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Abstract

Probabilistic models of allocating shots to boxes according to a certain probability distribution
have commonly been used for processes involving agglomeration. Such processes are of interest
in many areas of research such as ecology, physiology, chemistry and genetics. Time could be
incorporated into the shots-and-boxes model by considering multiple layers of boxes through
which the shots move, where the layers represent the passing of time. Such a scheme with mul-
tiple layers, each with a certain number of occupied boxes is naturally associated with a random
tree. It lends itself to genetic applications where the number of ancestral lineages of a sample
changes through the generations. This multiple-layer scheme also allows us to explore the dif-
ference in the number of occupied boxes between layers, which gives a measure of how quickly
merges are happening. In particular, results for the multiple-layer scheme corresponding to those
known for a single-layer scheme, where, under certain conditions, the limiting distribution of
the number of occupied boxes is either Poisson or normal, are derived.
To provide motivation and demonstrate which methods work well, a detailed study of a small,
finite example is provided. A common approach for establishing a limiting distribution for a ran-
dom variable of interest is to first show that it can be written as a sum of independent Bernoulli
random variables as this then allows us to apply standard central limit theorems. Additionally,
it allows us to, for example, provide an upper bound on the distance to a Poisson distribution.
One way of showing that a random variable can be written as a sum of independent Bernoulli
random variables is to show that its probability generating function (p.g.f.) has all real roots.
Various methods are presented and considered for proving the p.g.f. of the number of occupied
boxes in any given layer of the scheme has all real roots. By considering small finite examples
some of these methods could be ruled out for general N.
Finally, the scheme for general N boxes and n shots is considered, where again a uniform allo-
cation of shots is used. It is shown that, under certain conditions, the distribution of the number
of occupied boxes tends towards either a normal or Poisson limit. Equivalent results are also
demonstrated for the distribution of the difference in the number of occupied boxes between
consecutive layers.
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Chapter 1

Introduction

1.1 Motivation

Consider allocating n shots independently into N boxes according to a certain probability dis-
tribution. We can alter the behaviour of this process by changing, for example, n, N or the
probability distribution. Traditionally, when using this scheme the main focus has been on the
number of empty boxes under certain conditions ([1]-[5]). This model can be used in many
settings such as computational linguistics [6], ecology [7] and biology [8]. For example, in
ecological problems boxes may be viewed as representing species and then the number of oc-
cupied boxes can be interpreted as the ecological diversity [7]. As well as applications where
the objective is to determine the occupancy count, there are other problems where the resulting
probabilities of landing in specific boxes are the subject of interest. Consider the following:

1. Disclosure risk limitation [9]: In general, disclosure risk limitation involves editing data
prior to it becoming publicly available in order to prevent the possibility of releasing
personally identifiable information. Here the shots would represent people or companies
whose details (not including information that would easily identify them) are stored. The
boxes are then the unique combinations of values of variables that would allow for them
to be identified.

2. Database query optimisation [10]: The main aim of database query optimisation is to find
the most efficient way of executing a given query. Here the shots would represent entries
in the columns of a database. The boxes would then be all of the distinct values appearing
in the column.

3. Literature [6]: Here the shots would represent the words in everything that has been writ-
ten by a particular author. The boxes are then all of the distinct words the author has used.
The goal here is to try and identify or verify the author of (often historical) work which
was previously not attributed to anyone.
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We are mainly interested in applications involving agglomeration. Processes involving agglom-
eration occur in a broad range of fields, such as ancestry (tracing back a sample of individuals
to a common ancestor [11]), physiology (blood clotting [12]) and statistics (hierarchical clus-
tering [13]). In particular, coalescence theory has been used in the field of population genetics
for a long time with it being used more recently to analyse DNA sequence data - see [11] for
details. Note that it is common in the literature to see boxes referred to as urns ( [14], [15]) or
cells ( [3], [16]). Similarly, shots are often referred to as balls ( [8], [16]) or particles [3].
One of the earliest results relating to this scheme was established by Weiss in 1958 [1]. He
proved that, supposing n and N tend to infinity in such a way that n and N are proportional to
one another, the number of empty boxes has a normal limiting distribution. David and Barton
then extended this result in 1962 to show that the normal limit also holds for the number of boxes
containing exactly m shots [17]. In the same year, Rényi was able to show that the condition
proposed by Weiss (that the number of shots and boxes are proportional) can be relaxed and he
established that a sufficient condition is that the variance of the number of empty boxes tends
to infinity [5]. Further, in 1963, Békéssy then extended Rényi’s result by showing that it holds
more generally for the number of boxes containing exactly m shots [4].
In 1978, Kolchin et al. [2] explored this scheme of shots and boxes in detail for both uniform
and non-uniform allocations of shots. That is to say, under a uniform allocation of shots the
probability of landing in any given box is 1/N whereas in the non-uniform case the probabili-
ties for each box are no longer equal. In particular, for the uniform scenario they were able to
establish five distinct domains where the limiting behaviour of the distribution of the number of
empty boxes is either Poisson or normal. For the non-uniform case, they showed three regions
where again the limiting distribution is either Poisson or normal under certain conditions on the
probabilities assigned to the boxes. Chapter four of this thesis reviews these regions and gives
examples.
One paper that proves very useful for the work in this thesis in terms of the method of proof
used was written by Vatutin and Mikhailov in 1982 [3]. Their proof is discussed in detail in
Chapter four but the main idea is that if you want to prove distributional results for a certain
random variable it is very helpful if it can be shown that this random variable is equivalent to
a sum of independent Bernoulli random variables (not necessarily with the same probability of
success). This can be done by first showing that its probability generating function (p.g.f.) has
all real roots. One way to achieve this is by showing it can be obtained by applying a sequence
of real-root-preserving transformations to a polynomial which is known to have all real roots.
From this point normal and Poisson limiting results follow [3].
As well as establishing limit theorems, later papers were also interested in proving results for
the speed of convergence to these limiting distributions. The number of occupied boxes (when
scaled and centred) is known to be asymptotically normal as the number of shots tends to infin-
ity in the uniform case with n proportional to N, and a Berry-Esseen bound for the discrepancy
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from the normal, tending to zero at the optimum rate, was ascertained in 1981 by Englund [18]
(see also [3]). In 1982, Quine and Robinson then proved a similar result for the more general
scheme with a non-uniform allocation of shots to boxes [19].
Most papers focus on either the number of empty or occupied boxes but a more recent paper
by Penrose in 2009 [20] showed results for the number of boxes containing a single shot and
illustrated why this is of interest. Consider the well-known birthday paradox where the number
of boxes containing a single shot represents the number of individuals in the group who have a
different birthday to the other group members. We mention some other applications where the
number of isolated shots could be of particular interest. If the shots represent individuals and
the boxes represent their classification in a database according to certain characteristics (see [8]),
then the number of isolated shots represents the number of individuals which can be identified
uniquely from their classification. If the shots represent particles or biological individuals and
the boxes represent their spatial locations, each shot occupying one of N locations chosen at
random, and if two or more shots sharing the same location annihilate one another, then the
number of isolated shots is the number of surviving particles [20]. If the shots represent the
users of a set of communication channels at a given instant (these could be physical channels
or wavebands for wireless communications), and each user randomly selects one of N available
channels, and two or more attempted users of the same channel interfere with each other and are
unsuccessful, then the number of isolated shots is the number of successful users [20]. When
a uniform allocation of shots is used, a normal limiting result was obtained for the number of
boxes containing one shot and it was shown that the distance to the normal distribution tends to
zero at the optimum rate when the number of shots and boxes are proportional to one another.
This relates to an earlier result established by Englund in 1981 [18]. He showed that for the
distribution of the number of occupied boxes the distance to the normal distribution tends to
zero at the optimum rate when n and N are proportional to one another. A central limit theorem
for the number of boxes containing a single shot was also proven in the non-uniform case under
certain conditions on the probability distribution used. As well as being different in terms of the
random variable being considered, the methods of proof used in this paper were also different
to what had come before as they were based on a method previously used by Goldstein and
Penrose for a problem in stochastic geometry [21]. Most other papers up to this point had either
used characteristic functions [2] or a Poissonization technique to deal with dependence between
boxes ( [8], [22]).
In the papers mentioned above the number of boxes was always finite although allowed to be-
come arbitrarily large. In contrast, some authors instead considered having an infinite number
of boxes from the outset with a non-uniform allocation of shots. The motivation behind this was
that such models can be used to approximate sampling from a large finite population. One of
the first studies of this infinite scheme was conducted by Karlin in 1967 [23]. It should also be
noted that others such as Bahadur [24] and Darling [25] were also studying this infinite scheme
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around the same time as Karlin. To deal with the additional complexity created by having an in-
finite number of boxes, the conditions were more restrictive [23]. However, in 1989, Dutko [26]
showed that Karlin’s results actually hold under the simple assumption that the variance of the
number of occupied boxes tends to infinity. Note this mirrors the way in which such results were
obtained for the finite scheme where first limiting results were proven under certain conditions
but it was later shown that a sufficient condition was that the variance of the random variable be-
ing considered tends to infinity. More recently, in 2007, Gnedin et al. [8] provided an overview
of the known results relating to the infinite scheme. Additionally, in 2008, Hwang and Janson
were able to produce local limit theorems for the number of empty boxes in both the finite and
infinite schemes with the single condition that the variance of the number of empty boxes tends
to infinity [22].
This thesis will focus on a multiple-layer scheme with a finite number of boxes but it is inter-
esting to understand how things change with an infinite number of boxes and the methods used
to establish results in this case. This multiple-layer scheme is set up as follows. We start by
allocating n shots independently to N boxes as is done in the standard shots and boxes scheme
used in the above papers. We shall specify that a uniform probability distribution is used so
that the probability of a particular shot landing in any box is given by 1/N. Now, we want to
add additional layers and this is where the scheme starts to differ from the established literature.
In every layer the number of boxes will be the same so that N is fixed throughout the layers.
Also, in every layer, shots are thrown independently according to the equiprobable distribution.
From layer two onwards, the number of shots thrown into that layer is given by the number of
occupied boxes in the previous layer. As in the single layer shots-and-boxes scheme, we have
that if two or more shots lands in the same box in any given layer then they merge together. Let
S(k) be a random variable denoting the number of shots thrown into layer k and let R∗(k,N) be
the number of occupied boxes in layer k of the scheme with N boxes. Then the number of shots
thrown into each layer is dictated as follows:

1. The first layer of the scheme involves n shots being scattered into N boxes giving R∗(1,N).

2. For layer two S(2) = R∗(1,N) shots are allocated in N boxes.

3. This process is continued throughout the layers where S(k) = R∗(k− 1,N). That is, the
number of shots thrown into layer k is equal to the number of occupied boxes in the
previous layer.

4. So, the probability distribution for S(k) is given by the probability distribution for
R∗(k−1,N).
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1.2 Connection to iterations of random functions

Although the multiple-layer scheme has not been studied in terms of shots and boxes it has been
studied in the context of iterations of random functions ([27]-[29]). This thesis does however
provide novel results for this scheme and these will be discussed in detail in the relevant chapters.
The application of a single random function corresponds to the allocation of shots in a single
layer. Additionally, layer k of this multiple-layer scheme corresponds to the composition of k

random functions. One of the questions we might be interested in answering using this multiple-
layer scheme of shots and boxes is the following:

Suppose we observe the sequences of the maternally inherited mitochondrial DNA for a finite

sample of females, how far back in time do we have to go in order to find their Most Recent

Common Ancestor (MRCA)?

Here, the shots would be the finite sample we start with, the boxes would be the population
of females and the number of occupied boxes in a given layer corresponds to the number of
ancestral females of the sample in a certain generation. Suppose we start with four individuals
(labelled A, B, C and D, Figure 1.1) and in the not too distant past individuals C and D share a
common maternal ancestor. Then, some time before this B also shares a common ancestor with
C and D. Finally, after a certain length of time - the time until a most recent common ancestor
- all four individuals have a common ancestor. Hence, the time until a most recent common
ancestor (the “coalescence” time) corresponds to the first time when there is just one occupied
box in the shots and boxes scheme. Now, in terms of iterations of random functions this would
correspond to the minimum number of functions we need to take the composition of until the
size of the output is one.

Figure 1.1: Example of tracing back a sample of four individuals to a MRCA.

In 2015, Zubkov and Serov provided lower and upper bounds for the mean size of the image
after k compositions [27] (i.e., the number of occupied boxes after k layers in terms of shots and
boxes). They also established an upper bound for the variance of the size of this image after k

compositions. In 2016, Serov then explored the scenario where you have two schemes running
at the same time where they both consist of k compositions of random functions [28]. Within
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each scheme the mappings are independent but the two schemes are dependent. He established
a variety of bounds on the associated probabilities and expected values. In 2018, Zubkov and
Serov continued their work from 2015 and established recurrence relations and inequalities for
a random variable that is equivalent to the number of occupied boxes in layer k of the multiple-
layer shots and boxes scheme presented in this thesis [29]. This contrasts with my approach as
I aim to prove distributional results for the number of occupied boxes in any given layer of the
multiple-layer shots and boxes scheme.

1.3 Connection to the Wright-Fisher model

The Wright-Fisher (WF) model [11] specifies that, in a population of N gene copies, the number
of descendants of each gene copy is Pois(1), but in addition, the number of descendants must
sum to N (i.e., population size is assumed to be constant). It follows, using Bayes’ theorem
that the vector of the number of descendants of each gene copy is Mult(N;1/N, . . . ,1/N). This
assumes a labelling of the ancestors, say 1,2, . . . ,N. Let Xi be the random number of descendants
of ancestor i. Note that we are just counting the number of descendants and are not interested
in who the descendants are. Let us now label the gene copies in the descendant generation
1,2, . . . ,N, and randomly choose which of these are the descendants that were counted by the
Xis. It is a random partition of the first N integers given the sizes of the sets in the partition.
We can represent this as a random bipartite graph between the sets of labelled ancestor nodes
and descendant nodes where an edge joins an ancestor to a descendant. Every descendant has
order one and the order of each ancestor i is Xi. This fully labelled WF graph can be generated
from the description just outlined.
However, a graph with the same probability can be generated in an equivalent way which we
will now outline. Suppose you go through the descendant nodes one at a time and connect
them to ancestors (with replacement) uniformly and independently. This then leads to the same
Multinomial distribution for the vector of the order of all of the ancestral nodes (i.e., the number
of their descendants).
Now we can connect this to the multiple-layer shots and boxes scheme. The labelled ancestors
and descendants are boxes, in layers two and one. The descendants boxes are all filled. Their
shots are thrown one at a time uniformly and independently at the ancestral boxes. Connecting
the origin of each shot to its endpoint creates a graph equivalent to (having the same probability
distribution as) the WF graph.
The equivalence through iterated layers follows too. At an arbitrary generation suppose only n

of the gene copies have descendants in the final generation. We can find their ancestors in the
same way. That is, by randomly connecting to n ancestors uniformly with replacement from the
previous generation (just as we chose N ancestors above). This is exactly what we do with shots
in boxes. The n gene copies with descendants in the final generation map into the n filled boxes
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at that layer, which are used to fill (uniformly and independently) the next layer up.

1.4 Aims and structure of this thesis

The aims of this thesis are:

1. to build on the known results for a single-layer allocation of shots to boxes;

2. to illustrate the multiple-layer scheme of shots and boxes and produce explicit formulae
for the expectation, variance and probability generating function for the number of occu-
pied boxes in any given layer for a small example;

3. to extend this to the multiple-layer scheme for the more general scenario with an arbitrary
fixed number of boxes;

4. to establish limit theorems for the distribution of the number of occupied boxes in a given
layer of a multiple-layer shots and boxes model;

5. to indicate where this work fits within the literature and how it could be further developed.

In more detail, Chapter two refreshes some standard techniques for showing that a polynomial
has real roots. Chapter three looks at the multiple-layer shots-and-boxes model for three boxes
as well as considering equivalent formulations of the scheme. I establish explicit, non-recursive
formulae for the expectation, variance and p.g.f. for the number of occupied boxes in any given
layer of the scheme. Chapter four reviews established results for the single-layer process in
more detail to provide necessary context before considering a multiple-layer scheme with more
boxes. In particular, we are interested in the various limit theorems that have been established
and the conditions under which they hold. Chapter five returns to the multiple-layer setting
where we first look at small extensions of the three box case before looking at general N. It
becomes apparent that even adding one or two boxes adds complexity and many of the methods
of proof that worked for three boxes are no longer applicable. This chapter contains the main
novel results. This is where I prove that the p.g.f for the number of occupied boxes in any given
layer of scheme has all real roots and hence establish both normal and Poisson limiting results.
Chapter six mirrors the work undertaken for the number of occupied boxes in this multiple-layer
scheme but we instead look at the difference in the number of occupied boxes in consecutive
layers. As the literature overwhelmingly treats a single-layer process, this quantity does not
naturally arise. Here, I prove that the p.g.f. for the difference in the number of occupied boxes
between consecutive layers has all real roots and once again, normal and Poisson limiting results
are established. Chapter seven summarises and discusses my work as well as considering future
possible extensions.
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Chapter 2

Technical background

One of the main aims of this thesis is to establish limit theorems for the distribution of the
number of occupied boxes in a given layer of a multiple-layer shots and boxes model. In order
to prove such results I will utilise a method of proof that was used by Vatutin and Mikhailov
in 1982 [3]. In simple terms their approach was to show that the p.g.f. of interest has all
real roots by demonstrating it can be obtained by applying a sequence of real-root preserving
transformations to a polynomial which is known to have all real roots. Once we know the p.g.f.
has all real roots we have established that the random variable in question is equivalent to a
sum of independent Bernoulli random variables (not necessarily with the same probability of
success) and then standard limit theorem results follow. In this chapter, various methods of
proving a given polynomial has all real roots will be considered and compared with each other.

2.1 Methods of proving a polynomial has all real roots

Here I want to explore various methods of proving a polynomial has all real roots. By con-
sidering a small number of boxes in the upcoming chapters, the limitations of some of these
approaches will become apparent. The polynomial of specific interest will ultimately be the
probability generating function for the number of occupied boxes or empty boxes.

2.1.1 Discriminant

Let ∆d be the discriminant for a polynomial of degree d. For the quadratic polynomial ax2 +

bx+ c we can determine the nature of the roots using ∆2 = b2− 4ac. If ∆2 > 0 then there are
two distinct real roots. For ∆2 = 0, those roots becomes identical. For the cubic polynomial
ax3 +bx2 + cx+d we consider ∆3 = 18abcd−4b3d+b2c2−4ac3−27a2d2. If ∆3 > 0 then the
cubic has three distinct real roots. For the quartic polynomial ax4 +bx3 + cx2 +dx+ e its roots
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are either all real or all non-real if

∆4 = 256a3e3−192a2bde2−128a2c2e2 +144a2cd2e−27a2d4 +144ab2ce2−6ab2d2e

−80abc2de+18abcd3 +16ac4e−4ac3d2−27b4e2 +18b3cde−4b3d3−4b2c3e

+b2c2d2 > 0.

2.1.2 Kurtz’s theorem

Kurtz established a nice way of checking a polynomial has all real roots provided that the poly-
nomial in question has positive coefficients like a p.g.f. [30]. Consider a polynomial of degree
N of the form

γNxN + γN−1xN−1 + · · ·+ γ0,

where γi > 0 for all i = 0,1, . . . ,N.

Theorem 2.1.1. (Kurtz, Theorem 1 in [30]) Suppose we have a polynomial of degree N (N ≥ 2)
with positive coefficients. If

γ
2
i −4γi−1γi+1 > 0,

(i = 1,2, . . . ,N−1) then the roots of the polynomial are all real and distinct.

That is, Kurtz’s theorem says that if we apply the discriminant for a quadratic to each ordered
triplet of coefficients and they are all positive then we have all real roots.

2.1.3 Wronskian approach

Let f and g be polynomials with real coefficients. Then, the Wronskian of f and g is defined by

W ( f ,g) = f g′−g f ′,

where ′ denotes the first derivative.

Theorem 2.1.2. (Alotaibi, Theorem 5.9 in [31]) If we have a pair of polynomials ( f0, f1) which
both have real coefficients then, if the following conditions hold, f1 will have all real roots.

1. f0 must have all real roots.

2. The degree of f1 must be one more than the degree of f0.

3. W ( f1, f0) must be negative everywhere.
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2.1.4 Vatutin and Mikhailov’s approach

The general idea of Vatutin and Mikhailov’s approach was to show that the polynomial under
consideration can be written as a sequence of real-root-preserving transformations applied to a
polynomial known to have all real roots [3]. By real-root-preserving transformations we mean
those that preserve the number of real roots (including multiplicities) not the roots themselves.
Their method is discussed in detail in Chapter four.

2.1.5 Comparing these methods

We can summarise the main advantage and disadvantage of each of these methods to prove that
a polynomial has all real roots.

Method Main advantage Main disadvantage

Discriminant Simple to check for small N Cannot be used for poly-
nomials of degree greater
than four

Kurtz’s theorem Simple to check for small N It provides a sufficient (but
not necessary) condition
for real roots and is not
satisfied for N above small
values

Wronksian Avoids limitations of the dis-
criminant and Kurtz’s theo-
rem

Difficult to generalise to
all N and k

Vatutin and Mikhailov’s
approach

Worked for all N for one layer Requires that the poly-
nomial can be written
as real root-preserving-
transformations applied
to a polynomial known to
have real roots

2.2 Transformations of polynomials that preserve real roots

Definition 2.2.1. Suppose we have a polynomial p of degree α with all real roots (i.e., with α

real roots). We shall define a transformation T of p to be real-root-preserving if, after applying
T to p, the transformed polynomial also has α real roots.

