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Drug addiction is a chronic, relapsing brain disease with limited treatment options and a high 

recurrence rate. Neuromodulation techniques, including repetitive transcranial magnetic stim-

ulation, transcranial direct current stimulation, and deep brain stimulation, hold great thera-

peutic promise in the treatment of drug addiction. The insula is a key brain region in drug ad-

diction, and its value as a neuromodulatory target in drug addiction needs further exploration. 

This article presents preclinical and clinical evidence for the role of the insula in drug addiction 

and explores its promise as a target for the treatment of drug addiction. 
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RUG addiction is a chronic relapsing brain disorder 

characterized by compulsion to seek and take drugs, 

loss of control in restricting drug intake, and negative 

emotional states e.g., restlessness, anxiety, and irritability (1). 

Drug addiction has been becoming a serious public health and 

social problem. Addictive drugs not only directly damage the 

body’s physiological functions and threaten life, but also cause 

obvious cognitive, emotional, and mental abnormalities, and 

even lead to suicide. All these related to drug addiction and the 

illegal and criminal behaviors caused by them have brought 

great social harm (2). 

Treatment options for drug addiction are very limited, 

mainly including medications and behavioral psychotherapy, but 

the relapse rate is still extremely high. Studies have shown that 

neuromodulation techniques targeting specific brain regions 

have significant potential in the treatment of drug addiction (3). 

This paper reviews the drug addiction-associated neural network, 

the insula, as a potential neuromodulatory target for the treat-

ment of addiction. 

Neurobiological Mechanisms of Drug Addic-
tion 
Drug addiction is divided into three phases: repeated periodic 

indulgence or intoxication, withdrawal or negative emotion, 

focus or anticipation (craving), and worsening over time, in-

volving brain reward, stress, and neuroplastic changes in the 

executive function system (4). Indulgence/intoxication phase 

involves changes in dopamine and opioid peptides in the basal 

ganglia; withdrawal/negative mood phase involves decreased 

function of the dopamine component of the reward system and 

recruitment of brain stress neurotransmitters in pan-amygdala 

neural circuits; focus the anticipation (craving) phase involves 

dysregulation of key afferent projections from the prefrontal and 

insular cortex to the basal ganglia and pan-amygdala (5). 

The neurobiological mechanisms involved in the various 

stages of drug addiction can be conceptualized as changes in 

brain regions or nuclei, especially specific brain circuits. The 

nucleus accumbens is currently the most studied target in treat-

ment-resistant addicts (6), but other brain regions or nuclei that 
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play differently important roles in the development of drug ad-

diction are also promising targets, such as the insula (7). Further 

exploration is needed to determine its clinical application value. 

 
Insular Function and Its Network Connectivity 
in Addiction 
The insula is a triangular neocortex located below the Sylvian 

fissure, located between the piriform cortex, orbital cortex, mo-

tor cortex, sensory cortex, and auditory cortex (8). The insula is 

divided into two parts: the larger part at the front, called the 

anterior insula, and the smaller part at the back, called the poste-

rior insula. From the cell structure, the insula was identified as 

having three regions: the anterior non-granular region, the pos-

terior granular region, and the middle granular-poor region (9). 

The insula covers only 2% of the cerebral cortex, yet it acts as a 

functionally highly diverse highway involved in homeostatic, 

cognitive, and affective processes (10). The insula is able to 

integrate and participate in such a wide range of functions be-

cause of its extensive network of connections. The anterior in-

sula is mainly connected with the anterior cingulate area, frontal 

area, orbitofrontal area, and anterior temporal area, while the 

posterior insula is mainly connected with the posterior temporal 

area, parietal area, and sensorimotor area (11). The insula con-

nects many brain regions related to addiction and plays a key 

role in the development of drug addiction (12). 

 
The Role of Insular Interception in Drug Addic-
tion 
The insula integrates input from a variety of physiological pro-

cesses, including the airway, gut, cardiovascular, musculoskele-

tal, visceral, and immune systems, all of which are involved in 

the body’s response to addictive behaviors. The function of the 

insula is to map the body’s ongoing physiological state and play 

a direct role in survival and maintaining homeostasis (13). This 

process of mapping the body’s internal state is called 

“interoception,” and the insula is the center of interoception (14). 

