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Abstract

Background and Objectives: This study provides a quantitative comparison of
images created using gVirtualXray (gVXR) to both Monte Carlo (MC) and
real images of clinically realistic phantoms. gVirtualXray is an open-source
framework that relies on the Beer-Lambert law to simulate X-ray images in
realtime on a graphics processor unit (GPU) using triangular meshes.

Methods: Images are generated with gVirtualXray and compared with a
corresponding ground truth image of an anthropomorphic phantom: (i) an X-
ray projection generated using a Monte Carlo simulation code, (ii) real digitally
reconstructed radiographs (DRRs), (iii) computed tomography (CT) slices, and
(iv) a real radiograph acquired with a clinical X-ray imaging system. When real
images are involved, the simulations are used in an image registration framework
so that the two images are aligned.

Results: The mean absolute percentage error (MAPE) between the images
simulated with gVirtualXray and MC is 3.12%, the zero-mean normalised cross-
correlation (ZNCCQC) is 99.96% and the structural similarity index (SSIM) is 0.99.
The run-time is 10 days for MC and 23 ms with gVirtualXray. Images simulated

using surface models segmented from a CT scan of the Lungman chest phantom

*Corresponding author
Email address: f.vidal@bangor.ac.uk (Franck Patrick Vidal)
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were similar to i) DRRs computed from the CT volume and ii) an actual digital
radiograph. CT slices reconstructed from images simulated with gVirtualXray
were comparable to the corresponding slices of the original CT volume.
Conclusions: When scattering can be ignored, accurate images that would
take days using MC can be generated in milliseconds with gVirtualXray. This
speed of execution enables the use of repetitive simulations with varying pa-
rameters, e.g. to generate training data for a deep-learning algorithm, and to
minimise the objective function of an optimisation problem in image registra-
tion. The use of surface models enables the combination of X-ray simulation
with real-time soft-tissue deformation and character animation, which can be
deployed in virtual reality applications.
Keywords: X-rays, Computed tomography, Simulation, Monte Carlo, GPU

programming, Image registration, DRR

1. Introduction

Monte Carlo (MC) simulation is known as the state-of-the-art technique to
simulate X-ray images in terms of accuracy. However, prohibitive computing
time may be required to simulate an X-ray projection at high spatial resolu-
tion with an acceptable level of noise, which limits the use of MC simulations
in applications where real-time performance is a requirement [I]. Badal and
Badano [2] adapted PENELOPE’s MC code to graphics processor unit (GPU)
computing in 2009. In the example they provided, they simulated an image
with 150 x 300 pixels using 10'° primary X-rays. They reported runtimes in
minutes incompatible with real-time performance: i) 5106 on a central proces-
sor unit (CPU) for the original PENELOPE’s code, ii) 624 for their simplified
CPU implementation, iii) 83 for a GPU with no fast math, iv) 60 for a GPU
with fast math and v) 24 for a GPU with single-precision floating-point num-
bers. In 2022, Mettivier et al. [3] developed a GPU-based Monte Carlo X-ray
simulator. They generated computed tomography (CT) scan acquisition data

on a high-performance GPU (NVIDIA GeForce RTX™ 3090). They reported



that almost 3 hours of computations are needed to create 360 projections of
1,900 x 1,900 pixels from a 385 x 385 x 214 voxelised phantom, i.e. almost half
a minute per projection. Whilst GPU-based MC simulations are extremely fast
compared to their CPU counterparts (about 1,000x faster), there are still far
from real-time performance. About 13 seconds are necessary to compute the
voxel dose distribution in a 122 x 62 x 372 volume, which is relatively small com-
pared to a typical CT volume [4]. Voxelised models are often a requirement,
although surface meshes (STL files) are now supported in GATEE B]. It is an
open-source software dedicated to numerical simulations in medical imaging and
radiotherapy based on GeantélEl, the general-purpose MC code by the European
Organization for Nuclear Research (CERN). In this case, each surface mesh is
converted into a tessellated volume [6]. Note that it is possible to disable physics
processes, such as scattering, in MC methods to speed up X-ray generation. In
this case, the resulting images are similar to those produced by deterministic
methods but with noise.

Deterministic simulations based on the Beer-Lambert law generate noise-
free images. Depending on the application, they can provide a good compro-
mise between speed and accuracy [7] and can be implemented on GPUs for
a further increase of speed [8, [@]. Unlike Monte Carlo methods, deterministic
simulations tend to ignore scattering and noise, although the latter can easily
be added as a post-process. In this paper, gVirtualXray (gVXR)E| is used. It
is an open-source library written in C++ and the OpenGL Shading Language
(GLSL). gVirtualXray is portable and works on a wide range of computers
and operating systems (from Windows laptops to GNU/Linux Supercomput-
ers). Wrappers to other popular languages, including Pythonlﬂ R, Ruby, C+#,
Java and GNU Octave, are also available. The Analytical RT Inspection Sim-

Ihttp://wuw.opengatecollaboration.org/| (accessed: 27 February 2023)
%https://geant4.web.cern.ch/ (accessed: 27 February 2023)
Shttps://sourceforge.net/projects/gvirtualxray/| (accessed: 27 February 2023)
4https://pypi.org/project/gVXR/ (accessed: 27 February 2023)
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ulation Tool (aRTist)ﬂ developed by Bundesanstalt fiir Materialforschung und
priiffung (BAM, Germany) also makes use of a deterministic method to simulate
X-ray projections from computer-aided design (CAD) models [I0]. It provides a
graphical user interface (GUI) and is dedicated to nondestructive testing (NDT)
for industrial applications. CIVA by Extendeﬁ also uses a deterministic method
to simulate X-ray or v-ray projections. Both aRTist and CIVA are closed-source
commercial software with a license fee.