Let p(x) take the general form

p(x) = aαxα +aα−1xα−1 + · · ·+a1x+a0.
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Define the transformation Ts as follows:

Ts[p](x) = p(x+ s), where s ∈ R. (2.1)

Note that we are just interested in whether the number of real roots has been preserved and not
the values of the roots themselves. As Ts[p] represents a shift of the argument of p by s, if p has
all real roots, then so too will Ts[p]. Since p has α real roots, we can write it as

p(x) = c(x+ r1)(x+ r2) · · ·(x+ rα),

where ri ∈ R and c ∈ R. Then,

p(x+ s) = c(x+ s+ r1)(x+ s+ r2) · · ·(x+ s+ rα),

so Ts[p] will have real roots at −ri− s.
We also define the transformation Td by

Td[p](x) = x
d
dx

p(x). (2.2)

If the polynomial p has α real roots then the derivative dp/dx will have α − 1 real roots by
Rolle’s theorem (Chapter 1, [32]). Multiplying by x then gives us an additional root at zero for
a total of α real roots.
Let Tf be the transformation which flips the order of the coefficients of the polynomial. That is,

Tf [p](x) = xα p(x−1). (2.3)

The transformation Tf preserves the number of real roots when applied to a polynomial with all
real non-zero roots. To see why this is true consider the following. Suppose that r 6= 0 is a root
of

p(x) =
α

∑
i=0

aixi, so
α

∑
i=0

airi = 0 and
α

∑
i=0

airi−α = 0.

Then, changing the summation index by letting j = α− i gives

α

∑
j=0

aα− jr− j = 0.

Hence, if r 6= 0 is a root of the original polynomial, then 1/r is a root of the polynomial after
Tf has been applied. Additionally, we know that if r is real then so too is 1/r, so that if all the
roots of the original polynomial are real then so are the roots of the polynomial after applying
the transformation Tf . Another key property of the transformation Tf is that Tf is self-inverse
when applied to a polynomial with no roots at zero. Suppose p(x) is a polynomial of degree α
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which has no roots at zero. Then, p(x) will have the following general form (where c0 6= 0):

p(x) = cαxα + cα−1xα−1 + cα−2xα−2 + . . .+ c1x+ c0.

Applying Tf once gives

Tf [p](x) = xα
{

cαx−α + cα−1x1−α + cα−2x2−α + . . .+ c1x−1 + c0
}
.

Then, applying Tf again returns the original polynomial,

Tf ◦Tf [p](x) = xα
{

cα + cα−1x−1 + cα−2x−2 + . . .+ c1x1−α + c0x−α
}

= cαxα + cα−1xα−1 + cα−2xα−2 + . . .+ c1x+ c0

= p(x).
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Chapter 3

Multiple-layer shots and boxes scheme
with three boxes

3.1 Chapter outline

This chapter begins by setting up the multiple-layer scheme for three boxes and introducing the
relevant notation. An example illustrating this sequential allocation process over layers is given
in Figure 3.1. I then consider alternative formulations of essentially the same model which is
used in different contexts. Before looking at properties of the p.g.f. for the number of occupied
boxes in any given layer of the scheme, I first derive non-recursive formulae for the probabilities
of having a certain number of occupied boxes. When trying to obtain limiting results for a
distribution one approach is to first show that the random variable of interest can be written as
a sum of independent Bernoullis. The aim is to show this for general N but first I prove it for
this small finite case with three boxes. Finally, a summary of all the results obtained for this
multiple-layer scheme with three boxes is provided.

Figure 3.1: Example of the sequential allocation process for three boxes (where Lfinal is the first
layer where there is just one occupied box).
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3.2 Setting up the scheme

The shots and boxes scheme with multiple layers will be studied. As layers are added or the
number of boxes is increased, it becomes more challenging to obtain exact results so we want
to start by looking at a simple example. Shots will be allocated independently and uniformly.
We start the scheme by throwing three shots into three boxes. If two or more shots land in the
same box then they merge together so that there will be either one, two or three occupied boxes.
We will call this the first layer of the scheme and the probability distribution for the number of
occupied boxes can be easily obtained. Let R∗(k,N) denote the number of occupied boxes in
layer k of the scheme with N boxes. Then,

P
(

R∗(1,3) = 1
)
= 1× 1

3
× 1

3
=

1
9
.

We throw the first shot and it lands in any of the three boxes. The second shot lands in the same
box as the first with probability 1

3 . Finally, the third shot lands in this box with probability 1
3 .

To have three occupied boxes, each shot that is thrown needs to land in a different box, which
happens with probability

P
(

R∗(1,3) = 3
)
= 1× 2

3
× 1

3
=

2
9
.

That is, we throw the first shot into any box and the second then must land in one of the two
other boxes. The third shot then needs to land in the one remaining empty box. Finally,

P
(

R∗(1,3) = 2
)
= 1−P

(
R∗(1,3) = 1

)
−P
(

R∗(1,3) = 3
)
= 1− 1

9
− 2

9
=

2
3
.

Alternatively, to have two occupied boxes, we need two of the shots to merge so we need to
count the number of ways of selecting these two:

(3
2

)
. So,

P
(

R∗(1,3) = 2
)
=

(
3
2

)
×1× 1

3
× 2

3
=

2
3
.

These probabilities can be used to compute the expectation of R∗(1,3) in the usual way:

E
[
R∗(1,3)

]
= 1P

(
R∗(1,3) = 1

)
+2P

(
R∗(1,3) = 2

)
+3P

(
R∗(1,3) = 3

)
=

19
9
.

So far we are still in the well-studied regime where we allocate a fixed number of shots to a fixed
number of boxes [2]. Now, we want to add additional layers and this is where our model starts
to differ from the established literature. In every layer the number of boxes will be the same,
so that here N = 3 throughout the layers. Also, in every layer, shots are thrown independently
according to an equiprobable distribution. From layer two onwards, the number of shots thrown
into that layer is given by the number of occupied boxes in the previous layer. As in the single
layer shots and boxes scheme we have that if two or more shots lands in the same box in any
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given layer then they merge together. Let S(k) be a random variable denoting the number of
shots thrown into layer k and let R∗(k,3) be the number of occupied boxes in layer k of the
scheme with 3 boxes. Then the number of shots thrown into each layer is dictated as follows:

1. Run the first layer of the scheme and record R∗(1,3).

2. For layer two we allocate S(2) = R∗(1,3) shots.

3. Continue this process throughout the layers where S(k) =R∗(k−1,3). That is, the number
of shots thrown into layer k is equal to the number of occupied boxes in the previous layer.

4. So, the probability distribution for S(k) is given by the probability distribution for
R∗(k−1,3).

3.2.1 Layer two

To get the probabilities for R∗(2,3) we need to account for the fact that the number of shots is
now random. Using the Law of Total Probability,

P
(

R∗(2,3) = 1
)
=

3

∑
i=1

P
(

R∗(2,3) = 1|S(2) = i
)
P
(

S(2) = i
)

=
3

∑
i=1

P
(

R∗(2,3) = 1|R∗(1,3) = i
)
P
(

R∗(1,3) = i
)

= 1× 1
9
+

1
3
× 2

3
+

1
9
× 2

9
=

29
81

.

Recall that if two or more shots land in the same box then they merge together so that the number
of shots is non-increasing as we move through the layers. Hence, to have two occupied boxes in
the second layer we must have thrown at least two shots.

P
(

R∗(2,3) = 2
)
=

3

∑
i=2

P
(

R∗(2,3) = 2|S(2) = i
)
P
(

S(2) = i
)

=
3

∑
i=2

P
(

R∗(2,3) = 2|R∗(1,3) = i
)
P
(

R∗(1,3) = i
)

=
2
3
× 2

3
+

2
3
× 2

9
=

16
27

.
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Finally, the only way we can have three occupied boxes in the second layer is if we had three
shots to throw.

P
(

R∗(2,3) = 3
)
= P

(
R∗(2,3) = 3|S(2) = 3

)
P
(

S(2) = 3
)

= P
(

R∗(2,3) = 3|R∗(1,3) = 3
)
P
(

R∗(1,3) = 3
)

=
2
9
× 2

9
=

4
81

.

3.2.2 Layer k

For layer k in general we then have

P
(

R∗(k,3) = 1
)
=

3

∑
i=1

P
(

R∗(k,3) = 1|S(k) = i
)
P
(

S(k) = i
)

=
3

∑
i=1

P
(

R∗(k,3) = 1|R∗(k−1,3) = i
)
P
(

R∗(k−1,3) = i
)

= P
(

R∗(k−1,3) = 1
)
+

1
3
P
(

R∗(k−1,3) = 2
)
+

1
9
P
(

R∗(k−1,3) = 3
)
.

P
(

R∗(k,3) = 2
)
=

3

∑
i=2

P
(

R∗(k,3) = 2|S(k) = i
)
P
(

S(k) = i
)

=
3

∑
i=2

P
(

R∗(k,3) = 2|R∗(k−1,3) = i
)
P
(

R∗(k−1,3) = i
)

=
2
3
P
(

R∗(k−1,3) = 2
)
+

2
3
P
(

R∗(k−1,3) = 3
)
.

P
(

R∗(k,3) = 3
)
= P

(
R∗(k,3) = 3|S(k) = 3

)
P
(

S(k) = 3
)

= P
(

R∗(k,3) = 3|R∗(k−1,3) = 3
)
P
(

R∗(k−1,3) = 3
)

=
2
9
P
(

R∗(k−1,3) = 3
)
.

These are recursive formulae for the occupancy probabilities for each layer which it would be
useful to solve. In particular, this will be helpful when trying to prove results that hold for all
layers with three boxes. Before doing this we can also look at alternative formulations of our
process in terms of Markov chains, iterations of random functions [33] and the Wright-Fisher
model [34].

3.2.3 Markov chain formulation

Recall that we are interested in the number of occupied boxes but not which particular boxes are
occupied. Additionally, the number shots allocated in layer k is given by the number of occupied
boxes in the previous layer. This means that when we consider layer k of the scheme we only
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need to refer to layer k−1 and can disregard what came before it. As a result of this we can also
think of our scheme in terms of Markov chains. Let R∗ be the number of occupied boxes. We
define the transition probabilities as follows,

p(k)i, j (N) = P(going from R∗ = i to R∗ = j in k layers in N boxes).

The one-layer transition matrix for three boxes is given by T and we can also visualise this as in
Figure 3.2.

T =

p(1)33 (3) p(1)32 (3) p(1)31 (3)

p(1)23 (3) p(1)22 (3) p(1)21 (3)

p(1)13 (3) p(1)12 (3) p(1)11 (3)

=

2/9 2/3 1/9
0 2/3 1/3
0 0 1

 .

Figure 3.2: Markov chain representation for the three boxes scheme.

Since we start by throwing exactly three shots then the initial distribution is

Π0 =
[
1 0 0

]
.

So, to find the probabilities of having one, two or three occupied boxes after k layers we need

Πk =
[
1 0 0

]2/9 2/3 1/9
0 2/3 1/3
0 0 1


k

.

We can simplify the k-layer transition matrix as follows

T k =

(2/9)k ak bk

0 (2/3)k 1− (2/3)k

0 0 1

 ,
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where

ak = ak−1

{(
2
9

)k−1

+

(
2
3

)k−1
}
,

and

bk = bk−1

[(
2
9

)k−1

+ak−1

{
1−
(

2
3

)k
}
+1

]
.

Note, that as ak→ 0 and bk→ 1 as n→ ∞, so

T ∞ = lim
k→∞

T k =

0 0 1
0 0 1
0 0 1

 .
Hence, the limiting distribution is

Π∞ = Π0T ∞ =
[
1 0 0

]0 0 1
0 0 1
0 0 1

=
[
0 0 1

]
.

That is, in the limit over layers there will be just one occupied box as expected, since shots are
merging.

3.2.4 Iterations of random functions

Let x(0)s denote the box that shot s is in at the beginning. Suppose we specify that we start with
one shot in each box so we can take x(0)1 = 1, x(0)2 = 2 and x(0)3 = 3. Now, we can apply a function
f1 to each of x(0)1 , x(0)2 and x(0)3 , where f1(x

(0)
i ) = j with probability 1/3 (for j = 1,2,3). For

step two onwards let fk be a particular realisation of the random function which maps from i

(i = 1,2,3) to j with probability 1/3 for j = 1,2,3. Then, after k steps we will have applied a
composition of realisations of this random function to the starting points x(0)1 = 1, x(0)2 = 2 and
x(0)3 = 3. Note that once two points have been mapped to the same value they will then continue
to be mapped to the same point for the remaining steps. For example, suppose f1 and f2 have
the realisations

f1(1) = 1, f1(2) = 2, f1(3) = 1,

f2(1) = 3, f2(2) = 1, f2(3) = 2.

Then, after two steps

f2 ◦ f1(x
(0)
1 ) = 3, f2 ◦ f1(x

(0)
2 ) = 1, f2 ◦ f1(x

(0)
3 ) = 3.
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Now, let x(k)s denote the box that the shot that started in box s is in after k steps. If we count the
number of unique elements in the set {

x(k)1 ,x(k)2 ,x(k)3

}
,

then, this is equivalent to counting the number of occupied boxes in layer k of the shots and
boxes scheme with three boxes.

Figure 3.3: Example of a tree structure generated using either model.

Example 3.2.1. Consider the tree shown in Figure 3.3 where the bottom layer corresponds to
layer one and as we move upwards the layer index increases. The number of nodes in each
layer gives us the number of occupied boxes. Recall we are not interested in the location of the
shots, we just want to count the number of occupied boxes. We can calculate the probability of
obtaining this tree under our shots and boxes scheme as

p(1)3,2(3)p(1)2,2(3)p(1)2,1(3) =
2
3
× 2

3
× 1

3
=

4
27

.

Now, we can obtain the probability of observing this tree using iterations of random functions.
We need our first function to map two of the inputs to the same output (note it does not matter
which two as we are just interested in the number of unique elements in the range space of our
output). The first input maps to any output with probability one. The second maps to the same
value as the first with probability 1/3. The third input maps to a different output to the first two
with probability 2/3. There are

(3
2

)
ways of choosing the two inputs that map to the same output

so putting all of this together gives the probability for the first step,(
3
2

)
× 2

3
× 1

3
=

2
3
.

Now, the two inputs that were mapped to the same output in the first step will automatically go
to the same output regardless of what function is used in step two. Then, the remaining input
is mapped to a different output with probability 2/3. Finally, in step three we need that this
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remaining input now maps to the same output as the other two which happens with probability
1/3. Putting all of this together gives the probability of this tree using iterations of random
functions,

2
3
× 2

3
× 1

3
=

4
27

.

So, the probability of observing this particular tree structure is the same regardless of whether it
is generated using the shots and boxes scheme or iterations of random functions.

3.2.5 Wright-Fisher model

Suppose the population size is set to three. Recall the earlier discussion of the connection
between the multiple-layer shots and boxes scheme and the Wright-Fisher model (1.3). This
allows us to think of the WF model as follows here. In the present, each individual picks an
ancestor in the previous generation with probability 1/3. We repeat this process of descendants
picking ancestors uniformly at random from the previous generation. We can then trace the
ancestry of our starting sample of three individuals to obtain a tree. Note that the first point
where our tree has a single branch is the point at which we reach the MRCA. Counting the
number of branches at a particular step in this model then corresponds to counting the number
of occupied boxes at a particular layer of the shots and boxes scheme. These two models are
equivalent in the sense that the probability of obtaining a certain tree structure will be the same
for both.

Example 3.2.2. Suppose we consider the same tree structure as we did for iterations of random
functions. In the first layer the first individual picks any ancestor with probability one. The
second picks the same ancestor as the first with probability 1/3. The third picks a different
ancestor to the first two with probability 2/3. We also need to multiply this by the number of
ways of choosing the two individuals that pick the same ancestor in the previous generation
which is

(3
2

)
. So, for the first layer the probability is,(

3
2

)
× 1

3
× 2

3
=

2
3
.

Now, we have two individuals. The first picks any ancestor in the previous generation with
probability one. The second picks a different ancestor with probability 2/3. For the final step
we need that the second individual picks the same ancestor as the first which happens with
probability 1/3. Putting this together, the probability of observing this tree structure under the
Wright-Fisher model is

2
3
× 2

3
× 1

3
=

4
27

.

Note that this is the same probability that we obtained for both the shots and boxes scheme and
iterations of random functions.
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3.2.6 Finding non-recursive formulae for the occupancy probabilities

Since the only way there can be three occupied boxes in layer k is if we have three shots to throw
from the previous layer, it is easy to see that

P
(

R∗(k,3) = 3
)
= p(k)3,3(3) =

(
p(1)33

)k
=

(
2
9

)k

.

The probability of having two occupied boxes in layer 2 is

P
(

R∗(2,3) = 2
)
= p(1)33 (3)p(1)32 (3)+ p(1)32 (3)p(1)22 (3) =

2
9
× 2

3
+

2
3
× 2

3
.

For layer three,

P
(

R∗(3,3) = 2
)
= p(1)33 (3)p(1)33 (3)p(1)32 (3)+ p(1)33 (3)p(1)32 (3)p(1)22 (3)+ p(1)32 (3)p(1)22 (3)p(1)22 (3)

=

(
2
9

)2

× 2
3
+

2
9
×
(

2
3

)2

+

(
2
3

)3

.

In general we have,

P
(

R∗(k,3) = 2
)
=

(
2
3

)k

+

(
2
3

)k−1(2
9

)
+

(
2
3

)k−2(2
9

)2

+ · · ·+
(

2
3

)(
2
9

)k−1

,

each term corresponding to the drop from three to two shots in a distinct layer. Using,

x j−1 + x j−2y+ · · ·+ xy j−2 + y j−1 =
x j− y j

x− y
(x 6= y),

we get

P
(

R∗(k,3) = 2
)
=

(
2
3

)k+1

−
(

2
9

)k+1

2
3
− 2

9

−
(

2
9

)k

.

Finally, P
(

R∗(k,3) = 1
)

follows from the condition that, for any given k,

3

∑
i=1

P
(

R∗(k,3) = i
)
= 1.
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Now, we have non-recursive formulas for the occupancy probabilities in every layer (k ≥
1) of the scheme with three boxes:

P(R∗(k,3) = 3) = p(k)3,3(3) =
(

2
9

)k

, (3.1)

P(R∗(k,3) = 2) = p(k)3,2(3) =
3
2

{(
2
3

)k

−
(

2
9

)k
}
, (3.2)

P(R∗(k,3) = 1) = p(k)3,1(3) = 1− 1
2

{
3
(

2
3

)k

−
(

2
9

)k
}
. (3.3)

As expected, the probability of having only one occupied box increases with k whilst the
probability of two or three decreases as we move through the layers (Figure 3.4).

Figure 3.4: Probabilities of occupancy numbers for the first 10 layers when N = 3.

Using (3.1)-(3.3) we can obtain a non-recursive formula for the expected number of occupied
boxes in layer k:

E [R∗(k,3)] = 1+
3
2

(
2
3

)k

+
1
2

(
2
9

)k

.

Since

E
(
{R∗(k,3)}2

)
= 1+

9
2

(
2
3

)k

+
7
2

(
2
9

)k

,

then

Var
(

R∗(k,3)
)
=

3
2

(
2
3

)k

+
5
2

(
2
9

)k

− 9
4

(
4
9

)k

− 3
2

(
4

27

)k

− 1
4

(
4

81

)k

.
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We can consider how both the expectation and variance evolve as we move through layers (Fig-
ure 3.5). These non-recursive formulae for the probabilities and the first two moments are not
in the existing literature as previous authors were focussing on throwing a fixed number of shots
into a single layer, although Kolchin et al. considered a scheme where a random number of
shots was allocated to a single layer and produced a formula for the expected number of occu-
pied boxes given the distribution for the number of shots [2].

Figure 3.5: Expectation (left) and variance (right) of R∗(k,3) for the first 10 layers.

3.2.7 Parameter reduction

In the first layer we have only three possible transitions to consider:

3→ 1, 3→ 2 and 3→ 3.

Then, when we move to the second layer and beyond we also need to consider

2→ 1 and 2→ 2,

since, for example.
p(2)32 = p(1)33 p(1)32 + p(1)32 p(1)22 .

Recall that the first layer is effectively characterised by two parameters since the three occupancy
probabilities must sum to one. The probabilities for two shots in three boxes will have the same
constraint so that they are only adding one additional parameter. However, this is where selecting
an equiprobable distribution for allocating the shots proves useful. The transition probabilities
for three shots can be written in terms of those for two shots. For example, to have one occupied
box after throwing three shots we take the probability of having one occupied box after two
shots and multiply it by the probability of this third shot landing in the same box as the previous
two. That is,

p(1)31 (3) = p(1)21 (3)×
1
3
.
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So
p(1)21 (3) = 3p(1)31 (3) and p(1)22 (3) = 1− p(1)21 (3) = 1−3p(1)31 (3).

So, the entire probability tree for three boxes for any number of layers can be parameterised in
terms of just two probabilities.

3.3 Real roots

3.3.1 Motivation

One approach for proving distributional results of a random variable is to first show that its
probability generating function (p.g.f.) has all real roots [3]. As a result of this, the random
variable in question can be written as a sum of independent Bernoulli random variables. Then,
standard limit theorems can be applied to ascertain, for example, normal or Poisson limiting
distributions. Vatutin and Mikhailov [3] proved that for a single layer with a fixed number of
boxes and shots the p.g.f. for the number of occupied boxes has all real roots. I want to be able
to prove equivalent results for the multi-layer scheme where the additional complexity now is
that from the second layer onwards the number of shots thrown is random. Before considering
the scenario for general N it will be instructive to provide explicit proofs for the scheme with
three boxes.

Discriminant approach

For three boxes there will be either one, two or three occupied boxes so that the p.g.f for the
number of occupied boxes in any layer of the process will be of the form

a1x3 +b1x2 + c1x = x(a1x2 +b1x+ c1).

Suppose we impose the condition that this p.g.f. must have real roots. From the above, we
certainly have one real root at x = 0. If we have all real roots then the discriminant b2

1−4a1c1 ≥
0. Applying the Law of Total Probability we get that the p.g.f for the number of occupied boxes
in the next layer will be

c1x+b1x
(

2
3

x+
1
3

)
+a1x

(
2
9

x2 +
2
3

x+
1
9

)

= x
{

x2
(

2
9

a1

)
+ x
(

2
3

b1 +
2
3

a1

)
+

(
c1 +

1
3

b1 +
1
9

a1

)}
.
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Again, there is one real root at x = 0. For the remaining two roots, consider the discriminant of
the quadratic factor

∆2 =

(
2
3

b1 +
2
3

a1

)2

−4
(

2
9

a1

)(
c1 +

1
3

b1 +
1
9

a1

)
=

28
81

a2
1 +

4
9

b2
1 +

16
27

a1b1−
8
9

a1c1.

From the assumption that the p.g.f. for the number of occupied boxes in the previous layer has
all real roots, we have

b2
1 ≥ 4a1c1 =⇒ 4

9
b2

1 ≥
16
9

a1c1 ≥
8
9

a1c1.

