K× C SK × C → dec→ K .

We say that algorithm dec accepts if it terminates normally (outputting a key);
otherwise, if it aborts, we say it rejects. We expect of a correct KEM that for all
(sk, pk) ∈ [gen] and (k, c) ∈ [enc(pk)] and k′ ∈ [dec(sk, c)] we have that k′ = k.

Security of KEM. We define the confidentiality notion of indistinguishability
under chosen-ciphertext attacks via the game in Fig. 8. The advantage of adver-
sary A is defined as
Advconf(A) := |Pr[CONF1(A)]− Pr[CONF0(A)]|.

Game CONFb(A)
G00 SC← ∅
G01 K[·]← ·
G02 (sk, pk)← gen
G03 Invoke A(pk)
G04 Lose

Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 (k0, c)← enc(pk)
C01 k1 ←$ K
C02 Promise c /∈ SC
C03 SC ∪← {c}
C04 K[c]← k
C05 Return (kb, c)

Oracle Dec(c)
D10 k ← dec(sk, c)
D11 If c ∈ SC:
D12 Promise k = K[c]
D13 k ← ⋄
D14 Return k

Fig. 8. Games CONF0, CONF1 for KEMs, defining indistinguishability under active
attacks. Note that the game also defines functionality [C02,D12].

A.4 Updatable Signature Schemes (USS)

A USS assumes two parties, a signer and a (single) verifier, and lets the former
generate signatures on messages that the latter can then check for authenticity.
Crucially, both parties maintain states which can be updated by feeding them
with arbitrary input strings that we refer to as associated data. If the states of the
signer and the verifier are updated inconsistently, i.e., with different (sequences
of) associated-data strings, signatures created by the signer shall not be deemed
valid by the verifier. Below we first specify the syntax and functionality of USS.
We then propose a strong authenticity notion that demands that a maximum
level of unforgeability is provided in a setting where the adversary can reveal
the states of both parties.

33

We remark a similar primitive is considered in [18], but their construction and
security requirement is different. They use a forward secure or evolving signature
scheme (introduced in [8]), meaning it can only update with an empty ad string,
as building block. The construction in [18] is effectively a certification chain:
it signs the associated-data and then ‘evolves’ the signing key. The resulting
signature is a sequence of the produced signatures that have to be sequentially
checked by the verifier. However, as [8] correctly point out, if one is willing
to accept certification chains the solution is straightforward: At each update,
the signer generates a new key pair and signs the associated-data and the new
verification key with the old signing key, which is subsequently deleted. Thus
we do not require the evolving signature primitive, instead we use (one-time)
signatures. Finally, [18] requires unique updatable signatures for their messaging
construction, but we note that we do not need this property.
Syntax. A key-updatable signature scheme for a message space M and an
associated-data space AD consists of a signing state space SS, a verification
state space VS, a signature space Σ, and algorithms gen, sign, vfy, updss, updvs
with APIs

gen→ SS × VS M→ sign⟨SS⟩ → Σ VS ×M×Σ → vfy

and
AD → updss⟨SS⟩ AD → updvs⟨VS⟩ .

We say that algorithm vfy accepts if it terminates normally; otherwise, if it
aborts, we say it rejects. We expect of a correct USS that for all (ss, vs) ∈ [gen],
if ss and vs are updated by invoking updss⟨ss⟩(·) and updvs⟨vs⟩(·) with the
same sequence ad1, . . . , ad l ∈ AD of associated data, then for all m ∈ M and
σ ∈ [sign⟨ss⟩(m)] we have that vfy(vs, m, σ) accepts.
USS Examples. In Fig. 9 we illustrate the expected behaviour of a USS with
three examples. When the three blocks of code are executed, we expect the vfy
invocation of [X06] to accept, and those of [X16,X25] to reject.

Example 1
X00 (ss, vs)← gen
X01 For ad ← "A" to "Z":
X02 updss⟨ss⟩(ad)
X03 σ ← sign⟨ss⟩("MSG")
X04 For ad ← "A" to "Z":
X05 updvs⟨vs⟩(ad)
X06 vfy(vs, "MSG", σ) ✓

Example 2
X10 (ss, vs)← gen
X11 updss⟨ss⟩("A")
X12 updss⟨ss⟩("B")
X13 σ ← sign⟨ss⟩("MSG")
X14 updvs⟨vs⟩("B")
X15 updvs⟨vs⟩("A")
X16 vfy(vs, "MSG", σ) ✗

Example 3
X20 (ss, vs)← gen
X21 updss⟨ss⟩("A")
X22 σ ← sign⟨ss⟩("MSG")
X23 updvs⟨vs⟩("A")
X24 updvs⟨vs⟩("A")
X25 vfy(vs, "MSG", σ) ✗

Fig. 9. Examples of USS use.

Unforgeability under State Exposure. We require of a USS that it pro-
vides strong unforgeability, with the strongest possible model for state cor-

34

ruption. This is formalized via Game AUTH in Fig. 10, where oracles Updss,
Updvs, Sign, Vfy give access to the corresponding scheme algorithms, and oracles
ExposeS, ExposeV reveal user states. Variables ADS , ADV (‘Associated Data’,
[G00]) store the associated-data strings that the signer and the verifier, respec-
tively, provided so far [U01,U11]. Set SM records information associated with the
signing queries: The signer’s update strings so far, the signed message, and the
generated signature [G01,S01,S02]. Set XP indicates for which update strings the
signer has been exposed, i.e., shares the ability to generate valid signatures with
the adversary: Initially this set is empty [G02], but when the signer’s state is ex-
posed, all update strings which have ADS as prefix are added to the set [E00,E01].
The game encodes one winning condition: The adversary is rewarded for pre-
senting a signature that is not a replay if they had not exposed the signer’s state
for the verifier’s update string [V02,V03]. A scheme under consideration provides
unforgeability if the advantage Advauth(A) := Pr[AUTH(A)] is negligibly small
for all realistic adversaries A.

Game AUTH(A)
G00 ADS , ADV ← ()
G01 SM← ∅
G02 XP← ∅
G03 (ss, vs)← gen
G04 Invoke A
G05 Lose

Oracle Updss(ad)
U00 updss⟨ss⟩(ad)
U01 ADS

q← ad

Oracle Sign(m)
S00 σ ← sign⟨ss⟩(m)
S01 cid := (ADS , m, σ)
S02 SM ∪← {cid}
S03 Return σ

Oracle ExposeS
E00 FES := {AD : ADS ⪯ AD}
E01 XP ∪← FES

E02 Return ss

Oracle Updvs(ad)
U10 updvs⟨vs⟩(ad)
U11 ADV

q← ad

Oracle Vfy(m, σ)
V00 vfy(vs, m, σ)
V01 cid := (ADV , m, σ)
V02 If cid /∈ SM:
V03 Reward ADV /∈ XP

Oracle ExposeV
E10 Return vs

Fig. 10. Game AUTH for USS.

Construction. We provide a USS construction from (regular) signatures. The
idea is that each update operation of the signer is implemented by (1) creating
a fresh signature key pair, (2) certifying the new verification key together with
the associated-data input with the old signing key, (3) securely overwriting the
old signing key with the new signing key. Notably, as our application of USS in
Sect. 5 requires only a single signature to be issued per signer instance, it suffices
to instantiate the signature scheme with a (potentially more efficient or secure)
one-time signature scheme.

Hence, in Fig. 11 we construct a USS, using a one-time signature scheme
(OTS.gen, OTS.sign, OTS.vfy) as a building block. The notation in [s02] means

35

that the signing key embedded in state ss shall be securely deleted (by overwrit-
ing it with some value ⊥ /∈ SK). Further note that, after the first signing query,
any subsequent queries will fail by line [s00].