The combination of deterministic modelling with GPU computing allows
high-resolution X-ray projections to be simulated without scattering and with-
out noise in a few microseconds, which opens up new perspectives and op-
portunities. It is possible to use gVirtualXray in real-time applications such as
medical training simulators (see Figures([Ta]and[Ib]) [11}12}13]. GPUs also make
it possible to embed gVirtualXray within an optimisation algorithm to register
3D hand models on 2D radiographs [14] or produce accurate digital twins in
material science [15]. gVirtualXray can also be used to produce a high num-
ber of realistic simulated images to train machine learning algorithms [16] [I7],
which would not have been possible a few years ago. Albiol et al. [I8] proposed
a new type of densitometric radiographic images (a technique that combines
two radiographs that were produced with two different tube voltages). They
replaced one of the radiographs with a simulated one, thanks to the use of a
contour sensor (e.g. Microsoft Kinnect) and gVirtualXray (see Figure [Id). It
is also possible to integrate further simulation models to take into account the
patient’s physiology such as the respiration during the CT scan acquisition. In
this case, reconstructed slices will exhibit motion artefacts [19]. Andreozzi et
al. [20] used gVirtualXray to generate noise free X-ray radiographs. Noise is
added as a post-process to study real-time edge-aware denoising in fluoroscopic

devices. Corbi integrated gVirtualXray with other relevant software packages,

Shttps://artist.bam.de/ (accessed: 27 February 2023)
Shttps://www.extende.com/radiographic-testing-with-cival (accessed: 27 February

2023)
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such as Geant4, into a Docker container that is used online to teach particle

physics and X-ray imaging to undergraduate students in engineering [21].

fa--
(a)  Orthopaedic surgical simulator provid- (b) Radiography teaching tool with real-time
ing user-controlled image intensifier functional- character animation and soft-tissue deforma-
ity. Reproduced with permission from Racy et tions to interactively change the patient’s pose
al. [12]. in simulated X-ray radiographs.

g

-

b

(c) Examples of virtual densitometric image (D', 4th column). 1st column: experimental setup.

2nd column: iso-surfaces from the depth sensor. Virtual (high-energy) water-equivalent radiographs
(") from water-filled volumes [pX’]. 3rd column: original radiographs (X). Top row: chest section
of a RANDO anthropomorphic phantom (105 kVp and 6 mAs). The horizontal lines correspond
to the inter-slice separations. Bottom row: real patient (55 kVp and 9 mAs). Reproduced with
permission from Albiol et al. [I8].

Figure 1: Examples of medical applications using gVirtualXray as a core component.

To date, gVirtualXray has been validated using extremely simplistic MC
simulations of a cube of water in which a bone cylinder was inserted [9]. There
is no direct comparison between images simulated with gVirtualXray and (i)

real images or (ii) images simulated by a Monte Carlo method with clinically



realistic acquisition parameters and anthropomorphic phantoms. The aim of
this paper is to address these limitations. The assumption is that X-ray images
simulated in milliseconds with a deterministic algorithm on GPU are realistic
for clinical applications where speed is a requirement, whether this is virtual
reality (VR) simulators where X-ray images must be simulated in realtime from
dynamic patient models, or high-throughput data processing where a massive
amount of data must be generated very quickly. Another motivation, from
an educational point of view, is that exposure parameters have an influence
not only on image quality but also on the radiation dose the patient receives.
Using anthropomorphic phantoms with realistic clinical parameters to develop
a virtual software is important to recognise the effect those parameters have on
image quality in terms of contrast and noise from the absorption and scattering
of the X-ray photons.

To benchmark X-ray projections simulated on GPU with gVirtualXray

against ground truth images of clinically realistic phantoms:

e A suitable digital anthropomorphic phantom must be chosen. It will be
used to compare i) an X-ray projection using gVirtualXray with ii) an im-
age simulated using a state-of-the-art MC simulation tool. MC simulation
is considered the gold standard method in particle physics. MC methods
are based on step-by-step transportation and tracking of particles. The
open-source software GATE v9.0 [5] based on the Geant4 v10.7 toolkit [22]
has been used in this study. Option 4 of the electromagnetic standard
library was selected, following the recommendation from the Geant4 med-
ical simulation benchmarking group [23]. Simulation parameters for both

simulations must be equivalent.

e A suitable anthropomorphic phantom used in clinical routine must be se-
lected. It corresponds to some kind of mannequin that can be scanned.
The virtual anatomy is extracted by segmentation and isosurfacing of the
CT scan of the phantom. It is used to produce another two simulated

radiographs. They will be compared with digitally reconstructed radio-



graphs (DRRs) computed from the original CT scan of the anthropomor-
phic phantom. DRRs are radiographic images produced directly from 3D
CT data. They have been used in several medical imaging applications
for decades, such as the verification of computer-designed radiotherapy
treatments [24], 2D /3D image registration [25] and more recently the cre-
ation of training data for training tumour-tracking algorithms [26]. They
are often computed using a ray-casting algorithm and tend to ignore scat-
tering although it can be taken into account [27]. The main difference
between the simulations performed using gVirtualXray and DRRs is in
the data representation of the scanned patient: surface meshes vs. voxels.
Simulation parameters for the radiographs and corresponding DRRs must

be equivalent.

A CT data acquisition will be simulated. The anthropomorphic phantom
data will be used as a CT scan of the phantom is available. The sim-
ulation will generate a set of 2D X-ray radiographs taken at successive
angles around the phantom. When a sufficient number of projections is
available, a traditional filtered-back projection (FBP) or Feldkamp, Davis
and Kress (FDK) algorithm can be used to “convert” this set of 2D X-ray
radiographs into a 3D CT volume. 2D CT slices extracted from the vol-
ume reconstructed from the simulated projections will be quantitatively

compared to the corresponding slices of the original CT scan.