Therefore,
28
81

a2
1 +

4
9

b2
1 +

16
27

a1b1−
8
9

a1c1 ≥
28
81

a2
1 +

16
27

a1b1 ≥ 0.

Hence, the p.g.f. for the number of occupied boxes will have all real roots if the p.g.f. from the
previous layer had all real roots. Now, recall for three boxes the p.g.f. for layer one is

2
9

x3 +
2
3

x2 +
1
9

x = x
(

2
9

x2 +
2
3

x+
1
9

)
.

We have one real root at x = 0 and(
2
3

)2

−4
(

2
9
× 1

9

)
> 0,

so that all the roots are real. Then, by the above proof the roots for the p.g.f. for R∗(2,3) will
all be real which in turn means the p.g.f. for R∗(3,3) has all real roots and so on. Therefore, by
induction, I have established for three boxes that the p.g.f. for R∗(k,3) will have all real roots
for all k. This method works nicely for three boxes but we do not have useful expressions for
the discriminant of a polynomial with degree greater than four [35].
Now, we want to explore different methods of showing that the p.g.f. has all real roots for all
layers with the aim of extending our proof to schemes with a larger number of boxes. Note the
condition of the p.g.f. for the number of thrown shots having all real roots is sufficient but not
necessary for the p.g.f. of the number of occupied boxes to have all real roots. We have already
shown it is sufficient above but to show that it is not necessary we can consider an example.
Note that the coefficients used below were obtained by considering a range of possible values in
search of a counter-example.

Example 3.3.1. Suppose the p.g.f. for the number of shots thrown into layer k was

x
(
0.2929293x2 +0.4713805x+0.2356902

)
.
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Then, we have one real root at x = 0 but

0.47138052−4×0.2929293×0.2356902 < 0,

so there are two complex roots. Now, when we obtain the p.g.f. for R∗(k,3) we get

0.2356902x+0.4713805x
(

2
3

x+
1
3

)
+0.2929293x

(
2
9

x2 +
2
3

x+
1
9

)
≈ x
(
0.065x2 +0.510x+0.425

)
.

Again, we have one real root at x = 0. Now, the discriminant is positive, however. Hence, we
have an example where the p.g.f. for R∗(k,3) has all real roots but the p.g.f. for the number of
shots thrown had non-real roots.

3.3.2 Kurtz’s theorem

We want to find a method of showing that our p.g.f. has all real roots without using the discrimi-
nant as we need to apply this to general N. Kurtz established a way of checking a polynomial has
all real roots provided that the polynomial in question has positive coefficients [30]. Consider a
general polynomial of degree N with the following form

γNxN + γN−1xN−1 + · · ·+ γ0,

where γi > 0 for all i = 0,1, . . . ,N.

Theorem 3.3.1. (Kurtz, Theorem 1 in [30]) Suppose we have a polynomial of degree N (N ≥ 2)
with positive coefficients. If

γ
2
i −4γi−1γi+1 > 0,

(where i = 1,2, · · · ,N−1) then the roots of the polynomial are all real and distinct.

Kurtz’s theorem says that if we apply the discriminant formula for a quadratic to each ordered
triplet of coefficients and they are all positive then we have all real roots. The result applies
to polynomials of degree at least two which have all positive coefficients, both of which are
properties satisfied by our p.g.f.s. Since we have already seen that the discriminant is positive
for all layers for three boxes then we know that Kurtz’s theorem applies. However, as we start
increasing N, we find that the conditions of this theorem are no longer satisfied. As these are
sufficient but not necessary conditions, this does not mean that the p.g.f. does not have real roots
in these examples, but we can not use this theorem to prove we do.

Example 3.3.2. Suppose we start with ten boxes and shots and want to check Kurtz’s condition
holds for the first layer. We obtain the following p.g.f. for the first layer by considering all of the
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probabilities individually (the coefficients come from the probability of zero merges, one merge,
etc when we start with throwing ten shots into ten boxes),

gR∗(1,10)(x) = 0.00036288x10 +0.0163296x9 +0.13608x8 +0.3556224x7

+0.34514424x6 +0.1285956x5 +0.01718892x4 +0.00067176x3

+0.000004599x2 +10−9x.

We can now check Kurtz’s condition for each triplet of coefficients. It turns out that the condition
does not hold here since, for example, when i = 5,

0.017188922−4×0.1285956×0.00067176 < 0.

Therefore, although Kurtz’s method is an effective way of showing the p.g.f. has all real roots
for small N, it fails even for ten boxes.

3.3.3 Wronskian approach

Yet another approach that can be used to prove a polynomial has all real roots is using a quantity
called the Wronskian. Let f and g be polynomials with real coefficients. Then, the Wronskian
of f and g is defined by

W ( f ,g) = f g′−g f ′,

where ′ denotes the first derivative.

Theorem 3.3.2. (Alotaibi, Theorem 5.9 in [31]) If we have a pair of polynomials ( f0, f1) which
both have real coefficients then, if the following conditions hold, f1 will have all real roots [31].

1. f0 must have all real roots.

2. The degree of f1 must be one more than the degree of f0.

3. W ( f1, f0) must be negative everywhere.

Now, before being able to use this theorem we need to decide how to define f0 and f1 for
each choice of N and k. For now let us fix N = 3 and let f (k)0 , f (k)1 be the f0 and f1 we take
for the kth layer. Let R∗(k,N) be the number of occupied boxes in layer k of the scheme for N

boxes. Then, the p.g.f. for R∗(k,3) is given by

gR∗(k,3)(x) =
3

∑
i=1

P
(

R∗(k,3) = i
)

xi = x
3

∑
i=1

P
(

R∗(k,3) = i
)

xi−1.

Take

f (k)0 (x) =
1
x

gR∗(k,2)(x) =
2

∑
i=1

P
(

R∗(k,2) = i
)

xi−1,
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and

f (k)1 (x) =
1
x

gR∗(k,3)(x) =
3

∑
i=1

P
(

R∗(k,3) = i
)

xi−1. (3.4)

Recall we let p(k)i j (N) denote the probability of going from i shots to j over k layers in the scheme
with N boxes. For layer k,

f (k)0 (x) = p(k)22 (2)x+ p(k)21 (2) =
(

1
2

)k

x+

[
1−
(

1
2

)k
]
.

This is because if we have two shots in a given layer then we must have had two shots in all the
previous layers since the number of shots is non-increasing as we move through layers. Now,
from (3.4),

f (k)1 (x) = p(k)33 (3)x
2 + p(k)32 (3)x+ p(k)31 (3).

The aim of applying this theorem is to show that the p.g.f. for layer k with three boxes has all
real roots. This p.g.f. is x f (k)1 (x). There is clearly one real root at x = 0 but to show all the roots
are real we need to show that f1 has real roots. To do this with the Wronskian approach, the
three conditions of Theorem 3.3.2 must be satisfied.

Lemma 3.3.1. gR∗(1,3)(x) has all real roots.

Proof. For the first layer with three boxes the Wronskian is

W
(

f (1)1 , f (1)0

)
(x) =−1

9
x2− 2

9
x− 5

18
.

One way of showing this is always negative is to show it has a negative maximum value. To find
the maximum of this we take the first derivative and set it equal to zero to get the turning point
at x =−1 (and the second derivative is negative there so we do indeed have a maximum). So

W
(

f (1)1 , f (1)0

)
(x)≤W

(
f (1)1 , f (1)0

)
(−1) =−1

6
< 0.

Hence for the first layer the p.g.f. for the number of occupied boxes has all real roots.

Lemma 3.3.2. gR∗(k,3)(x) has all real roots (k ≥ 1).

Proof. For any layer k, the Wronskian takes the form

W
(

f (k)1 , f (k)0

)
(x) = x2

{
−
(

1
9

)k
}
+ x

{(
1
9

)k

(2)+
(

2
9

)k

(−2)

}

+

{
−3

2

(
2
3

)k

+

(
1
2

)k

+
3
2

(
2
9

)k

−
(

1
9

)k
}
,
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which has a turning point at x = 1−2k (where the second derivative is negative). Now, plugging
this back in will give us the maximum

W
(

f (k)1 , f (k)0

)(
1−2k

)
=−

(
1
9

)k(
1−2k

)2
−

{
2
(

2
9

)k

−2
(

1
9

)k
}(

1−2k
)

+

{
−3

2

(
2
3

)k

+

(
1
2

)k

+
3
2

(
2
9

)k

−
(

1
9

)k
}
.

After expanding and simplifying we compare the magnitude of the positive and negative terms

+ve : 2k+1
(

2
9

)k

+

(
1
9

)k

+

(
1
2

)k

+
3
2

(
2
9

)k

,

|− ve| : 22k
(

1
9

)k

+2
(

2
9

)k

+
3
2

(
2
3

)k

+

(
1
9

)k

.

We have

2k+1
(

2
9

)k

+

(
1
2

)k

3
2

(
2
3

)k =
4
3

(
2
3

)k

+
2
3

(
3
4

)k

.

Now,
4
3

(
2
3

)k

<
1
2

for k ≥ 3,

2
3

(
3
4

)k

<
1
2

for k ≥ 2.

Hence, for k ≥ 3,

2k+1
(

2
9

)k

+

(
1
2

)k

3
2

(
2
3

)k < 1.

Also, we have,
3
2

(
2
9

)k

2
(

2
9

)k =
3
4
< 1.

Therefore we have shown that for k≥ 3 the maximum value the Wronskian can take is negative.
For k = 1 we have already explicitly done these calculations so all that remains is to show this
holds for the second layer. In layer two, the maximum occurs at x =−3 where

W
(

f (2)1 , f (2)0

)
(−3) =− 79

324
.
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3.4 Bernoulli sum

Recall that the reason to show that the p.g.f. for the number of occupied boxes has all real roots
was that this then means it can be written as a sum of independent Bernoulli random variables.
Then, we can apply standard limit theorems to, for example, establish a normal or Poisson
limiting distribution. We could instead show directly that the number of occupied boxes in a
given layer can be written as a sum of independent Bernoulli random variables. As usual when
we have an idea for the general scheme we first test it out on a small number of boxes and ensure
two things:

1. the result we are hypothesising does indeed hold for the first layer with three boxes, and,

2. we can prove the result holds for all layers for three boxes.

In the first layer with three boxes we have

P
(

R∗(1,3) = 1
)
= p(1)3,1(3) =

1
9
,

P
(

R∗(1,3) = 2
)
= p(1)3,2(3) =

2
3
,

P
(

R∗(1,3) = 3
)
= p(1)3,3(3) =

2
9
.

We want to represent R∗(1,3) as a sum of three independent Bernoulli random variables. Let

R∗(1,3) = X (1)
1 +X (1)

2 +X (1)
3 ,

where
X (1)

1 ∼ Be(1), X2 ∼ Be
(

θ
(1)
2

)
, X3 ∼ Be

(
θ
(1)
3

)
.

Note that one of the Bernoulli random variables always takes the value one since there is al-
ways at least one occupied box. Setting the probabilities for each value of R∗(1,3) equal to the
corresponding Bernoulli probabilities gives

P(R∗(1,3) = 1) = p(1)3,1(3) = P(X (1)
2 = 0)P(X (1)

3 = 0),

P(R∗(1,3) = 2) = p(1)3,2(3) = P(X (1)
2 = 1)P(X (1)

3 = 0)+P(X (1)
2 = 0)P(X (1)

3 = 1),

P(R∗(1,3) = 3) = p(1)3,3(3) = P(X (1)
2 = 1)P(X (1)

3 = 1).

30



So, for layer one,

p(1)3,1(3) =
1
9
=
(

1−θ
(1)
2

)(
1−θ

(1)
3

)
,

p(1)3,2(3) =
2
3
= θ

(1)
2

(
1−θ

(1)
3

)
+θ

(1)
3

(
1−θ

(1)
2

)
,

p(1)3,3(3) =
2
9
= θ

(1)
2 θ

(1)
3 .

Solving for θ
(1)
2 and θ

(1)
3 gives

θ
(1)
2 =

5+
√

7
9

and θ
(1)
3 =

5−
√

7
9

.

Therefore,
R∗(1,3) = X (1)

1 +X (1)
2 +X (1)

3 ,

with

X (1)
1 ∼ Be(1), X (1)

2 ∼ Be

(
5+
√

7
9

)
, X (1)

3 ∼ Be

(
5−
√

7
9

)
,

(where the order of the θs is not important). We now consider the second layer of the process to
give an idea of how the θs change through the layers. For the second layer we have to consider
the transition probabilities over two layers:

P(R∗(2,3) = 1) = p(2)3,1(3) = p(1)3,1(3)p(1)1,1(3)+ p(1)3,2(3)p(1)2,1(3)+ p(1)3,3(3)p(1)3,1(3) =
29
81

,

P(R∗(2,3) = 2) = p(2)3,2(3) = p(1)3,2(3)p(1)2,2(3)+ p(1)3,3(3)p(1)3,2(3) =
16
27

,

P(R∗(2,3) = 3) = p(2)3,3(3) = p(1)3,3(3)p(1)3,3(3) =
4

81
.

We write
R∗(2,3) = X (2)

1 +X (2)
2 +X (2)

3 ,

where,
X (2)

1 ∼ Be(1), X (2)
2 ∼ Be

(
θ
(2)
2

)
, X (2)

3 ∼ Be
(

θ
(2)
3

)
.

Setting the probabilities for the values of R∗(2,3) equal to the corresponding Bernoulli proba-
bilities and solving gives

θ
(2)
2 =

28+2
√

115
81

and θ
(2)
3 =

28−2
√

115
81

.
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So, the distribution of R∗(2,3) can be written as a sum of independent Bernoulli random vari-
ables with parameters

θ
(2)
1 = 1, θ

(2)
2 =

28+2
√

115
81

, θ
(2)
3 =

28−2
√

115
81

.

Repeating this process for the third layer gives

θ
(3)
1 = 1, θ

(3)
2 =

164+2
√

5266
729

, θ
(3)
3 =

164−2
√

5266
729

.

Note that there is always one parameter equal to one so that we expect the remaining parameters
tend to zero since the number of shots is non-increasing as we move through the layers. This is
consistent with the pattern in the first three layers:

Layer 1 : θ
(1)
1 = 1, θ

(1)
2 ≈ 0.85, θ

(1)
3 ≈ 0.26,

Layer 2 : θ
(2)
1 = 1, θ

(2)
2 ≈ 0.61, θ

(2)
3 ≈ 0.08,

Layer 3 : θ
(3)
1 = 1, θ

(3)
2 ≈ 0.42, θ

(3)
3 ≈ 0.026.

But it is not clear what form θ
(k)
2 and θ

(k)
3 would take in general. We can, however derive a

non-recursive formula for the parameters in layer k. Note that

E [R∗(k,3)] = 1+θ
(k)
2 +θ

(k)
3 =⇒ θ

(k)
3 = E [R∗(k,3)] = 1−θ

(k)
2 .

Recall,

P
(

R∗(k,3) = 3
)
= p(k)3,3(3) =

(
2
9

)k

= θ
(k)
2 θ

(k)
3 .

So, from the above,

θ
(k)
2

(
E [R∗(k,3)]−1−θ

(k)
2

)
=

(
2
9

)k

=⇒ θ
(k)
2 E [R∗(k,3)]−θ

(k)
2 −

{
θ
(k)
2

}2
=

(
2
9

)k

=⇒
{

θ
(k)
2

}2
−θ

(k)
2 {E [R∗(k,3)]−1}+

(
2
9

)k

= 0.

This means that, for layer k, the two θs that will allow us to write R∗(k,3) as a sum of indepen-
dent Bernoullis are given by

1
2

E [R∗(k,3)]−1±

√
{1−E [R∗(k,3)]}2−4

(
2
9

)k
 .

32



Plugging the expression for the expected value of R∗(k,3) into the above gives a non-recursive
formula for the two θs in every layer for three boxes:

1
2

(2
9

)k

+
9
4

{(
2
3

)k+1

−
(

2
9

)k+1
}
±

√√√√{−(2
9

)k

− 9
4

{(
2
3

)k+1

−
(

2
9

)k+1
}}2

−4
(

2
9

)k

 .
How important is the structure of the p.g.f.s for R∗(k,N)

It can be easier to prove a more general result and here we can try and understand how strict
we need to be in the conditions imposed on the p.g.f.s. In particular, instead of focussing on the
specific form of the p.g.f.s for R∗(k,N) for three boxes, we could instead start with a general
quadratic and try to understand under what conditions these will still have real roots as we move
through the layers. We can start off with minimal conditions and try to find a counter-example.
If we can find such an example then we need to add more conditions but if we cannot then we can
try and prove that these conditions are sufficient. Start with a quadratic with all real roots (b2−
4ac ≥ 0) whose coefficients are probabilities. We then multiply the coefficients by a sequence
of positive, monotonically increasing numbers. The resulting quadratic has coefficients which
are probabilities and they sum to one.

Example 3.4.1. Suppose we start with the following quadratic,

1
5

x2 +
3
5

x+
1
5
.

Then, the discriminant is

∆2 =

(
3
5

)3

−4
(

1
5

)(
1
5

)
=

1
5
> 0.

Now, we take this first coefficient multiplied by 1/5, the second multiplied by 2/5 and the third
by 18/5. This gives us a new quadratic

1
25

x2 +
6

25
x+

18
25

.

We can check the discriminant,

∆2 =

(
6

25

)2

−4
(

1
25

)(
18
25

)
=− 36

625
< 0.

These initial conditions were not sufficient and we need to consider something else. Recall
there are simple formulae for P(N→ N) and P(N→ 1) for the first layer of our scheme which
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would correspond to the starting quadratic here. For layer one,

P(N→ N) =
(N−1)!

NN−1 , P(N→ 1) =
1

NN−1 .

Hence,
P(N→ N) = (N−1)!P(N→ 1).

For N = 3,
P(3→ 3) = 2P(3→ 1).

That is, in addition to our original conditions we could start with a quadratic in which the first
coefficient is twice the last one.

Example 3.4.2. Suppose we start with the following quadratic,

2
6

x2 +
1
2

x+
1
6
.

We can check that this does indeed give us real roots,

∆2 =

(
1
2

)2

−4
(

2
6

)(
1
6

)
=

1
36

> 0.

Now, we take the first term multiplied by 3/5, the second by 4/5 and the third by 12/5. Then,
the resulting quadratic is,

1
5

x2 +
2
5

x+
2
5
.

We can check the discriminant,

∆2 =

(
2
5

)2

−4
(

1
5

)(
2
5

)
=− 4

25
< 0.

Again, we can see that we need to impose more conditions. We can add another condition
that the first coefficient for the jth transformation is the first coefficient from the quadratic we
start with raised to the power j+1.

Example 3.4.3. Suppose we start with the following quadratic,

2
6

x2 +
1
2

x+
1
6
.

Then,

∆2 =

(
1
2

)2

−4
(

2
6

)(
1
6

)
=

1
36

> 0.

We can multiply the first coefficient by 2/6, the second by 3/6 and the third by 23/6. We then
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get the new quadratic,
1
9

x2 +
1
4

x+
23
36

.

We can check if we have real roots,

∆2 =

(
1
4

)2

−4
(

1
9

)(
23
36

)
=− 287

1296
< 0.

Again, we need stronger conditions. We can add the condition that for the first transforma-
tion the second coefficient is given by the second coefficient from the quadratic we started with
multiplied by the sum of the first two coefficients fro the same quadratic. Then, for transforma-
tion j, we have that the second coefficient is equal to the second coefficient from the quadratic
we started with multiplied by the sum of the first two coefficients from transformation j−1.

Example 3.4.4. Suppose we start with the following quadratic,

2
6

x2 +
1
2

x+
1
6
.

We can check that we have real roots,

∆2 =

(
1
2

)2

−4
(

2
6

)(
1
6

)
=

1
36

> 0.

We can multiply the first term by 2/6, the second by 5/6 and the third by 17/6. The resulting
quadratic is,

1
9

x2 +
5
12

x+
17
36

.

We can check the discriminant,

∆2 =

(
5

12

)2

−4
(

1
9

)(
17
36

)
=− 47

1296
< 0.

We still need more conditions. Suppose we add the condition that the coefficient of the x

term in the quadratic we start with is greater than 0.52. We can now prove by induction that
after any integer number of transformations under all of the above conditions we preserve the
property of having real roots. To be clear our (somewhat contrived) conditions are the following.

1. Start with a quadratic with real roots with coefficients that are probabilities so they are
between zero and one and sum to one.

2. Multiply the coefficients by a sequence of positive, monotonically increasing numbers.

3. The resulting quadratic has coefficients which are probabilities so they are between zero
and one and sum to one.
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4. In the quadratic we start with we require that the first coefficient is twice the last one.

5. The first coefficient for the jth transformation if the first coefficient from the quadratic we
start with raised to the power j+1.

6. For the first transformation the second coefficient is given by the second coefficient from
the quadratic we started with multiplied by the sum of the first coefficients from that same
quadratic. Then, for transformation j, we have that the second coefficient is equal to the
second coefficient from the quadratic we started with multiplied by the sum of the first
two coefficients from transformation j−1.

7. The coefficient of the x term in the quadratic we start with is greater than 0.52.

Proof. We start with a quadratic of the form,

2ax2 +bx+a,

where,
∆2 = b2−4(2a)(a) = b2−8a2 > (0.52)2−8(0.16)2 = 0.0656.

Note that when b = 0.52 we must have a = 0.16 since we require that 3a+b = 1. After the first
transformation we get,

4a2x2 +b(b+2a)x+(1−4a2−b2−2ab).

The discriminant of this is,

∆2 =
(
b2 +2ab

)2−4
(
4a2)(1−4a2−b2−2ab

)
= b4 +4ab3 +4a2b2−16a2 +64a4 +16a2b2 +32a3b.

Since we know that when b = 0.52 we have a = 0.16 we can plug this in to get a lower bound
for the discriminant:

∆2 >
801

390625
= 0.00205056 > 0.

Assumption step: We will assume that the roots are real for the jth transformation. That is, after
transformation j we get a quadratic of the form,

c1x2 + c2x+ c3,

where c2
2−4c1c3 > 0 and c1,c2,c3 are all probabilities (between zero and one and sum to one).