Proc gen
g00 (sk, vk)← OTS.gen
g01 AS ← ()
g02 AV ← ()
g03 ss := (sk, AS)
g04 vs := (vk, AV)
g05 Return (ss, vs)

Proc updss⟨ss⟩(ad)
u00 Require sk ̸= ⊥
u01 (sk′, vk′)← OTS.gen
u02 σ′ ← OTS.sign(sk, U q vk′ q ad)
u03 sk ← sk′

u04 AS
q← (vk′, σ′)

Proc updvs⟨vs⟩(ad)
u10 AV

q← ad

Proc sign⟨ss⟩(m)
s00 Require sk ̸= ⊥
s01 σ′ ← OTS.sign(sk, S q m)
s02 sk ← ⊥
s03 σ ← AS q σ′

s04 Return σ

Proc vfy(vs, m, σ)
v00 A q σ′ ← σ
v01 vk∗ ← vk; A∗ ← AV

v02 Require |A| = |A∗|
v03 While A ̸= () ∧A∗ ̸= ():
v04 (vk′, σ′) q A← A
v05 ad q A∗ ← A∗

v06 OTS.vfy(vk∗, U q vk′ q ad, σ′)
v07 vk∗ ← vk′

v08 OTS.vfy(vk∗, S q m)

Fig. 11. USS construction. In [u02,s01,v06,v08] we use the symbols U, S to domain-
separate updating and signing steps. ‘Require C’ is short for ‘If ¬C: Abort’.

We remark, even instantiated with one-time signatures, our construction will
provide unforgeability as defined via Game AUTH in Fig. 10. To see this, ob-
serve the sign algorithm is stateful and can delete its signing key after the first
signature. If an adversary tries to query the Sign oracle in the AUTH game a
second time, the sign algorithm will abort and not produce any output.

We note that our construction can be seen as a twist of the very similar
construction described in [8]: instead of only signing the new verification key,
we sign the verification key together with the associated-data string. Indeed,
this construction has also been identified in recent work [19] and the security
argument for our construction follows exactly in the footsteps of the arguments
made in this work.

A.5 Key-Updatable KEMs (KuKEM)

A key-updatable KEM is similar to a USS in the sense that the state of the
encapsulator (and decapsulator) can be advanced to a new state (in the next
epoch) by invoking a state update algorithm with arbitrary input strings that
we refer to as associated data. If the states of the encapsulator and decapsulator
are updated inconsistently, that is with different sequences of associated data,
the decapsulator shall not be expected to be able to decapsulate ciphertexts
anymore.

36

Syntax. A key-updatable key encapsulation mechanism for a key space K and
an associated-data space AD, consists of a secret state space SS, a public state
space PS, a ciphertext space C, KEM algorithms gen, enc, dec and state update
algorithms updps, updss with APIs

gen→ SS × PS PS → enc→ K× C SS × C → dec→ K

AD → updps⟨PS⟩ AD → updss⟨SS⟩ .

We specify the expected functionality of a KuKEM in the FUNC game depicted
in Fig. 12, where oracles Enc, Dec, Updps, Updss give access to the correspond-
ing scheme algorithms. Epochs in the game are identified by an associated-data
string AD [U01,U11], similar to the modelling for USS. Set SC records infor-
mation associated with the encapsulation queries: the epoch and the generated
ciphertext [G01,E01,E03] and the adversary is rewarded if ciphertexts are not
unique within their epoch [E02]. Array K stores the key generated by the en-
capsulation algorithm [E04] and the adversary is rewarded if the decapsulation
algorithm outputs a different key [D03]. We say that a KuKEM is functional if
the probability Pr[FUNC(A)] is negligibly small for all realistic adversaries A.

Game FUNC(A)
G00 ADS , ADR ← ()
G01 SC← ∅
G02 K[·]← ·
G03 (ss, ps)← gen
G04 Invoke A
G05 Lose

Oracle Enc
E00 (k, c)← enc(ps)
E01 cid := (ADS , c)
E02 Promise cid /∈ SC
E03 SC ∪← {cid}
E04 K[cid]← k
E05 Return (k, c)

Oracle Updps(ad)
U00 updps⟨ps⟩(ad)
U01 ADS

q← ad

Oracle Dec(c)
D00 k ← dec(ss, c)
D01 cid := (ADR, c)
D02 If cid ∈ SC:
D03 Promise k = K[cid]
D04 k ← ⋄
D05 Return k

Oracle Updss(ad)
U10 updss⟨ss⟩(ad)
U11 ADR

q← ad

Fig. 12. Game FUNC for KuKEM.

Security of kuKEM. We require forward secure indistinguishability of the
KuKEM scheme, which we formalize in models supporting user corruptions via
the real-or-random style games defined in Fig. 13, where oracles Challenge, Dec,
Updps, Updss give access to the corresponding scheme algorithms (with oracle
Challenge giving left-or-right access to algorithm enc), oracles ExposeS, ExposeR
reveal user states, and oracle Decide serves the adversary for delivering a guess
on challenge bit b. Intuitively, the CONF games require that using a secret state
for decapsulation only produces the correct key if all secret state updates were
consistent with the public state updates.

Set XP indicates for which epochs the receiver has been exposed: Initially this
set is empty [G03], but when the receiver is exposed, all future epochs (‘FE’) are

37

Game CONFb(A)
G00 ADS , ADR ← ()
G01 SC← ∅
G02 CH← ∅
G03 XP← ∅
G04 (ss, ps)← gen
G05 Invoke A
G06 Lose

Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 Require ADS /∈ XP
C01 (k0, c)← enc(ps)
C02 k1 ←$ K
C03 cid := (ADS , c)
C04 SC ∪← {cid}
C05 CH ∪← {ADS}
C06 Return (kb, c)

Oracle Updps(ad)
U00 updps⟨ps⟩(ad)
U01 ADS

q← ad

Oracle ExposeS
E00 Return ps

Oracle Dec(c)
D10 k ← dec(ss, c)
D11 cid := (ADR, c)
D12 If cid ∈ SC:
D13 k ← ⋄
D14 Return k

Oracle Updss(ad)
U10 updss⟨ss⟩(ad)
U11 ADR

q← ad

Oracle ExposeR
E10 FE := {AD : ADR ⪯ AD}
E11 Require CH ∩ FE = ∅
E12 XP ∪← FE
E13 Return ss

Fig. 13. Games CONF0, CONF1 for KuKEM.

added to the set [E12]. The set FE (‘future epochs’)22: is the set of all associated-
data strings AD which have the decapsulator’s update string ADR as prefix [E10].
Set CH tracks for which epochs the adversary has issued a challenge. Initially this
set is empty [G02], but an epoch is added to the set in a Challenge query [C05].
The adversary is not allowed to challenge an exposed epoch [C00] and similarly
not allowed to expose an active or future challenged epoch [E11]. The advantage
of A is defined as AdvCONF(A) = |Pr[CONF1(A)]− Pr[CONF0(A)]|. We say
the scheme provides indistinguishability if the advantage AdvCONF(A) that can
be obtained by an efficient adversary A is negligible.

Construction of KuKEM. As we already alluded to earlier, a KuKEM can
be built generically from hierarchical identity-based encryption (HIBE, [16]).
We further note Lewko and Waters [21] provide an ‘unbounded’ HIBE in the
sense that a maximum hierarchy depth does not have to be fixed during setup.
In essence each hierarchy level is an instance of the Boneh-Boyen IBE scheme
[10] with added randomness to employ a secret-sharing approach of the master
secret key. These instances all share the same public parameters. We do not
claim novelty of our KuKEM construction from HIBE and note that similar
constructions can already be found in the literature [18,26].

We will sketch the general idea of the construction and refer the reader to
Fig. 14 for a detailed description. Essentially, a KuKEM is a descending chain
in the hierarchy, where the current level can be used for encapsulation and
decapsulation. In more detail, the gen procedure runs the Hgen procedure to
generate a secret and public key pair (sk, pk). The string ADS is initialized
empty. The private and public information is stored in the respective states.
The encapsulation procedure enc encapsulates to the identity ADS . The updps
procedure updates the public state with associated data ad by embedding ad
22 Technically speaking FE also includes the currently active epoch.

38

into ADS . To update the secret state, updss delegates the current secret key sk
to identity ad below it in the hierarchy. The decapsulation procedure dec uses
the secret key stored in the secret state to decapsulate the ciphertext.

We remark we do not need the full capabilities of an HIBE scheme that
can arbitrarily branch off: we only require one descending chain. A more direct
construction of a KuKEM is currently still an open problem.

Proc gen
g00 (sk, pk)← Hgen
g01 ss := sk
g02 ADS ← ()
g03 ps := (pk, ADS)
g04 Return (ss, ps)

Proc enc(ps)
e00 (k, c)← Henc(pk, ADS)
e01 Return (k, c)

Proc updps⟨ps⟩(ad)
u00 ADS

q← ad

Proc dec(ss, c)
d00 k ← Hdec(sk, c)
d01 Return k

Proc updss⟨ss⟩(ad)
u10 sk ← Hdelegate(sk, ad)

Fig. 14. KuKEM construction. Building block is a HIBE-KEM
(Hgen, Henc, Hdec, Hdelegate).