A simulated radiograph will be registered using an optimisation algorithm
so that it matches the image acquired with a clinically utilised equipment.
The radiograph is taken from the anthropomorphic phantom utilised in
clinical routine. Parameters of the real image acquisition (such as source-
to-patient and source-to-detector distances) may be unknown or inaccu-
rate values estimated by optimisation. This approach is a complex global
optimisation problem where the shape of the search space and the deriva-
tive of the objective function are unknown. One of the difficulties is that

radiographs used in clinical routine are always post-processed: i) they are



recorded in negative to mimic what used to happen when films were used,
and ii) an undocumented image sharpening filter is applied to highlight

edges between anatomical structures.

2. Methods and materials

2.1. Qverview of the simulation model

In clinical routine, an anti-scatter grid is commonly used in radiography. It
is a device placed between the patient and the detector. Such devices use a
grid pattern designed to stop scattered photons and let through the photons
that travel along a straight line from the source to the detector. CT scanners
in medicine make use of a helical scanning geometry where the patient couch is
continuously translated during the data acquisition [28]. It allows the beam to
be collimated to a fan-beam geometry rather than a large rectangular area. It
significantly reduces the amount of scattered radiation compared to cone-beam
computed tomography (CBCT), which requires a 2D area detector with many
more rows of pixels. Scatter in CT does occur and causes inaccuracies in the
measurement of attenuation values which can lead to artefacts such as cupping,
streaks, increased image noise, uniformity issues. Many correction methods are
applied during CT reconstruction to account for these such as special filters but
mainly in the reconstruction algorithm post processing. If scattering is neglected
and an ideal (i.e. dirac) point-spread function is assumed, X-ray projections

I(x,y) can simply be modelled with the Beer-Lambert attenuation law:

I(@.y) = > R(E)D(E) exp (=D 1y (E:) d(a,v) 1)

I(z,y) is the integrated energy in eV received by pixel (z,y). In the polychro-
matic case, the beam spectrum is discretised in several energy channels. F;
corresponds to the energy in eV of the i-th energy channel. D(E;) is the num-
ber of photons emitted by the source at that energy F;. The detector response

R(E;) mimics the use of a scintillator by replacing the incident energy F; with



a smaller value, i.e. R(E;) < E; (see Figure [6b] for an example). The detector
response is assumed space-invariant in Equation[I] j indicates the j-th material
being scanned when a multi-material “object” is considered. p;(E;) is the linear
attenuation coefficient in cm™' of the j-th material at energy E;. d;(x,y) is the
path length in cm of the ray from the X-ray source to pixel (z,y) crossing the
j-th material.

It is straightforward to implement the Beer-Lambert attenuation law using
ray-tracing. However, such a naive approach misses the opportunity to take ad-
vantage of what GPUs are for: Draw millions of polygons as fast as possible in
video games without the need to explicitly compute ray-triangle intersections.
Traditionally, an image is generated in 3D video games in two successive main
steps : i) triangles are transformed (e.g. translation, scaling, rotation, projec-
tion), and ii) pixel colours are computed. Let us consider the simple simulation

presented in Figure [2| It is used to illustrate how Eq. [1]is split into successive

Figure 2: A simple simulation. The dot on the left-hand side depicts the X-ray source. The
transparent pink shape shows the X-ray beam. The cube in magenta is the object being
imaged. The detector can be seen on the right-hand side. One can see that a cylindric void

is inside the cube.

steps in gVirtualXray. d; is computed per vertex and pixel values obtained by
bi-linear interpolation. Figure [33] shows the corresponding image generated for
the simulation presented in Figure 2] It is used to generate another temporary
image that stores Zj w;d; (see Figure . The simulated X-ray image can
eventually be generated (see Figure . Details about our implementation are
already available for the monochromatic Beer-Lambert law [8], the polychro-

matic Beer-Lambert law and focal spots of the X-ray source [29], and adaptive
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Figure 3: Successive images produced in the graphics pipeline for the simulation presented in

Figure E}
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filtering to suppress errors that can arise due to GPU programming [9].
Known bottlenecks are (i) the number of polygons in the scanned ge-

ometry when computing d;, and (ii) the pixel resolution when computing

R(E;)D(E;) exp(...). By convention in computer graphics, vectors normal

to the surface of 3D objects are outward (see Figure [4)). Freud et al. [30] took

X-ray detector

X-ray source dy dy d3 dy

Figure 4: Principle of the computation of the L-buffer.

advantage of this principle to compute d; in Eq. [I} gVirtualXray relies on this
technique too. Let us consider the example of Figure[d] The object is a cube in
which an empty cylinder is included. There are 4 intersections between the ray
and the object. Intersections may be detected in any order. The path length

between the ray and the object is:
d = (dy—ds) + (dy — d3) (2)

where dy, da, d3 and d4 correspond to the distance between the X-ray source and
the corresponding intersections. The dot product between —viewVec and both
N2 and N3 is positive. It is negative for both N4 and N;. When the ray enters
an object, this dot product is positive; it is negative when it exits an object.
The L-buffer can be efficiently computed on GPU using ‘blending’, a function of
graphics cards to display transparent objects without sorting triangles (or here
intersections):

d= Z —sgn(—viewVec - Ny) X dg (3)

k

11



where k refers to the k*" intersection found in an arbitrary order, dj, is the
distance from the X-ray source to the intersection point of the ray with the
triangle, sgn(—viewVec - Ny) stands for the sign of the dot product between
—viewVec and Ny. This dot product and di must be computed for each inter-
section point. During the rendering stage, hidden surface removal algorithms
such as Z-buffer and back-face culling are disabled so that every triangle of the
polygon mesh is taken into account.