Since we know the first coefficient follows a nice pattern we can rewrite this as:

(2a) j+1 x2 + c2x+ c3.
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Now, after performing transformation j+1 we get,

(2a) j+2 x2 +b
{
(2a) j+1 + c2

}
x+
{

1− (2a) j+2− (2a) j+1− c2

}
.

Now, we need to check the discriminant of this transformed polynomial,

∆2 = (2a)2( j+1)+2(2a) j+1c2 + c2
2−4(2a) j+2{1− (2a) j+2− (2a) j+1− c2

}
= (2a)2( j+1)+2(2a) j+1c2 + c2

2−4(2a) j+2 +4(2a)2( j+2)+4(2a)2 j+3 +4c2(2a) j+2.

By assumption we have,
c2

2−4(2a) j+1c3 > 0.

We can rewrite this as,
c2

2−4(2a) j+1{1− c2− (2a) j+1}> 0

=⇒ c2
2−4(2a) j+1 +4c2(2a) j+1 +4(2a)2( j+1) > 0.

As a result of this,
2ac2

2−4(2a) j+2 +4c2(2a) j+2 +4(2a)2 j+3 > 0.

Now, we know a < 0.16 (since b > 0.52 and we have that 3a+b = 1) so we have that c2
2 > 2ac2

2.
Using this we can obtain a lower bound for ∆,

∆2 > (2a)2( j+1)+2(2a) j+1c2 +2ac2
2−4(2a) j+1 +4(2a)2( j+2)+4(2a)2 j+3 +4c2(2a) j+2

=
{

2ac2
2−4(2a) j+2 +4c2(2a) j+2 +4(2a)2 j+3}+(2a)2( j+1)+2(2a) j+1c2 +4(2a)2( j+2) > 0.

From our assumptions we know that the bracketed term is greater than zero and then we are
adding a sequence of terms which are all greater than zero (since a > 0, c2 > 0) hence the result
is obtained. Therefore, by induction we get all real roots for transformation j where j ∈N under
the described conditions.

Therefore, even in the case where we are considering a quadratic, the conditions required to
ensure real roots are not straightforward.
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3.5 Summary of results for three boxes

Here I recap the main new results from this chapter.

1. The p.g.f. for the number of occupied boxes in any given layer k of the scheme with
three boxes is given by,

gR∗(k,3)(x) =
(

2
9

)k

x2 +
3
2

{(
2
3

)k

−
(

2
9

)k
}

x+

(
1− 1

2

{
2
(

2
3

)k

−
(

2
9

)k
})

.

2. The expected number of occupied boxes in any given layer k of the scheme with
three boxes is given by

E [R∗(k,3)] = 1+
3
2

(
2
3

)k

+
1
2

(
2
9

)k

.

3. The variance of the number of occupied boxes in any given layer k of the scheme
with three boxes is given by

Var [R∗(k,3)] =
3
2

(
2
3

)k

+
5
2

(
2
9

)k

− 9
4

(
4
9

)k

− 3
2

(
4

27

)k

− 1
4

(
4
81

)k

.

4. The p.g.f. of the occupancy number has all real roots for all layers and so the number
of occupied boxes in any layer can be expressed as a sum of independent Bernoulli
random variables. We have shown this using several different methods:

i Discriminant approach,

ii Kurtz’s theorem,

iii Wronskian approach,
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Chapter 4

One layer of the shots and boxes scheme
for general N

Before trying to work with multiple layers of the scheme with N boxes we first need to fully
understand how one layer of this scheme behaves and it has been well-studied both in the finite
[2] and infinite cases ( [8], [23]). Note that the single layer scheme is simpler since in this case
both the number of shots and boxes can be fixed in advance. In the multiple layer scheme we
do fix the number of shots and boxes for the first layer but from the second layer onwards the
number of shots will be random. This means that even if we start with a simple equiprobable
allocation of shots in the first layer we still have to account for the fact that the number of shots
will have a probability distribution of its own after the initial allocation.

4.1 Allocation using a uniform probability distribution

We start with the simplest version of the scheme before adding complexity. Suppose we select
a uniform distribution so that the chance of a shot landing in any given box is the same and
equal to 1/N. We want to know what happens under this scheme as we let both n and N tend to
infinity. Kolchin et al. (Chapter 1, [2]) studied this scheme in detail and were able to identify five
domains under which the limiting distribution of the number of empty boxes is either Poisson
or normal. In this section we will discuss the conditions required for the number of shots and
boxes to be in each of these domains and I will provide examples which satisfy them.

Notation for the finite uniform scheme

Before going any further we shall outline the notation used in this section. Let n be the number
of shots and N be the number of boxes. The ratio of shots to boxes will be denoted by α , where
α := n/N. The number of empty boxes when n shots have been thrown into N boxes is given
by R0(n,N). We shall refer to this simply as R0 throughout. Similarly, Rs(n,N) is the number
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of boxes containing exactly s shots after n shots have been thrown into N boxes. We will refer
to this as Rs throughout. Also, the number of occupied boxes after n shots have been allocated
to N boxes is given by R∗(n,N) and we will refer to this as R∗ for simplicity. The probability
any single shot lands in box i is denoted by pi. Finally, we shall use d−→ to denote convergence
in distribution.

4.1.1 Results for the number of empty boxes

Types of behaviour

Using the ratio of shots to boxes and conditions on the variance of the number of empty boxes we
can distinguish between five domains where the behaviour of the distribution of the number of
empty boxes differs (Chapter 1, [2]). In particular, it can be shown that the limiting distribution
of the number of empty boxes is either Poisson or normal in each of these domains. We shall
discuss each of these domains and their corresponding behaviour in detail.

Left-Hand 0-Domain

By definition, if the ratio of the number of shots to boxes tends to zero and the variance of the
number of empty boxes tends to a finite positive constant as we increase n and N, then we are in
the Left-Hand 0-Domain (I.1, [2]). That is, we are in the Left-Hand 0-Domain if, as n, N → ∞,

α → 0 and Var(R0)→ λ0.

In the Left-Hand 0-Domain we have a small number of shots relative to the number of boxes
meaning that we expect that most shots will land in their own box (since the probability of two
or more shots landing in the same box will be small). Additionally, the variance of the number
of empty boxes tends to a finite positive constant. Hence, we may expect to observe a Poisson
limiting distribution here. When proving the limiting result for this domain, the difference be-
tween the number of empty boxes we actually observe and the number of empty boxes we would
have if every shot went to its own box was considered. It can be shown that the limiting value
of the expectation and variance of this difference is the same as that for R0 itself. An example
of parameter choices which satisfy the necessary conditions of this domain is provided.

Example 4.1.1. Let n be a function of N. Then, an example in the Left-Hand 0-Domain is given
by

n = c
⌊√

N
⌋
,

where c is a finite positive integer and
⌊√

N
⌋

denotes applying the floor function to the square
root of N. Recall that α is the ratio of the number of shots to boxes. To check that we satisfy the
conditions for the Left-Hand 0-Domain we need to first ensure that α tends to zero as n and N
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increase:

α =
n
N

=
c
⌊√

N
⌋

N
→ 0 (as n, N → ∞).

Kolchin et al. established an asymptotic formula for the variance of the number of empty boxes
(I.1, [2]) and we can check this quantity satisfies the conditions of the Left-Hand 0-Domain:

n2

2N
=

(
c
⌊√

N
⌋)2

2N
≤ c2N

2N
=

c2

2
< ∞.

In 1963, Békéssy proved that under the conditions of the Left-Hand 0-Domain, a Poisson
limiting distribution is obtained [4]. An alternative proof was later provided in 1982 by Vatutin
and Mikhailov [3]. They were able to show this result also holds for a more general scheme
where we allocate shots in groups. Here we are considering that we just allocate shots individu-
ally so that our groups are all of size one.

Theorem 4.1.1. [4] In the Left-Hand 0-Domain the local limiting distribution of R0−{N−n}
is Poisson. As n, N → ∞,

P(R0−{N−n}= i)→
λ i

0e−λ0

i!
,

where λ0 = limE(R0).

Left-Hand Intermediate 0-Domain

By definition, if the ratio of the number of shots to boxes tends to zero and the variance of
the number of empty boxes tends to infinity as n and N increase then we are in the Left-Hand
Intermediate 0-Domain (I.1, [2]). That is, we are in the Left-Hand Intermediate 0-Domain if, as
n, N → ∞,

α → 0 and Var(R0)→ ∞.

In the Left-Hand Intermediate 0-Domain it is still specified that the number of shots is small
compared with the number of boxes. However, in this domain, both the expected value and the
variance of the number of empty boxes grow with n and N. This suggests that a Poisson limiting
distribution may not be suitable here. To get an idea of what this behaviour looks like in terms
of the number of shots being a function of the number of boxes we can consider an example.

Example 4.1.2. Let
n =

⌊√
Nlog(N)

⌋
.

Note that

α =
n
N

=

⌊√
Nlog(N)

⌋
N

→ 0 (as n, N → ∞).

We also need to check that the variance condition is satisfied. Using the asymptotic formula for
the variance of the number of empty boxes, we can check that this quantity tends to infinity as
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N increases:

n2

2N
=

⌊√
Nlog(N)

⌋2

2N
≈ N {log(N)}2

2N
=
{log(N)}2

2
→ ∞ as N→ ∞.

The limiting result for the Left-Hand Intermediate 0-Domain was originally proved by Rényi
in 1962 [5] as an extension to the result proved for the Central Domain by Weiss [1].

Theorem 4.1.2. [5] In the Left-Hand Intermediate 0-Domain the limiting distribution of the
standardised version of R0 is the standard Normal distribution. That is, as n, N → ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).

Central Domain

By definition, if the ratio of shots to boxes is bounded above and below by finite positive con-
stants then we are in the Central Domain (I.1, [2]). That, is we are in the Central Domain if, as
n, N → ∞,

0 < a≤ α ≤ b < ∞,

where a and b are finite positive constants. In the Central Domain we have that the number of
shots and boxes are proportional to one another (as n, N → ∞). It also holds that the expected
value and variance of the number of empty boxes tends to infinity as n and N increase. Hence,
we may expect to observe a normal limiting distribution here. We can look at an example in this
domain by considering a function that fluctuates between finite positive constants.

Example 4.1.3. Suppose
n = N b2+ sin(N)c .

The ratio of shots to boxes is bounded above and below by finite positive constants:

α =
n
N

=
N b2+ sin(N)c

N
= b2+ sin(N)c .

The limiting distribution in the Central Domain was originally proven in 1958 by Weiss [1]
who used the method of moments. Later, in 1967, Kolchin et al. provided an alternative proof
using characteristic functions (I.3, [2]).

Theorem 4.1.3. [1] In the Central Domain the limiting distribution of the standardised version
of R0 is the standard Normal distribution. That is, as n, N → ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).
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Right-Hand Intermediate 0-Domain

By definition, if both the ratio of the number of shots to boxes and the expected number of empty
boxes tend to infinity as n and N increase then we are in the Right-Hand Intermediate 0-Domain
(I.1, [2]). That is, we are in the Right-Hand Intermediate 0-Domain if, as n, N → ∞,

α → ∞ and E(R0)→ ∞.

In the Right-Hand Intermediate 0-Domain there is a large number of shots relative to the number
of boxes. Further, the expected value and variance of the number of empty boxes tends to infinity
with n and N. Hence, as in the Left-Hand Intermediate 0-Domain and the Central Domain, we
may expect a limiting distribution which is normal here.

Example 4.1.4. Consider
n = N bloglog(N)c .

Then
α =

n
N

=
N bloglog(N)c

N
= bloglog(N)c → ∞ (as n,N→ ∞).

We also need to check that the condition on the expectation is satisfied,

E(R0) = N
(

1− 1
N

)Nbloglog(N)c
→ ∞ (as n,N→ ∞).

The limiting result for the Right-Hand Intermediate 0-Domain was originally proven by
Rényi in 1962 [5] as an extension to the result proven for the Central Domain by Weiss [1].

Theorem 4.1.4. [5] In the Right-Hand Intermediate 0-Domain the limiting distribution of the
standardised version of R0 is the standard Normal distribution. That is, as n, N → ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).

Right-Hand 0-Domain

By definition, if the ratio of shots to boxes tends to infinity and the expected number of empty
boxes tends to a finite positive constant as n, N increase then we are in the Right-Hand 0-Domain
(I.1, [2]). That is, we are in the Right-Hand 0-Domain if, as n, N→ ∞,

α → ∞ and E(R0)→ λ0 < ∞.

Finally, in the Right-Hand 0-Domain the number of shots is large relative to the number of boxes.
However, the expected value and variance of the number of empty boxes tend to the same finite
positive constant. This suggests that a Poisson limiting distribution may be appropriate here.
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Example 4.1.5. Consider
n = N2.

Note that

α =
n
N

=
N2

N
= N→ ∞ as N→ ∞.

The limiting distribution for the Right-Hand 0-Domain was originally proven by Mises in
1939 [36].

Theorem 4.1.5. [36] In the Right-Hand 0-Domain the local limiting distribution of R0 is Pois-
son. As n, N → ∞,

P(R0 = i)→
λ i

0e−λ0

i!
,

where λ0 = limVar(R0) = limE(R0).

To summarise (Figure 4.1), we observe a Poisson limiting distribution in both the Left-Hand
0-Domain and the Right-Hand 0-Domain. In the Central Domain and the two Intermediate
0-Domains we saw a limiting distribution which is normal.
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4.1.2 Results for the number of boxes containing two or more shots

Types of behaviour

Note that in what follows the distance is calculated as the sum of the absolute differences be-
tween the probabilities in the two distributions being compared. Suppose we are now interested
in counting the number of boxes that contain exactly s shots (s ≥ 2). We can again distinguish
between five domains where the scheme behaves differently by imposing certain conditions
(II.1, [2]). As before, we will have a strict Left-Hand s-Domain and a strict Right-Hand s-
Domain with a Poisson limiting distribution and a Central Domain whose limiting distribution
is normal. However, there now are two Intermediate s-Domains with limiting distributions that
can be either Poisson or normal. Whether Poisson or normal works better depends on whether
we are closer to the strict Left-Hand (Right-Hand) s-Domain or the Central Domain. That is,
it has been shown that as we move from the Left-Hand s-Domain to the Central Domain, the
distance from the Poisson distribution increases whilst the distance to the normal distribution de-
creases. Then, as we move from the Central Domain to the Right-Hand s-Domain, the distance
from the normal distribution increases whilst the distance to the Poisson distribution decreases
(II.5, [2]).

Figure 4.2: Distance to Poisson(ρ1s) and normal distribution(ρ2s) in each domain.

Left-Hand s-Domain

By definition, if the ratio of the number of shots to boxes tends to zero and the expected value
of the number of boxes with s shots tends to a finite positive constant as n and N increase then
we are in the Left-Hand s-Domain (II.1, [2]). That is, we are in the Left-Hand s-Domain if, as
n, N→ ∞,

α → 0 and E(Rs)→ λs.
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In the Left-Hand s-Domain the number of shots is small relative to the number of boxes. Also,
the expected value and variance of the number of boxes containing s shots tend to the same
finite positive constant. Hence, we expect a Poisson limiting distribution may work here. The
proof for the limiting distribution of Rs (the number of boxes containing exactly s shots) in the
Left-Hand s-Domain was originally given by Kolchin in 1966 [37].

Theorem 4.1.6. [37] In the Left-Hand s-Domain the local limiting distribution of Rs (s≥ 2) is
Poisson. As n, N→ ∞,

P(Rs = i)→ λse−λs

i!
,

where λs = limVar(Rs) = limE(Rs).

Left-Hand Intermediate s-Domain

By definition, if the ratio of shots to boxes tends to zero and the expected value of the number
of boxes containing s shots tends to infinity as n and N increase then we are in the Left-Hand
Intermediate s-Domain (II.1, [2]). That is, we are in the Left-Hand Intermediate s-Domain if, as
n, N→ ∞,

α → 0 and E(Rs)→ ∞.

In the Left-Hand Intermediate s-Domain the number of shots is small relative to the number
of boxes. However, now the expected value and variance of the number of boxes containing s

shots tends to infinity as n and N increase. Unlike the cases for s = 0 and s = 1, when we are
looking at the number of boxes with s (s≥ 2) shots, the limiting distribution in the intermediate
domains can be either Poisson or normal. Whether it is closer to Poisson or normal depends
on whether we are closer to the strict Left-Hand s-Domain or the Central Domain. The local
limiting theorems for the Left-Hand Intermediate s-Domain were proven by Kolchin in 1966
using the saddle-point method [37].

Theorem 4.1.7. [37] Let s ≥ 2 be fixed and E(Rs)→ ∞ so that we are closer to the Central
Domain. Then as n,N→ ∞,

P(Rs = k)∼ 1√
2πVar(Rs)

exp

{
−1

2
[k−E(Rs)]

2

Var(Rs)

}
.

Theorem 4.1.8. [37] Let s≥ 2 be fixed and α → 0 so that we are closer to the strict Left-Hand
s-Domain. Then, as n, N→ ∞,

P(Rs = k)→ λ k
s

k!
e−λs,

where λs = limE(Rs).
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Central Domain

By definition, if the ratio of shots to boxes is bounded above and below by finite positive con-
stants then we are in the Central Domain (II.1, [2]). That is, we are in the Central Domain if, as
n N→ ∞,

0 < a≤ α ≤ b < ∞,

where a and b are finite positive constants. In the Central Domain the number of shots and
boxes are proportional to one another (as n, N → ∞). Also, in this domain, the expected value
and variance of the number of boxes with s shots tend to infinity as n and N grow. Therefore, we
expect to have a normal limiting distribution here. The asymptotic normality of Rs in the Central
Domain was proven by Békéssy [4]. The method of moments used to prove the asymptotic
normality of Rs was discussed by Harris and Park [38].

Theorem 4.1.9. [4] In the Central Domain the limiting distribution of the standardised version
of Rs is the standard Normal distribution:

Rs−E(Rs)√
Var(Rs)

d−→N (0,1).

Right-Hand Intermediate s-Domain

By definition, if the ratio of shots to boxes and the expected number of boxes with s shots tend
to infinity with n and N then we are in the Right-Hand Intermediate s-Domain (II.1, [2]). That
is, we are in the Right-Hand Intermediate s-Domain if, as n, N→ ∞,

α → ∞ and E(Rs)→ ∞.

In the Right-Hand Intermediate s-Domain there is a large number of shots relative to the number
of boxes and both the expected value and the variance of the number of boxes containing ex-
actly s shots tend to infinity as n and N increase. As for the Left-Hand Intermediate s-Domain,
the limiting distribution here can be either Poisson or normal. However, here this depends on
whether we are closer to the strict Right-Hand s-Domain or the Central Domain. The local limit-
ing theorems for the Right-Hand Intermediate s-Domain were proven by Kolchin in 1966 using
the saddle-point method [37].

Theorem 4.1.10. [37] Let s ≥ 2 be fixed and E(Rs)→ ∞ so that we are closer to the Central
Domain. Then, as n, N→ ∞,

P(Rs = k)∼ 1√
2πVar(Rs)

exp

{
−1

2
[k−E(Rs)]

2

Var(Rs)

}
.

Theorem 4.1.11. [37] Let s ≥ 2 be fixed and α → ∞ so that we are closer to the strict Right-
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Hand s-Domain. Then, as n, N→ ∞,

P(Rs = k)→ λ k
s

k!
e−λs,

where λs = limE(Rs).

Right-Hand s-Domain

By definition, if the ratio of shots to boxes tends to infinity and the expected number of boxes
containing s shots tends to a finite positive constant as n and N increase then we are in the
Right-Hand s-Domain (II.1, [2]). That is, we are in the Right-Hand s-Domain if, as n, N→ ∞,

α → ∞ and E(Rs)→ λs < ∞.

In the Right-Hand s-Domain the number of shots is large relative to the number of boxes. How-
ever, unlike the Right-Hand Intermediate s-Domain, the expected value and variance of Rs tend
to the same finite positive constant. Thus, we expect to observe a Poisson limiting distribution
here. Erdos and Rényi showed that the limiting distribution of Rs in the Right-Hand s-Domain
is Poisson in 1961 [39].

Theorem 4.1.12. [39] In the Right-Hand s-Domain the local limiting distribution of Rs (where
s≥ 2) is Poisson:

P(Rs = i)→ λ i
se−λs

i!
,

where λs = limVar(Rs) = limE(Rs).

The results for the distribution of the number of boxes containing exactly s (s≥ 2) shots are
summarised in Figure 4.3.
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4.1.3 Relationship between the number of boxes with zero, one or two
shots

In the Left-Hand s-Domain, the probability there are any boxes containing more than s shots
can be bounded above by the expected number of boxes containing s shots [2]. However, in this
domain we have that the expected number of boxes containing more than s shots tends to zero
(II.3, [2]). Hence, if we consider, for example, the Left-Hand 2-Domain then the probability of
having any boxes containing more than two shots tends to zero. This means that all of the boxes
must either contain zero, one or two shots. That is,

R0 +R1 +R2 = N and R1 = n−2R2.

Then, for,

0 <
n2

2N
→ λ < ∞,

the asymptotic properties of R2, R0− (N− n) and (n−R1)/2 are the same. The Right-Hand
s-Domain and the Central Domain are defined for all s≥ 0 but the Left-Hand s-Domain is only
defined for s≥ 2. Since we have this relationship described above we can identify the Left-Hand
0-Domain and Left-Hand 1-Domain from the Left-Hand 2-Domain. This is why we considered
R0− (N− n) instead of just R0 in the Left-Hand 0-Domain and why we had (n−R1)/2 in the
Left-Hand 1-Domain instead of R1.

4.1.4 Results for the number of boxes containing a single shot

Motivation

Kolchin et al. studied the limiting behaviour of the number of boxes containing a single shot
because it exhibited some unusual behaviour, especially as the ratio of shots to boxes tended to
zero (II.4, [2]). Later, in 2009, Penrose studied this setting because of its many applications to
research questions [20]. Penrose provided a Berry-Esseen bound for the distance between the
distribution of R1 and the normal distribution when allocation is performed using the uniform
distribution [20]. Additionally, in the more complex scenario where a non-uniform distribution
is used for allocating shots Penrose was still able to bound this distance [20].