A.6 Key-Evolving KEMs (KeKEM)

A KeKEM is like a KEM, but with the key spaces replaced by state spaces.
The state of an encapsulator can be advanced to a new state by invoking a
state evolving algorithm, opening up a new epoch. Also the decapsulator can be
advanced to a new state, but it continues to be able to decapsulate the cipher-
texts created for old epochs until the latter are explicitly expired (necessarily in
chronological order). A somewhat related primitive was considered in [12].

Syntax. A key-evolving key encapsulation mechanism for a key space K consists
of a secret state space SS, a public state space PS, a ciphertext space C, KEM
algorithms gen, enc, dec and state update algorithms evolveps, evolvess, expire
with APIs

N→ gen→ SS × PS PS → enc→ K× C SS × N× C → dec→ K

and
evolveps⟨PS⟩ evolvess⟨SS⟩ expire⟨SS⟩ .

We specify the expected functionality of a KeKEM in the FUNC game depicted
in Fig. 15, where oracles Enc, Dec, Evolvess, Evolveps and Expire give access to
the corresponding scheme algorithms. Set AE (‘Active Epochs’, [G02]) stores the
span of epochs that the receiver has opened up [E22] but not yet expired [X02].
Observe that AE = {ftR, . . . , ptR}. Set SC records information associated with
the encapsulation queries: the epoch and the generated ciphertext [G03,E01,E03]
and the adversary is rewarded if ciphertexts are not unique within their epoch
[E02]. Array K stores the key generated by the encapsulation algorithm [E04]
and the adversary is rewarded if the decapsulation algorithm outputs a different

39

key [D04]. Note that the decapsulation algorithm is also expected to abort on
an epoch that is not active [D01]. We say that a KeKEM is functional if the
advantage AdvFUNC(A) := maxpt∈N Pr[FUNC(pt,A)] is negligibly small for all
realistic adversaries A.
Security of KeKEM. We require of KeKEM schemes that they provide IND-
CCA like confidentiality, with the strongest possible model for state corruption
(incorporating forward secrecy). This is formalized via Games CONF0, CONF1

in Fig. 16, where oracles Challenge, Dec, Evolveps, Evolvess, Expire give access
to the corresponding scheme algorithms (with oracle Challenge giving left-or-
right access to algorithm enc), oracles ExposeS, ExposeR reveal user states, and
oracle Decide serves the adversary for delivering a guess on challenge bit b.

We define AdvCONF(A) := maxpt∈N|Pr[CONF1(pt,A)]−Pr[CONF0(pt,A)]|
as the advantage of an adversary A in the CONF game. We say the scheme
provides confidentiality if the advantage AdvCONF(A) that can be obtained by
any efficient adversary A is negligible. Intuitively, the CONF games require that
using a secret state for decapsulation only produces the correct key if the epoch
had not yet been expired. Set XP indicates for which epochs the receiver has
been exposed: Initially this set is empty [G05], but when the receiver is exposed,
all active and future epochs (‘AFE’) are added to the set [E31,E33]. Set CH
tracks for which epochs the adversary has issued a challenge. Initially this set is
empty [G04], but an epoch is added to the set in a Challenge query [C05]. The
adversary is not allowed to challenge an exposed epoch [C00] and similarly not
allowed to expose an active or future challenged epoch [E32].

Game FUNC(pt,A)
G00 ptS ← pt
G01 ftR, ptR ← pt
G02 AE← {pt}
G03 SC← ∅
G04 K[·]← ·
G05 (ss, ps)← gen(pt)
G06 Invoke A
G07 Lose

Oracle Evolveps
E10 evolveps⟨ps⟩
E11 ptS ← ptS + 1

Oracle Enc
E00 (k, c)← enc(ps)
E01 cid := (ptS , c)
E02 Promise cid /∈ SC
E03 SC ∪← {cid}
E04 K[cid]← k
E05 Return (k, c)

Oracle Expire
X00 expire⟨ss⟩
X01 Promise ftR ∈ AE
X02 AE← AE \ {ftR}
X03 ftR ← ftR + 1

Oracle Dec(pt, c)
D00 k ← dec(ss, pt, c)
D01 Promise pt ∈ AE
D02 cid := (pt, c)
D03 If cid ∈ SC:
D04 Promise k = K[cid]
D05 k ← ⋄
D06 Return k

Oracle Evolvess
E20 evolvess⟨ss⟩
E21 ptR ← ptR + 1
E22 AE ∪← {ptR}

Fig. 15. Game FUNC for KeKEM.

Construction. In Fig. 17 we provide a construction from a forward-secure
KEM [12]. Note that the construction is straightforward with array SSR storing
multiple secret states: one for each active epoch. Thus, while the secret state
evolves to decapsulate for a new active, an old copy can be used to decapsulate
for earlier epochs.

40

Game CONFb(pt,A)
G00 ptS ← pt
G01 ftR, ptR ← pt
G02 AE← {pt}
G03 SC← ∅
G04 CH← ∅
G05 XP← ∅
G06 (ss, ps)← gen(pt)
G07 Invoke A
G08 Lose

Oracle ExposeS
E10 Return ps

Oracle Decide(b′)
D00 Stop with b′

Oracle Challenge
C00 Require ptS /∈ XP
C01 (k0, c)← enc(ps)
C02 k1 ←$ K
C03 cid := (ptS , c)
C04 SC ∪← {cid}
C05 CH ∪← {ptS}
C06 Return (kb, c)

Oracle Evolveps
E00 evolveps⟨ps⟩
E01 ptS ← ptS + 1

Oracle Expire
X00 expire⟨ss⟩
X01 AE← AE \ {ftR}
X02 ftR ← ftR + 1

Oracle Dec(pt, c)
D10 k ← dec(ss, pt, c)
D11 cid := (pt, c)
D12 If cid ∈ SC:
D13 k ← ⋄
D14 Return k

Oracle Evolvess
E20 evolvess⟨ss⟩
E21 ptR ← ptR + 1
E22 AE ∪← {ptR}

Oracle ExposeR
E30 FE := JptR + 1 ..∞K
E31 AFE := AE ∪ FE
E32 Require CH ∩AFE = ∅
E33 XP ∪← AFE
E34 Return ss

Fig. 16. Games CONF0, CONF1 for KeKEM.

Proc gen(pt)
g00 (ss′, pk)← FSgen
g01 SSR[·]← ⊥
g02 SSR[pt]← ss′

g03 ftR, ptR ← pt
g04 ss := (SSR, ftR, ptR)
g05 ptS ← pt
g06 ps := (pk, ptS)
g07 Return (ss, ps)

Proc enc(ps)
e00 (k, c)← FSenc(pk, ptS)
e01 Return (k, c)

Proc evolveps⟨ps⟩
e10 ptS ← ptS + 1

Proc dec(ss, pt, c)
d00 Require SSR[pt] ̸= ⊥
d01 k ← FSdec(SSR[pt], pt, c)
d02 Return k

Proc evolvess⟨ss⟩
e20 Require SSR[ptR] ̸= ⊥
e21 ss′ ← SSR[ptR]
e22 FSupd⟨ss′⟩(ptR)
e23 ptR ← ptR + 1
e24 SSR[ptR]← ss′

Proc expire⟨ss⟩
x00 Require SSR[ftR] ̸= ⊥
x01 SSR[ftR]← ⊥
x02 ftR ← ftR + 1

Fig. 17. KeKEM construction. We use a forward-secure KEM
(FSgen, FSenc, FSdec, FSupd) as a building block [12].

41

B Examples for BASIC game execution

c′1: sync-preserving for Alice

c′3: sync-preserving for Alice

c′2: sync-preserving for Alice

c1: sync-preserving for Bob

c′4: sync-damaging to Alice

c2: sync-damaging to Bob

BobAliceAdversary

c′1

c′2

c′3

c1

c′4

c2

Fig. 18. Example of sync preserving and sync damaging ciphertexts. Time progresses
from top to bottom in the diagram. The log reflects the events when receiving the
specified ciphertext. Note c′

4 is injected by the adversary.