To solve Eq. |1} linear attenuation coefficients must be known. These are
computed from the mass attenuation coefficients 1(E)/p and the material den-
sity p in g-cm™. Mass attenuation coefficients are expressed in cm?-g™!. They
are energy dependent, but do not depend on the state of the material. The mass
attenuation coefficient p(E)/p for a given material m consisting of several ele-
ments [ with given elemental weights w; is computed from the Bragg additivity

rule over the [ elements in its composition:

). 5.

l€elements(m)

For each test, we generate two or more images using two different methods.
A list of tests is provided in Table[T} A ground truth image (Y') will be created i)
experimentally, ii) by Monte Carlo simulation, or iii) as a DRR of an actual CT
scan. A test image (Y) will be simulated using gVirtualXray with parameters
similar to the corresponding ground truth image. To make our research repro-
ducible, we provide (i) our Monte Carlo simulation scripts, (ii) our gVirtualXray
Python code in Jupyter notebooks, and (iii) our output data on Zenodo and
GitHub at https://github.com/effepivi/gvxr-validation/l As the Monte
Carlo software (here Geant4 & GATE), the DRR software (Plastimatch) and

gVirtualXray are all open-source, our research is therefore fully reproducible.

2.2. Anthropomorphic phantoms

We use two datasets from anthropomorphic phantoms: One is digital, one

extracted from a CT volume.

12
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Notebook

Spectrum

Table 1: Overview of the validation tests.

Test object

‘ Scintillator ‘

Ground truth (Y)

Test

1

kVp: 85, anode: W,
filtration: 0.1 mm of

Cu & 1 mm of Al

5-year old boy

600 pm of CsI

GATE simulation,

10° photon

Simulation vs simulation

2 mono energy (72 keV) Lungman None DRRs of original CT Simulation vs. DRR
3 kVp: 100, anode: W, Lungman 600 pm of CsI Original CT Simulation-reconstruction
filtration: 2.5 mm of vs. CT
Al, 0.5 mm of Cu
4 kVp: 90, anode: W, Lungman 600 pm of CsI Digital radiography, Registration of simulated

filtration: none

exposure: 1 mAs, 5 ms

image onto real image

2.2.1. pEdiatRic dosimetRy personalized platfORm

The phantom from the pEdiatRic dosimetRy personalized platfORm (ER-
ROR) [31] is used in Notebook 1. It corresponds to the anatomy of a 5-year-old
boy. It is provided as a labelled 512 x 511 x 190 volume, which includes 24 dif-
ferent structures, such as air, muscle, bone, stomach-interior, cartilage, etc.
Surface meshes (see Figure are generated from the labelled data using the
Visualization Toolkit (VTK) [32]. The definitions of tissue substitutes are pro-
vided in the ICRU Report 44 by the International Commission on Radiation

Units and Measurements [33].

2.2.2. Lungman anthropomorphic chest phantom

Notebooks 2, 3 and 4 make use of the Lungman anthropomorphic chest
phantom (Kyoto Kagaku, Tokyo, Japan) [34]. Anthropomorphic phantoms al-
low for multiple exposures under consistent conditions to occur for all image
acquisitions allowing radiation dose and image quality to be compared: We can
therefore compare a digital radiograph taken using a clinically utilised device
and an image simulated under the same conditions. The Lungman phantom rep-
resents a 70 kg male (see Figure [5b)). The equivalence in terms of polymethyl
methacrylate (PMMA) was established for the lung and mediastinum regions
of the phantom. Tumours of various densities are embedded. The phantom is
made of materials with X-ray absorption properties close to those of human tis-
sue. In this way, results remain clinically relevant and accurate as X-ray energy

is altered.

13



(a) (b)

Figure 5: Anthropomorphic phantoms. (a) Paediatric phantom from the ERROR project.
(b) Photography of the Lungman anthropomorphic phantom and the clinically utilised X-ray

equipment used in our study.

First, a digital phantom must be created. A CT scan of the Lungman
phantom was acquired at one of our local hospitals (Ysbyty Gwynedd) using
a 128-slice Somatom Definition Edge scanner, Siemens Healthcare, Erlangen,
Germany. The CT volume was then segmented into individual structures. The
problem of over-segmentation is mitigated by creating eroded masks for each
label volume, i.e. using mathematical morphology. This ensures that the masks
do not span over different structures which could result in a coefficient that does
not best represent its material composition. For each mask, a surface mesh was
extracted. The aggregate of all the surface meshes forms a computational model
of the scanned sample or patient. Open-source toolkits, the Insight Toolkit
(ITK) [35] and VTK [32], have been used for all image processing operations.

Simulating X-ray projections using gVirtualXray requires X-ray attenuation
properties for each structure to be chosen. Voxels of medical CT volumes are
in Hounsfield Unit (HU). The mean value computed from masking the CT with
each surface is assigned to their respective structure. Hounsfield values are then

converted into material composition and densities using Schneider et al. [36]’s

14



method. Whilst it has not been calibrated for the CT scanner used in our

experiment, it provides a plausible approximation.
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X-ray detector:

— Scintillator: Csl 600 um

- Size: 500x500 mm

- Resolution: 1152x1152 px

X-ray tube:

- Voltage: 85 kV

- Filtration: 0.1 mm
- Copper: 0.1 mm
— Aluminium: 1 mm

15 cm 100 cm
(c)
Figure 6: (a) Photon energy distribution of the X-ray source. Tube voltage: 85 kV. Filtration:

0.1 mm of copper and 1 mm of aluminium. (b) Energy response of the detector. It mimics a

600-micron thick CsI scintillator. (c¢) Simulation parameters.

