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Abstract

Background and Objectives: This study provides a quantitative comparison of

images created using gVirtualXray (gVXR) to both Monte Carlo (MC) and

real images of clinically realistic phantoms. gVirtualXray is an open-source

framework that relies on the Beer-Lambert law to simulate X-ray images in

realtime on a graphics processor unit (GPU) using triangular meshes.

Methods: Images are generated with gVirtualXray and compared with a

corresponding ground truth image of an anthropomorphic phantom: (i) an X-

ray projection generated using a Monte Carlo simulation code, (ii) real digitally

reconstructed radiographs (DRRs), (iii) computed tomography (CT) slices, and

(iv) a real radiograph acquired with a clinical X-ray imaging system. When real

images are involved, the simulations are used in an image registration framework

so that the two images are aligned.

Results: The mean absolute percentage error (MAPE) between the images

simulated with gVirtualXray and MC is 3.12%, the zero-mean normalised cross-

correlation (ZNCC) is 99.96% and the structural similarity index (SSIM) is 0.99.

The run-time is 10 days for MC and 23 ms with gVirtualXray. Images simulated

using surface models segmented from a CT scan of the Lungman chest phantom
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were similar to i) DRRs computed from the CT volume and ii) an actual digital

radiograph. CT slices reconstructed from images simulated with gVirtualXray

were comparable to the corresponding slices of the original CT volume.

Conclusions: When scattering can be ignored, accurate images that would

take days using MC can be generated in milliseconds with gVirtualXray. This

speed of execution enables the use of repetitive simulations with varying pa-

rameters, e.g. to generate training data for a deep-learning algorithm, and to

minimise the objective function of an optimisation problem in image registra-

tion. The use of surface models enables the combination of X-ray simulation

with real-time soft-tissue deformation and character animation, which can be

deployed in virtual reality applications.

Keywords: X-rays, Computed tomography, Simulation, Monte Carlo, GPU

programming, Image registration, DRR

1. Introduction

Monte Carlo (MC) simulation is known as the state-of-the-art technique to

simulate X-ray images in terms of accuracy. However, prohibitive computing

time may be required to simulate an X-ray projection at high spatial resolu-

tion with an acceptable level of noise, which limits the use of MC simulations

in applications where real-time performance is a requirement [1]. Badal and

Badano [2] adapted PENELOPE’s MC code to graphics processor unit (GPU)

computing in 2009. In the example they provided, they simulated an image

with 150 × 300 pixels using 1010 primary X-rays. They reported runtimes in

minutes incompatible with real-time performance: i) 5106 on a central proces-

sor unit (CPU) for the original PENELOPE’s code, ii) 624 for their simplified

CPU implementation, iii) 83 for a GPU with no fast math, iv) 60 for a GPU

with fast math and v) 24 for a GPU with single-precision floating-point num-

bers. In 2022, Mettivier et al. [3] developed a GPU-based Monte Carlo X-ray

simulator. They generated computed tomography (CT) scan acquisition data

on a high-performance GPU (NVIDIA GeForce RTX™ 3090). They reported
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that almost 3 hours of computations are needed to create 360 projections of

1, 900× 1, 900 pixels from a 385× 385× 214 voxelised phantom, i.e. almost half

a minute per projection. Whilst GPU-based MC simulations are extremely fast

compared to their CPU counterparts (about 1, 000× faster), there are still far

from real-time performance. About 13 seconds are necessary to compute the

voxel dose distribution in a 122×62×372 volume, which is relatively small com-

pared to a typical CT volume [4]. Voxelised models are often a requirement,

although surface meshes (STL files) are now supported in GATE 1 [5]. It is an

open-source software dedicated to numerical simulations in medical imaging and

radiotherapy based on Geant4 2, the general-purpose MC code by the European

Organization for Nuclear Research (CERN). In this case, each surface mesh is

converted into a tessellated volume [6]. Note that it is possible to disable physics

processes, such as scattering, in MC methods to speed up X-ray generation. In

this case, the resulting images are similar to those produced by deterministic

methods but with noise.

Deterministic simulations based on the Beer-Lambert law generate noise-

free images. Depending on the application, they can provide a good compro-

mise between speed and accuracy [7] and can be implemented on GPUs for

a further increase of speed [8, 9]. Unlike Monte Carlo methods, deterministic

simulations tend to ignore scattering and noise, although the latter can easily

be added as a post-process. In this paper, gVirtualXray (gVXR) 3 is used. It

is an open-source library written in C++ and the OpenGL Shading Language

(GLSL). gVirtualXray is portable and works on a wide range of computers

and operating systems (from Windows laptops to GNU/Linux Supercomput-

ers). Wrappers to other popular languages, including Python 4, R, Ruby, C#,

Java and GNU Octave, are also available. The Analytical RT Inspection Sim-

1http://www.opengatecollaboration.org/ (accessed: 27 February 2023)
2https://geant4.web.cern.ch/ (accessed: 27 February 2023)
3https://sourceforge.net/projects/gvirtualxray/ (accessed: 27 February 2023)
4https://pypi.org/project/gVXR/ (accessed: 27 February 2023)
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ulation Tool (aRTist) 5 developed by Bundesanstalt für Materialforschung und

prüfung (BAM, Germany) also makes use of a deterministic method to simulate

X-ray projections from computer-aided design (CAD) models [10]. It provides a

graphical user interface (GUI) and is dedicated to nondestructive testing (NDT)

for industrial applications. CIVA by Extende 6 also uses a deterministic method

to simulate X-ray or γ-ray projections. Both aRTist and CIVA are closed-source

commercial software with a license fee.