Types of behaviour

The number of boxes containing one shot behaves differently from the number of boxes contain-
ing at least two shots. We can again use conditions on the ratio of shots to boxes and the variance
to define five domains where the behaviour differs (II.4, [2]). Then, the limiting distribution for
each domain will be either Poisson or normal.
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Left-Hand 1-Domain

By definition, if the ratio of shots to boxes tends to zero and the variance of half the difference
between the number of shots and the number of boxes containing one shot tends to a finite
positive constant then we are in the Left-Hand 1-Domain (II.4, [2]). That is, we are in the
Left-Hand 1-Domain if, as n, N→ ∞,

α → 0 and Var
(

n−R1

2

)
→ λ1 < ∞.

In the Left-Hand 1-Domain we consider half the difference between the number of shots and
the number of boxes containing one shot. The reason for considering this is because of the
relationship between R0, R1 and R2 in the Left-Hand 2-Domain which we discussed above (II.1,
[2]). The number of shots is small relative to the number of boxes and we have that the variance
and expected value of the quantity we are considering tend to the same finite positive constant.
Hence, we expect to observe a Poisson limiting distribution here.

Theorem 4.1.13. (II.4, [2]) In the Left-Hand 1-Domain the local limiting distribution of
n−R1

2
is Poisson. As n, N→ ∞,

P
(

n−R1

2
= i
)
→

λ i
1e−λ1

i!
,

where λ1 = limE
(

n−R1

2

)
.

Left-Hand Intermediate 1-Domain

By definition, if the ratio of shots to boxes tends to zero and the variance of the number of boxes
with a single shot tends to infinity as n and N increase then we are in the Left-Hand Intermediate
1-Domain (II.4, [2]). That is, we are in the Left-Hand Intermediate 1-Domain if, as n, N→ ∞,

α → 0 and Var(R1)→ ∞.

In the Left-Hand Intermediate 1-Domain the number of shots is small relative to the number of
boxes. However, in contrast with the Left-Hand 1-Domain, the variance and expected number of
boxes containing one shot tend to infinity as n and N increase. Thus, we may expect to observe
a normal limiting distribution here rather than a Poisson one.

Theorem 4.1.14. (II.4, [2]) In the Left-Hand Intermediate 1-Domain the local limiting distribu-
tion of R1 is normal. As n, N→ ∞,

P(R1 = k)→ 1√
2πVar(R1)

exp

{
−1

2
[k−E(R1)]

2

Var(R1)

}
.
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Central Domain

By definition, if the ratio of shots to boxes is bounded above and below by finite positive con-
stants then we are in the Central Domain (II.4, [2]). That is, we are in the Central Domain if, as
n, N→ ∞,

0 < a≤ α ≤ b < ∞,

where a and b are finite positive constants. In the Central Domain the number of shots and
boxes are proportional to one another (as n, N → ∞) and the expected value and variance of
the number of boxes containing one shot grow with n and N. Hence, we may expect to have a
normal limiting distribution here.

Theorem 4.1.15. (II.4, [2]) In the Central Domain the limiting distribution of the standardised
version of R1 is the standard normal distribution. That is, as n, N→ ∞,

R1−E(R1)√
Var(R1)

d−→N (0,1).

Right-Hand Intermediate 1-Domain

By definition, if both the ratio of shots to boxes and the expected number of boxes containing
a single shot tend to infinity then we are in the Right-Hand Intermediate 1-Domain (II.4, [2]).
That is, we are in the Right-Hand Intermediate 1-Domain if, as n, N→ ∞,

α → ∞ and E(R1)→ ∞.

In the Right-Hand Intermediate 1-Domain there is a large number of shots relative to the number
of boxes, and the expected value and variance of the number of boxes containing a single shot
tend to infinity. Therefore, as in the Left-Hand Intermediate 1-Domain and Central Domain, we
anticipate having a limiting distribution which is normal.

Theorem 4.1.16. (II.4, [2]) In the Right-Hand Intermediate 1-Domain the local limiting distri-
bution of R1 is normal. As n, N→ ∞,

P(R1 = k)→ 1√
2πVar(R1)

exp

{
−1

2
[k−E(R1)]

2

Var(R1)

}
.

Right-Hand 1-Domain

By definition, if the ratio of shots to boxes tends to infinity and the expected number of boxes
containing one shot tends to a finite positive constant then we are in the Right-Hand 1-Domain
(II.4, [2]). That is, we are in the Right-Hand 1-Domain if, as n, N→ ∞,

α → ∞ and E(R1)→ λ1.
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In the Right-Hand 1-Domain there is a large number of shots compared to the number of boxes.
Unlike in the Right-Hand Intermediate 1-Domain the expected value and variance of the number
of boxes with one shot tend to the same finite positive constant. Hence, we expect the limiting
distribution to be Poisson here.

Theorem 4.1.17. (II.4, [2]) In the Right-Hand 1-Domain the local limiting distribution of R1 is
Poisson. As n, N→ ∞,

P(R1 = i)→
λ i

1
i!

e−λ1.

To summarise, we expect a Poisson limiting distribution in the Left-Hand 1-Domain and the
Right-Hand 1-Domain. In the Central Domain and the two Intermediate 1-Domains the limiting
distribution is normal.

4.2 Allocation using a multinomial probability distribution

Setting

We will allocate n shots to N boxes one by one according to a multinomial probability distribu-
tion in such a way that the probabilities are all positive and without loss of generality ordered
in a non-increasing manner. Note that both n and N are finite here. In the uniform case the
parameters that the occupancy numbers depended on were just n and N since every box had the
same probability of 1/N. Now, when we consider this multinomial scheme then the probability
distribution also becomes a parameter on which R0, R1 and Rs depend. To define the domains
where the behaviour is different we previously used the ratio of the number of shots to boxes.
However, we must now have equivalent statements involving the probabilities to distinguish, as
before, these domains.

4.2.1 Results for the number of empty boxes

Types of behaviour

Previously, when we used a uniform distribution we could completely characterise the behaviour
in five distinct domains. When using a multinomial distribution things become more complex
and as we shall discuss later in this section, we shall see that there may potentially be more than
just five domains. Before looking into this we can first detail the conditions under which we are
in the equivalent domains to the uniform scenario (III.1, [2]).

Left-Hand 0-Domain

By definition, if the product of the number of shots and the maximum probability tends to zero
and the expected number of empty boxes tends to a finite positive constant as n and N increase
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then we are in the Left-Hand 0-Domain. That is, we are in the Left-Hand 0-Domain if, as n,
N→ ∞,

n×maxpk→ 0 and E(R0)→ λ0 < ∞.

In the Left-Hand 0-Domain the product of the number of shots and the maximum probability
tends to zero as n and N increase (III.1, [2]). This means that the product of n with any of the
probabilities goes to zero as we add more shots and boxes. Further,

maxpk ≥
1
N

=⇒ n×maxpk ≥
n
N
,

so, n×maxpk→ 0 =⇒ α =
n
N
→ 0.

This means that again there is a small number of shots relative to the number of boxes and due to
the condition on the product of n and the probabilities we know that we have lots of very small
probabilities, much like the uniform setting. Thus, as before, we expect that most shots will go
to their own box. In this domain, the variance and expected number of empty boxes tend to the
same finite positive constant so we may expect a Poisson limiting distribution here. The Poisson
limiting result for the Left-Hand 0-Domain in this multinomial setting was proven by Kolchin
et al. [2] using earlier results established by Sevast’yanov in 1972 [43].

Theorem 4.2.1. (III.3, [2]) In the Left-hand 0-Domain the local limiting distribution of R0−
{N−n} is Poisson. As n, N→ ∞,

P(R0−{N−n}= i)→
λ i

0e−λ0

i!
,

where λ0 = limE(R0).

Left-Hand Intermediate 0-Domain

By definition, if the product of the number of shots and the maximum probability tends to zero
and the expected number of empty boxes tends to infinity as n and N increase then we are in the
Left-Hand Intermediate 0-Domain. That is, we are in the Left-hand Intermediate 0-Domain if,
as n, N→ ∞,

n×maxpk→ 0 and E(R0)→ ∞.

In the Left-Hand Intermediate 0-Domain the same condition on the product of n and the maxi-
mum probability holds but in addition the expected value and variance of the number of empty
boxes grows with n and N (III.1, [2]). There are a small number of shots relative to the number
of boxes and lots of small probabilities. However, due to the behaviour of the expectation and
variance, we anticipate a normal limiting distribution instead of a Poisson one here. The asymp-
totic normality of R0 in the Central Domain was proven by Chistyakov in 1964 [40]. Holst then
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extended this result to the Left-Hand Intermediate 0-Domain in [41].

Theorem 4.2.2. [41] In the Left-Hand Intermediate 0-Domain the limiting distribution of the
standardised version of R0 is the standard Normal distribution. That is, as n, N→ ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).

Central Domain

By definition, if the ratio of shots to boxes is bounded above and below by finite positive con-
stants and the product of N and any of the probabilities is bounded above by a finite positive
constant then we are in the Central Domain. That is, we are in the Central Domain if, as n,
N→ ∞,

0 < a≤ α ≤ b < ∞ and N pk ≤ c,

where a, b and c are finite positive constants. In the Central Domain the number of shots and
boxes are still proportional to one another (as n, N → ∞) but in addition the product of N and
each probability must be bounded above by a finite positive constant (III.1, [2]). This means
that there will be lots of small probabilities as in the uniform setting. Given the above we would
expect to obtain a limiting distribution which is normal here. The asymptotic normality of R0 in
the Central Domain was originally proven by Chistyakov in 1964 [40]. A similar theorem was
formulated by Kitabatake in 1958 under stronger restrictions on the probabilities [42].

Theorem 4.2.3. [40] In the Central Domain the limiting distribution of the standardised version
of R0 is the standard normal distribution. As n, N→ ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).

Right-Hand Intermediate 0-Domain

By definition, if both the product of the number of shots and the minimum probability and the
expected number of empty boxes tend to infinity with n and N then we are in the Right-Hand
Intermediate 0-Domain (III.1, [2]). That is, we are in the Right-Hand Intermediate 0-Domain if,
as n, N→ ∞,

n×minpk→ ∞ and E(R0)→ ∞.

In the Right-Hand Intermediate 0-Domain the product of n and the smallest probability tends to
infinity with n and N. Further,

minpk ≤
1
N

=⇒ n×minpk ≤
n
N
,

so n×minpk→ ∞ =⇒ n
N
→ ∞.
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This means that there are a large number of shots relative to the number of boxes. In this domain
the variance and expected number of empty boxes tend to infinity as n and N increase so that, as
in the Central Domain, we expect a normal limiting distribution here. In 2008 it was proven by
Hwang and Janson that if the variance of the number of empty boxes goes to infinity with n and
N then the resulting limiting distribution is normal [22].

Theorem 4.2.4. [22] In the Right-Hand Intermediate 0-Domain the limiting distribution of the
standardised version of R0 is the standard Normal distribution. As n, N→ ∞,

R0−E(R0)√
Var(R0)

d−→N (0,1).

Right-Hand 0-Domain

By definition, if the product of the number of shots and the minimum probability tends to infinity
and the expected number of empty boxes tends to a finite positive constant as we increase n and
N then we are in the Right-Hand 0-Domain (III.1, [2]). That is, we are in the Right-Hand
0-Domain if, as n, N→ ∞,

n×minpk→ ∞ and E(R0)→ λ0 < ∞.

In the Right-Hand 0-Domain the product of n and the smallest probability tends to infinity with
n and N but now the expected value and variance of the number of empty boxes tend to the same
finite positive constant. Hence, we may anticipate observing a Poisson limiting distribution here.
The Poisson limiting result for the Right-Hand 0-Domain was proven by Kolchin et al. [2] using
earlier results established by Sevast’yanov in 1972 [43].

Theorem 4.2.5. (III.3, [2]) In the Right-Hand 0-Domain the local limiting distribution of R0 is
Poisson. As n, N→ ∞,

P(R0 = i)→
λ i

0e−λ0

i!
,

where λ0 = limE(R0).

To summarise, as in the uniform case, we expect a Poisson limiting distribution in both the
Left-Hand and Right-Hand 0-Domains. Then, in the Central Domain and the two Intermediate
0-Domains the limiting distribution is Normal.

4.2.2 Results for the number of boxes containing two or more shots

Left-Hand s-Domain

By definition, if the product of the number of shots and the maximum probability tends to zero
and the expected number of shots containing s shots tends to a finite positive constant as n and
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N increase then we are in the Left-Hand s-Domain (III.1, [2]). That is, we are in the Left-Hand
s-Domain if, as n, N→ ∞,

n×maxpk→ 0 as E(Rs)→ λs.

In the Left-Hand s-Domain there is a small number of shots relative to the number of boxes and
lots of small probabilities. The variance and expected value of the number of boxes containing
s shots tend to the same finite positive constant. Thus, we expect to have a Poisson limiting
distribution here.

Left-Hand Intermediate s-Domain

By definition, if the product of the number of shots and the maximum probability tends to zero
and the expected number of boxes with s shots tends to infinity with n and N then we are in
the Left-hand Intermediate s-Domain (III.1, [2]). That is, we are in the Left-Hand Intermediate
s-Domain if, as n, N→ ∞,

n×maxpk→ 0 and E(Rs)→ ∞.

In the Left-Hand Intermediate s-Domain there is still a small number of shots compared to the
number of boxes but now the expected number of boxes containing s shots tends to infinity with
n and N. So, we anticipate having a limiting distribution which is normal rather than Poisson
here.

Central Domain

By definition, if the ratio of shots to boxes is bounded above and below by finite positive con-
stants and the product of the number of boxes with any of the probabilities is bounded above by
a finite positive constant then we are in the Central Domain (III.1, [2]). That is, we are in the
Central Domain if, as n, N→ ∞,

0 < a≤ α ≤ b < ∞ and N pk ≤ c.

In the Central Domain the number of shots and boxes are proportional to one another (as n,
N→ ∞) and there are lots of small probabilities. It also holds that both the expected value and
variance of the number of boxes with s shots grow with n and N, so a normal limiting distribution
should work well here.
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Right-Hand Intermediate s-Domain

By definition, if the product of the number of shots and the minimum probability and the ex-
pected number of boxes containing s shots tends to infinity as n and N increase then we are in the
Right-Hand Intermediate s-Domain (III.3, [2]). That is, we are in the Right-Hand Intermediate
s-Domain if, as n, N→ ∞,

n×minpk→ ∞ and E(Rs)→ ∞.

In the Right-Hand Intermediate s-Domain there is a large number of shots compared to the
number of boxes. The expected number and variance of the number of boxes with s shots tend
to infinity as n and N increase. Hence, as in the Central Domain we can anticipate observing a
Normal limiting distribution.

Right Hand s-Domain

By definition, if the product of the number of shots and the minimum probability tends to infinity
and the expected number of boxes with s shots tends to a finite positive constant then we are in
the Right-Hand s-Domain (III.1, [2]). That is, we are in the Right-Hand s-Domain if, as n,
N→ ∞,

n×minpk→ ∞ and E(Rs)→ λs < ∞.

In the Right-Hand s-Domain the number of shots is large relative to the number of boxes. How-
ever, now the variance and expected value of the number of boxes containing s shots tend to the
same finite positive constant. Therefore, we expect to observe a Poisson limiting distribution
here.

4.2.3 Results for the number of boxes containing a single shot

Left-Hand 1-Domain

By definition, if the product of n and the maximum probability tends to zero and the expected
value of the number of boxes containing a single shot tends to a finite positive constant then we
are in the Left-Hand 1-Domain (III.1, [2]). That is, we are in the Left-Hand 1-Domain if, as n,
N→ ∞,

n×maxpk→ 0 and E
(

n−R1

2

)
→ λ1 < ∞.

In the Left-Hand 1-Domain again there is a small number of shots relative to the number of
boxes and lots of small probabilities. Both the variance and expected value of the quantity we
are considering tend to a finite positive constant so we may expect to have a Poisson limiting
distribution.
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Theorem 4.2.6. (III.3, [2]) In the Left-Hand 1-Domain the local limiting distribution of 1
2(n−

R1) is Poisson. As n, N→ ∞,

P
(

n−R1

2
= i
)
→

λ i
1e−λ1

i!
,

where λ1 = limE
(

n−R1

2

)
.

Left-Hand Intermediate 1-Domain

By definition, if the product of the number of shots and the maximum probability tends to zero
and the expected number of boxes occupied by a single shot tends to infinity as n and N increase
then we are in the Left-Hand Intermediate 1-Domain (III.1, [2]). That is, we are in the Left-Hand
Intermediate 1-Domain if, as n, N→ ∞,

n×maxpk→ 0 and E(R1)→ ∞.

In the Left-Hand Intermediate 1-Domain the number of shots is still small compared to the num-
ber of boxes and there are lots of small probabilities. However, now the variance and expected
value of the number of boxes occupied by one shot tend to infinity as n and N grow. Thus, it
seems like a normal limiting distribution may be more likely than a Poisson one here.

Central Domain

By definition, if the ratio of the number of shots to boxes is bounded above and below by finite
positive constants and the product of the number of boxes and any of the probabilities is bounded
above by a finite positive constant then we are in the Central Domain (III.1, [2]). That is, we are
in the Central Domain if, as n, N→ ∞,

0 < a≤ α ≤ b < ∞ and N pk ≤ c,

where a, b and c are finite positive constants. In the Central Domain there are proportional
numbers of shots and boxes (as n, N → ∞) and there are lots of small probabilities. In this
domain both the expected value and variance of the number of singly occupied boxes grows
with n and N. Hence, as in the Left-Hand Intermediate 1-Domain we expect to observe a normal
limiting distribution.

Right-Hand Intermediate 1-Domain

By definition, if both the product of the number of shots and the minimum probability and the
expected number of boxes containing one shot tend to infinity as n and N increase then we
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are in the Right-Hand Intermediate 1-Domain. That is, we are in the Right-Hand Intermediate
1-Domain if, as n, N→ ∞,

n×minpk→ ∞ and E(R1)→ ∞.

In the Right-Hand Intermediate 1-Domain there is a large number of shots relative to the number
of boxes. Both the variance and expected number of boxes which are occupied by a single shot
tend to infinity with n and N. Thus, we again anticipate a limiting distribution which is normal.

Right-Hand 1-Domain

By definition, if the product of the number of shots and the minimum probability tends to infinity
and the expected number of boxes with a single shot tends to a finite positive constant then we
are in the Right-Hand 1-Domain (III.1, [2]). That is, we are in the Right-Hand 1-Domain if, as
n, N→ ∞,

n×minpk→ ∞ and E(R1)→ λ1 < ∞.

In the Right-Hand 1-Domain there is a large number of shots compared with the number of
boxes. However, now the expected number and variance of boxes containing one shot tend to
the same finite positive constant. Therefore, we expect to have a Poisson limiting distribution
here.

Theorem 4.2.7. (III.3, [2]) In the Right-Hand 1-Domain the local limiting distribution of R1 is
Poisson. As n, N→ ∞,

P(R1 = i)→
λ i

1e−λ1

i!
,

where λ1 = limE(R1).

To summarise, as in the uniform case, we expect to see a Poisson limiting distribution in both
the Left-Hand and Right-Hand 1-Domains. In the Central Domain and the two Intermediate 1-
Domains the limiting distribution is normal.

Limiting distributions that are neither Poisson or normal

In 1967, Chistyakov proved that under certain conditions in the multinomial setting a limiting
distribution which is neither Poisson or normal is obtained [40]. The limiting distribution he
derived for the number of empty boxes was the distribution of a sum of a Poisson and Bernoulli
random variable.

4.2.4 Review of Vatutin and Mikhailov’s (1982) proof

Vatutin and Mikhailov were able to prove for a single layer of the process that the p.g.f. for the
number of empty boxes has all real roots [3]. This then led to them establishing various normal
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and Poisson limit results. Let R0(n,N) be a random variable counting the number of empty boxes
when n shots are allocated independently to N boxes according to the uniform distribution. We
shall refer to this quantity simply as R0 for the remainder of this section. In order to establish
limit theorems for the distribution of R0 we want to show that R0 can be written as a sum of
N independent (but not identically distributed) Bernoulli random variables. We can do this by
showing that the p.g.f. for R0 has all real roots for all N,n ∈ N. The main idea of Vatutin and
Mikhailov’s proof is to show that the p.g.f. can be written as a number of real-root-preserving
transformations applied to a polynomial which is known to have all real roots. We know that
(z+1)N has N real roots at −1. Real-root-preserving transformations can be applied to (z+1)N

in order to recover the the p.g.f. for R0, which we shall denote by gR0 . Note that we include
multiplicities when counting the number of real roots. Recall that ◦ denotes composition of
functions and

Td[p](x) = x
d
dx

p(x).

Also, note that
Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸

n times

[zN ] = NnzN . (4.1)

Combining this with the Binomial theorem we have that

Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
n times

[(z+1)N ] = Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
n times

[
N

∑
i=0

(
N
i

)
1izN−i

]

=
N

∑
i=0

(
N
i

)
(N− i)nzN−i. (4.2)

So,

Td ◦Td ◦ · · ·Td︸ ︷︷ ︸
n times

(z+1)N =
N

∑
i=0

(
N
i

)
(N− i)nzN−i = zNv(z−1),

where

v(z) =
N

∑
i=0

(
N
i

)
zi(N− i)n =

N−1

∑
i=0

(
N
i

)
zi(N− i)n. (4.3)

But, note that
Tf [zNv(z−1)] = v(z),

recalling that Tf is the transformation which flips the order of the coefficients (2.3). We started
with (z+1)N which has all real roots and then applied a sequence of real-root-preserving trans-
formations. First, Td was applied n times and then finally Tf was applied to produce v. Hence,
v has all real roots. We will now show that the p.g.f. for the number of empty boxes can be
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obtained by applying real-root-preserving transformations to v. Firstly, let,

ηi =

0, if box i is occupied;

1, if box i is empty.

Then, since R0 = ∑
N
i=1 ηi,

E(R0) =
N

∑
i=1

E(ηi),

where
E(ηi) = P(ηi = 1) =

(
1− 1

N

)n

(zero shots land in box i).

Hence,

E(R0) =
N

∑
i=1

E(ηi) =
N

∑
i=1

(
1− 1

N

)n

= N
(

1− 1
N

)n

.

We shall use the following notation for a falling factorial:

x[a] := x(x−1)(x−2) · · ·(x−a+1), x[0] = 1.