Interoception is a crucial process of drug addiction; that is, 

through receiving, processing, and integrating body-related sig-

nals of external stimuli, it affects continuous motivational be-

havior and prompts individuals to approach or avoid drug abuse 

to a certain extent (15). The posterior insula maintains a constant 

record of the current state of the body; this information is then 

relayed through the thalamus and the granular-poor insula, 

which appear to integrate salient external stimulus information 

(16). The anterior insula maintains homeostasis by comparing 

the current state of the body and the environment with the pre-

vious state and environment, and ultimately guides behavior 

toward or away from these stimuli, indicating that the anterior 

insula plays an important role in drug-seeking behavior (17). 

 
Insula: A Key Neural Region for Drug Addiction 
Study has first found that an insular stroke can make tobacco 

addicts quit smoking immediately, which is characterized by 

easy and fast quitting, no relapse, and no urge to smoke after 

quitting (18). This finding was subsequently confirmed by two 

prospective studies. Compared with non-insular damage, insular 

damage increases the probability of successful smoking cessa-

tion but also increases the motivation to continue to quit (19). 

Compared with basal ganglia damage alone, the possibility of 

smoking cessation is greater, and the addiction score is lowered 

more, indicating that the insula plays a special role in smoking 

addiction (20). Yousefzadeh-Fard et al. (14) studied the impact 

of insular and basal ganglia strokes on heroin withdrawal and 

found that isolated basal ganglia strokes and isolated insular 

strokes reduced heroin use rates, and an insular stroke alone had 

a larger effect than a basal ganglia stroke alone. This finding 

confirms that, in addition to tobacco addiction, the insula is also 

a key neural region for opioid addiction (21). 

In addition to studies on the relationship between insular 

lobe damage and addiction, considerable evidence has also been 

obtained from structural and functional imaging studies of the 

insular lobe of addicts. Compared with non-smokers, the thick-

ness of the insular cortex and the density of gray matter in 

smokers were significantly reduced (22, 23). Cocaine depend-

ence and the duration of dependence have been shown to be 

related to the reduction of insular gray matter volume (24, 25). 

Resting state functional connectivity (rsFC) is a method of 

measuring interbrain activity in the resting state that is used to 

study the neural circuits of addiction (26). Studies have con-

firmed that smokers reduce the rsFC between the right anterior 

insula and the right superior frontal gyrus (27, 28). Smokers 

have lower rsFC between the insula, executive function area, 

and superior frontal gyrus (29). Cocaine users have reduced 

connections between the left and right insula and the dorsal 

anterior cingulate gyrus, thereby affecting the salience network 

(30, 31). The salient network connectivity of alcohol users is 

lower than that of the control group, and the insular blood flow 

is weakened (32). Non-resting state studies have shown that the 

activity of the insula is more active in smokers in the context of 

smoking cues compared with neutral cues (33). Sub-

stance-dependent individuals using cocaine, alcohol, or nicotine 

showed that, relative to neutral cues, BOLD signaling for addic-

tive substance cues is in three distinct clusters (medial prefrontal 

cortex/anterior cingulate gyrus, left inferior frontal gyrus/insula, 

and right anterior motor cortex) and is significantly increased 

(34). 

In addition, the insula is involved in the addictive behav-

ior of multiple addictive animal models. Studies using different 

animal models of addiction and different manipulation measures 

and experimental paradigms have shown that the insula is in-

volved in the addictive behavior of multiple addictive substanc-

es in different aspects (35, 36). 

Using the conditioned place preference (CPP) protocol, 

anisomycin was injected into the anterior insula or posterior 

insula of amphetamine-CPP rats after conditioned amphetamine 

context memory activation, and amphetamine-CPP expression 

was lost (37). In the extinction experiment, the expression time 

of amphetamine-CPP was reduced in the posterior insula after 

reversible inactivation (38). Lidocaine inactivated the insular 

lobe of amphetamine-trained rats and prevented the impulse of 

rats to seek amphetamine in a place preference task (39). 

Ibotenic acid selectively damages the mouse insula to prevent 

nicotine-induced CPP (40, 41). 

Under a self-administration paradigm, inactivation of the 

anterior insula of rats by a mixture of baclofen and musmol 

attenuated drug-environment-induced recovery of co-
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caine-seeking behavior without altering locomotor activity (42). 

In rats subjected to cocaine self-administration training followed 

by extinction experiments, the relapse test showed that inactiva-

tion of the anterior insula reduced cue-induced relapse (43). 