C Trivial Attacks

C.1 Attack catalogue for authenticity

The authenticity game AUTH in Fig. 2 excludes one trivial attack and it is ex-
actly as one would intuitively expect: expose Alice and use her state to forge a
message to Bob.

stA ← Expose(A); c∗ ← send⟨stA⟩(m∗); m∗ ← Recv(B, c∗).

The adversary is not rewarded for this trivial attack by [E03,R21].
The line numbers referenced in this subsection will refer to the lines in the AUTH
game. For clarity we omit associated data as it is not relevant to the discussion.

42

c′2: CERTA = {1, 2}

c′1: CERTA = {1, 2}

c′3: CERTA = {1, 2}

c2: CERTB = ∅

c1: CERTB = ∅

BobAliceAdversary

c′1

c′2

c1

c′3

c2

Fig. 19. Example of certifying ciphertexts. Time progresses from top to bottom in
the diagram. The log reflects the relevant part of the game state when receiving the
specified ciphertext. Note c′

3 is injected by the adversary.

We now provide an overview of some attacks that are excluded in other work,
but are not trivial and hence the AUTH game allows them.

1. Expose Alice and forge on the first message after the second is delivered.
stA ← Expose(A); c∗

1 ← send⟨stA⟩(m∗
1); c1 ← Send(A, m1); c2 ←

Send(A, m2); m2 ← Recv(B, c2); m∗
1 ← Recv(B, c∗

1).

The adversary is rewarded for this trivial attack by [R09,R21].
2. Expose Alice and forge on the second message after the first is delivered.

stA ← Expose(A); c1 ← Send(A, m1); ← send⟨stA⟩(m1); c∗
2 ←

send⟨stA⟩(m∗
2); m1 ← Recv(B, c1); m∗

2 ← Recv(B, c∗
2).

The adversary is rewarded for this trivial attack by [R09,R21].
3. Forge on an old message after bringing Bob out-of-sync with a trivial attack.

stA ← Expose(A); c∗
1 ← send⟨stA⟩(m∗

1); c1 ← Send(A, m1); c2 ←
Send(A, m2); m2 ← Recv(B, c2); stA ← Expose(A); c3 ← send⟨stA⟩(m3);
m3 ← Recv(B, c3); m∗

1 ← Recv(B, c∗
1).

43

The adversary is rewarded for this trivial attack by [R08,R22].
4. Let an out-of-sync Bob send a message to Alice.

stA ← Expose(A); c1 ← send⟨stA⟩(m1); m1 ← Recv(B, c1); c∗
1 ←

Send(B, m∗
1); m∗

1 ← Recv(A, c∗
1);

The adversary is rewarded for this trivial attack by [S02,R21].
5. Expose an out-of-sync Bob to forge a message to Alice.

stA ← Expose(A); c1 ← send⟨stA⟩(m1); m1 ← Recv(B, c1); stB ←
Expose(B); c∗

1 ← send⟨B⟩(m∗
1); m∗

1 ← Recv(A, c∗
1);

The adversary is rewarded for this trivial attack by [E01,R21].

C.2 Attack catalogue for confidentiality

We provide an overview of trivial attacks that are prevented by the confidential-
ity game CONF in Fig. 3. The line numbers referenced in this subsection will
refer to the lines in the CONF game. We also demonstrate some attacks that
look similar, but that are not trivial and hence the CONF game allows them.
For clarity we omit associated data as it is not relevant to the discussion.

1. Let Alice send a challenge, expose Bob and decrypt the challenge ciphertext.
c∗ ← Chal(A, m0, m1); stB ← Expose(B); m∗ ← recv⟨stB⟩(c∗);
Decide(m∗ = m0 ? 0 : 1).

This trivial attack is prevented by [C06,E00].

The following attacks look similar, but they are not trivial. The CONF game
thus shall not exclude them. The attacks explain why line C06 in Fig. 3 is
conditioned on both isu and isū. For the following attacks we use notation
$/n in the Recv oracle to indicate a random ciphertext for index n. (Thus
note in particular confidentiality can be maintained processing random ci-
phertexts, independent of authenticity.)
First bring Bob out-of-sync for an index that is earlier than Alice’s index,
then expose him.

← Send(A, m); ← Send(A, m); ← Recv(B, $/0); c∗ ←
Chal(A, m0, m1); stB ← Expose(B); m∗ ← recv⟨stB⟩(c∗); Decide(m∗ = m0 ?
0 : 1).

First bring Bob out-of-sync for an index that is later than Alice’s index, then
expose him.
← Recv(B, $/5); c∗ ← Chal(A, m0, m1); stB ← Expose(B); m∗ ←

recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

First bring Alice out-of-sync (without poisoning her, see below), then let her
send a challenge.
← Recv(A, $/0); c∗ ← Chal(A, m0, m1); stB ← Expose(B); m∗ ←

recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

44

It is also not a trivial attack if Bob’s clock ticks δ + 1 times before the ex-
posure. The game allows this attack via [T02].
c∗ ← Chal(A, m0, m1); Tick(B); . . .; Tick(B); stB ← Expose(B); m∗ ←
recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

2. Expose Alice, poison Bob, let Bob send a challenge:
stA ← Expose(A); c ← send⟨stA⟩(m); m′ ← Recv(B, c); c∗ ←
Chal(B, m0, m1); m∗ ← recv⟨stA⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

This is prevented by [C01,R20].

3. Expose Bob, let Alice send a challenge:
stB ← Expose(B); c∗ ← Chal(A, m0, m1); m∗ ← recv⟨stB⟩(c∗);
Decide(m∗ = m0 ? 0 : 1).

This is prevented by [C02,E05].

The attack is not trivial if Bob sends a message after the exposure that
is delivered to Alice before the challenge:
stB ← Expose(B); c← Send(B, m); m← Recv(A, c); c∗ ← Chal(A, m0, m1);
m∗ ← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 : 1).

This is allowed by [E04,E05,R10,R11].

Observe that the attack is also not trivial if Bob was rendered out-of-sync
before the exposure:
stA ← Expose(A); c1 ← send⟨stA⟩(m1); c2 ← send⟨stA⟩(m2); m2 ←
Recv(B, c2); stB ← Expose(B); c∗ ← Chal(A, m0, m1); m∗ ← recv⟨stB⟩(c∗);
Decide(m∗ = m0 ? 0 : 1).

This is allowed by [E01].

4. Let Alice send a challenge, let Bob receive it:
c∗ ← Chal(A, m0, m1); m∗ ← Recv(B, c∗); Decide(m∗ = m0 ? 0 : 1).

This is prevented by [R16]. To see why this is not conditioned isu we expand
to the following trivial attack:
Let Alice send a challenge, expose Alice to trivially forge a ciphertext and
let Bob receive it to go out-of-sync before receiving the challenge ciphertext:
c∗ ← Chal(A, m0, m1); stA ← Expose(A); c2 ← send⟨stA⟩(m); m2 ←
Recv(B, c2); m∗ ← Recv(B, c∗); Decide(m∗ = m0 ? 0 : 1).

However, the following variation where the sending index of the challenge
and the forgery is swapped, is not a trivial attack:

45

stA ← Expose(A); c1 ← Send(A, m); c∗ ← Chal(A, m0, m1); c′
1 ←

send⟨stA⟩(m′); m′ ← Recv(B, c′
1); m∗ ← Recv(B, c∗); Decide(m∗ = m0 ?

0 : 1).

The game will reveal the message m∗ by [R15,R24].

5. Similarly to the previous item, there is a trivial attack when the final step
is to expose an out-of-sync Bob instead of letting Bob receive the challenge
ciphertext:
c∗ ← Chal(A, m0, m1); stA ← Expose(A); c2 ← send⟨stA⟩(m); m2 ←
Recv(B, c2); stB ← Expose(B); m∗ ← recv⟨stB⟩(c∗); Decide(m∗ = m0 ? 0 :
1).

This is prevented by [E00,R24].
Again, it is not a trivial attack when the sending index of the forgery and
challenge is swapped:
stA ← Expose(A); c1 ← Send(A, m); c∗ ← Chal(A, m0, m1); c′

1 ←
send⟨stA⟩(m′); m′ ← Recv(B, c′

1); stB ← Expose(B); m∗ ← recv⟨stB⟩(c∗);
Decide(m∗ = m0 ? 0 : 1).