The combination of deterministic modelling with GPU computing allows

high-resolution X-ray projections to be simulated without scattering and with-

out noise in a few microseconds, which opens up new perspectives and op-

portunities. It is possible to use gVirtualXray in real-time applications such as

medical training simulators (see Figures 1a and 1b) [11, 12, 13]. GPUs also make

it possible to embed gVirtualXray within an optimisation algorithm to register

3D hand models on 2D radiographs [14] or produce accurate digital twins in

material science [15]. gVirtualXray can also be used to produce a high num-

ber of realistic simulated images to train machine learning algorithms [16, 17],

which would not have been possible a few years ago. Albiol et al. [18] proposed

a new type of densitometric radiographic images (a technique that combines

two radiographs that were produced with two different tube voltages). They

replaced one of the radiographs with a simulated one, thanks to the use of a

contour sensor (e.g. Microsoft Kinnect) and gVirtualXray (see Figure 1c). It

is also possible to integrate further simulation models to take into account the

patient’s physiology such as the respiration during the CT scan acquisition. In

this case, reconstructed slices will exhibit motion artefacts [19]. Andreozzi et

al. [20] used gVirtualXray to generate noise free X-ray radiographs. Noise is

added as a post-process to study real-time edge-aware denoising in fluoroscopic

devices. Corbi integrated gVirtualXray with other relevant software packages,

5https://artist.bam.de/ (accessed: 27 February 2023)
6https://www.extende.com/radiographic-testing-with-civa (accessed: 27 February

2023)
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such as Geant4, into a Docker container that is used online to teach particle

physics and X-ray imaging to undergraduate students in engineering [21].

(a) Orthopaedic surgical simulator provid-

ing user-controlled image intensifier functional-

ity. Reproduced with permission from Racy et

al. [12].

(b) Radiography teaching tool with real-time

character animation and soft-tissue deforma-

tions to interactively change the patient’s pose

in simulated X-ray radiographs.

(c) Examples of virtual densitometric image (D′
B , 4th column). 1st column: experimental setup.

2nd column: iso-surfaces from the depth sensor. Virtual (high-energy) water-equivalent radiographs

(′) from water-filled volumes [pX′]. 3rd column: original radiographs (X ). Top row: chest section

of a RANDO anthropomorphic phantom (105 kVp and 6 mAs). The horizontal lines correspond

to the inter-slice separations. Bottom row: real patient (55 kVp and 9 mAs). Reproduced with

permission from Albiol et al. [18].

Figure 1: Examples of medical applications using gVirtualXray as a core component.

To date, gVirtualXray has been validated using extremely simplistic MC

simulations of a cube of water in which a bone cylinder was inserted [9]. There

is no direct comparison between images simulated with gVirtualXray and (i)

real images or (ii) images simulated by a Monte Carlo method with clinically

5



realistic acquisition parameters and anthropomorphic phantoms. The aim of

this paper is to address these limitations. The assumption is that X-ray images

simulated in milliseconds with a deterministic algorithm on GPU are realistic

for clinical applications where speed is a requirement, whether this is virtual

reality (VR) simulators where X-ray images must be simulated in realtime from

dynamic patient models, or high-throughput data processing where a massive

amount of data must be generated very quickly. Another motivation, from

an educational point of view, is that exposure parameters have an influence

not only on image quality but also on the radiation dose the patient receives.

Using anthropomorphic phantoms with realistic clinical parameters to develop

a virtual software is important to recognise the effect those parameters have on

image quality in terms of contrast and noise from the absorption and scattering

of the X-ray photons.

To benchmark X-ray projections simulated on GPU with gVirtualXray

against ground truth images of clinically realistic phantoms:

• A suitable digital anthropomorphic phantom must be chosen. It will be

used to compare i) an X-ray projection using gVirtualXray with ii) an im-

age simulated using a state-of-the-art MC simulation tool. MC simulation

is considered the gold standard method in particle physics. MC methods

are based on step-by-step transportation and tracking of particles. The

open-source software GATE v9.0 [5] based on the Geant4 v10.7 toolkit [22]

has been used in this study. Option 4 of the electromagnetic standard

library was selected, following the recommendation from the Geant4 med-

ical simulation benchmarking group [23]. Simulation parameters for both

simulations must be equivalent.

• A suitable anthropomorphic phantom used in clinical routine must be se-

lected. It corresponds to some kind of mannequin that can be scanned.

The virtual anatomy is extracted by segmentation and isosurfacing of the

CT scan of the phantom. It is used to produce another two simulated

radiographs. They will be compared with digitally reconstructed radio-
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graphs (DRRs) computed from the original CT scan of the anthropomor-

phic phantom. DRRs are radiographic images produced directly from 3D

CT data. They have been used in several medical imaging applications

for decades, such as the verification of computer-designed radiotherapy

treatments [24], 2D/3D image registration [25] and more recently the cre-

ation of training data for training tumour-tracking algorithms [26]. They

are often computed using a ray-casting algorithm and tend to ignore scat-

tering although it can be taken into account [27]. The main difference

between the simulations performed using gVirtualXray and DRRs is in

the data representation of the scanned patient: surface meshes vs. voxels.

Simulation parameters for the radiographs and corresponding DRRs must

be equivalent.

• A CT data acquisition will be simulated. The anthropomorphic phantom

data will be used as a CT scan of the phantom is available. The sim-

ulation will generate a set of 2D X-ray radiographs taken at successive

angles around the phantom. When a sufficient number of projections is

available, a traditional filtered-back projection (FBP) or Feldkamp, Davis

and Kress (FDK) algorithm can be used to “convert” this set of 2D X-ray

radiographs into a 3D CT volume. 2D CT slices extracted from the vol-

ume reconstructed from the simulated projections will be quantitatively

compared to the corresponding slices of the original CT scan.

• A simulated radiograph will be registered using an optimisation algorithm

so that it matches the image acquired with a clinically utilised equipment.