Inactivation of the agranular cortex in nicotine-self-administered 

rats reduced nicotine intake without affecting food intake and 

also prevented cue-induced relapse of nicotine-seeking behavior 

(44, 45). Local injection of D1-receptor antagonists in the ante-

rior insula leads to a sustained reduction in nicotine 

self-administration and can also reduce cocaine intake (46). 

In general, the insula is a basic area for the acquisition, 

maintenance, and relapse of drug addictive behaviors, and the 

interoceptive function of the insula plays a pivotal role in drug 

intake, withdrawal, and relapse. In the future, the anterior insula 

can be further explored, as can the different roles of the posterior 

insula in different drugs and animal models. 

 
Insula: Neuromodulatory Target for Drug Ad-
diction. 
Current treatments for drug addiction are limited and have a 

high failure rate. Functional neurosurgery, such as cingulotomies, 

anonymity, and nucleus accumbens destruction, can significantly 

reduce the symptoms of drug addiction, but it has been rejected 

due to its possible serious psycho-emotional complications and 

ethical risks (47). Neuromodulation techniques have shown 

promising potential in the treatment of neuropsychiatric disor-

ders, including drug addiction. There are abnormalities in neural 

circuits in drug addiction, and neurostimulation technology can 

restore normal brain function through local stimulation of the 

target area, thereby inhibiting addictive behaviors (48). As an 

important part of the mesolimbic reward system, the role of the 

nucleus accumbens as a brain stimulation target area in the 

treatment of drug addiction has been evaluated and confirmed 

by animal and clinical studies, but it still cannot solve all drug 

addiction problems (49). At present, there is no more definite 

clinical double-blind trial evidence. In view of the important 

role of the insula in drug addiction, especially its close connec-

tion with known addiction-related brain areas, the insula is 

worth exploring as another target area for the treatment of drug 

addiction. 

First of all, transcranial magnetic stimulation (TMS) insu-

lar lobe treatment of drug addiction: TMS is a non-invasive 

brain stimulation technique that alters magnetic fields to gener-

ate electrical currents in targeted brain regions (50). The basic 

principle of TMS is that a brief current is passed through a 

magnetic coil to generate a momentary high-intensity magnetic 

pulse. This pulse generates an electric field in the target cortical 

area, which can induce depolarization of superficial cortical 

neurons located below the coil and affect cortical excitability 

(51). Various shapes of magnetic coils have been developed to 

affect neural activity and excitability in different brain regions: 

(i) circular coils, which are powerful but not focused; (ii) “fig-

ure-eight” coils, which consist of two newly developed 

H-shaped coil can stimulate deeper structures without excessive 

field strength or low focus (52). The research on TMS in addic-

tion mainly focuses on the prefrontal cortex, especially the 

dorsolateral prefrontal cortex (dlPFC) (53), and there are rela-

tively few studies on the insula. Recently, Dinur-Klein and 

coworkers conducted a randomized, double-blind, place-

bo-controlled study, demonstrating that in the short term, high 

(10 Hz) rather than low (1 Hz) frequency targeted the bilateral 

dlPFC and insula (54). Deep TMS can reduce the number of 

cigarettes smoked, reduce smoking levels, nicotine dependence, 

and increase short-term and long-term smoking cessation rates. 

This study suggested that targeting the insula in addition to the 

dlPFC may be the key to better long-term outcomes. Moreover, 

a multicenter double-blind RCT included 262 chronic smokers 

who met the DSM-5 criteria for tobacco use disorder and who 

had already tried unsuccessfully to stop smoking at least once, 

with 68% having tried at least three times. The lateral prefrontal 

and insular cortices underwent daily bilateral active or sham 

rTMS for three weeks, followed by three weeks of once weekly 

rTMS, and found that stimulation of relevant brain circuits like 

insula is an encouraging method (55). The above reports suggest 

that the insula can be considered a promising neuromodulatory 

target for TMS treatment of addiction, and further studies are 

needed. 

Second, transcranial direct current stimulation (tDCS) for 

insular lobe treatment of drug addiction: tDCS is a non-invasive, 

painless, and safe method of brain stimulation that uses a 

low-voltage, relatively weak current (56). tDCS is thought to 

regulate brain activity through two mechanisms: (i) by altering 

the resting membrane potential of neurons, depolarizing neurons 

near the anode and hyperpolarizing neurons near the cathode; 

and (ii) by regulating synaptic activity in a manner similar to 

long-term potentiation (LTP) at the anode and long-term depres-

sion (LTD) at the cathode (57). Therefore, the regulatory effect 

depends on the strength, duration, and direction of the current, 

where excitability increases with anodal tDCS and cathodal 

tDCS contributes to hyperpolarization and inhibition (58). 