This is allowed by [E00,R24].

D Attack on Forward Secrecy of ACD [2]

It is straightforward to see the protocol of ACD does not satisfy our notion
of forward secrecy. Consider an adversary that challenges Alice, obtaining a
ciphertext c ← Chal(A, ad, m0, m1), but never delivers the ciphertext to Bob.
Now, if time passes, by repeated Tick invocations, the adversary is allowed to
Expose(B) and obtain Bob’s user state. The ACD protocol has no concept of
time and the state will still be able to decrypt the ciphertext.

Irrespective of physical time, further observe that the ACD protocol allows
forgeries for ‘logical’ old ciphertext. Consider both parties’ states public, that
is the adversary exposes them (before and after) each sending invocation. Now
the adversary remains passive and makes the following oracle queries: c1 ←
Send(A, ad, m), c2 ← Send(A, ad, m) and Recv(B, ad, c2). Our authenticity notion
demands the adversary is unable to create a forgery for the first ciphertext.
However, in the ACD protocol ciphertexts do not ‘pin’ earlier ciphertexts and
the adversary is able to forge the first ciphertext for any arbitrary message.

E Security Proofs

Here we formalize theorems and prove the security of our constructions.

E.1 BAsOOCa Messaging achieves Authenticity
We prove our BAsOOCa messaging construction provides authenticity by reduc-
ing the problem to the security of a regular signature scheme (Sect. A.2) and

46

the security of a USS (Sect. A.4). In order to do so, in Lemma 1 we first reduce
the security of our BAsOOCa messaging construction to the security of regular
signatures and the security of our BAsOOCa-Signature Scheme introduced in
Sect. 5.1. Subsequently, we reduce the security of BAsOOCa-Signature Scheme
to the security of USS in Lemma 2. We will prove the BAsOOCa-Signature
Scheme authentic in the authenticity game in Fig. 24. This game is almost
equivalent to the authenticity game AUTH presented in Sect. 3 but adapted for
message/signature pairs instead of associated data/ciphertext pairs and without
a Tick oracle.

Theorem 1. Let π be the BAsOOCa messaging construction in Fig. 6, let
AUTH be the authenticity game in Fig. 2 that calls π’s procedures in its or-
acles, let H be a perfectly collision resistant hash function, and let A be an
adversary that makes at most qs Send queries. Then there exists an adversary
A′ of comparable efficiency such that

AdvAUTH
π (A) ≤ qs ·

(
AdvSUF

OTS(A′) + AdvAUTH
USS (A′)

)
.

Proof. The result immediately follows by applying Lemma 1 and Lemma 2. ⊓⊔

Lemma 1. Let π be the BAsOOCa messaging construction in Fig. 6 and let
AUTH be the corresponding authenticity game in Fig. 2 that calls π’s procedures
in its oracles. Let BS be the BAsOOCa-Signature Scheme construction in Fig. 4
and let BAsOOCa-AUTH be the corresponding authenticity game in Fig. 24.
Let A be an adversary that makes at most qs Send queries. Then there exists an
adversary A′ of comparable efficiency such that

AdvAUTH
π (A) ≤ qs ·AdvSUF

OTS(A′) + AdvBAsOOCa-AUTH
BS (A′).

Proof. A′ will simulate the AUTH game to A by running π and replacing π’s
calls to the BAsOOCa-Signature Scheme with queries to A′’s BAsOOCa-AUTH
game. For A’s Tick oracle queries, A′ simply advances physical time. For each
Send oracle query, A′ will initiate a SUF game for one-time signatures [s01] and
obtain a verification key vk.A′ will pose a Sign(vk) query in the BAsOOCa-AUTH
game to obtain a signature σ1 on vk [s02]. Finally, A′ will pose a Sign(ad q c)
query in its SUF game to obtain a signature σ2 on ad q c [s08]. This allows A′ to
answer any Send oracle query. Notice how the Expose oracles in both games are
equal, so any query can simply be forwarded by A′. We remark A′ does not need
to know the signing keys generated by the SUF games as they are not stored in
the state: They are generated, immediately used and discarded in a single send
operation.

For each Recv oracle query,A′ will first call Vfy(vk ′, σ′
1) in the BAsOOCa-AUTH

game [r06] and subsequently Vfy(ad ′ q c′, σ′
2) in the corresponding SUF game

[r07]. If (ad ′, c′) is a forgery and vk = vk ′, the oracle call will award a win in
the corresponding SUF game for the one-time signature. Otherwise, if vk ̸= vk ′,
A either wins the AUTH game or renders the user out-of-sync (e.g. with a
trivial forgery after exposure). Now observe A′ has submitted vk ′ as message

47

in its Vfy query in the in its BAsOOCa-AUTH game. Hence, A′ will also win
the BAsOOCa-AUTH game or render the user out-of-sync, maintaining equiv-
alent game variables as the AUTH game. We can conclude AdvAUTH

π (A) ≤
qs ·AdvSUF

OTS(A′) + AdvBAsOOCa-AUTH
BS (A′). ⊓⊔

Lemma 2. Let BS be the BAsOOCa-Signature Scheme in Fig. 4, let BAsOOCa-AUTHBS
be the authenticity game in Fig. 24 that calls BS’s procedures in its oracles and
let A be an adversary that makes at most qs Sign queries. Then there exists an
adversary A′ of comparable efficiency such that

AdvBAsOOCa-AUTH
BS (A) ≤ qs ·AdvAUTH

USS (A′).

Proof. For simplicity let the function H in BS be the identity function. An imple-
mentation could use a collision resistant hash function for efficiency reasons. A′

will simulate the BAsOOCa-AUTH game to A and we will show that if A wins,
then A′ will win in one of its USS-AUTH games. Let A′ run BS but instead of
calling the gen algorithm, A′ will initiate a new USS-AUTH for each invocation.
Moreover, instead of calling the updss, updvs, sign and vfy algorithms, A′ will
query the Updss, Updvs, Sign and Vfy oracles, respectively, in the corresponding
USS-AUTH game.

In particular, for each Sign oracle query by A, A′ starts a new USS game to
generate a key pair. A′ is free to query ExposeV to obtain the verification key and
to execute line [s02], A′ can query the Sign oracle in its USS game. We remark
BS only signs once with each key [s02,s07]. To answer a Vfy query, A′ simply
queries its Updvs (line [v10]), Vfy (line [v11]) and Updss (line [v15]) oracles in
each game, as they are available without restrictions. Finally, A′ will always be
able to answer Expose queries as there are no restrictions on its ExposeS and
ExposeV oracles in the USS games. It is clear the simulation always succeeds.

There are two reward conditions in BAsOOCa-AUTH: A must deliver either
a certified or an authoritative message/signature pair. We will first consider the
reward condition for certified message/signature pairs and show that A cannot
trigger it. The game starts without any certified message/signature pairs [G04].
A pair (m, σ) can only become certified for user u if a sync-preserving pair
(mc, σc) [V02] has been delivered, while u was in-sync [S01], with a higher index
[V04]. Because of [S01–S02], this means ū was also in-sync at the time of sending.
We can conclude A has not interfered with (mc, σc). BS will parse σc [v00] and
obtain an array ScJltcK with entries for all indices lt < ltc. For each lt, BS will
parse S[lt] [v07], and store (h, σ) [v14], where h = H(m q lt q P q vk q SJltK)
[s01]. Now, if u receives a certified pair (m′, σ′) it will parse it [v00] and compute
h′ = H(m′ q lt′ q P′ q vk ′ q S′Jlt′K) [v01]. Then BS requires (h, σ) = (h′, σ′) [v20],
so clearly A cannot forge a certified message/signature pair as the entries (h, σ)
are legitimate.