The radiograph is taken from the anthropomorphic phantom utilised in

clinical routine. Parameters of the real image acquisition (such as source-

to-patient and source-to-detector distances) may be unknown or inaccu-

rate values estimated by optimisation. This approach is a complex global

optimisation problem where the shape of the search space and the deriva-

tive of the objective function are unknown. One of the difficulties is that

radiographs used in clinical routine are always post-processed: i) they are
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recorded in negative to mimic what used to happen when films were used,

and ii) an undocumented image sharpening filter is applied to highlight

edges between anatomical structures.

2. Methods and materials

2.1. Overview of the simulation model

In clinical routine, an anti-scatter grid is commonly used in radiography. It

is a device placed between the patient and the detector. Such devices use a

grid pattern designed to stop scattered photons and let through the photons

that travel along a straight line from the source to the detector. CT scanners

in medicine make use of a helical scanning geometry where the patient couch is

continuously translated during the data acquisition [28]. It allows the beam to

be collimated to a fan-beam geometry rather than a large rectangular area. It

significantly reduces the amount of scattered radiation compared to cone-beam

computed tomography (CBCT), which requires a 2D area detector with many

more rows of pixels. Scatter in CT does occur and causes inaccuracies in the

measurement of attenuation values which can lead to artefacts such as cupping,

streaks, increased image noise, uniformity issues. Many correction methods are

applied during CT reconstruction to account for these such as special filters but

mainly in the reconstruction algorithm post processing. If scattering is neglected

and an ideal (i.e. dirac) point-spread function is assumed, X-ray projections

I(x, y) can simply be modelled with the Beer-Lambert attenuation law:

I(x, y) =
∑
i

R(Ei)D(Ei) exp

−
∑
j

µj(Ei) dj(x, y)

 (1)

I(x, y) is the integrated energy in eV received by pixel (x, y). In the polychro-

matic case, the beam spectrum is discretised in several energy channels. Ei

corresponds to the energy in eV of the i-th energy channel. D(Ei) is the num-

ber of photons emitted by the source at that energy Ei. The detector response

R(Ei) mimics the use of a scintillator by replacing the incident energy Ei with
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a smaller value, i.e. R(Ei) < Ei (see Figure 6b for an example). The detector

response is assumed space-invariant in Equation 1. j indicates the j-th material

being scanned when a multi-material “object” is considered. µj(Ei) is the linear

attenuation coefficient in cm-1 of the j-th material at energy Ei. dj(x, y) is the

path length in cm of the ray from the X-ray source to pixel (x, y) crossing the

j-th material.

It is straightforward to implement the Beer-Lambert attenuation law using

ray-tracing. However, such a naive approach misses the opportunity to take ad-

vantage of what GPUs are for: Draw millions of polygons as fast as possible in

video games without the need to explicitly compute ray-triangle intersections.

Traditionally, an image is generated in 3D video games in two successive main

steps : i) triangles are transformed (e.g. translation, scaling, rotation, projec-

tion), and ii) pixel colours are computed. Let us consider the simple simulation

presented in Figure 2. It is used to illustrate how Eq. 1 is split into successive

Figure 2: A simple simulation. The dot on the left-hand side depicts the X-ray source. The

transparent pink shape shows the X-ray beam. The cube in magenta is the object being

imaged. The detector can be seen on the right-hand side. One can see that a cylindric void

is inside the cube.

steps in gVirtualXray. dj is computed per vertex and pixel values obtained by

bi-linear interpolation. Figure 3a shows the corresponding image generated for

the simulation presented in Figure 2. It is used to generate another temporary

image that stores
∑

j µjdj (see Figure 3b). The simulated X-ray image can

eventually be generated (see Figure 3c). Details about our implementation are

already available for the monochromatic Beer-Lambert law [8], the polychro-

matic Beer-Lambert law and focal spots of the X-ray source [29], and adaptive

9
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(a) Path length (in cm) of the rays through the object, i.e. dj(x, y) in Eq. 1.
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Figure 3: Successive images produced in the graphics pipeline for the simulation presented in

Figure 2.
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filtering to suppress errors that can arise due to GPU programming [9].

Known bottlenecks are (i) the number of polygons in the scanned ge-

ometry when computing dj , and (ii) the pixel resolution when computing

R(Ei)D(Ei) exp(. . .). By convention in computer graphics, vectors normal

to the surface of 3D objects are outward (see Figure 4). Freud et al. [30] took

X−ray source

X−ray detector

N2 N1N4 N3viewVec
d2 d1d3d4

Figure 4: Principle of the computation of the L-buffer.

advantage of this principle to compute dj in Eq. 1. gVirtualXray relies on this

technique too. Let us consider the example of Figure 4. The object is a cube in

which an empty cylinder is included. There are 4 intersections between the ray

and the object. Intersections may be detected in any order. The path length

between the ray and the object is:

d = (d4 − d2) + (d1 − d3) (2)

where d1, d2, d3 and d4 correspond to the distance between the X-ray source and

the corresponding intersections. The dot product between −viewVec and both

N2 and N3 is positive. It is negative for both N4 and N1. When the ray enters

an object, this dot product is positive; it is negative when it exits an object.

The L-buffer can be efficiently computed on GPU using ‘blending’, a function of

graphics cards to display transparent objects without sorting triangles (or here

intersections):

d =
∑
k

−sgn(−viewVec ·Nk) × dk (3)
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where k refers to the kth intersection found in an arbitrary order, dk is the

distance from the X-ray source to the intersection point of the ray with the

triangle, sgn(−viewVec · Nk) stands for the sign of the dot product between

−viewVec and Nk. This dot product and dk must be computed for each inter-

section point. During the rendering stage, hidden surface removal algorithms

such as Z-buffer and back-face culling are disabled so that every triangle of the

polygon mesh is taken into account.