Note R[1]
0 = R0. Recall we defined ηi to be one when box i is empty and zero otherwise. We can

show by induction over a that:

R[a]
0 =

N

∑
i1=1

N

∑
i2=1
· · ·

N

∑
ia=1

ηi1ηi2 · · ·ηia,

where the box indices i1, i2, . . . , ia must be different. For the base case we have already seen that

R0 =
N

∑
i=1

ηi.

We assume the statement is true for a and now need to prove for a+1. Since

R[a+1]
0 = R0(R0−1)(R0−2) · · ·(R0− (a+1)+1) = R0(R0−1)(R0−2) · · ·(R0−a)

we have
R[a+1]

0 = R[a]
0 (R0−a),

where R0−a = 1 if R0 = a+1 and R0−a = 0 if R0 = a so that we can write

R[a+1]
0 =

N

∑
i1

N

∑
i2=1
· · ·

N

∑
ia+1

ηi1ηi2 . . .ηiaηia+1 ,
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where the indices i1, i2, . . . ia, ia+1 are all different. Note that ηi1ηi2 · · ·ηia is only equal to one
when all boxes i1, i2, . . . , ia are empty so

E [ηi1ηi2 · · ·ηia] = P(ηi1 = ηi2 = · · ·= ηia = 1)

= P(n shots independently go to boxes other than those with indices i1, i2, . . . , ia)

=
(

1− a
N

)n
.

Putting this together gives

E
[
R[a]

0

]
=

N

∑
i1

N

∑
i2

· · ·
N

∑
ia

(
1− a

N

)n

Now we need to count the number of arrangements of indices we can have. For i1 there are N

choices, for i2 there are N− 1 and so on. For ia we will have N− a+ 1 choices so in total we
have,

N(N−1) · · ·(N−a+1) = N[a] terms.

Hence,
E
[
R[a]

0

]
= N[a]

(
1− a

N

)
. (4.4)

Also (from a Taylor expansion at z = 1),

gR0(z) = E
(
zR0
)
=

N−1

∑
i=0

g(i)R0
(1)

(z−1)i

i!
, (4.5)

where g(i)R0
denotes the ith derivative of gR0 . However, since

g(i)R0
(z) = E(R[i]

0 zR0−i),

g(i)R0
(1) = E

(
R[i]

0

)
. (4.6)

Therefore,

gR0(z) =
N−1

∑
i=0

E
(

R[i]
0

) (z−1)i

i!
[from (4.5) and (4.6)]

=
N−1

∑
i=0

N[i]
(

1− i
N

)n (z−1)i

i!
[from (4.4)]

=
1

Nn

N−1

∑
i=0

(
N
i

)
(z−1)i(N− i)n

=
1

Nn v(z−1),
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Finally,

gR0(z) =
1

Nn v(z−1) =
1

Nn T−1[v](z),

has all real roots since both multiplying by a constant and the transformation T−1 preserves the
number of real roots (2.1).

65



Chapter 5

The multiple-layer shots-and-boxes scheme
for N boxes

5.1 Chapter outline

We want to obtain results for the multiple-layer scheme for N boxes in general but first we
want to understand what happens when we add just one additional box to the scheme with three
boxes. Moving from three boxes to four already makes clear how much more complicated
things get when trying to prove the p.g.f. for the number of occupied boxes has all real roots. To
demonstrate this additional complexity I begin by replicating the results previously obtained for
three boxes. Then, with this deeper understanding obtained from considering small examples, I
treat the scheme for general N. This is where the most significant novel results of the thesis are
established. The proof that the p.g.f. for the number of occupied boxes has all real roots and the
consequential limiting results are given.

5.2 Small extensions to the multiple-layer scheme with three
boxes

Start by considering the scheme with four boxes. The calculations for the first layer are provided
but the steps taken to obtain the explicit formulas for the occupancy probabilities in any given
layer are omitted as the same method as was used for three boxes was employed. To still have
four shots remaining after allocating shots to the initial layer each shot must have gone to its
own box, which happens with probability

P
(

R∗(1,4) = 4
)
= p(1)4,4(4) = 1× 3

4
× 2

4
× 1

4
=

3
32

.
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If there are three shots remaining then two shots must have merged and we need to count the
number of ways we can select the two that merge:

P
(

R∗(1,4) = 3
)
= p(1)4,3(4) =

(
4
2

)
×1× 1

4
× 3

4
× 2

4
=

9
16

.

If there are two occupied boxes this could have happened if either three shots merged which
happens with probability

P
(

3 shots merged
)
=

(
4
3

)
×1× 1

4
× 1

4
× 3

4
=

3
16

,

or if two boxes contain two shots:

P
(

2 boxes with 2 shots
)
=

(
4
2

)
×1× 1

4
× 3

4
× 1

4
× 1

2
=

9
64

.

Note that the final factor of 1/2 comes from the fact that the ordering of the double merges is
not important. Putting these together gives

P
(

R∗(1,4) = 2
)
= p(1)4,2(4) =

3
16

+
9

64
=

21
64

.

Finally, the only remaining outcome left to consider is that all shots land in the same box which
happens with probability

P
(

R∗(1,4) = 1
)
= p(1)4,1(4) = 1×

(
1
4

)3

=
1

64
.

We want to obtain non-recursive formulae for the occupancy probabilities in any given layer k

of the scheme with four boxes. Using the same probabilistic arguments that we used for three
boxes gives

p(k)4,4(4) =
(

3
32

)k

, (5.1)

p(k)4,3(4) = 2

{(
3
8

)k

−
(

3
32

)k
}
, (5.2)

p(k)4,2(4) =
1

14

{
25
(

3
4

)k

−42
(

3
8

)k

+17
(

3
32

)k
}
, (5.3)

p(k)4,1(4) = 1− 1
14

{
25
(

3
4

)k

−14
(

3
8

)k

+3
(

3
32

)k
}
. (5.4)

To visualise what happens to these probabilities as we move through layers we can consider
their values for the first ten layers (Figure 5.1). Notice here that, for example, the probability

67



of having two occupied boxes first increases and then decreases. This contrasts with the three
boxes example where we had that each of the occupancy probabilities were either monotonically
increasing or decreasing.

Figure 5.1: How the coefficients of the p.g.f. for four boxes change as we move through layers.

This then gives an expression for the p.g.f. for the number of occupied boxes in any layer of
the scheme with four boxes:

gR∗(k,4)(x) =
(

3
32

)k

x4 +

(
2

{(
3
8

)k

−
(

3
32

)k
})

x3

+

(
1
14

{
25
(

3
4

)k

−42
(

3
8

)k

+17
(

3
32

)k
})

x2

+

(
1− 1

14

{
25
(

3
4

)k

−14
(

3
8

)k

+3
(

3
32

)k
})

x.

Using (5.1)-(5.4) we can obtain a non-recursive formula for the expected number of occupied
boxes in layer k:

E [R∗(k,4)] = 1+
25
14

(
3
4

)k

+

(
3
8

)k

+
3

14

(
3
32

)k

.

Since

E
(
{R∗(k,4)}2

)
= 1+

75
14

(
3
4

)k

+7
(

3
8

)k

+
37
14

(
3
32

)k

,
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then

Var
(

R∗(k,4)
)
=

25
14

(
3
4

)k

+5
(

3
8

)k

+
31
14

(
3

32

)k

− 625
196

(
9

16

)k

− 25
7

(
9

32

)k

− 75
98

(
9

128

)k

−
(

9
64

)k

− 3
7

(
9

256

)k

− 9
196

(
9

1024

)k

.

Real roots

Discriminant approach

Recall for four boxes the p.g.f. for the number of occupied boxes in layer k is given by

x
(

p(k)44 (4)x
3 + p(k)43 (4)x

2 + p(k)42 (4)x+ p(k)41 (4)
)
,

where we have non-recursive formulae for p(k)44 (4), p(k)43 (4), p(k)42 (4) and p(1)41 (4). Using these we
can get a formula for the discriminant of the cubic in layer k,

∆ =
625
49

(
81

1024

)k

−32
(

27
512

)k

+
450
7

(
27

1024

)k

− 5825
686

(
81

2048

)k

−12
(

27
2048

)k

.− 1054
49

(
81

4096

)k

−27
(

9
1024

)k

+
225
7

(
27

4096

)k

− 200
49

(
81

8192

)k

+
12
7

(
27

8192

)k

− 4523
1372

(
81

16384

)k

− 125
49

(
81

32768

)k

− 1
7

(
27

32768

)k

+
16
49

(
81

65536

)k

− 75
343

(
81

131072

)k

+
3
49

(
81

262144

)k

+
9

1372

(
81

1048576

)k

.

Lemma 5.2.1. The p.g.f. for the number of occupied boxes in each layer of the scheme with
four boxes has all real roots.

Proof. We can show that for k ≥ 1,

450
7

(
27

1024

)k

>
4523
1372

(
81

16384

)k

+12
(

27
2048

)k

+
1054
49

(
81

4096

)k

+27
(

9
1024

)k

+
200
49

(
81

8192

)k

+
125
49

(
81

32768

)k

+
1
7

(
27

32768

)k

+
75

343

(
81

131072

)k

.

We will proceed using proof by induction. For the base case we have,

k = 1 : LHS = 1.695033482 > 0.8840953282 = RHS.

Now, we will assume that the result holds for layer k, that is for layer k we assume LHS>RHS.
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Finally, using this assumption we need to show that the result holds for layer k+1. Firstly,

LHS for k+1 =
27

1024
× LHS for k.

Additionally, we have,

RHS for layer k+1 <
81

4096
× RHS for layer k

<
81

4096
× LHS for layer k

<
27

1024
× LHS for layer k = LHS for layer k+1.

Now, in our expression for the discriminant we still have two negative terms that we need to
account for. We can show that for k ≥ 3,

625
49

(
81

1024

)k

> 32
(

27
512

)k

+
5825
686

(
81

2048

)k

.

Again, we shall use proof by induction here. For the base case we have,

k = 3 : LHS = 0.006313048474 > 0.005218128712.

We will now assume the statement holds for layer k, that is for layer k we assume LHS>RHS.
Now, given this assumption we need to show the result holds for layer k+1. We update the LHS
as follows,

LHS for layer k+1 =
81

1024
× LHS for layer k.

Then, for the RHS we have,

RHS for layer k+1 <
27
512
×RHS for layer k

<
27
512
× LHS for layer k

<
81

1024
× LHS for layer k = LHS for layer k+1.

All the remaining terms in the discriminant are positive so combining this with the above two
proofs tells us that for layer three onwards we have all real roots for four boxes.

Similar, progressively more tedious, calculations (not shown) can be repeated for the multiple-
layer scheme for five boxes. For example, the p.g.f. for any given layer of such a scheme is given
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below and the probabilities for the first ten layers are shown in Figure 5.2.

gR∗(k,5)(x) =
(

24
625

)k

x5 +

(
5
2

{(
24
125

)k

−
(

24
625

)k
})

x4

+

(
1

23

{
65
(

12
25

)k

−115
(

24
125

)k

+50
(

24
625

)k
})

x3

+

(
75
38

(
4
5

)k

− 195
46

(
12
25

)k

+
115
38

(
24

125

)k

− 35
46

(
24

625

)k
)

x2

+

(
1− 75

38

(
4
5

)k

+
65
46

(
12
25

)k

− 10
19

(
24

125

)k

+
2
23

(
24

625

)k
)

x.

Figure 5.2: How the coefficients of the p.g.f. for five boxes change as we move through layers..
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Summary of results for four boxes

The results I have shown for four boxes are summarised below.

1. The p.g.f. for the number of occupied boxes in any given layer k of the scheme with
four boxes is given by

gR∗(k,4)(x) =
(

3
32

)k

x4 +

(
2

{(
3
8

)k

−
(

3
32

)k
})

x3

+

(
1

14

{
25
(

3
4

)k

−42
(

3
8

)k

+17
(

3
32

)k
})

x2

+

(
1− 1

14

{
25
(

3
4

)k

−14
(

3
8

)k

+3
(

3
32

)k
})

x.

2. The expected number of occupied boxes in any given layer k of the scheme with
four boxes is given by,

E
[
R∗(k,4)

]
= p(k)4,1(4)+2p(k)4,2(4)+3p(k)4,3(4)+4p(k)4,4(4)

= 1+
25
14

(
3
4

)k

+

(
3
8

)k

+
3

14

(
3

32

)k

.

3. The variance of the number of occupied boxes in any given layer k of the scheme
with four boxes is given by,

Var
[
R∗(k,4)

]
=

25
14

(
3
4

)k

+5
(

3
8

)k

+
31
14

(
3

32

)k

− 625
196

(
9

16

)k

− 25
7

(
9

32

)k

− 75
98

(
9

128

)k

−
(

9
64

)k

− 3
7

(
9

256

)k

− 9
196

(
9

1024

)k

.

4. The scheme with four boxes has all real roots for all layers and so the number of
occupied boxes in any layer can be expressed as a sum of independent Bernoulli
random variables. We have shown this using a discriminant approach.

5.3 General formulae for the coefficients of the p.g.f. for the
number of occupied boxes

Let P
[
R∗(k,N) = N− j

]
= p(k)N,N− j(N) denote the probability that the number of occupied boxes

has decreased by j over k layers of the scheme with N boxes. For general N we know that when
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j = 0,

P
[
R∗(k,N) = N

]
= p(k)N,N(N) =

(
p(1)N,N(N)

)k
.

Probability the occupancy count decreases by one over k layers

p(k)3,2(3) =
k−2

∑
i=0

(
p(1)3,3(3)

)i
p(1)3,2(3)

(
p(1)2,2(3)

)k−i−1
+
(

p(1)3,3(3)
)k−1

p(1)3,2(3),

p(k)4,3(4) =
k−2

∑
i=0

(
p(1)4,4(4)

)i
p(1)4,3(4)

(
p(1)3,3(4)

)k−i−1
+
(

p(1)4,4(4)
)k−1

p(1)4,3(4),

and for general N

p(k)N,N−1(N) =
k−2

∑
i=0

(
p(1)N,N(N)

)i
p(1)N,N−1(N)

(
p(1)N−1,N−1

)k−i−1
+
(

p(1)N,N(N)
)k−1

p(1)N,N−1(N).

Probability that the occupancy count decreases by two over k layers

p(k)4,2(4) =
k−2

∑
i=0

(
p(1)4,4(4)

)i
p(1)4,2(4)

(
p(1)2,2(4)

)k−i−1
+

k−2

∑
i=0

(
p(1)4,4(4)

)i
p(1)4,3(4)p(k−i−1)

3,2 (4)

+
(

p(1)4,4(4)
)k−1

p(1)4,2(4),

p(k)5,3(5) =
k−2

∑
i=0

(
p(1)5,5(5)

)i
p(1)5,4(5)p(k−i−1)

4,3 (5)+
k−2

∑
i=0

(
p(1)5,5(5)

)i
p(1)5,3(5)

(
p(1)3,3(5)

)k−i−1

+
(

p(1)5,5(5)
)k−1

p(1)5,3(5),

and for general N

p(k)N,N−2(N) =
k−2

∑
i=0

(
p(1)N,N(N)

)i
p(1)N,N−1(N)p(k−i−1)

N−1,N−2(N)

+
k−2

∑
i=0

(
p(1)N,N(N)

)i
p(1)N,N−2(N)

(
p(1)N−2,N−2(N)

)k−i−1
+
(

p(1)N,N(N)
)k−1

p(1)N,N−2(N).

The general idea is that we consider the possible drops in the number of occupied boxes we can
have that would result in us having a certain number of boxes occupied after k layers. We need
to sum over both the different possible drops and over the different locations where these drops
can happen. For j ≥ 1 we have (where m is the index for the drop and i is the index for the
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location of that drop),

P(R∗(k,N) = N− j) = p(k)N,N− j(N) =
j

∑
m=1

k−2

∑
i=0

(
p(1)N,N(N)

)i
p(1)N,N−m(N)p(k−i−1)

N−m,N− j(N)

+
(

p(1)N,N(N)
)k−1

p(1)N,N− j(N). (5.5)

So, the general form of the p.g.f. for the number of occupied boxes in layer k in the scheme for
N boxes is given by,

GR∗(k,N)(x) =
(

p(1)N,N(N)
)k

xN +
N−1

∑
j=1

xN− j p(k)N,N− j(N).

5.3.1 Proving the p.g.f. for the number of occupied boxes has all real roots
for all layers

We want to use the same method as Vatutin and Mikhailov (4.2.4, [3]) which means we need to
be able to write the p.g.f. for any given layer of the scheme for N boxes as a sequence of real-
root-preserving transformations applied to a polynomial which is known to have all real roots.
Recall, in layer one we throw n shots into N boxes and from layer two onwards the number of
shots thrown into a given layer is equal to the number of occupied boxes in the previous layer.
Let the probability of going from the initial n shots to i occupied boxes in k layers be denoted
by p(k)n,i (N). Since we start with n shots in layer one, p(k)n,i (N) is just the probability of having i

occupied boxes (out of N) in layer k of the scheme. Let R∗(k,N,n) be the number of occupied
boxes in layer k of the scheme with N boxes and n shots initially. We shall denote this by R∗(k)

when n and N are fixed. Now, let

gR∗(k)(z) =
N

∑
j=1

P
[
R∗(k) = j

]
z j =

N

∑
j=1

p(k)n, j(N)z j (5.6)

be the (unconditional) p.g.f. for the number of occupied boxes in layer k of the scheme with N

boxes and n shots initially. Similarly, let R0(k,N,n) denote the number of empty boxes in layer k

of the scheme with N boxes and n shots initially, shortened to R0(k). Note that R0(k)+R∗(k) =

N. Also, let

gR0(k)(z) =
N−1

∑
j=0

P
[
R0(k) = j

]
z j =

N−1

∑
j=0

p(k)n,N− j(N)z j,

be the p.g.f. for the number of empty boxes in layer k. Let S(k) be the number of shots thrown
into layer k, where S(1) = n. We define the conditional p.g.f.s for the number of occupied and
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empty boxes as follows:

gR∗(k)|S(k)=i(z) =
N

∑
j=1

P
[
R∗(k) = j|S(k) = i

]
z j =

N

∑
j=1

p(1)i, j (N)z j, (5.7)

gR0(k)|S(k)=i(z) =
N−1

∑
j=0

P
[
R0(k) = j|S(k) = i

]
z j =

N−1

∑
j=0

p(1)i,N− j(N)z j.

We can obtain the conditional p.g.f. for the number of occupied boxes from the conditional p.g.f.
for the number of empty boxes. Since

gR0(k)|S(k)=i(z) = P
[
R0(k) = i|S(k) = i

]
zi +P

[
R0(k) = i−1|S(k) = i

]
zi−1 + . . .

+P
[
R0(k) = 1|S(k) = i

]
z+P

[
R0(k) = 0

]
.

Then, using (2.3) and that the degree of the p.g.f of R0 is N−1,

gR∗(k)|S(k)=i(z) = zNgR0|S(k)=i(z
−1) = zTf [gR0|S(k)=i](z).

The range space for R0 is
{0,1,2, . . . ,N−1} .

Hence the p.g.f. for R0 will have the general form as shown below:

pN−1zN−1 + pN−2zN−2 + . . .+ p1z+ p0, where p0 > 0.

This polynomial has no roots at zero so that the number of real roots will be preserved when
Tf is applied (2.3). Hence gR∗(k)|S(k)=i will have N−1 real roots from applying Tf to gR0|S(k)=i

along with one additional real root at zero. We shall denote this transformation by Tg in what
follows. That is,

Tg[p](z) = zTf [p](z). (5.8)

The following lemma is also required for my proof.

Lemma 5.3.1. (Corollary 5.6.7, [32]) Let f (z) = ∑
N
i=0 aizi be a polynomial of degree N ≥ 1.

Let φ be a polynomial with only real roots and no roots in the open interval (0,N). Define
h(z) := ∑

N
l=0 alφ(l)zl . Then the following statement holds: if all of the roots of f are real, or real

and non-negative, or real and non-positive, respectively, then so are those of h.

Theorem 5.3.1. gR∗(k) has all real roots for all k,N and n ∈ N.

Proof. We shall proceed using proof by induction.
Base case: Setting k = 1 gives us the p.g.f. for the first layer of the process where both the initial
number of shots, n, and the number of boxes, N, are fixed. This result has already been proved
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by Vatutin and Mikhailov (4.2.4, [3]), and their proof was reviewed in Chapter four..
Assumption step: We shall assume that the p.g.f. for the number of occupied boxes for layer k in
the scheme with N boxes and n shots initially has all real roots. That is, we assume (5.6) has all
real roots.
Inductive step: We need to show for N boxes that the p.g.f. for the number of occupied boxes in
layer k+1 has all real roots given that the p.g.f. for layer k has all real roots. For layer k+1 we
only need to know what happened in the previous layer and can disregard all layers before this.
In other words, the multiple-layer scheme is Markov with respect to the number of occupied or
empty boxes. We have that

gR∗(k+1)(z) =
N

∑
j=1

P
[
R∗(k+1) = j

]
z j

=
N

∑
j=1

N

∑
i=1

P
[
R∗(k+1) = j|S(k+1) = i

]
P
[
S(k+1) = i

]
z j (Law of Total Prob.)

=
N

∑
i=1

P
[
S(k+1) = i

] N

∑
j=1

P
[
R∗(k+1) = j|S(k+1) = i

]
z j (swap order of sums)

=
N

∑
i=1

P
[
R∗(k) = i

]
gR∗(k+1)|S(k+1)=i(z) (from [5.7)]

=
N

∑
i=1

p(k)n,i (N)gR∗(1)|n=i(z), (5.9)

where the last equality follows from the property that the conditional p.g.f.s are the same for all
layers (the Markov chain is homogeneous). Since we know some nice results for the p.g.f. for
the number of empty boxes in the single layer scheme it makes sense to write the p.g.f. for the
number of occupied boxes in the first layer in terms of that for empty boxes. If we have j empty
boxes then N− j are occupied so we need to apply the transformation Tg (5.8). Using this along
with (5.8) gives

gR∗(k+1)(z) =
N

∑
j=1

p(k)n, j(N)Tg[gR0(1)|n= j](z), (5.10)

where Tg will preserve the number of real roots here (5.8). Let

vn,N(z) =
N−1

∑
m=0

(
N
m

)
zm(N−m)n. (5.11)

We have already seen (4.2.4) that we can reformulate the p.g.f. for the number of empty boxes
in layer one for the scheme with N boxes and a fixed number of shots n as

gR0(k)|n= j(z) =
v j,N(z−1)

N j . (5.12)
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Now, plugging this into (5.10),

gR∗(k+1)(z) =
N

∑
j=1

p(k)n, j(N)

N j Tg[v j,N ](z−1)

=
N

∑
j=1

p(k)n, j(N)

N j Tg ◦T−1[v j,N ](z), (5.13)

where T−1[p](z) = p(z−1) is a real-root-preserving transformation (2.1). Further (see (4.2.4),

zNv j,N(z−1) = Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

[(z+1)N ]

or
Tf [v j,N ](z) = Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸

j times

[(z+1)N ] = Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

◦T1[zN ], (5.14)

where both Td and T1 are real-root-preserving transformations (see (2.2) and (2.1)). Recall that
Tf is self-inverse when applied to a polynomial with no roots at zero (2.3). So, applying Tf to
both sides of (5.14),

v j,N(z) = Tf ◦Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

◦T1[zN ].