Next, let us consider the reward condition for an authoritative message/signature
pair. It remains to be shown that if A triggers this reward condition, then A′

will win in one of its USS games. W.l.o.g. let us assume A submits a forgery to
user u on index i that triggers the reward condition. This means u was still in-
sync [V07]. Thus the verification key vki, which u used to verify the forgery, was

48

generated by A′. That is, A′ is playing a USS game for this verification key. It is
clear that if A′ has not made an ExposeS query in the corresponding USS game,
A′ can submit the same forgery to its Vfy oracle and win in its game. Hence,
let us assume A′ has made an ExposeS query. Because BS generates a new key
pair each sign invocation and overwrites the old secret key [s07], A′ would only
make this ExposeS query if A exposes ū at sending index i. If isū this implies
i /∈ VFū[lt] for all lt < i and i /∈ AUū [E00–E02]. Thus the only way to add i
back to AUū is to deliver a message/signature pair with index lt ≥ i [V05]. If
A delivers a message/signature pair with index i, A cannot forge on i because
BS prevents double delivery [v19,v21]. If A delivers a pair (m, σ) with an index
greater than i, we have (m, σ) ∈ SCū, otherwise u will lose sync [V06,V10] and we
know u must still be in-sync when the forgery happens [V07]. We can conclude
index i becomes certified [V02–V04] and we have already shown A cannot forge
on a certified message/signature pair.

Therefore, let us consider the final case where ū is not in-sync when the
exposure happens. This implies ū has accepted a pair (m, σ) /∈ SCu [V06,V10].
Because u is in-sync, this means (m, σ) was not sent by u [S01–S02]. Let (mt, σt)
be the pair with index ltt that transitions ū, i.e. renders ū out-of-sync, and let
lt∗

ū be the receiving index of ū. Now, ū will parse it [v00] and compute ht =
H(mt q ltt q Pt q vkt q StJlttK) [v01]. We have shown A cannot forge on certified
message/signature pairs, so lt∗

ū ≤ ltt. In particular this means BS computes
avū ← H(avū q ht q σt) [v13], A′ will query Updss(avū) in the corresponding
USS game [v15] and BS includes ltt+1 in the set Pū to indicate it has processed ltt

[v16–v17]. Let ltf be ū’s sending index when going out-of-sync. We know ū is not
in-sync, so the next message/signature pair delivered to u with index greater than
or equal to ltf will render u out-of-sync [V06,V10]. Moreover, we know i ≥ ltf ,
because the USS game corresponding to index i was subject to an ExposeS query
when ū was no in-sync. Therefore this next message/signature pair delivered to
u must have index i [V07]. We conclude A has not made an Expose(ū) query for
index ltf while ū was still in-sync, otherwise we have i /∈ AUū [E01–E03] with no
possibility of recovery.

This implies A′ did not make an ExposeS query in the corresponding USS
game before the Updss(avū) query. Thus any string in XP contains avū [E01].
When u receives the message/signature pair with index i it will iteratively update
its receiving index [v02–v17]. A′ will query the Updvs oracle with ASu[j] for j ∈ P
and we have ar ū ̸= ASu[j] for all j, because we know avū ̸= ASu[ltt] (and it
clearly cannot match any other index as the index is part of the variable). We
conclude the verifier’s updates do not contain avū. Hence ADV /∈ XP, so A′

would be rewarded for the forgery [V02–V03] in the USS game when querying
the Vfy oracle. This completes the proof. ⊓⊔

E.2 BAsOOCa Messaging achieves Confidentiality

We prove our BAsOOCa messaging construction provides confidentiality by re-
ducing the problem to the security of the KeKEM (Sect. A.6) and the KuKEM
(Sect. A.5). In order to do so, in Lemma 3 we first reduce the confidentiality

49

of our BAsOOCa messaging construction to the confidentiality of the symmet-
ric encryption scheme E, the confidentiality of our BAsOOCa-KEM introduced
in Sect. 5.2 and the authenticity of our BAsOOCa messaging construction. In
Lemma 4 we reduce the advantage of an adversary against our BAsOOCa-KEM
in the multi-challenge confidentiality game to the advantage of an adversary in
the single-challenge confidentiality game. Subsequently, we reduce the confiden-
tiality of the BAsOOCa-KEM in the single-challenge setting to the confidential-
ity of both the KeKEM and the KuKEM in Lemma 5.

We will prove the BAsOOCa-KEM in Fig. 23 achieves confidentiality in the
confidentiality game in Fig. 25. This game is almost equivalent to the confiden-
tiality game presented in Sect. 3 but adapted for indistinguishability of keys
instead of messages. Moreover, the Tick oracle has been split in an Upd and
Expire oracle, granting the adversary more control. Most notably however, is
the added line ‘Require isu’ in the Challenge oracle. Since poisoned implies out-
of-sync, the line ‘Penalize poisonedu’ has become obsolete in the Challenge oracle
in Fig. 25. Hence, this line, and all the lines and variables used for tracking the
poisoned flag, have been removed from the game.

Theorem 2. Let π be the BAsOOCa messaging construction in Fig. 6, let
CONF be the confidentiality game in Fig. 3 that calls π’s procedures in its or-
acles and let A be an adversary that makes at most qc Chal queries and ϵ the
probability that the adversary successfully computes a pre-image of the random
oracle. Then there exists an adversary A′ of comparable efficiency such that

AdvCONF
π (A) ≤ 2qc ·

(
AdvCONF

keKEM(A′) + AdvCONF
kuKEM(A′) + AdvCONF

E (A′)
)

+ AdvAUTH
π (A′) + ϵ.

Proof. The result immediately follows by successively applying Lemma 3, Lemma 4
and Lemma 5.

Lemma 3. Let π be the BAsOOCa messaging construction in Fig. 6, let CONFb

be the confidentiality game in Fig. 3 that calls π’s procedures in its oracles. Let
BK be the BAsOOCa-KEM construction in Fig. 23 and let BAsOOCa-CONFb

be the corresponding confidentiality game in Fig. 25. Let A be an adversary that
makes at most qc Chal queries. Then there exists an adversary A′ of comparable
efficiency such that

AdvCONF
π (A) ≤ qc ·AdvCONF

E (A′) + AdvAUTH
π (A′) + AdvBAsOOCa-CONF

BK (A′).

Proof. Note the BAsOOCa-CONFb and the CONFb game trace exactly the same
variables. The only difference is if A wishes to challenge an out-of-sync user that
is not poisoned. In this case, we have that isu and poisonedu are both False. Note
this exactly triggers the win condition in AUTH, as the game either rewards or
sets poisoned to True when isu becomes False. Thus, we can assume A only
challenges an in-sync user.
A′ will simulate the CONFb game to A by running π and replacing π’s calls

to the BAsOOCa−KEM with queries to A′’s BAsOOCa-CONFb game. Because

50

both games trace the same variables A′ can simply forward all Expose, Recv,
Decide queries. For any Tick queries, A′ will query both Upd and Expire. If A
makes a Send query, A′ will replace the enc call in the send procedure [s04] with
a query to its Enc oracle. However, for A’s Chal queries, A′ will replace the enc
call in the send procedure [s04] with a query to its Challenge oracle. If A were to
distinguish between A′’s simulation and the real protocol, then A′ would have
the same distinguishing advantage in the BAsOOCa-CONF game. Thus let us
then consider the simulation variant where A′ always use a random key. Now, for
A’s Chal queries, A′ will initiate a standard symmetric encryption CPA game
(which samples a random key) and query its encryption oracle to obtain the
required ciphertext [s06]. If A is able to distinguish the messages based on the
challenge ciphertext, A′ can make the same guess in the corresponding CONF
game for the symmetric encryption scheme. ⊓⊔

Lemma 4. Let BK be the BAsOOCa-KEM construction in Fig. 23, let BAsOOCa-CONFb

be the corresponding confidentiality game in Fig. 25 that calls BK’s procedures in
its oracles and let
BAsOOCa-CONFb-1 be the confidentiality game that is almost identical, but
only allows one Challenge query. Let A be an adversary that makes at most qc

Challenge queries. Then there exists an adversary A′ of comparable efficiency
such that

AdvBAsOOCa-CONF
BK (A) ≤ qc ·AdvBAsOOCa-CONF-1

BK (A′).