To solve Eq. 1, linear attenuation coefficients must be known. These are

computed from the mass attenuation coefficients µ(E)/ρ and the material den-

sity ρ in g·cm-3. Mass attenuation coefficients are expressed in cm2·g-1. They

are energy dependent, but do not depend on the state of the material. The mass

attenuation coefficient µ(E)/ρ for a given material m consisting of several ele-

ments l with given elemental weights ωl is computed from the Bragg additivity

rule over the l elements in its composition:(
µ

ρ

)
m

=
∑

l∈elements(m)

ωl

(
µ

ρ

)
m

(4)

For each test, we generate two or more images using two different methods.

A list of tests is provided in Table 1. A ground truth image (Y) will be created i)

experimentally, ii) by Monte Carlo simulation, or iii) as a DRR of an actual CT

scan. A test image (Ŷ) will be simulated using gVirtualXray with parameters

similar to the corresponding ground truth image. To make our research repro-

ducible, we provide (i) our Monte Carlo simulation scripts, (ii) our gVirtualXray

Python code in Jupyter notebooks, and (iii) our output data on Zenodo and Note to the

reviewers: A

DOI will be

generated in

due time if

the paper is

accepted

GitHub at https://github.com/effepivi/gvxr-validation/. As the Monte

Carlo software (here Geant4 & GATE), the DRR software (Plastimatch) and

gVirtualXray are all open-source, our research is therefore fully reproducible.

2.2. Anthropomorphic phantoms

We use two datasets from anthropomorphic phantoms: One is digital, one

extracted from a CT volume.
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Table 1: Overview of the validation tests.

Notebook Spectrum Test object Scintillator Ground truth (Y) Test

1 kVp: 85, anode: W,

filtration: 0.1 mm of

Cu & 1 mm of Al

5-year old boy 600 µm of CsI GATE simulation,

109 photon

Simulation vs simulation

2 mono energy (72 keV) Lungman None DRRs of original CT Simulation vs. DRR

3 kVp: 100, anode: W,

filtration: 2.5 mm of

Al, 0.5 mm of Cu

Lungman 600 µm of CsI Original CT Simulation+reconstruction

vs. CT

4 kVp: 90, anode: W,

filtration: none

Lungman 600 µm of CsI Digital radiography,

exposure: 1 mAs, 5 ms

Registration of simulated

image onto real image

2.2.1. pEdiatRic dosimetRy personalized platfORm

The phantom from the pEdiatRic dosimetRy personalized platfORm (ER-

ROR) [31] is used in Notebook 1. It corresponds to the anatomy of a 5-year-old

boy. It is provided as a labelled 512 × 511 × 190 volume, which includes 24 dif-

ferent structures, such as air, muscle, bone, stomach-interior, cartilage, etc.

Surface meshes (see Figure 5a) are generated from the labelled data using the

Visualization Toolkit (VTK) [32]. The definitions of tissue substitutes are pro-

vided in the ICRU Report 44 by the International Commission on Radiation

Units and Measurements [33].

2.2.2. Lungman anthropomorphic chest phantom

Notebooks 2, 3 and 4 make use of the Lungman anthropomorphic chest

phantom (Kyoto Kagaku, Tokyo, Japan) [34]. Anthropomorphic phantoms al-

low for multiple exposures under consistent conditions to occur for all image

acquisitions allowing radiation dose and image quality to be compared: We can

therefore compare a digital radiograph taken using a clinically utilised device

and an image simulated under the same conditions. The Lungman phantom rep-

resents a 70 kg male (see Figure 5b). The equivalence in terms of polymethyl

methacrylate (PMMA) was established for the lung and mediastinum regions

of the phantom. Tumours of various densities are embedded. The phantom is

made of materials with X-ray absorption properties close to those of human tis-

sue. In this way, results remain clinically relevant and accurate as X-ray energy

is altered.
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(a) (b)

Figure 5: Anthropomorphic phantoms. (a) Paediatric phantom from the ERROR project.

(b) Photography of the Lungman anthropomorphic phantom and the clinically utilised X-ray

equipment used in our study.

First, a digital phantom must be created. A CT scan of the Lungman

phantom was acquired at one of our local hospitals (Ysbyty Gwynedd) using

a 128-slice Somatom Definition Edge scanner, Siemens Healthcare, Erlangen,

Germany. The CT volume was then segmented into individual structures. The

problem of over-segmentation is mitigated by creating eroded masks for each

label volume, i.e. using mathematical morphology. This ensures that the masks

do not span over different structures which could result in a coefficient that does

not best represent its material composition. For each mask, a surface mesh was

extracted. The aggregate of all the surface meshes forms a computational model

of the scanned sample or patient. Open-source toolkits, the Insight Toolkit

(ITK) [35] and VTK [32], have been used for all image processing operations.

Simulating X-ray projections using gVirtualXray requires X-ray attenuation

properties for each structure to be chosen. Voxels of medical CT volumes are

in Hounsfield Unit (HU). The mean value computed from masking the CT with

each surface is assigned to their respective structure. Hounsfield values are then

converted into material composition and densities using Schneider et al. [36]’s
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method. Whilst it has not been calibrated for the CT scanner used in our

experiment, it provides a plausible approximation.
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X−ray detector:

− Scintillator: CsI 600 um

− Size: 500x500 mm

− Resolution: 1152x1152 px

− Voltage: 85 kV

X−ray tube:

− Filtration: 0.1 mm

− Copper: 0.1 mm

− Aluminium: 1 mm

15 cm 100 cm

(c)

Figure 6: (a) Photon energy distribution of the X-ray source. Tube voltage: 85 kV. Filtration:

0.1 mm of copper and 1 mm of aluminium. (b) Energy response of the detector. It mimics a

600-micron thick CsI scintillator. (c) Simulation parameters.