2.8. Notebook 1: Comparison of radiographs of an anatomically realistic 5-year-

old boy simulated with GATE and gVirtualXray

Figure [6c| summarises the simulation parameters. The source-to-object dis-
tance (SOD) is 100 cm, and the source-to-detector distance (SDD) is 112.5 cm.
The beam spectrum is polychromatic (see Figure@. The tube voltage is 85 kV.
The anode is made of tungsten. The filtration is 0.1 mm of copper and 1 mm
of aluminium. The energy response of the detector is considered. It mimics

a 600-micron thick CsI scintillator (Figure [6b). For the Monte-Carlo simula-
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tions, the number of photons impinging the detector was set to 10° and directly

transmitted photons have been saved separately from scattered ones.

2.4. Notebook 2: DRR from CT wvolume vs. X-ray simulation using surface

meshes extracted from segmented CT volume
It is possible to extract surface meshes from a segmented CT scan, simulate
an X-ray projection with gVirtualXray and compare it with the corresponding
DRR computed from the original CT scan. The main steps are summarised in

Figure [}

Simulate acquisition
(gVirtualXray)

Segments from  Virtual lungman from

volume extracted surfaces
Lungman phantol j

Ground truth CT

Ground truth plastimatch DRR

y

Compare

Figure 7: Flow chart demonstrating the validation of projections of the Lungman simulated

with gVirtualXray process.

Plastimatch was used to generate DRRs [37]. It is an open-source software
for image computation, with a focus on high-performance volumetric registra-
tion of medical images. It is developed at the Department of Radiation Oncology
at the Massachusetts General Hospital (USA). A GPU implementation of DRR
X-ray is also available. To mimic a parallel beam when generating the DRR
with Plastimatch, SDD and SOD have been set to infinity. Resolving the centre
parameter for the Plastimatch DRR program can be troublesome. As to not
impede the validity of the experiment’s results, an objective function to opti-
mise this parameter and an optimisation algorithm were utilised for a robust

comparison.
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2.5. Notebook 3: CT volume reconstructed from simulated data vs. original CT
volume

The overall process is summarised in Figure A CT scan acquisition is
simulated. It consists of generating a series of X-ray projections around the
virtual phantom at successive angles. We use the Core Imaging Library (CIL)El
to reconstruct the CT volumes from the projections [38]. It is a Python toolkit
that provides many popular algorithms, including FBP and FDK. Slices of the
reconstructed CT volume are then compared with the corresponding slices of

the original CT volume.

2.6. Notebook 4: Registration of simulated radiographs onto real radiographs
Registration is the process of matching a moving dataset (called source) to
a fixed dataset (called target). The source is somehow transformed (e.g. moved
and/or deformed) so that it closely matches the target. Figure El illustrates the
framework that is used to perform the registration. Our approach relies on fast
X-ray image generation and robust global optimisation algorithms. The source
(blue trace in Figure E[) is the surface model of the Lungman; and the target
(red trace in Figure E[) is a real radiograph (see “ground truth” in Figure .

The virtual patient must match the location and orientation of the patient in

Thttps://github.com/TomographicImaging/CIL

Ground truth CT Labels Virtual Lungman Simulated projections Simulated CT
) Extract surface Simulate acquisition
Segmentation models (gVirtualXRay) Reconstruct CT

> Compare

Figure 8: Flow chart demonstrating the validation of CT slices reconstructed from projections

of the Lungman simulated with gVirtualXray.
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the real radiograph. The spatial resolution of the simulated radiograph must be
the same as the real radiograph to allow a pixel by pixel comparison to quantify
discrepancies and similarities. The position (and orientation) of the virtual
patient, X-ray source and X-ray detector are unknown parameters (or inaccurate
values stored in the Digital Imaging and Communications in Medicine (DICOM)
header) that must be estimated by mathematical optimisation. Optimisation
algorithms choose different combinations of parameters until a stopping criterion
is met (green trace in Figure E[) At the end of the registration process, the
corresponding simulated image should match the real radiograph.

Wen et al. [39, [14] showed the importance of choosing a robust global optimi-
sation algorithm to perform the registration of the 3D surface model of a generic
hand onto patient specific radiographs. The impact of the choice of objective
function has also been demonstrated for the registration of surface models of
tungsten fibres onto experimental X-ray projections [15].

Here we use one of today’s most popular global optimisation algorithm:
covariance matrix adaptation evolution strategy (CMA-ES) [40]. It is a state-of-
the-art global optimisation algorithm based on artificial evolution. It is designed
for difficult non-linear non-convex optimisation problems in continuous domain.
CMA-ES does not require a tedious parameter tuning for its application as
finding suitable internal parameters is part of the algorithm design, which also

makes it attractive. Only an initial solution and an initial standard deviation

' Data acquisition Clinical ! Optimisation

radiograph

| ‘ E Results

. . \ Ontmisat Criterion met Parameters:
e JTTTTTTTTITTTA ' - ptimisation - SOD,
' ' - 1 algorithms SDD,
. 3D mesh gVirtualXRay ! Prediction ' Rotation[1],

model ' 3 1
V ‘ Simulation '
) ' :

' 2 ot — | -

=/ T . ' Criterion not

“ '

: ' met
‘ New '
| X-ray simulation prediction !

H '
____________________________________________________ b e oo

Figure 9: Illustration of the registration framework.
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must be set by the user. The default population size is relatively small for fast
convergernce.

The objective function that we use is the root mean squared error (RMSE).
Note that both the simulated and the ground truth images are corrected using
the flat-field method. It is typically used to account for variations in beam
homogeneity and in the pixel-to-pixel sensitivity of the detector. It is applied

as follows:
I-D
F D (5)

Proj =

where I is the raw X-ray image, Proj corresponding image after flat-field cor-
rection, F (full fields) and D (dark fields) are projection images without sample
and acquired with and without the X-ray beam turned on respectively. Flat-field
correction allows comparison of images directly as they are now using compara-
ble dynamic ranges. If I, D and F are noiseless, then the pixel values of Proj
are between 0 and 1.