Proof. Let Hi denote the hybrid of the BAsOOCa-CONFb game where the first i
Challenge queries output the real key and the remaining challenge queries output
a random key. Clearly, H0 = BAsOOCa-CONF1 and Hqc

= BAsOOCa-CONF0.
We define Advhyb

i−1,i(A) := |Pr[Hi−1(A)]−Pr[Hi(A)]|. By the triangle inequality
we have AdvBAsOOCa-CONF

BK (A) ≤
∑qc

i=1 Advhyb
i−1,i(A). So there exists a j such

that 0 < j ≤ qc and AdvBAsOOCa-CONF
BK (A) ≤ qc ·Advhyb

j−1,j(A). It remains to be
shown that we can use an adversary A that can distinguish between Hj−1 and
Hj to win the BAsOOCa-CONFb-1 game.
A′ will initialize the BAsOOCa-CONFb-1 and run A. Any query by A to the

Expose, Enc, Dec, Upd or Expire, A′ can simply forward to its own oracles but
will keep track of the game variables. When A makes a Challenge(u, ad) query,
A′ will first check if it is a valid challenge. If the requirements are not met,
A′ can abort as A would lose the game anyway. Otherwise A′ will proceed as
follows, where t counts the number of Challenge queries. If t < j, A′ makes the
corresponding Enc(u, ad) query, if isū will add ltu to CHu and return (k, c) to
A. If t = j, A′ will forward the query to the Challenge oracle in its own game. If
t > j, A′ makes the corresponding Enc(u, ad) query, if isū will add ltu to CHu,
replace k ←$ K and return (k, c) to A.

Now observe A′ simulates Hj−1 to A if A′ is playing the BAsOOCa-CONF1-1
game and Hj if A′ is playing BAsOOCa-CONF0-1. Thus, when A makes its
guess, A′ can make the corresponding guess in its own game. We conclude
Advhyb

j−1,j(A) ≤ AdvBAsOOCa-CONF-1
BK (A). ⊓⊔

51

Lemma 5. Let BK be the BAsOOCa-KEM construction in Fig. 23, let BAsOOCa-CONFb

be the corresponding confidentiality game in Fig. 25 that calls BK’s procedures
in its oracles but only allows one challenge query. Let A be an adversary. Then
there exists an adversary A′ of comparable efficiency such that

AdvBAsOOCa-CONF-1
BK (A) ≤ 2 ·

(
AdvCONF

keKEM(A′) + AdvCONF
kuKEM(A′)

)
.

Proof. To prove the result we will show we can use an adversary that has a
distinguishing advantage in the BAsOOCa-CONFb game has at least half that
advantage in the keKEM-CONFb or the kuKEM-CONFb game. Let A′ simulate
the BAsOOCa-CONF game by running BK. However, instead of calling the
gen algorithms, it will initialize KeKEM and KuKEM confidentiality games.
Moreover, A′ will replace any call to these primitives’ algorithms with queries to
the corresponding oracles in its confidentiality games. That is enc, dec, evolveps,
evolvess and expire for the KeKEM primitive and enc, dec, updps and updss for
the KuKEM primitive.

To answerA’s Challenge(u, ad) query,A′ will check if isu and abort otherwise
as A would lose the BAsOOCa-CONF game [C00]. This implies the latest public
states u received were indeed generated by A′.

Let us first consider the case isū = T. A′ will guess uniformly at random
whether A will let the challenge ciphertext expire or deliver it first. Then A′

can query the Challenge oracle in the corresponding KeKEM or KuKEM game,
depending on its guess, and run the enc procedure for the other primitive to
execute the lines [e00,e01] in BK. Because BK always uses the latest received
public states [d07,d10] for encapsulation, we can conclude from [R04,R05,E02,E03]
that flag xpū reflects whether the secret states corresponding to the current
public states used for encapsulation have been exposed. If xpū, then A′ can
abort as A would lose anyway [C01]. Thus, we can conclude A′ has not had
to query its Expose oracles in the current games and the Challenge query will
succeed.

Next, let us consider the case isū = F. Now, A′ will always query the
Challenge oracle in its KuKEM game. If an Expose query was made before
ū went out-of-sync, analogously to above, the flag xpū will be set and A′ can
abort the Challenge query. Hence, assume only Expose queries were made after
ū went out-of-sync. We know A′ updated the KuKEM states when running the
dec procedure [d22], updating ADR in its KuKEM game. By [E10,E12] in the
KuKEM CONF game, we know all exposed strings are prefixed with ADR. We
can conclude ADS /∈ XP and the Challenge query will succeed [C00].

Now, let us discuss how to answer Expose queries. It is clear if there has
been no Challenge query that A′ can make the required ExposeR in its games
to answer A’s Expose queries. So, let us assume A has made a Challenge query.
We first remark if ū was out-of-sync at the moment of the Challenge query, A′

will have challenged the KuKEM game and since ADS /∈ FER, A′ is free to
query ExposeR in the KuKEM game [E11]. Clearly, in this scenario A′ can also
make an ExposeR query in the KeKEM game, so let us assume ū was in-sync
and the challenge ciphertext has been added to the challenge set CHu [C05]. By

52

requirement [E00], A will not make an Expose query until either the challenge
ciphertext expired or the challenge ciphertext is delivered / goes out-of-sync.
Suppose A calls the Tick oracle to expire the challenge ciphertext. Now, A′ will
have called the Expire oracle in the KeKEM game [x02], which allows A′ to make
Expose queries again [X01] in the KeKEM game and if A′ guessed correctly it
did not make a Challenge query in the KuKEM game, so it is free to call the
Expose oracle.

Now suppose, A′ clears challenge set CH by delivering a ciphertext. By
[R10,R11] this means A has delivered the challenge ciphertext or an out-of-sync
ciphertext with index less or equal than the challenge ciphertext. In the either
case, the KuKEM will update [d22] and A′ can query ExposeR again because
ADS /∈ FER [E10].

Finally, A′ will call K to compute the combined key [e09]. For simplicity we
will assume K to be a random oracle. We remark if (ad, c) ∈ SC, A′ can simply
answer Dec(ū, ad, c) queries for challenge ciphertexts with k ← ⋄ by [R06] and
otherwise we can sample a k ←$ K because random oracle K takes the full (ad, c)
as context [d25], as long as we maintain consistency for repetitive Dec queries.
Because K is a random oracle, if A can distinguish which BAsOOCa-CONFb

game it is playing, it must have learnt the challenged key as it is input to K.
(Note that if A guesses the key, A′ will have at least the same success probability
guessing the key in its own game.) Therefore, A′ will have the same advantage
in either its KeKEM or its KuKEM game. We remark if A′ guesses correctly,
the simulation always succeeds. A’s view is independent of A′’s guess, so the
probability of a correct guess is at least 1

2 . ⊓⊔

F BAsOOCa-KEM Construction

Here we provide a detailed description of the dec procedure. As indicated in the
main body it is mainly a technical exercise to handle the out-of-order delivery
correctly. Furthermore, the ts procedure is now included in Fig. 23: it will simply
return the logical and physical (creation) time of a ciphertext.

The dec procedure stores a copy of the associated data and the ciphertext
[d00] to be used as context for the combiner later in the procedure [d25] and
to accumulate into its received transcript [d22]. It will parse all the information
the sender has embedded in the ciphertext [d01–d02], and obtain the sender’s
latest received index to identify to which KeKEM and KuKEM instances the
keys were encapsulated [d03]. Next, it requires the sending user is responding
to a sending index the receiving user has actually reached and a physical time
that has not yet expired [d04–d05]. If the sending index lt is greater than what
has been received so far [d06], this means the embedded public states are the
latest. Hence we will overwrite our public states [d07,d10] and update them from
creation time to the current time [d09,d12]. The receiver will iteratively catch
up from the last received index to the current index [d13–d22]. First, it will
decapsulate the KuKEM ciphertext and store the DEM key [d14,d15]. Next, the
receiver index is updated [d16]. For each KuKEM, it will update the secret state

53

[d22], obtaining the required update information either from AS [d18] or compute
the accumulated received transcript itself for the current index [d20]. Now the
receiver is up to date, we decapsulate the KeKEM ciphertext to obtain k0 and
retrieve k1 from DK [d23–d24]. The KEM-combiner K is used to combine k0, k1
and adc into one key [d25]. Finally, we need to clear the DEM key from memory,
such that an adversary cannot decrypt old ciphertexts after an exposure [d26].