2.3. Notebook 1: Comparison of radiographs of an anatomically realistic 5-year-

old boy simulated with GATE and gVirtualXray

Figure 6c summarises the simulation parameters. The source-to-object dis-

tance (SOD) is 100 cm, and the source-to-detector distance (SDD) is 112.5 cm.

The beam spectrum is polychromatic (see Figure 6a). The tube voltage is 85 kV.

The anode is made of tungsten. The filtration is 0.1 mm of copper and 1 mm

of aluminium. The energy response of the detector is considered. It mimics

a 600-micron thick CsI scintillator (Figure 6b). For the Monte-Carlo simula-
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tions, the number of photons impinging the detector was set to 109 and directly

transmitted photons have been saved separately from scattered ones.

2.4. Notebook 2: DRR from CT volume vs. X-ray simulation using surface

meshes extracted from segmented CT volume

It is possible to extract surface meshes from a segmented CT scan, simulate

an X-ray projection with gVirtualXray and compare it with the corresponding

DRR computed from the original CT scan. The main steps are summarised in

Figure 7.

Ground truth CT

Virtual lungman from
extracted surfaces

Simulate acquisition
(gVirtualXray)

Compare

Lungman phantom

Ground truth plastimatch DRR

Segments from
volume

Figure 7: Flow chart demonstrating the validation of projections of the Lungman simulated

with gVirtualXray process.

Plastimatch was used to generate DRRs [37]. It is an open-source software

for image computation, with a focus on high-performance volumetric registra-

tion of medical images. It is developed at the Department of Radiation Oncology

at the Massachusetts General Hospital (USA). A GPU implementation of DRR

X-ray is also available. To mimic a parallel beam when generating the DRR

with Plastimatch, SDD and SOD have been set to infinity. Resolving the centre

parameter for the Plastimatch DRR program can be troublesome. As to not

impede the validity of the experiment’s results, an objective function to opti-

mise this parameter and an optimisation algorithm were utilised for a robust

comparison.
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2.5. Notebook 3: CT volume reconstructed from simulated data vs. original CT

volume

The overall process is summarised in Figure 8. A CT scan acquisition is

simulated. It consists of generating a series of X-ray projections around the

virtual phantom at successive angles. We use the Core Imaging Library (CIL) 7

to reconstruct the CT volumes from the projections [38]. It is a Python toolkit

that provides many popular algorithms, including FBP and FDK. Slices of the

reconstructed CT volume are then compared with the corresponding slices of

the original CT volume.

2.6. Notebook 4: Registration of simulated radiographs onto real radiographs

Registration is the process of matching a moving dataset (called source) to

a fixed dataset (called target). The source is somehow transformed (e.g. moved

and/or deformed) so that it closely matches the target. Figure 9 illustrates the

framework that is used to perform the registration. Our approach relies on fast

X-ray image generation and robust global optimisation algorithms. The source

(blue trace in Figure 9) is the surface model of the Lungman; and the target

(red trace in Figure 9) is a real radiograph (see “ground truth” in Figure 14a).

The virtual patient must match the location and orientation of the patient in

7https://github.com/TomographicImaging/CIL

Ground truth CT Labels Virtual Lungman

Segmentation Extract surface
models

Simulate acquisition
(gVirtualXRay) Reconstruct CT

Compare

Simulated projections Simulated CT

Figure 8: Flow chart demonstrating the validation of CT slices reconstructed from projections

of the Lungman simulated with gVirtualXray.
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the real radiograph. The spatial resolution of the simulated radiograph must be

the same as the real radiograph to allow a pixel by pixel comparison to quantify

discrepancies and similarities. The position (and orientation) of the virtual

patient, X-ray source and X-ray detector are unknown parameters (or inaccurate

values stored in the Digital Imaging and Communications in Medicine (DICOM)

header) that must be estimated by mathematical optimisation. Optimisation

algorithms choose different combinations of parameters until a stopping criterion

is met (green trace in Figure 9). At the end of the registration process, the

corresponding simulated image should match the real radiograph.

Wen et al. [39, 14] showed the importance of choosing a robust global optimi-

sation algorithm to perform the registration of the 3D surface model of a generic

hand onto patient specific radiographs. The impact of the choice of objective

function has also been demonstrated for the registration of surface models of

tungsten fibres onto experimental X-ray projections [15].

Here we use one of today’s most popular global optimisation algorithm:

covariance matrix adaptation evolution strategy (CMA-ES) [40]. It is a state-of-

the-art global optimisation algorithm based on artificial evolution. It is designed

for difficult non-linear non-convex optimisation problems in continuous domain.

CMA-ES does not require a tedious parameter tuning for its application as

finding suitable internal parameters is part of the algorithm design, which also

makes it attractive. Only an initial solution and an initial standard deviation

Data acquisition Clinical
radiograph

Prediction

Simulation

gVirtualXRay

X-ray simulation

3D mesh
model

Optimisation
algorithms

Criterion not
met

Criterion met
Results

Optimisation

New
prediction

Parameters: 
SOD, 
SDD, 
Rotation[1], 
...

Figure 9: Illustration of the registration framework.
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must be set by the user. The default population size is relatively small for fast

convergence.

The objective function that we use is the root mean squared error (RMSE).

Note that both the simulated and the ground truth images are corrected using

the flat-field method. It is typically used to account for variations in beam

homogeneity and in the pixel-to-pixel sensitivity of the detector. It is applied

as follows:

Proj =
I−D

F−D
(5)

where I is the raw X-ray image, Proj corresponding image after flat-field cor-

rection, F (full fields) and D (dark fields) are projection images without sample

and acquired with and without the X-ray beam turned on respectively. Flat-field

correction allows comparison of images directly as they are now using compara-

ble dynamic ranges. If I, D and F are noiseless, then the pixel values of Proj

are between 0 and 1.