We use a digital radiograph (DR) of the Lungman anthropomorphic chest
phantom. The image was taken with a clinical X-ray machine by GE Healthcare
(Chicago, Illinois, USA) at one of our local hospitals (Glan Clwyd). Parameters
relevant to the simulation are extracted from the DICOM file, such as kVp,
filtration, SOD and SDD and refined by optimisation.

In clinical routine, post-processing is pre-defined. Using raw data from dig-
ital imaging is meaningless and does not simulate/replicate what occurs in
current radiographic practice. Sharpening filters are applied to improve the
readability of images. Standard clinical post processing algorithms were used
for acquisition. No further post processing was undertaken following the ac-
quisition such as image manipulation in terms of contrast and sharpness. Each
manufacturer has its own proprietary post-processing algorithm, which is undis-
closed. In our simulation, we calibrate a flexible sharpening filter (see Eq. @
to mimic what is common practice in clinical routine. This calibration is per-
formed by optimisation using CMA-ES. However, it is expected that the final

simulated result will slightly differ from the ground truth as two different image
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post-processing filters were used. We also expect that the image with post-
processing will be more similar to the ground truth that the image without

post-processing.

fs(x,y)zf(a?,y)-f-a(f(x,y)—f(x,y)) (6)

with f, the sharpened image of f, and f a smoothed version of f. We use
a Gaussian filter to generate f. « is a multiplicative factor that controls the
amount of details (f — f) that must be added back to f. The variance of the

Gaussian filter and « are tuned by optimisation.

3. Results

Table[2] provides a summary of the quantitative results. For all the tests that
were conducted, the mean absolute percentage error (MAPE) is 3.20 + 1.58,
the zero-mean normalised cross-correlation (ZNCC) is 99.08 + 0.56 and the
structural similarity index (SSIM) is 0.88 & 0.13. MAPE is relatively close to
0%, ZNCC to 100% and SSIM to 1: radiographs simulated with gVirtualXray
closely match those computed with GATE or Plastimatch, and an actual dig-
ital radiograph; and the CT slices reconstructed from images simulated with
gVirtualXray closely match those of an experimental scan. The corresponding

standard deviation values are low: the results are consistent.

Table 2: Summary of the comparison between the images generated with gVirtualXray and

their corresponding ground truth for all the test cases.

Notebook Test Ground truth | MAPE ZNCC SSIM | Resolution | Triangles | Runtime Runtime Speedup
(in %) (in %) (in pixels) Ground truth | gVirtualXray
(in ms) (in ms)
1 Pacdiatric phantom Monte Carlo 312 99.96 0.99 128128 | 3,552,778 8.68E+08 2343 37,730,130
2 Lungman AP view DRR 243 99.31 0.93 725 x 426 402+6 42+2 10
2 Lungman RL view DRR 176 99.66 0.98 725 x 426 407+6 4242 10
3 Lungman (st slice) cr 5.50 98.96 0.62 512 % 512 N/A 59 N/A
3 Lungman (middle slice) cr 5.01 98.44 078 512 % 512 N/A 59 N/A
3 Lungman (last slice) cr 446 99.05 0.82 512x 512 | 23,722,716 N/A 59 N/A
4 Lungman PA view DR 178 98.34 0.94 1871 x 1881 N/A 20,973,540 314£15 N/A
without
post-processing
A Lungman PA view with DR 1.56 98.91 0.94 1871 x 1881 N/A 20,973,540 152 + 66 N/A
post-processing

Overall 3.20+1.58 | 99.08+0.56 | 0.88 +£0.13

20



Ground truth gVirtualXRay

Pixel position
(in mm)
Py ®
3 3

s
S

IS
S

o

20 40 60 80 100
Pixel position
(in mm)
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(b) Corresponding diagonal intensity profiles.

Figure 10: Comparison between X-ray projections simulated with GATE and gVirtualXray.

For a fair comparison, each image is displayed using the same look-up table.

3.1. Beam spectrum, detector energy response and anatomically realistic digital

phantom: GATE vs gVirtualXray

In this test, the paediatric phantom from the ERROR project is used. For
the Monte-Carlo simulations, the number of photons impinging the detector
was set to 10°. The intensity profile of the MC simulation in Figure shows
that the number of photons is appropriate to generate a relatively noise-free
image. About 10 days of computations were required on the test computer. For
gVirtualXray, 3,552,778 triangles were used. The simulated image is 128 x 128
pixels. However, one can note that the digital phantom used in GATE is made
of voxels, and of triangles in gVirtualXray.

Image comparison metrics indicate that the images are similar: ZNCC is
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99.96%; MAPE is 3.12%, and SSIM is 0.99. Figure shows that the sim-

ulations are visually close. The corresponding diagonal intensity profiles in

Figure [I0F] are overlapping.

8.2. Simulated radiographs vs DRRs of a real CT scan of the Lungman Phantom

To compare the simulated X-ray radiographs, two DRR images are generated
from the original CT volume. Clinically relevant views are considered: a right
lateral (RL) chest view (Figure and an erect anteroposterior (AP) chest
view (Figure [11c]).

Images generated with gVirtualXray are very similar to those computed with
Plastimatch, despite the use of homogeneous materials in the simulation. MAPE
is low in both cases; ZNCC and SSIM are high in both cases. Intensity profiles in
Figures and are overlapping except at the boundary of some structures.
It indicates a possible misplacement of boundaries during the segmentation of
the CT volume and the surface extraction from the segmentations. It took
432 ms to compute the DRR images on GPU with Plastimatch, 42 ms with

gVirtualXray. It corresponds to a 10x speedup.