G BAsOOCa Games

54

Expose Bob

VFB[1] = N

VFB[2] = N

Expose Bob

VFB[1] = {1, 2}
VFB[2] = {1, 2}

VFB[3] = N

BobAliceAdversary

c′1

c′2

c′3

Fig. 20. Example of vouching ciphertexts. Time progresses from top to bottom in the
diagram. Initially, each ciphertext c′

1, c′
2 vouches for its entire future (and past). This

changes when the exposure of Bob happens after sending c′
2. Now c′

1 only vouches for
its future up to the next exposure, i.e. only for c′

1 and c′
2. It should be clear that before

any ciphertext is delivered the adversary can trivially forge any ciphertext. However,
as soon as Alice receives c′

1, which vouches for c′
2, forging c′

2 is no longer a trivial task.
Similarly, when Alice receives c′

3, which vouches for the entire future (and past), no
forgeries would be trivial anymore (until the next exposure). The log reflects what a
ciphertext vouches for and how this changes upon exposure.

55

c′1: AUB = N

Expose Bob: AUB = {1, 2, 3}

c′2: AUB = {1, 2, 3}

c′3: AUB = {1, 2, 3}

c′4: poisonedA = T

BobAliceAdversary

c′1

c′2

c′3

c′4

Fig. 21. Example of a poisoning ciphertext. Time progresses from top to bottom in
the diagram. The log reflects the relevant part of the game state when receiving the
specified ciphertext. Note c′

4 is injected by the adversary. This poisons Alice because
at this point Alice is still in-sync and Bob is not authoritative for sending index 4.

56

c′1: AUB = N

Expose Bob: AUB = {1, 2, 3}

c′2: AUB = {1, 2, 3}

c′3: AUB = {1, 2, 3}

c′4: AUB = N

BobAliceAdversary

c′1

c′2

c′3

c′4

Fig. 22. Example of authoritative ciphertexts. Time progresses from top to bottom in
the diagram. The log reflects the relevant part of the game state when receiving the
specified ciphertext.

57

Proc init
i00 For u ∈ {A, B}:
i01 ltu ← 0; lt∗

u ← 0
i02 ftu ← 0; ptu ← 0
i03 ASu[·]← ⊥
i04 ARu[·]← ⊥
i05 ASu[ltu]← H()
i06 ARu[lt∗

u]← H()
i07 Eu[·]← ⊥
i08 Uu[·]← ⊥
i09 (Eu[ltu], ε∗

ū)← ke.gen(ptu)
i10 (Uu[ltu], υ∗

ū)← ku.gen
i11 KCu[·]← ⊥
i12 DKu[·]← ⊥
i13 stu := (. . .)
i14 Return (stA, stB)

Proc enc⟨stu⟩(ad)
e00 (k0, c0)← ke.enc(ε∗

u)
e01 (k1, c1)← ku.enc(υ∗

u)
e02 KCu[ltu]← (lt∗

u, c1)
e03 (Eu[ltu], ε)← ke.gen(ptu)
e04 (Uu[ltu], υ)← ku.gen
e05 ku.updss⟨Uu[ltu]⟩(ARu[lt∗

u])
e06 c← ltu q ptu q ε q υ

e07 c
q← c0 q KCu[∗] q ASu[∗]

e08 adc ← ad q c
e09 k ← K(k0, k1; adc)
e10 ltu ← ltu + 1
e11 ASu[ltu]← H(ASu[ltu − 1] q adc)
e12 ku.updps⟨υ∗

u⟩(AS[ltu])
e13 Return (k, c)

Proc upd⟨stu⟩
u00 ptu ← ptu + 1
u01 ke.evolveps⟨ϵ∗

u⟩
u02 For i ∈ [lt]u:
u03 ke.evolvess⟨Eu[i]⟩

Proc ts(c)
t00 Parse lt q pt q . . .← c
t01 Return (lt, pt)

Proc dec⟨stu⟩(ad, c)
d00 adc ← ad q c
d01 Parse lt q pt q ε q υ q c← c
d02 Parse c0 q KC[∗] q AS[∗]← c
d03 (lt∗, . . .)← KC[lt]
d04 Require lt∗ ≤ ltu

d05 Require ftu ≤ pt
d06 If lt∗

u < lt:
d07 ε∗

u ← ε′

d08 For t ∈ Jpt .. ptuK:
d09 ke.evolveps⟨ε∗

u⟩
d10 υ∗

u ← υ′

d11 For i← lt∗ to ltu:
d12 ku.updps⟨υ′⟩(ASu[i])
d13 While lt∗

u ≤ lt:
d14 (lt∗, c∗)← KC[lt∗

u]
d15 DK[lt∗

u] = ku.dec(Uu[lt∗], c∗)
d16 lt∗

u ← lt∗
u + 1

d17 If lt∗
u ≤ lt:

d18 ARu[lt∗
u]← AS[lt∗

u]
d19 Else:
d20 ARu[lt∗

u]← H(ARu[lt∗
u − 1] q adc)

d21 For i ∈ [ltu]:
d22 ku.updss⟨Uu[i]⟩(ARu[lt∗

u])
d23 k0 ← ke.dec(Eu[lt∗], pt, c′

0)
d24 k1 ← DK[lt]
d25 k ← K(k0, k1; adc)
d26 DK[lt]← ⊥
d27 Return k

Proc expire⟨stu⟩
x00 ftu ← ftu + 1
x01 For i ∈ [ltu]:
x02 ke.expire⟨Eu[i]⟩

Fig. 23. BAsOOCa-KEM construction. Building blocks are a KeKEM, whose algo-
rithms are prefixed with ‘ke.’, a KuKEM, whose algorithms are prefixed with ‘ku.’ and
a KEM combiner K.

58

Game AUTH(A)
G00 For u ∈ {A, B}:
G01 ltu ← 0
G02 isu ← T
G03 SCu ← ∅
G04 CERTu ← ∅
G05 VFu[·]← J∞K
G06 AUu ← J∞K
G07 (stA, stB)← init
G08 Invoke A
G09 Lose

Oracle Sign(u, m)
S00 σ ← sign⟨stu⟩(m)
S01 If isu:
S02 SCu

∪← {(m, σ)}
S03 ltu ← ltu + 1
S04 Return σ

Oracle Expose(u)
E00 If isu:
E01 VFuJltuK ∩← JltuK
E02 AUu

∩← JltuK
E03 Return stu

Oracle Vfy(u, m, σ)
V00 lt ← ts(σ)
V01 vfy⟨stu⟩(m, σ)
V02 If (m, σ) ∈ SCū:
V03 If isu:
V04 CERTu

∪← [lt]
V05 AUū

∪← VFū[lt]
V06 If (m, σ) /∈ SCū:
V07 If isu:
V08 Reward lt ∈ AUū

V09 Reward lt ∈ CERTu

V10 isu ← F

Fig. 24. BAsOOCa AUTH game.

Game CONFb(A)
G00 For u ∈ {A, B}:
G01 ltu ← 0
G02 ptu ← 0
G03 isu ← T
G04 SCu ← ∅
G05 lxu ← 0
G06 CHu ← ∅
G07 xpu ← F
G08 (stA, stB)← init
G09 Invoke A
G10 Lose

Oracle Expose(u)
E00 Require CHū = ∅
E01 If isu:
E02 lxu ← ltu

E03 xpu ← T
E04 Return stu

Oracle Upd(u)
U00 upd⟨stu⟩
U01 ptu ← ptu + 1

Oracle Expire(u)
T00 expire⟨stu⟩
T01 CHū

∩← ITC(u)

Oracle Challenge(u, ad)
C00 Require isu

C01 Penalize xpū

C02 (k0, c)← enc⟨stu⟩(ad)
C03 k1 ←$ K
C04 SCu

∪← {(ad, c)}
C05 If isū: CHu

∪← {ltu}
C06 ltu ← ltu + 1
C07 Return (kb, c)

Oracle Decide(b′)
D00 Stop with b′

Oracle Enc(u, ad)
S00 (k, c)← enc⟨stu⟩(ad)
S01 If isu:
S02 SCu

∪← {(ad, c)}
S03 ltu ← ltu + 1
S04 Return (k, c)

Oracle Dec(u, ad, c)
R00 (lt, pt)← ts(c)
R01 k ← dec⟨stu⟩(ad, c)
R02 If (ad, c) ∈ SCū:
R03 If isu:
R04 If lt ≥ lx ū:
R05 xpū ← F
R06 If lt ∈ CHū:
R07 k ← ⋄
R08 If (ad, c) /∈ SCū:
R09 isu ← F
R10 CHū

∩← JltK
R11 CHū ← CHū \ {lt}
R12 Return k

Fig. 25. BAsOOCa CONF game.

59

	On Secure Ratcheting with Immediate Decryption