We use a digital radiograph (DR) of the Lungman anthropomorphic chest

phantom. The image was taken with a clinical X-ray machine by GE Healthcare

(Chicago, Illinois, USA) at one of our local hospitals (Glan Clwyd). Parameters

relevant to the simulation are extracted from the DICOM file, such as kVp,

filtration, SOD and SDD and refined by optimisation.

In clinical routine, post-processing is pre-defined. Using raw data from dig-

ital imaging is meaningless and does not simulate/replicate what occurs in

current radiographic practice. Sharpening filters are applied to improve the

readability of images. Standard clinical post processing algorithms were used

for acquisition. No further post processing was undertaken following the ac-

quisition such as image manipulation in terms of contrast and sharpness. Each

manufacturer has its own proprietary post-processing algorithm, which is undis-

closed. In our simulation, we calibrate a flexible sharpening filter (see Eq. 6)

to mimic what is common practice in clinical routine. This calibration is per-

formed by optimisation using CMA-ES. However, it is expected that the final

simulated result will slightly differ from the ground truth as two different image
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post-processing filters were used. We also expect that the image with post-

processing will be more similar to the ground truth that the image without

post-processing.

fs(x, y) = f(x, y) + α(f(x, y) − f̄(x, y)) (6)

with fs the sharpened image of f , and f̄ a smoothed version of f . We use

a Gaussian filter to generate f̄ . α is a multiplicative factor that controls the

amount of details (f − f̄) that must be added back to f . The variance of the

Gaussian filter and α are tuned by optimisation.

3. Results

Table 2 provides a summary of the quantitative results. For all the tests that

were conducted, the mean absolute percentage error (MAPE) is 3.20 ± 1.58,

the zero-mean normalised cross-correlation (ZNCC) is 99.08 ± 0.56 and the

structural similarity index (SSIM) is 0.88 ± 0.13. MAPE is relatively close to

0%, ZNCC to 100% and SSIM to 1: radiographs simulated with gVirtualXray

closely match those computed with GATE or Plastimatch, and an actual dig-

ital radiograph; and the CT slices reconstructed from images simulated with

gVirtualXray closely match those of an experimental scan. The corresponding

standard deviation values are low: the results are consistent.

Table 2: Summary of the comparison between the images generated with gVirtualXray and

their corresponding ground truth for all the test cases.

Notebook Test Ground truth MAPE

(in %)

ZNCC

(in %)

SSIM Resolution

(in pixels)

Triangles Runtime

Ground truth

(in ms)

Runtime

gVirtualXray

(in ms)

Speedup

1 Paediatric phantom Monte Carlo 3.12 99.96 0.99 128 × 128 3,552,778 8.68E+08 23 ± 3 37,739,130

2 Lungman AP view DRR 2.43 99.31 0.93 725 × 426 23,722,716 402 ± 6 42 ± 2 10

2 Lungman RL view DRR 1.76 99.66 0.98 725 × 426 23,722,716 407 ± 6 42 ± 2 10

3 Lungman (1st slice) CT 5.50 98.96 0.62 512 × 512 23,722,716 N/A 59 N/A

3 Lungman (middle slice) CT 5.01 98.44 0.78 512 × 512 23,722,716 N/A 59 N/A

3 Lungman (last slice) CT 4.46 99.05 0.82 512 × 512 23,722,716 N/A 59 N/A

4 Lungman PA view

without

post-processing

DR 1.78 98.34 0.94 1871 × 1881 N/A 20,973,540 314 ± 15 N/A

4 Lungman PA view with

post-processing

DR 1.56 98.91 0.94 1871 × 1881 N/A 20,973,540 452 ± 66 N/A

Overall 3.20±1.58 99.08 ± 0.56 0.88 ± 0.13
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(a) MAPE: 3.12%, ZNCC: 99.96%, and SSIM: 0.99.
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(b) Corresponding diagonal intensity profiles.

Figure 10: Comparison between X-ray projections simulated with GATE and gVirtualXray.

For a fair comparison, each image is displayed using the same look-up table.

3.1. Beam spectrum, detector energy response and anatomically realistic digital

phantom: GATE vs gVirtualXray

In this test, the paediatric phantom from the ERROR project is used. For

the Monte-Carlo simulations, the number of photons impinging the detector

was set to 109. The intensity profile of the MC simulation in Figure 10b shows

that the number of photons is appropriate to generate a relatively noise-free

image. About 10 days of computations were required on the test computer. For

gVirtualXray, 3,552,778 triangles were used. The simulated image is 128 × 128

pixels. However, one can note that the digital phantom used in GATE is made

of voxels, and of triangles in gVirtualXray.

Image comparison metrics indicate that the images are similar: ZNCC is
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99.96%; MAPE is 3.12%, and SSIM is 0.99. Figure 10a shows that the sim-

ulations are visually close. The corresponding diagonal intensity profiles in

Figure 10b are overlapping.

3.2. Simulated radiographs vs DRRs of a real CT scan of the Lungman Phantom

To compare the simulated X-ray radiographs, two DRR images are generated

from the original CT volume. Clinically relevant views are considered: a right

lateral (RL) chest view (Figure 11a) and an erect anteroposterior (AP) chest

view (Figure 11c).

Images generated with gVirtualXray are very similar to those computed with

Plastimatch, despite the use of homogeneous materials in the simulation. MAPE

is low in both cases; ZNCC and SSIM are high in both cases. Intensity profiles in

Figures 11b and 11d are overlapping except at the boundary of some structures.

It indicates a possible misplacement of boundaries during the segmentation of

the CT volume and the surface extraction from the segmentations. It took

432 ms to compute the DRR images on GPU with Plastimatch, 42 ms with

gVirtualXray. It corresponds to a 10× speedup.

3.3. CT volume reconstructed from simulated data

Figure 12 displays the image comparison for the first, middle and last slices

of the two volumes. The slices reconstructed from the simulated data are close

to the original data. Hounsfield values are comparable. ZNCC is above 98.40%

in all cases. It indicates a good level of correlation between the two volumes.