Now, plugging this new representation for v j,N(z) into (5.13) gives

gR∗(k+1)(z) =
N

∑
j=1

p(k)n, j(N)

N j Tg ◦T−1 ◦Tf ◦Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

◦T1[zN ]

= Tg ◦T−1 ◦Tf ◦
N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

◦T1[zN ].

Now, Tg ◦T−1 ◦Tf preserves the number of real roots (see (5.8),(2.1) and (2.3)), so we just need
to show that

N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

◦T1[zN ] =
N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

[(z+1)N ]

has all real roots. Define

Tc[p] =
N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

[p].
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Then, since Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

[zi] = i jzi (see (4.1)),

Tc[zi] =
N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · · ◦Td︸ ︷︷ ︸
j times

[zi]

=
N

∑
j=1

p(k)n, j(N)

N j i jzi = zi
N

∑
j=1

p(k)n, j(N)

(
i
N

) j

= zigR∗(k)

(
i
N

)
.

Now, using the Binomial theorem,

Tc[(z+1)N ] = Tc

[
N

∑
l=0

(
N
l

)
zl

]
=

N

∑
l=0

(
N
l

)
Tc[zl]

=
N

∑
l=0

(
N
l

)
zlgR∗(k)

(
l
N

)
. (5.15)

In Lemma 5.3.1, let

f (z) =
N

∑
l=0

(
N
l

)
zl = (z+1)N ,

so al =
(N

l

)
. Here, we see that f has all its N roots at−1, so all its roots are real and non-positive.

Now, let φ(z) = gR∗(k)(z/N). We need φ(z) to satisfy the following two conditions:

1. φ(z) must have all real roots;

2. φ(z) must have no roots in the interval (0,N).

Recall that in our assumption step, the p.g.f. for the number of occupied boxes in layer k has all
real roots so that gR∗(k)(z) has all real roots. Now, mapping z to z/N preserves the number of real
roots so that gR∗(k)(z/N) also has all real roots. Additionally, since φ is a p.g.f. the coefficients
are all non-negative so that the roots are all non-positive and hence lie outside the interval (0,N).
By Lemma 5.3.1, all roots of

h(z) =
N

∑
l=0

alφ(l)zl =
N

∑
l=0

(
N
l

)
gR∗(k)

(
l
N

)
zl

will be real and non-positive. But this is the same as (5.14), so Tc[(z+ 1)N ] has all real roots
which are non-positive. Recall that

gR∗(k+1)(z) = Tg ◦T−1 ◦Tf ◦Tc[(z+1)N ].

We have just shown that Tc[(z+1)N ] has all real roots and then we are applying a composition
of transformations which preserve the number of real roots. Therefore, gR∗(k+1)(z) has all real
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roots. Hence, by induction, we have shown that gR∗(k)(z) has all real roots for all k,N and n ∈
N.

5.3.2 Distributional results for R∗(k) in the multiple-layer scheme with N

boxes

Theorem 5.3.2. Again, let R∗(k) be the number of occupied boxes in layer k of the scheme
which starts with n shots and has N boxes throughout. Then, there is a constant c < ∞ such that

sup
x

∣∣∣∣∣P
{

R∗(k)−E [R∗(k)]√
Var [R∗(k)]

≤ x

}
− 1√

2π

∫ x

−∞

e−y2/2dy

∣∣∣∣∣≤ c√
Var [R∗(k)]

. (5.16)

Proof. (Theorem 5.3.2): Let −r1,−r2, . . . ,−rN be the roots of gR∗(k). Since gR∗(k) is a p.g.f. the
coefficients are non-negative so ri ≥ 0. We can therefore write

gR∗(k)(z) =
(

z+ r1

1+ r1

)(
z+ r2

1+ r2

)
· · ·
(

z+ rN

1+ rN

)
.

Because of this factorisation, this is the same as the p.g.f. for the sum of N independent Bernoulli
random variables each with success probability θi = 1/(1+ ri) (i = 1,2, . . . ,N). Then, writing

R∗(k) = X1 +X2 + · · ·+XN , where Xi ∼ Bern
(

1
1+ ri

)
,

it follows that

E [R∗(k)] =
N

∑
i=1

E(Xi) =
N

∑
i=1

1
1+ ri

, (5.17)

Var [R∗(k)] =
N

∑
i=1

E(Xi){1−E(Xi)}=
N

∑
i=1

ri

(1+ ri)2 . (5.18)

Also,

E |Xi−E(Xi)|3 =
N

∑
i=1

[
|1−θi|3P(Xi = 1)+ |0−θi|3P(Xi = 0)

]
=

N

∑
i=1

[
(1−θi)

3
θi +θ

3
i (1−θi)

]
(since 0≤ θi ≤ 1)

=
N

∑
i=1

(1−θi)
{

θi(2θ
2
i −2θi +1)

}
≤

N

∑
i=1

(1−θi){θi(2θi−2θi +1)}

=
N

∑
i=1

(1−θi)θi =
N

∑
i=1

Var(Xi) = Var
[
R∗(k)

]
.
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That is,
N

∑
i=1

E |Xi−E(Xi)|3 ≤ Var [R∗(k)] . (5.19)

Since R∗(k) can be written as a sum of independent Bernoulli random variables we can use an
Esseen inequality (page 111, [44] ) to write:

sup
x

∣∣∣∣∣P
{

R∗(k)−E [R∗(k)]√
Var [R∗(k)]

≤ x

}
− 1√

2π

∫ x

∞

e−y2/2dy

∣∣∣∣∣≤ c
(Var [R∗(k)])3/2

N

∑
i=1

E |Xi−E(Xi)|3

≤ c
(Var [R∗(k)])3/2 Var [R∗(k)] (using (5.19))

≤ c√
Var [R∗(k)]

.

Corollary 5.3.2.1. Suppose that n and N are varied so that Var [R∗(k)]→∞. Then, E [R∗(k)]→∞

and the distribution of
R∗(k)−E [R∗(k)]√

Var [R∗(k)]
,

tends to the standard normal distribution.

We have shown that R∗(k) can be written as a sum of independent (but not identically dis-
tributed) Bernoulli random variables. Let:

R∗(k) = X1 +X2 + . . .+XN , where Xi ∼ Bern(θi).

Then,

E [R∗(k)] =
N

∑
i=1

E(Xi) =
N

∑
i=1

θi, (5.20)

Var [R∗(k)] =
N

∑
i=1

Var(Xi) =
N

∑
i=1

θi(1−θi) (since the Xis are independent). (5.21)

So, for each Xi we have, since 0≤ θi ≤ 1,

Var(Xi) = θi(1−θi)≤ θi ≤ E(Xi).

Hence,

Var [R∗(k)] =
N

∑
i=1

Var(Xi)≤
N

∑
i=1

E(Xi)≤ E [R∗(k)] , (5.22)
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so that,
Var [R∗(k)]→ ∞ =⇒ E [R∗(k)]→ ∞.

Then, by Theorem 5.3.2 we have,

sup
x

∣∣∣∣∣P
{

R∗(k)−E [R∗(k)]√
Var [R∗(k)]

≤ x

}
− 1√

2π

∫ x

−∞

e−y2/2dy

∣∣∣∣∣≤ c√
Var [R∗(k)]

.

So, if Var [R∗(k)]→ ∞ then this upper bound on the distance tends to zero giving the desired
result.

Lemma 5.3.2.
ρλ (R

∗(k))≤ E [R∗(k)]−Var [R∗(k)] , (5.23)

where λ = E [R∗(k)] and ρλ (X) is the total variation distance between the distribution of X and
the Poisson distribution with parameter λ .

For the total variation distance between the distribution of ∑
N
i=1 Xi, where Xi ∼ Bern(θi), Le

Cam [45] proved an upper bound is

dTV

(
distr. of ∑

i
Xi,Pois

(
λN =

N

∑
i=1

E(Xi)

))
≤

N

∑
i=1

θ
2
i . (5.24)

Using (5.19) and (5.20) we also have

E [R∗(k)]−Var [R∗(k)] =
N

∑
i=1
{θi−θi(1−θi)}=

N

∑
i=1

θi {1− (1−θi)}=
N

∑
i=1

θ
2
i . (5.25)

Putting this together then gives the desired result.

5.3.3 Simulations

We have looked in detail at the distribution of the number of occupied boxes over layers for small
examples and have developed formulae for general N but we can also visualise what is happening
for larger values of N via simulations run using RStudio [46]. The N = 100, n = 100 case was
simulated though 600 layers, 100,000 times and histograms were produced for the number of
occupied boxes in various layers. Since we are starting with n and N proportional to one another
we expect to be in the Central Domain as described by Kolchin et al. [2]. As expected, given
their results, we observe a distribution which looks fairly close to Normal (Figure 5.3). Then, as
we move through the layers the distribution seems to move further from a Normal distribution
(Figure 5.4). After a certain layer, we observe an almost degenerate distribution which again is
to be expected since the more layers the shots have moved through the more likely merges are
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to have happened (Figure 5.5). The expected value and variance in each layer shown is provided
in Table 5.1.

Figure 5.3: Histograms for the number of occupied boxes in layer one (left) and ten (right)
across 100,000 simulations.

Figure 5.4: Histograms for the number of occupied boxes in layer 20 (left) and 50 (right) across
100,000 simulations.

Figure 5.5: Histograms for the number of occupied boxes in layer 100 (left) and 300 (right)
across 100,000 simulations.
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Layer E [R∗(k)] Var [R∗(k)]
1 63.39 9.74

10 16.14 4.71
20 9.09 2.77
50 4.11 1.23

100 2.30 0.64
300 1.15 0.13

Table 5.1: The expected value and variance for R∗(k) across 100,000 runs of the simulations
starting with n = 100, N = 100.

Suppose we again want to consider an example where we start in the Central Domain but
with a larger number of shots and boxes. Figures 5.6-5.8 and Table 5.2 demonstrate how the
distribution of R∗(k) changes throughout the layers when we start with n = 1000, N = 1000.

Figure 5.6: Histograms for the number of occupied boxes in layer one (left) and ten (right)
across 10,000 simulations.

Figure 5.7: Histograms for the number of occupied boxes in layer 50 (left) and 100 (right) across
10,000 simulations.
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Figure 5.8: Histograms for the number of occupied boxes in layer 300 (left) and 500 (right)
across 10,000 simulations.

Layer E [R∗(k)] Var [R∗(k)]
1 632.32 97.74

10 158.66 47.47
50 37.99 12.29

100 19.73 6.42
300 6.91 2.24
500 4.32 1.32

Table 5.2: The expected value and variance for R∗ ∗ (k) across 10,000 runs of the simulations
starting with n = 1000, N = 1000.

Suppose we instead want to consider an example where we start in the Left-Hand Domain so
that the number of shots is much smaller than the number of boxes. Figures 5.9-5.11 and Table
5.3 demonstrate how the distribution of R∗(k) changes throughout the layers when we start with
n = 10, N = 100.

Figure 5.9: Histograms for the number of occupied boxes in layer one (left) and ten (right)
across 100,000 simulations.
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Figure 5.10: Histograms for the number of occupied boxes in layer 20 (left) and 50 (right) across
100,000 simulations.

Figure 5.11: Histograms for the number of occupied boxes in layer 100 (left) and 300 (right)
across 100,000 simulations.

Layer E [R∗(k)] Var [R∗(k)]
1 9.57 0.39

10 6.88 1.49
20 5.27 1.41
50 3.19 0.92

100 2.03 0.54
300 1.12 0.11

Table 5.3: The expected value and variance for R∗(k) across 100,000 runs of the simulations
starting with n = 10, N = 100.

Suppose we again want to consider an example in the Left-Hand Domain but with a larger
number of boxes. Figures 5.12-5.14 and Table 5.4 demonstrate how the distribution of R∗(k)

changes throughout the layers when we start with n = 10, N = 1000.
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Figure 5.12: Histograms for the number of occupied boxes in layer one (left) and ten (right)
across 10,000 simulations.

Figure 5.13: Histograms for the number of occupied boxes in layer 20 (left) and 50 (right) across
10,000 simulations.

Figure 5.14: Histograms for the number of occupied boxes in layer 100 (left) and 300 (right)
across 10,000 simulations.
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Layer E [R∗(k)] Var [R∗(k)]
1 9.95 0.05

10 9.56 0.40
20 9.16 0.70
50 8.16 1.24

100 6.90 1.50
300 4.31 1.22

Table 5.4: The expected value and variance for R∗(k) across 10,000 runs of the simulations
starting with n = 10, N = 1000.

Another scenario we could consider is when we start with a much larger number of shots
than boxes so that we are initially in the Right-Hand Domain. In this case, regardless of how
many shots we throw into the first layer the maximum number of occupied boxes is given by N.
Then, from layer two onwards, at most N shots will be distributed and the picture is the same as
that shown for the Central Domain.

5.3.4 Summary of results for R∗(k) for N boxes

1. The p.g.f. for the number of occupied boxes in any layer k of the scheme with N

boxes has all real roots.

2. As a result of the above we show that if the variance of the number of occupied
boxes tends to infinity then the distance between the standardised version of R∗(k)

and the standard Normal distribution tends to zero. We provide both a classical and
local limit theorem.

3. An upper bound for the total variation distance between the distribution of R∗(k)

and the Poisson distribution with parameter λ = E [R∗(k)] is

E [R∗(k)]−Var [R∗(k)] .
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Chapter 6

Properties of the difference in the number
of occupied boxes between consecutive
layers

6.1 Motivation

In a multiple-layer scheme we can also look at the difference in the number of occupied boxes
between consecutive layers. Suppose, for example, we consider the boxes in each layer to be
biological species so that the number of occupied boxes is a measure of the species diversity.
Then, the difference in the occupancy number between layers may be of interest to address
questions such as:

1. Did interventions help to reduce drops in diversity?

2. When did the largest/smallest drops happen?

3. How did certain events affect diversity?

As discussed in Chapter four, Kolchin et al. considered the number of empty boxes, R0, in
a single layer of a scheme where n shots are allocated to N boxes according to the uniform
distribution [2]. They defined the Left-Hand 0-Domain to be where, as n, N→ ∞,

n
N
→ 0 and Var(R0)≈

n2

2N
→ λ < ∞.

In this domain they showed that the following asymptotic result holds.

Theorem 6.1.1. [2] As n, N→ ∞,

P{R0− (N−n) = i}→ λ ie−λ

i!
,
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where Var(R0)→ λ as n, N→ ∞.

Note that N− n would be the number of empty boxes if each shot went to a different box,
so that R0− (N− n) is the difference in the number of empty boxes observed and the number
we would have if each shot had its own box. Hence, their result shows that, as n and N tend to
infinity in the way specified, the distribution of this difference tends to Poisson, where λ is the
expected difference.
In the multiple-layer scheme, let R0(k) be the number of empty boxes in layer k in the scheme
with N boxes. Then, R0(1)− (N− n) in layer one becomes R0(k)−R0(k− 1) for layer k ≥ 2,
which can alternatively be written in terms of the number of occupied boxes as R∗(k−1)−R∗(k).
We want to be able to prove an equivalent result to Theorem 6.1.1 for this multiple-layer scheme.

6.2 Three boxes

To start, assume N = 3 and consider the difference between the number of occupied boxes in
the first and second layers. Let R∗diff(k−1,k) be the difference in the number of occupied boxes
between layer k−1 and k in the scheme with N boxes. Recall that the number of occupied boxes
is non-increasing so R∗(k−1)−R∗(k)≥ 0. The range space of

R∗diff(k−1,k) ∈ {0,1, . . .N−1}.

For the difference to be two we must have had three occupied boxes in layer one and then one
at layer two, so

P
(

R∗diff(1,2) = 2
)
= p(1)3,3(3)p(1)3,1(3) =

2
9
× 1

9
=

2
81

.

For the difference to be one, there were either two or three occupied boxes in layer one and then
the occupancy count decreased by one after the allocation to layer two, so

P
(

R∗diff(1,2) = 1
)
= p(1)3,3(3)p(1)3,2(3)+ p(1)3,2(3)p(1)2,1(3) =

2
9
× 2

3
+

2
3
× 1

3
=

10
27

.

Finally, for the difference to be zero, there were either one, two or three occupied boxes in the
first layer and then each of these shots must land in its own box in the second layer, so

P
(

R∗diff(1,2) = 0
)
= p(1)3,3(3)p(1)3,3(3)+ p(1)3,2(3)p(1)2,2(3)+ p(1)3,1(3)p(1)1,1(3)

=
2
9
× 2

9
+

2
3
× 2

3
+

1
9
×1 =

49
81

.
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Applying similar arguments for the first few layers gives the following p.g.f.s (the probabilities
for the first ten layers are shown in Figure 6.1):

gR∗diff(1,2)
(x) =

2
81

x2 +
10
27

x+
49
81

,

gR∗diff(2,3)
(x) =

4
729

x2 +
56

243
x+

557
729

,

gR∗diff(3,4)
(x) =

8
6561

x2 +
328

2187
x+

5569
6561

,

gR∗diff(4,5)
(x) =

16
59049

x2 +
1952

19683
x+

53177
59049

.

In order to construct the p.g.f. for this difference in any given layer of the scheme with three
boxes, non-recursive formulae for three probabilities are needed.

i P
(

R∗diff(k−1,k) = 0
)

: There could have been either one, two or three shots in the previous
layer and then no merges occurred in the final one-layer transition. So,

P
(

R∗diff(k−1,k) = 0
)
= p(k−1)

3,3 (3)p(1)3,3(3)+ p(k−1)
3,2 (3)p(1)2,2(3)+ p(k−1)

3,1 (3)p(1)1,1(3).

Using the non-recursive formulae for p(k−1)
3,3 (3), p(k−1)

3,2 (3) and p(k−1)
3,1 (3) (from (3.1)-(3.3)),

P
(

R∗diff(k−1,k) = 0
)
=

2
9

(
2
9

)k−1

+
2
3

(
3
2

{(
2
3

)k−1

−
(

2
9

)k−1
})

+

{
1+

1
2

(
2
9

)k−1

− 3
2

(
2
3

)k−1
}

= 1− 5
4

(
2
9

)k

− 3
4

(
2
3

)k

.

ii P
(

R∗diff(k− 1,k) = 1
)

: There could have been two or three shots in the previous layer and
then, in the final one-layer transition, the occupancy count has decreased by one, so,

P
(

R∗diff(k−1,k) = 1
)
= p(k−1)

3,3 (3)p(1)3,2(3)+ p(k−1)
3,2 (3)p(1)2,1(3)

=
3
4

(
2
9

)k

+
3
4

(
2
3

)k

=
3
4

{(
2
9

)k

+

(
2
3

)k
}
.

iii P
(

R∗diff(k− 1,k) = 2
)

: The only option here is that there were three shots in the previous
layer and then, in the final one-layer transition, the occupancy count has decreased by two.
Hence,

P
(

R∗diff(k−1,k) = 2
)
= p(k−1)

3,3 (3)p(1)3,1(3) =
1
2

(
2
9

)k

.
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Hence, the p.g.f. for the difference in the number of occupied boxes between consecutive layers
of the scheme with three boxes is given by

gR∗diff(k−1,k)(x) =
1
2

(
2
9

)k

x2 +
3
4

{(
2
9

)k

+

(
2
3

)k
}

x+1− 5
4

(
2
9

)k

− 3
4

(
2
3

)k

. (6.1)

Figure 6.1: Probabilities for the difference in the number of occupied boxes for the first ten
layers of the scheme with three boxes.

The expected difference in the number of occupied boxes is then

E [R∗diff(k−1,k)] =
3
4

(
2
3

)k

+
7
4

(
2
9

)k

and

Var [R∗diff(k−1,k)] =
3
4

(
2
3

)k

− 9
16

(
4
9

)k

+
11
4

(
2
9

)k

− 21
8

(
4
27

)k

− 49
16

(
4
81

)k

(Figure 6.2). The difference

E [R∗diff(k−1,k)]−Var [R∗diff(k−1,k)] =
9

16

(
4
9

)k

−
(

2
9

)k

+
21
8

(
4
27

)k

+
49
16

(
4

81

)k

→ 0 as k→ ∞.

This suggests that a Poisson distribution may be a possible limiting distribution. Compare this
with what happens for the number of occupied boxes. In this case, there is always at least one
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box occupied and

E [R∗(k)]−Var [R∗(k)] = 1+3
(

2
3

)k

+

(
2
9

)k

+
9
4

(
4
9

)k

+
3
2

(
4

27

)k

+
1
4

(
4

81

)k

→ 1 as k→ ∞.

Figure 6.2: Expectation (left) and variance (right) of R∗diff(k−1,k) for the first ten layers of the
scheme with three boxes.

6.2.1 Distance to the Poisson distribution

It is useful to quantify how far away the distribution of the difference in the number of occupied
boxes is from a Poisson distribution. For example, consider the difference in the number of
occupied boxes between the second and third layer of the scheme, where

P
(

R∗diff(2,3) = 0
)
=

557
729

, P
(

R∗diff(2,3) = 1
)
=

56
243

, P
(

R∗diff(2,3) = 2
)
=

4
729

.

Now, suppose we want to see how far away this is from a Poisson distribution with parameter
λk = E

[
R∗diff(k−1,k)

]
for k = 3, i.e.,

λ3 =
176
729

.