The research on the target of tDCS in the treatment of 

drug addiction is mainly dlPFC (59), and there are relatively few 

studies directly targeting the insula in the treatment of drug ad-

diction. In a clinical study, tDCS in the frontal-parietal-temporal 

region significantly reduced daily cigarette consumption in 

smokers, and tDCS in the frontal-parietal-temporal region af-

fected the activity of many brain regions, including the 

interoceptive function of the insula, the associative memory 

function of the hippocampus, and the cognitive function of the 

lateral prefrontal cortex, etc., thereby reducing smoking behav-

ior (60). The excitatory effects of electrical stimulation of the 

dlPFC region can have downstream, secondary effects on other 

cortical and subcortical structures, including the medial prefron-

tal cortex, amygdala, and insula (61). Given the functional con-

nection between the dlPFC and the insula, changes in insular 

activity or function induced by tDCS directly targeting the 

dlPFC may play a role in the process of drug addiction (62), 

which also suggests that electrical stimulation therapy targeting 

the insula can alleviate the addictive behavior of drug addiction, 

of course, more targeted research is needed. 

Third, deep brain stimulation (DBS) of the insular lobe for 

drug addiction: DBS is an adjustable, reversible, non-destructive 

neurosurgical intervention that uses implanted electrodes to 

deliver electrical impulses to various regions of the brain and 

regulate abnormal neural networks (63). The nucleus accumbens, 

subthalamic nucleus, dorsal striatum, lateral habenula, medial 
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prefrontal cortex, and hypothalamus have been studied as DBS 

targets for drug addiction (64). Pushparaj et al. found that under 

two self-administration reinforcement paradigms, high-fre- 

quency electrical stimulation of the insula significantly reduced 

nicotine uptake as well as nicotine-seeking behavior induced by 

cues and ignition, while there was no apparent effect on food 

intake (44). Further detection of insular lobe brain slices showed 

that high-frequency electrical stimulation can inactivate insular 

lobe neurons. Continuous DBS in the anterior insula can inhibit 

the recurrence of morphine CPP in rats and promote its regres-

sion (65). In a study, in which DBS targeted regions ranging 

from the lateral orbitofrontal cortex to the dorsal portion of the 

agranular insula, showed that high-frequency DBS blocks the 

acquisition of morphine preference, promotes extinction of 

morphine preference, and prevents drug-induced morphine ig-

niting (66). 

The advantages of DBS over rTMS or tDCS include: (i) 

DBS can go deeper into deep brain regions and is highly focused 

because many addiction-related regions are located deep in the 

brain; (ii) DBS can achieve continuous and uninterrupted stimu-

lation after implantation, which can achieve long-term treatment 

because addiction is a chronic recurrent brain disease and the 

effect of electrical stimulation of neurons is time-dependent, that 

is, long-term stimulation can achieve long-term therapeutic ef-

fects; (iii) The application of DBS treatment is the basis for 

addiction research; and (iv) It can be remotely controlled for the 

stimulation parameters, optimized the treatment plan, and de-

tected changes in stimulation parameters in real time. However, 

choosing an invasive treatment method will always cause ethical 

issues, but for extremely severe cases that are difficult to cure, 

such as some diseases of addiction that carry serious individual 

and social harm, surgery may be the best option especially when 

there is no truly effective treatment. 

 
Conclusion 
Drug addiction involves a wide network of brain regions and a 

variety of neural circuits, and the dysfunction of related brain 

regions and the disorder of neural circuits promote the continu-

ous development and deterioration of drug addiction. Stimulat-

ing a specific brain region can affect the functional connectivity 

of the neural circuits under the region, causing changes in neu-

rotransmitters in the brain region and normalizing the patholog-

ical brain functional network. The insula can be used as a new 

target for the treatment of addiction because it is a key brain area 

of drug addiction, has rich structural and functional connections 

with reward system-related brain areas, and is a part of the drug 

addiction network. Insula is a promising neuromodulatory brain 

region that could be a stimulating target for the treatment of 

addiction. As a relatively mature technology for the treatment of 

neurological diseases, DBS has been applied to treat drug addic-

tion and has achieved promising results.■ 
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