MAPE is between 4.50 and 5.5%, which may be acceptable. SSIM is between

0.62 and 0.82, which might be considered a bit low. A visual inspection of

Figures 12a and 12b show the error is concentrated on the boundary between

structures of significantly different HU values. This might be due to the difficulty

to locate the border between structures with an accuracy of 1 pixel or the use

of mathematical morphology to clean the segmentations. Figure 12c shows

that highly inhomogeneous structures such as bone are hard to segment and

approximate into a small set of homogeneous objects.
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(a) RL chest view: MAPE: 1.76%, ZNCC: 99.66%, SSIM: 0.98.
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(b) Diagonal intensity profiles corresponding to the images in Figure 11a.
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(c) Erect AP chest view: MAPE: 2.43%, ZNCC: 99.31%, SSIM: 0.93.
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(d) Diagonal intensity profiles corresponding to the images in Figure 11c.

Figure 11: Comparison between X-ray projections simulated with gVirtualXray and DRR

images generated with Plastimatch. For a fair comparison, each image of a row is displayed

using the same look-up table.
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(a) First slice: MAPE: 5.50%, ZNCC: 98.96%, SSIM: 0.62.

0 100 200 300 400 500

0

100

200

300

400

500

Slice from original CT scan

0 100 200 300 400 500

0

100

200

300

400

500

CT slice reconstructed
 from simulated data

0 100 200 300 400 500

0

100

200

300

400

500

Absolute difference

(b) First slice: MAPE: 5.01%, ZNCC: 98.44%, SSIM: 0.78.
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(c) First slice: MAPE: 4.46%, ZNCC: 99.05%, SSIM: 0.82.

Figure 12: Comparison between CT slices reconstructed from simulated projections with slices

from the original CT scan. For a fair comparison, all the images are displayed using the same

look-up table.
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Figure 13: Diagonal profiles corresponding to the CT slices presented in Figure 12.
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The corresponding diagonal profiles in Figure 13 indicate that the amplitude

of Hounsfield Units is well recovered. The height of peaks and the depth of dips

are accurate. We can see that the simulated data lacks photonic noise and that

void was used instead of air. As we used µair = 0, the HU values are equal to

-1000 in the synthetic data whereas it should be slightly higher.

3.4. Registration of a Simulated Radiograph on a Real Digital Radiograph
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(a) Posterior-anterior (PA) chest view: MAPE: 1.56%, ZNCC: 98.91%, and SSIM: 0.94.

0 50 100 150 200 250 300
Pixel position (in mm)

5000

5500

6000

6500

7000

7500

Pi
xe

l i
nt

en
sit

y

Diagonal profiles

Ground truth (Digital Radiography)
gVirtualXRay

(b) Corresponding diagonal intensity profiles.

Figure 14: Comparison between a registered X-ray projection simulated with gVirtualXray

and a digital radiograph taken using a clinically utilised X-ray equipment. For a fair compar-

ison, each image is displayed using the same look-up table.

In this test, a virtual Lungman phantom is registered so that its simulated

radiograph closely matches a real digital radiograph taken with a clinical X-ray

machine by GE Healthcare (Chicago, Illinois, USA). The position and orien-

tation of the virtual Lungman phantom are first registered as an optimisation
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problem to minimise the differences between the real radiograph and the simu-

lated one.

Figure 14a shows the comparison between the simulated image and the real

radiograph. We can see that the position and orientation of the Lungman have

been successfully recovered. The pixel intensities are comparable. The use of

post-processing slightly improves the results. ZNCC for the image was 98.34%

without post-processing. It increases up to 98.91% with post-processing. The

value is close to 100%. SSIM is 0.94 for both without and with post-processing,

which is relatively close to 1. MAPE is 1.78% without post-processing, and

1.56% with post-processing, i.e. close to 0%.

From a numerical point of view, these results show that the simulated im-

age is similar to the real X-ray radiograph acquired with a clinical equipment.

The two images are visually comparable. The intensity profiles in Figure 14b

are overlapping. They also show that the errors tend to be at the boundary

between some anatomical structures, in particular the ribs, which is an issue

that was highlighted in the previous sub-section. This is likely due to the series

of discretisations that was needed to convert a tangible phantom into a suitable

digital model: i) CT scan of the phantom, ii) segmentation of the CT scan, iii)

cleaning of the segmentations, iv) surface extractions from the segmentation,

and v) the use of homogeneous material properties. Each step may have intro-

duced small numerical inaccuracies or a small misplacement of the boundaries.

Nevertheless, pixel intensities are comparable in both images.

4. Discussion

Simulations, deterministic or MC, are approximations of real physics phe-

nomena. Users of such simulations must always consider the context in which

they want to deploy the simulation and understand the trade-offs that must

be made. The need for accuracy will be greater for treatment planning in ra-

diotherapy and in this case, MC will be preferred. Speed would be favoured

in real-time VR for training purposes [11, 12, 13] and high-throughput data
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applications [14, 20, 15, 16, 17]. The accuracy (or inaccuracy) of simulations

depends on the mathematical model used and the simplifications made. For

example, disabling scattering may not be suitable for thicker patients whereas

it may be acceptable for thinner patients. The geometrical and material com-

position of the different structures that are imaged must be considered with

care, in particular for inhomogeneous structures. For example, bones are com-

plex to segment as they are made of hard and soft components that cannot be

easily distinguished. Oversegmentation may improve the simulation fidelity but

it will decrease the computational performance. Other input parameters such

as tube voltage and photonic noise may be important and can be calibrated on

experimental images to improve fidelity.