3.8. CT volume reconstructed from simulated data

Figure [12| displays the image comparison for the first, middle and last slices
of the two volumes. The slices reconstructed from the simulated data are close
to the original data. Hounsfield values are comparable. ZNCC is above 98.40%
in all cases. It indicates a good level of correlation between the two volumes.

MAPE is between 4.50 and 5.5%, which may be acceptable. SSIM is between
0.62 and 0.82, which might be considered a bit low. A visual inspection of
Figures and show the error is concentrated on the boundary between
structures of significantly different HU values. This might be due to the difficulty
to locate the border between structures with an accuracy of 1 pixel or the use
of mathematical morphology to clean the segmentations. Figure shows
that highly inhomogeneous structures such as bone are hard to segment and

approximate into a small set of homogeneous objects.
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(c) Erect AP chest view: MAPE: 2.43%, ZNCC: 99.31%, SSIM: 0.93.
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(d) Diagonal intensity profiles corresponding to the images in Figure

Figure 11: Comparison between X-ray projections simulated with gVirtualXray and DRR

images generated with Plastimatch. For a fair comparison, each image of a row is displayed

using the same look-up table.
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(a) First slice: MAPE: 5.50%, ZNCC: 98.96%, SSIM: 0.62.

CT slice reconstructed
Slice from original CT scan 0 from simulated data Absolute difference
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(b) First slice: MAPE: 5.01%, ZNCC: 98.44%, SSIM: 0.78.

CT slice reconstructed
Slice from original CT scan 0 from simulated data Absolute difference

300 300 0 100 200 300 400 500

(c) First slice: MAPE: 4.46%, ZNCC: 99.05%, SSIM: 0.82.

Figure 12: Comparison between CT slices reconstructed from simulated projections with slices
from the original CT scan. For a fair comparison, all the images are displayed using the same

look-up table.
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Figure 13: Diagonal profiles corresponding to the CT slices presented in Figure
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The corresponding diagonal profiles in Figure [13|indicate that the amplitude
of Hounsfield Units is well recovered. The height of peaks and the depth of dips
are accurate. We can see that the simulated data lacks photonic noise and that
void was used instead of air. As we used piq;- = 0, the HU values are equal to

-1000 in the synthetic data whereas it should be slightly higher.

3.4. Registration of a Simulated Radiograph on a Real Digital Radiograph

Ground truth

gVirtualXRay Relative error (in %)
TR ~AF "

Pixel position
(in'mm)

100 200 300
Pixel position
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(a) Posterior-anterior (PA) chest view: MAPE: 1.56%, ZNCC: 98.91%, and SSIM: 0.94.
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(b) Corresponding diagonal intensity profiles.

Figure 14: Comparison between a registered X-ray projection simulated with gVirtualXray
and a digital radiograph taken using a clinically utilised X-ray equipment. For a fair compar-

ison, each image is displayed using the same look-up table.

In this test, a virtual Lungman phantom is registered so that its simulated
radiograph closely matches a real digital radiograph taken with a clinical X-ray
machine by GE Healthcare (Chicago, Illinois, USA). The position and orien-

tation of the virtual Lungman phantom are first registered as an optimisation
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problem to minimise the differences between the real radiograph and the simu-
lated one.

Figure [[4a] shows the comparison between the simulated image and the real
radiograph. We can see that the position and orientation of the Lungman have
been successfully recovered. The pixel intensities are comparable. The use of
post-processing slightly improves the results. ZNCC for the image was 98.34%
without post-processing. It increases up to 98.91% with post-processing. The
value is close to 100%. SSIM is 0.94 for both without and with post-processing,
which is relatively close to 1. MAPE is 1.78% without post-processing, and
1.56% with post-processing, i.e. close to 0%.

From a numerical point of view, these results show that the simulated im-
age is similar to the real X-ray radiograph acquired with a clinical equipment.
The two images are visually comparable. The intensity profiles in Figure [I4D]
are overlapping. They also show that the errors tend to be at the boundary
between some anatomical structures, in particular the ribs, which is an issue
that was highlighted in the previous sub-section. This is likely due to the series
of discretisations that was needed to convert a tangible phantom into a suitable
digital model: i) CT scan of the phantom, ii) segmentation of the CT scan, iii)
cleaning of the segmentations, iv) surface extractions from the segmentation,
and v) the use of homogeneous material properties. Each step may have intro-
duced small numerical inaccuracies or a small misplacement of the boundaries.

Nevertheless, pixel intensities are comparable in both images.

4. Discussion

Simulations, deterministic or MC, are approximations of real physics phe-
nomena. Users of such simulations must always consider the context in which
they want to deploy the simulation and understand the trade-offs that must
be made. The need for accuracy will be greater for treatment planning in ra-
diotherapy and in this case, MC will be preferred. Speed would be favoured
in real-time VR for training purposes [11], 12 [13] and high-throughput data
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applications [T4) 20] [T5] [16, 17]. The accuracy (or inaccuracy) of simulations
depends on the mathematical model used and the simplifications made. For
example, disabling scattering may not be suitable for thicker patients whereas
it may be acceptable for thinner patients. The geometrical and material com-
position of the different structures that are imaged must be considered with
care, in particular for inhomogeneous structures. For example, bones are com-
plex to segment as they are made of hard and soft components that cannot be
easily distinguished. Oversegmentation may improve the simulation fidelity but
it will decrease the computational performance. Other input parameters such
as tube voltage and photonic noise may be important and can be calibrated on
experimental images to improve fidelity.