The distance is then 0.0816 (including the contribution from the Poisson tail). Repeating this for
layer five gives a distance of 0.0179. The larger the value of k, the smaller the distance and so
the closer the distribution is to Poisson. The expected number of layers until we have only one
occupied box is approximately twice the number of boxes [11] which is why we chose to look
at the above values of k. After all the shots have merged into one that single remaining shot will
just continue to be allocated to its own box and the difference in the number of occupied boxes
will remain zero from that point onwards.
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6.2.2 Discriminant approach

Lemma 6.2.1. The p.g.f. for the difference in occupancy between consecutive layers has all real
roots for all layers for three boxes.

Recall from (6.1) that the p.g.f. for the difference in the number of occupied boxes between
layer k−1 and k with three boxes is

gR∗diff(k−1,k)(x) =
1
2

(
2
9

)k

x2 +
3
4

{(
2
9

)k

+

(
2
3

)k
}

x+1− 5
4

(
2
9

)k

− 3
4

(
2
3

)k

.

The discriminant

∆2 =
49
16

(
4

81

)k

+
21
8

(
4

27

)k

+
9
16

(
4
9

)k

−2
(

2
9

)k

.

Since
9

16

(
4
9

)k

2
(

2
9

)k =
9

32
(2)k > 1 for k ≥ 2,

∆2 > 0 and hence the p.g.f. has all real roots for all layers, when N = 3.

6.2.3 Sum of independent Bernoulli random variables

This allows R∗diff(1,2) for example to be written as a sum of independent Bernoulli random
variables:

R∗diff(1,2) = X (2)
1 +X (2)

2 ,

where,
X (2)

1 ∼ Be(θ (2)
1 ), X (2)

2 ∼ Be(θ (2)
2 ).

Setting the probabilities of R∗(1,2) equal to the corresponding Bernoulli probabilities gives

P
(

R∗diff(1,2) = 0
)
=
(

1−θ
(2)
1

)(
1−θ

(2)
2

)
=

49
81

,

P
(

R∗diff(1,2) = 1
)
= θ

(2)
1

(
1−θ

(2)
2

)
+θ

(2)
2

(
1−θ

(2)
1

)
=

10
27

,

P
(

R∗diff(1,2) = 2
)
= θ

(2)
1 θ

(2)
2 =

2
81

,

giving

θ
(2)
2 =

17−
√

127
81

and θ
(2)
1 =

17+
√

127
81

.
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Therefore,
R∗diff(1,2) = X (2)

1 +X (2)
2 ,

with

X (2)
1 ∼ Be

(
17+

√
127

81

)
, X (2)

2 ∼ Be

(
17−

√
127

81

)
.

Repeating this for the difference in the number of occupied boxes between the third and second
layers

R∗diff(2,3) = X (3)
1 +X (3)

2 ,

with

X (3)
1 ∼ Be

(
88

729
+

1
2

√
19312

531441

)
, X (3)

2 ∼ Be

(
88
729
− 1

2

√
19312

531441

)
.

Comparing the θs for the first three differences:

θ
(2)
1 ≈ 0.349, θ

(2)
2 ≈ 0.0708;

θ
(3)
1 ≈ 0.216, θ

(3)
2 ≈ 0.0254;

θ
(4)
1 ≈ 0.144, θ

(4)
2 ≈ 0.0085,

we see that as the layer index increases, both θ parameters are moving towards zero which is
consistent with the expected difference in the number of occupied boxes tending to zero.
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6.2.4 Summary of results for three boxes

1. The p.g.f. for the difference in the number of occupied boxes in consecutive layers
in the scheme with three boxes is given by

gR∗diff(k−1,k)(x) =
1
2

(
2
9

)k

x2 +
3
4

{(
2
9

)k

+

(
2
3

)k
}

x+1− 5
4

(
2
9

)k

− 3
4

(
2
3

)k

.

2. The expected difference in the number of occupied boxes in consecutive layers in
the scheme with three boxes is

E
[
R∗diff(k−1,k)

]
=

3
4

(
2
3

)k

+
7
4

(
2
9

)k

.

3. The variance of the difference in the number of occupied boxes in consecutive lay-
ers in the scheme with three boxes is

Var
[
R∗diff(k−1,k)

]
=

3
4

(
2
3

)k

− 9
16

(
4
9

)k

+
11
4

(
2
9

)k

− 21
8

(
4
27

)k

− 49
16

(
4

81

)k

.

4. The p.g.f. for the difference in the number of occupied boxes in any layer of the
scheme has all real roots so that the difference can be expressed as a sum of inde-
pendent Bernoulli random variables. We have again shown this using a discriminant
approach.

Similar calculations (not shown) were repeated for N = 4 and N = 5. For example, the
probabilities for the differences over the first ten layers are shown in Figure 6.3.

Figure 6.3: Difference probabilities for the first ten layers of the schemes with four (left) and
five (right) boxes.

Further, if we continue to increase N and calculate the distance between the distribution
of the difference for layer k and a Poisson distribution with its parameter given by the mean
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difference in layer k we see it decreases as N increases (Figure 6.4). In order to get the difference
probabilities for the larger values of N, the recursive formulae for the probabilities for general
N (5.5) were used.

Figure 6.4: Distance between the distribution of R∗diff(k−1,k) and Poisson distribution for k=N.

6.3 General N

A proof demonstrating that the p.g.f. for the number of occupied boxes in layer k has all real
roots was given in Chapter five and we now want produce an equivalent result for the p.g.f.
for the difference in the number of occupied boxes between consecutive layers of the scheme.
Recall that our motivation for proving the p.g.f. has all real roots is that it permits us to represent
the difference in the number of occupied boxes as a sum of independent (but not identically
distributed) Bernoulli random variables. From this, normal and Poisson limiting results follow
and this will be shown in this chapter.

Theorem 6.3.1. The p.g.f. for the difference in the number of occupied boxes between consec-
utive layers of the scheme has all real roots for all layers.

Proof. Let gR∗diff
(k,k+ 1) be the p.g.f. for the difference in the number of occupied boxes be-

tween layer k and layer k+1 (note that the number of occupied boxes is non-increasing so take
R∗diff(k,k+ 1) = R∗(k)−R∗(k+ 1)). In the previous layer there could have been 1,2, . . . ,N oc-
cupied boxes. Let p(k)n,i (N) be the probability of having i occupied boxes in layer k when you
started by throwing n shots into N boxes. To have a difference of j going from layer k to layer
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k+1 a one-step transition from i to i− j is required. Then (where pi,r = 0 for r ≤ 0),

gR∗diff
(k,k+1) =

N

∑
i=1

N−1

∑
j=0

p(k)n,i (N)p(1)i,i− j(N)z j

=
N

∑
i=1

p(k)n,i (N)
N−1

∑
j=0

p(1)i,i− jz
j

=
N

∑
i=1

p(k)n,i (N)Tf [gR∗(1)|S(k+1)=i](z)

=
N

∑
i=1

p(k)n,i (N)Tf ◦Tg[gR0(1)|n=i](z). (6.2)

Let

vn,N(z) =
N−1

∑
m=0

(
N
m

)
zm(N−m)n. (6.3)

We have already seen (4.2.4) that we can reformulate the p.g.f. for the number of empty boxes
in layer one for the scheme with N boxes and a fixed number of shots n as

gR0(k)|n= j(z) =
v j,N(z−1)

N j . (6.4)

Plugging this into our expression for gR∗diff
(k,k+1) gives

gR∗diff
(k,k+1)(z) =

N

∑
j=1

p(k)n, j(N)

N j Tf ◦Tg[v j,N ](z−1)

=
N

∑
j=1

p(k)n, j(N)

N j Tf ◦Tg ◦T−1[v j,N ](z), (6.5)

where T−1[p](z) = p(z−1) is a real-root-preserving transformation (2.1). Now, applying Tf to
both sides of (5.14) gives a new representation for v j,N(z) which can be plugged into (6.5) to
give

gR∗diff
(k,k+1)(z) =

N

∑
j=1

p(k)n, j(N)

N j Tf ◦Tg ◦T−1 ◦Tf ◦Td ◦Td ◦ · · ·Td︸ ︷︷ ︸
j times

◦T1[zN ]

= Tf ◦Tg ◦T−1 ◦Tf ◦
N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · ·Td︸ ︷︷ ︸
j times

◦T1[zN ]. (6.6)

Now, Tf ◦Tg ◦T−1 ◦Tf preserves the number of real roots (since it is a composition of real-root-
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preserving transformations) and we showed in Chapter five that

N

∑
j=1

p(k)n, j(N)

N j Td ◦Td ◦ · · ·Td︸ ︷︷ ︸
j times

◦T1[zN ] = Tc[(z+1)N ]

has all real roots. So

gR∗diff(k,k+1)(z) = Tf ◦Tg ◦T−1 ◦Tf ◦Tc[(z+1)N ].

and we are applying a composition of transformations which preserve the number of real roots.
Therefore, gR∗diff(k,k+1) has all real roots. Hence, by induction, we have shown that gR∗diff(k,k+1)

has all real roots for all k,N and n ∈ N.

6.3.1 Distributional results for R∗diff(k,k+1) in the multiple-layer scheme
with N boxes

Theorem 6.3.2. Again, let R∗diff(k,k + 1) be the difference in the number of occupied boxes
between layer k and k+1 of the scheme which starts with n shots and has N boxes throughout.
Then, there is a constant c < ∞ such that

sup
x

∣∣∣∣∣∣P
R∗diff(k,k+1)−E

[
R∗diff(k,k+1)

]√
Var
[
R∗diff(k,k+1)

] ≤ x

− 1√
2π

∫ x

−∞

e−y2/2dy

∣∣∣∣∣∣≤ c√
Var
[
R∗diff(k,k+1)

] .
(6.7)

The proof simply follows that for R∗(k) (Theorem 5.3.2).

Corollary 6.3.2.1. Suppose that n and N are varied so that Var
[
R∗diff(k,k+1)

]
→ ∞. Then,

E
[
R∗diff(k,k+1)

]
→ ∞ and the distribution of:

R∗diff(k,k+1)−E
[
R∗diff(k,k+1)

]√
Var
[
R∗diff(k,k+1)

] ,

tends to the standard normal distribution.

The proof mimics that for R∗(k) (Corollary 5.3.2.1).

Theorem 6.3.3. Let x(i) = (i−E
[
R∗diff(k,k+1)

]
)/
√

Var
[
R∗diff(k,k+1)

]
. Then, there is a con-

stant c < ∞ such that:

max
0≤i≤N

∣∣∣∣√Var
[
R∗diff(k,k+1)

]
P(R∗diff(k,k+1) = i)− 1√

2π
e−(x(i))

2/2
∣∣∣∣≤ c√

Var
[
R∗diff(k,k+1)

] .
(6.8)
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Again, this follows in the same as for R∗(k) (Theorem 5.3.3).

Lemma 6.3.1.

ρλ (R
∗
diff(k,k+1))≤ E [R∗diff(k,k+1)]−Var [R∗diff(k,k+1)] , (6.9)

where λ = E(R∗diff(k,k+ 1)) and ρλ (X) is the total variation distance between the distribution
of X and the Poisson distribution with parameter λ .

As above, the proof is the same as that for R∗(k) (Lemma 5.3.2).

6.3.2 Conditions under which this distance to Poisson is small

We have shown that gR∗diff
(k,k+1) has all real roots and can be written as a sum of independent

(but not identically distributed) Bernoulli random variables. Then,

ρλ (R
∗
diff(k,k+1))≤ E [R∗diff(k,k+1)]−Var [R∗diff(k,k+1)] .

For n and N fixed, as k→ ∞,

E [R∗diff(k,k+1)]→ 0 and Var [R∗diff(k,k+1)]→ 0.

Therefore, for n and N fixed, as k increases, the distribution of R∗diff moves closer to a Poisson
distribution. That is, as k→ ∞,

ρλ [R
∗
diff(k,k+1)]→ 0.

In contrast, for the number of occupied boxes in a given layer for n and N fixed, as k→ ∞,

E [R∗(k)]→ 1 and Var [R∗(k)]→ 0.

In 2015, Zubkov and Serov [27] established a result for iterations of random functions that
translates to bounds for the expected number of occupied boxes in a given layer k where we start
with n shots and have N boxes in every layer. They showed that

n−
(

n
2

)
k
N
≤ E [R∗(k)]< n−

(
n
2

)
k
N
+

n3k2

4N2 . (6.10)

Note, these bounds are often not tight but they can give us examples of regions where the Poisson
approximation works well. Using (6.10) we can get bounds for the difference in the number of
occupied boxes in consecutive layers of the scheme:

E [R∗diff(k,k+1)]≤ n3k2

4N2 +
n2

2N
− n

2N
,
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and

E [R∗diff(k,k+1)]≥−n3(k+1)2

4N2 +
n2

2N
− n

2N
.

Putting this together gives:

−n3(k+1)2

4N2 +
n2

2N
− n

2N
≤ E [R∗diff(k,k+1)]≤ n3k2

4N2 +
n2

2N
− n

2N
. (6.11)

If
n3k2

4N2 → 0 and
n2

2N
→ 0,

then,
E [R∗diff(k,k+1)]→ 0 as n, N, k→ ∞.

Note that
n2

2N
=

n
2

( n
N

)
so

n2

2N
→ 0 =⇒ α =

n
N
→ 0.

Example 6.3.1. If n =
⌊

N1/8
⌋

and k =
⌊

N1/8
⌋

so

n3k2

4N2 ≈
N5/8

4N2 → 0,
n2

2N
≈ N2/8

2N
→ 0 (as N→ ∞).

Consider, for example,

N = 256, n = 2, k = 2 : E [R∗diff(k,k+1)]≤ 33
8192

≈ 0.004,

N = 6561, n = 3, k = 3, E [R∗diff(k,k+1)]≤ 325
708588

≈ 0.00046.

6.3.3 Simulations

We can consider the multiple-layer scheme for various values of N and calculate the distance
between the distribution of the difference and a Poisson distribution with its parameter given by
the mean difference in layer k. In order to get the difference probabilities for the larger values
of N, the recursive formulae for the probabilities for general N (5.5) were used.
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Figure 6.5: Distance to Poisson for the distribution of R∗diff(k,k+1) for N = 5 (left) and N = 10
(right).

Figure 6.6: Distance to Poisson for the distribution of R∗diff(k,k+1) for N = 20 (left) and N = 30
(right).
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6.3.4 Summary of results for R∗diff(k,k+1) for N boxes

1. The p.g.f. for the difference in the number of occupied boxes between consecutive
layers of the scheme with N boxes has all real roots.

2. Let R∗diff(k,k+1) be the difference in the number of occupied boxes between layer
k and k+ 1 of the scheme which starts with n shots and has N boxes throughout.
Then, there is a constant c < ∞ such that an upper bound on the distance between
R∗diff(k,k+1) (standardised) and the standard normal distribution is

c√
Var
[
R∗diff(k,k+1)

] → 0 if Var [R∗diff(k,k+1)]→ ∞.

3. An upper bound for the distance from the distribution of R∗diff(k,k+1) to a Poisson
distribution with parameter λ = E

[
R∗diff(k,k+1)

]
is

E [R∗diff(k,k+1)]−Var [R∗diff(k,k+1)] .
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Chapter 7

Summary and discussion

The allocation of n shots to N boxes according to either a uniform or more general non-uniform
distribution has been extensively studied by various authors (for example, [2], [5], [20]). The
work in this thesis considered a multiple-layer extension of the uniform scenario. In the single-
layer scheme the number of shots was fixed. I also fix the initial number of shots but from layer
two onwards the number of shots being scattered into each layer becomes random (although
necessarily non-increasing). This additional complexity is why the simpler uniform allocation
was specified from the outset. Before moving to the general scheme we started with small finite
examples allowing us to try various methods of proof and to get a better understanding of how
the distribution of the number of occupied boxes behaves moving through the layers.

7.1 Conclusions

The initial aim of this research was to build on the work done for a single-layer shots-and-boxes
scheme and to expand this to a multiple-layer scheme. One motivation of such a scheme is that
it then allows us to generate a model for a tree describing the way objects might sequentially
coalesce which opens up applications to, for example, studying how ancestral lineages evolve
over time in some population of organisms [47]. More generally, having multiple layers allows
time to be incorporated into the model or, depending on the desired application, layers could
also be used to represent spatial location. The ultimate goal was to produce limit theorems for
the distribution of the number of occupied boxes in any given layer.
Before moving to this multiple-layer scheme for a general number of boxes, I began by studying
a small finite example where there were just three boxes, to establish the behaviour of the model
in this case when brute-force methods are tractable. In this way, for three boxes I was able to
establish explicit, non-recursive formulae for the expectation, variance and p.g.f. for the number
of occupied boxes in any given layer. It proved fairly straightforward to show that this p.g.f. has
all real roots for all layers. Additionally, for three boxes I could get explicit formulae for the
success probabilities of the independent Bernoulli random variables into which the number of
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occupied boxes could be decomposed.
When moving to four and five boxes it can be seen how even adding one additional box adds
complexity to these formulas and to the difficulty in proving the p.g.f. has all real roots. I was
able to show applying a strategy first used by Vatutin and Mikhailov [3] for the scheme with
N boxes that the p.g.f. for the number of occupied boxes in any given layer has all real roots.
Hence, the number of occupied boxes in any layer can be written as a sum of independent (but
not identically distributed) Bernoulli random variables. From this, normal and Poisson limiting
results could then be established for the distribution of the number of occupied boxes.
The distributional results proven in this thesis are asymptotical but we have shown that even for
any finite number of shots and boxes the number of occupied boxes can be written as a sum
of independent Bernoulli random variables. We do not however have explicit formulae for the
parameters of those Bernoullis and we showed that even for three boxes these take quite com-
plex form. If a particular application involved working with a finite sample size then trying to
establish exactly what the parameters of these Bernoullis would be could be beneficial but chal-
lenging. Note that this can be thought of in terms of roots of polynomials since we have shown
the p.g.f. has all real roots but we have not established what the roots are exactly. Numerical
approaches to determining the roots will work so long as N is not too large. Further investiga-
tion into how to check that a given choice of n and N satisfy the conditions of the limit theorems
proven in this thesis would also be beneficial.
An advantage of considering a multiple-layer scheme is that it allows us to consider for example
the difference in the number of occupied boxes between consecutive layers. Again, for small
finite examples, I could provide explicit formulas for the expectation, variance and p.g.f. of this
difference between any pair of consecutive layers. More importantly, I showed that the p.g.f. for
the difference in the number of occupied boxes between consecutive layers of the scheme with
a general number of boxes has all real roots. As a result, normal and Poisson limiting results
followed as well as examples where Poisson approximation in particular works well.

7.2 Estimating population size

Suppose we take a small set of n mitochondrial DNA sequences which we can represent as shots
in the shots and boxes model. Behind these sequences is a tree that we do not know but we can
get an estimate of this using maximum likelihood. At this stage all the branches are measured
in units of the average number of mutations but we can convert this to generations using the
mutation rate. Then, if you look at the tree for a particular generation k and count the number of
ancestral lines this is equivalent to R∗(k) (number of occupied boxes in layer k of the shots and
boxes model).
Now, the question is whether we can use what we know about R∗(k) to construct the likelihood
of N which here would represent the population size. In a setting such as this one we anticipate
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that n will be much smaller than N and we have seen that in this scenario the distribution of the
difference in the number of occupied boxes between consecutive layers is close to Poisson. We
also know that these differences are independent so if we assume a Poisson distribution we will
have a product of Poisson probabilities which can then be maximised with respect to N.
I started with a dataset containing 53 mitochondrial DNA sequences and assumed the differences
in the number of occupied boxes between consecutive layers was Poisson. I then constructed the
log-likelihood and found it reached its maximum when N = 31049. To check the plausibility of
this value I simulated some trees starting with n = 53 and N = 31049 and compared them with
the actual tree we are considering.

Figure 7.1: Comparing the estimated tree from the DNA data being considered (red, top-left)
with simulated trees using the obtained value of N.

7.3 Limitations and future work

Due to the added complexity of a multiple-layer scheme all of the limiting results and even the
finite results shown in this thesis are under the assumption that shots are allocated using the uni-
form distribution. In the case of a single-layer shots-and-boxes scheme most of the results still
hold when considering non-uniform allocation but further assumptions were needed. It would
be interesting to try to prove which (if any) of our results still hold and under what conditions.
This would also help to improve applicability as it would allow for more flexibility in the model.
For a single layer limiting results were first obtained by various authors for the number of empty
(or occupied) boxes and then their work was extended (usually by others) to show that these
same results held for the number of boxes containing exactly m shots. Hence, another natural
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extension of the work in this thesis would be to persist with the assumption of a uniform allo-
cation of shots but try to establish analogous results for the number of boxes containing exactly
m shots. If it were the case that the results for the number of occupied boxes produced in this
thesis also held for a non-uniform allocation of shots (under appropriate restrictions) then, as for
the uniform case, it would be of interest to try and extend this to the number of boxes containing
exactly m shots. In this thesis the distributional results for the number of occupied boxes are for
a single layer or for a single difference between layers so that they are univariate limit theorems.
A possible though challenging extension to this would be to establish multivariate asymptotic
distributional results for example for the joint distribution of occupancy numbers across l layers.
Another advantage of this multiple-layer scheme is that we can consider random variables that
did not arise for a single layer. In this thesis I looked at the difference in the number of occupied
boxes between consecutive layers but it would be worth considering, based on potential appli-
cations, other univariate quantities that could be of interest.
At the beginning of this thesis, (single-layer) schemes with an infinite number of boxes were
discussed but were not explored further. This would be another possible area of direction of
research based on work shown here. More recently, functional central limit theorems for these
infinite schemes have been produced ( [14], [15]) and this is again something not considered in
this thesis but it would allow the multiple-layer scheme to be studied as a whole rather than only
considering one layer at a time.
As well as considering how to extend the multiple-layer scheme presented in thesis we could
also consider what would happen if, say, rather than just being interested in the number of boxes
which are occupied (empty or occupied by exactly m shots) we also wanted to know where the
shots were located. Additionally, for some applications it also might be of interest to label the
shots from the outset. An area of recent research in the context of iterations of random functions
has considered having two multiple-layer schemes running simultaneously. Here, the schemes
are marginally uniform but they are dependent on one another which could be used, for example,
to model DNA recombination [28].
Overall, given that the results produced under a uniform allocation in single-layer scheme ex-
tend to a multiple-layer scheme it is promising that there are many possible avenues of future
research based on the foundations developed in this thesis.
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