It is not possible to fully replicate an X-ray radiograph taken with a mod-

ern clinical device used in radiology departments in simulations. Indeed, post-

processing image filtering is applied automatically to improve image readabil-

ity [41]. As such filters are proprietary and closed-source, we were not able

to implement them. To address this issue, we implemented and calibrated a

general purpose image sharpening filter. The final simulated image is more re-

alistic than without, but it is not a virtual copy of the actual image. Note that

onboard imaging (OBI) or electronic portal imaging devices (EPIDs) available

on linear accelerators (LINACs) used in radiotherapy can provide radiographic

images without post-processing. They are used to generate the CBCT volumes

used in radiotherapy.

Although the use of anthropomorphic phantoms provides a baseline for com-

parison in medical imaging, they are not real patient images and therefore this

needs to be further validated using a range of patient CT images to capture

varying attenuation from various body parts. A phantom represents an aver-

age body habitus only. The phantom does however provide uniform materials

tissue-equivalent materials using synthetic bone used and lung tissues simulated

using urethane foam. This allows multiple exposures with different acquisition

parameters using the same phantom allowing changes in image quality and ra-

diation dose to be identified as opposed to being influenced by patient factors
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such as body composition.

Owing to the harmful effects of radiation, training and education of radio-

graphic students require strict supervision under numerous radiation governance

policies including working under the Ionising Radiation (Medical Exposure)

Regulations (IRMER) 2017. This restricts students as they do not have the

autonomy to work independently and learn from mistakes such as exposure pa-

rameter errors. It is therefore important that simulation is available for students

to experiment upon without the ethical constraints within clinical practice. This

allows them to develop into independent practitioners. With the Covid19 pan-

demic – the call for more simulation models for students and staff is necessary

as clinical time may be limited with reduced patient contact. One of the ways to

enhance clinical competence is through Medical Simulation training. This type

of training has been proven to have many advantages which help improve medi-

cal practitioners’ competencies, and in return, improve patient safety and reduce

health care costs. This is even more paramount in radiology owing to the harm-

ful effects of radiation. X-ray and CT techniques cannot be experimented upon

on real patients and therefore the effect of modifying acquisition parameters on

image quality and radiation dose can only be visualised and demonstrated using

simulation.

However, in the teaching and learning context, images must be simulated

almost instantly when acquisition parameters are changed. There is well-

established a consensus in the human-computer interaction (HCI) community

that 1 second is the upper limit for the users to feel that the computer is causing

the results of their actions [42, 43]. Any delay longer than one second will be

considered unacceptable by the user. It is important that images are accurate

too. When scattering can be ignored, we demonstrated that gVirtualXray pro-

vides a suitable alternative to Monte Carlo simulations and DRRs computed

from CT volumes. For thicker patients with more of scatter, such determin-

istic simulations may be too simplistic and may not be appropriate. To date,

high-resolution and relatively noise-free images cannot be generated fast enough

with Monte Carlo methods for real-time or high-throughput data applications.
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Another advantage is the use of surface meshes instead of voxel data: character

animation used in video games can be deployed to change the virtual patient’s

pose, which is not feasible with DRRs computed directly from CT volumes.

The direct simulation of X-ray images from real CT volumes is not recom-

mended with gVirtualXray. Indeed, each voxel would need to be converted into

12 triangles and the voxels sorted by HU value. A DRR software dedicated to

voxelised data, such as Plastimatch, is likely to provide better computational

performance. Today’s GPUs are designed to render millions of triangles to pro-

vide real-time video games with a high level of realism. This property of GPUs

makes it possible to use volumetric meshes made of tetrahedrons. VR applica-

tions with soft tissue deformations and cutting may benefit from this method.

Note that this approach is also of interest in material science to simulate an

object under load.

5. Conclusion

Until now, core components of gVirtualXray were evaluated by comparing

its simulated images with corresponding images simulated with GATE, but only

using a simplistic test object [9]. This new paper benchmarked gVirtualXray

with clinically realistic phantoms.

Accurate images that would take days using GATE can be generated in mil-

liseconds with gVirtualXray for high-throughput data (e.g. real-time VR, image

registration, and training/testing data generation for ML) when scattering can

be ignored. Simulated projections can also be fed to a reconstruction algorithm

to produce CT volumes. The use of surface models enables the combination

of X-ray simulation with real-time soft-tissue deformation [44, 9] and character

animation [45], which is hardly possible with DRRs computed directly from CT

volumes.

This initial project allows for further developments by continually improving

the simulation whilst in use, for example, mimicking exposure time and photon

scattering from real images. The use of real patient images is the next phase to
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further validate and smooth out the limitations of this existing software.
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Acronyms

AP anteroposterior.

CAD computer-aided design.

CBCT cone-beam computed tomography.

CERN European Organization for Nuclear Research.

CMA-ES covariance matrix adaptation evolution strategy.

CPU central processor unit.

CT computed tomography.

DICOM Digital Imaging and Communications in Medicine.

DR digital radiograph.
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DRR digitally reconstructed radiograph.

EPID electronic portal imaging device.

ERROR pEdiatRic dosimetRy personalized platfORm.

FBP filtered-back projection.

FDK Feldkamp, Davis and Kress.

GLSL OpenGL Shading Language.

GPU graphics processor unit.

GUI graphical user interface.

gVXR gVirtualXray.

HCI human-computer interaction.

HU Hounsfield Unit.

ICRU International Commission on Radiation Units and Measurements.

ITK Insight Toolkit.

LINAC linear accelerator.

MAPE mean absolute percentage error.

MC Monte Carlo.

MSE mean squared error.

NDT nondestructive testing.

OBI onboard imaging.

PMMA polymethyl methacrylate.

RL right lateral.

RMSE root mean squared error.

SDD source-to-detector distance.

SOD source-to-object distance.

SSIM structural similarity index.

VR virtual reality.

VTK Visualization Toolkit.

ZNCC zero-mean normalised cross-correlation.
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