It is not possible to fully replicate an X-ray radiograph taken with a mod-
ern clinical device used in radiology departments in simulations. Indeed, post-
processing image filtering is applied automatically to improve image readabil-
ity [41]. As such filters are proprietary and closed-source, we were not able
to implement them. To address this issue, we implemented and calibrated a
general purpose image sharpening filter. The final simulated image is more re-
alistic than without, but it is not a virtual copy of the actual image. Note that
onboard imaging (OBI) or electronic portal imaging devices (EPIDs) available
on linear accelerators (LINACs) used in radiotherapy can provide radiographic
images without post-processing. They are used to generate the CBCT volumes
used in radiotherapy.

Although the use of anthropomorphic phantoms provides a baseline for com-
parison in medical imaging, they are not real patient images and therefore this
needs to be further validated using a range of patient CT images to capture
varying attenuation from various body parts. A phantom represents an aver-
age body habitus only. The phantom does however provide uniform materials
tissue-equivalent materials using synthetic bone used and lung tissues simulated
using urethane foam. This allows multiple exposures with different acquisition
parameters using the same phantom allowing changes in image quality and ra-

diation dose to be identified as opposed to being influenced by patient factors
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such as body composition.

Owing to the harmful effects of radiation, training and education of radio-
graphic students require strict supervision under numerous radiation governance
policies including working under the Ionising Radiation (Medical Exposure)
Regulations (IRMER) 2017. This restricts students as they do not have the
autonomy to work independently and learn from mistakes such as exposure pa-
rameter errors. It is therefore important that simulation is available for students
to experiment upon without the ethical constraints within clinical practice. This
allows them to develop into independent practitioners. With the Covid19 pan-
demic — the call for more simulation models for students and staff is necessary
as clinical time may be limited with reduced patient contact. One of the ways to
enhance clinical competence is through Medical Simulation training. This type
of training has been proven to have many advantages which help improve medi-
cal practitioners’ competencies, and in return, improve patient safety and reduce
health care costs. This is even more paramount in radiology owing to the harm-
ful effects of radiation. X-ray and CT techniques cannot be experimented upon
on real patients and therefore the effect of modifying acquisition parameters on
image quality and radiation dose can only be visualised and demonstrated using
simulation.

However, in the teaching and learning context, images must be simulated
almost instantly when acquisition parameters are changed. There is well-
established a consensus in the human-computer interaction (HCI) community
that 1 second is the upper limit for the users to feel that the computer is causing
the results of their actions [42, [43]. Any delay longer than one second will be
considered unacceptable by the user. It is important that images are accurate
too. When scattering can be ignored, we demonstrated that gVirtualXray pro-
vides a suitable alternative to Monte Carlo simulations and DRRs computed
from CT volumes. For thicker patients with more of scatter, such determin-
istic simulations may be too simplistic and may not be appropriate. To date,
high-resolution and relatively noise-free images cannot be generated fast enough

with Monte Carlo methods for real-time or high-throughput data applications.
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Another advantage is the use of surface meshes instead of voxel data: character
animation used in video games can be deployed to change the virtual patient’s
pose, which is not feasible with DRRs computed directly from CT volumes.
The direct simulation of X-ray images from real CT volumes is not recom-
mended with gVirtualXray. Indeed, each voxel would need to be converted into
12 triangles and the voxels sorted by HU value. A DRR software dedicated to
voxelised data, such as Plastimatch, is likely to provide better computational
performance. Today’s GPUs are designed to render millions of triangles to pro-
vide real-time video games with a high level of realism. This property of GPUs
makes it possible to use volumetric meshes made of tetrahedrons. VR applica-
tions with soft tissue deformations and cutting may benefit from this method.
Note that this approach is also of interest in material science to simulate an

object under load.

5. Conclusion

Until now, core components of gVirtualXray were evaluated by comparing
its simulated images with corresponding images simulated with GATE, but only
using a simplistic test object [9]. This new paper benchmarked gVirtualXray
with clinically realistic phantoms.

Accurate images that would take days using GATE can be generated in mil-
liseconds with gVirtualXray for high-throughput data (e.g. real-time VR, image
registration, and training/testing data generation for ML) when scattering can
be ignored. Simulated projections can also be fed to a reconstruction algorithm
to produce CT volumes. The use of surface models enables the combination
of X-ray simulation with real-time soft-tissue deformation [44] [9] and character
animation [45], which is hardly possible with DRRs computed directly from CT
volumes.

This initial project allows for further developments by continually improving
the simulation whilst in use, for example, mimicking exposure time and photon

scattering from real images. The use of real patient images is the next phase to
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further validate and smooth out the limitations of this existing software.
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Acronyms

AP anteroposterior.

CAD computer-aided design.

CBCT cone-beam computed tomography.

CERN European Organization for Nuclear Research.
CMA-ES covariance matrix adaptation evolution strategy.
CPU central processor unit.

CT computed tomography.

DICOM Digital Imaging and Communications in Medicine.
DR digital radiograph.
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DRR digitally reconstructed radiograph.
EPID electronic portal imaging device.
ERROR pEdiatRic dosimetRy personalized platfORm.
FBP filtered-back projection.

FDK Feldkamp, Davis and Kress.
GLSL OpenGL Shading Language.
GPU graphics processor unit.

GUI graphical user interface.

gVXR gVirtualXray.

HCI human-computer interaction.

HU Hounsfield Unit.

ICRU International Commission on Radiation Units and Measurements.
ITK Insight Toolkit.

LINAC linear accelerator.

MAPE mean absolute percentage error.
MC Monte Carlo.

MSE mean squared error.

NDT nondestructive testing.

OBI onboard imaging.

PMMA polymethyl methacrylate.

RL right lateral.

RMSE root mean squared error.

SDD source-to-detector distance.

SOD source-to-object distance.

SSIM structural similarity index.

VR virtual reality.

VTK Visualization Toolkit.

ZNCC zero-mean normalised cross-correlation.
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