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Abstract: To obtain high-quality and durable parts by 3D printing, specific characteristics (porosity
and proportion of various sizes of particles) in the mixture used for printing or sintering must
be assured. To predict these characteristics, a mathematical model of optimized packing poly-
hedral objects (particles of titanium alloys) in a cuboidal container is presented, and a solution
algorithm is developed. Numerical experiments demonstrate that the results obtained by the algo-
rithm are very close to experimental findings. This justifies using numerical simulation instead of
expensive experimentation.
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1. Introduction

Additive manufacturing is important in economy, medicine, industry, and education.
Many challenging issues in energy and material saving, as well as important environmental
problems, can be solved using additive manufacturing [1,2]. Using a 3D printer, physical
objects can be created based on their three-dimensional images [3]. Additive technologies
are widely used in industrial production, medical and aerospace industries [4].

State-of-the-art laser 3D printers can work with different materials: Polymers, ce-
ramics, organics, etc. [4]. However, most industrial technologies use metal powders as
consumables. Metal raw materials are subjected to the sintering process (or completely
melted), which allows obtaining a variety of products, from specialized precision parts to
models, prototypes, or jewelry. During sintering, the metal powder is partially melted so
that the particles can merge with each other [4].

Materials, such as titanium, titanium alloys, steel, stainless steel, aluminum, copper,
nickel alloys, and superalloys, can be used as powder raw materials [5]. Some high-value
metals are also available in powder form. Among all these materials, the most promising
for industrial purposes are powders of titanium and nickel alloys, which are characterized
by high strength and corrosion resistance while low density [5].

There are two main technologies for producing metal powder parts by additive
manufacturing: Bed deposition and direct deposition [4]. In this paper, we focus on
the first technique based on fixing (melting, sintering) the previous layer of powder and
supply of already sintered powder layer by layer to obtain a product in accordance with
the developed CAD model.
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After layer-by-layer build-up, metal powders in the microstructure become close to
equilibrium, and some annealing or aging effect may arise caused by the low cooling
rate [1].

The high porosity of the finished products during the 3D printing process leads to
decreasing their mechanical properties [6]. The packing density influences the ability of
powder sintering. Optimization of the particle size distribution before sintering is important
in the process of 3D printing when the microstructure is subject to certain requirements,
such as a combination of fraction sizes and a microstructure of individual particles [1,4].
Thus, a certain proportion between the particle characteristics must be maintained to reduce
the porosity.

To get a quality product (or 3D part), the shapes of particles, as well as their size
distribution, must be controlled to optimize the technological process of obtaining metal
powders. This enables eliminating defects on the product surface.

Recently, the use of various alloys based on zirconium and titanium powders incre-
mented significantly [7,8]. An important stage in the formation of high-quality parts is
the assessment of the chemical, phase, and fractional composition of the powder mixture.
To control the configuration of individual powder particles, the specific correspondence
between various sizes fractions and the porosity of the prepared mixture for printing or
sintering is important. This can be done by physical, mathematical, and computer modeling.
After all, to solve material science and technological issues, one should simultaneously
optimize the filling of a given volume for powder particles of different shapes and sizes.

The proposed multidisciplinary study uses smart technologies for controlling the techno-
logical processes of 3D printing and monitoring the degradation of the microstructure [9–14].

The aim of this work is to develop an approach to modeling layer-by-layer filling of a
certain 3D volume (container) with non-spherical (polyhedral) particles. A fast heuristic
is proposed for solving the packing problem. Experimental findings for titanium alloys
and computational results for polyhedral particles are compared. The close results permit
using cheap numerical simulations instead of expensive experimental studies.

The novelty of the paper involves four main contributions:

• Optimizing characteristics of titanium alloys used for 3D printing.
• Nonlinear programming model for filling a working volume with polyhedral particles.
• Fast solution approach based on a flexible active layer strategy.
• Comparing numerical and experimental findings.

The paper is organized as follows. A general formulation for packing convex poly-
hedral in a cuboidal container is presented in Section 2. The corresponding nonlinear
programming problem is formulated in Section 3 using the phi-functions approach. A
heuristic solution scheme is highlighted in Section 4. Numerical indicators are provided in
Section 5, and Section 6 presents concluding remarks.

2. Formulation of the Packing Problem

Let Ω = {(x, y, z) : 0 ≤ x ≤ l, 0 ≤ y ≤ w, 0 ≤ z ≤ h} be a cuboidal container (a model
of given volume). As models of non-spherical particles, a set of convex polyhedra Ki,
i ∈ IN = {1, 2, . . . , N} is given. Assume that ui = (vi, θi) denotes the variable motion
vector (placement parameters) of Ki, where θi = (θ1

i , θ2
i , θ3

i ), θ1
i , θ2

i , θ3
i are Euler angles.

The motion of each polyhedron K is denoted by K(u)=
{

p ∈ R3 : p = v+ M(θ)·p0, p0 ∈ K
}

where K is non-rotated and non-translated polyhedron, M(θ) is a rotation matrix of the form:cos θ1 cos θ3 − sin θ1 cos θ2 sin θ3 − cos θ1 sin θ3 − sin θ1 cos θ2 cos θ3 sin θ1 sin θ2

sin θ1 cos θ3 + cos θ1 cos θ2 sin θ3 − sin θ1 sin θ3 + cos θ1 cos θ2 cos θ3 − cos θ1 sin θ2

sin θ2 sin θ3 sin θ2 cos θ3 cos θ2


A problem of filling a certain 3D volume (container Ω) with non-spherical (polyhedral)

particles can be stated as an optimization packing problem as follows.
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Let L be the number of given types (shapes) t1, t2, . . . , tL of polyhedra with M grada-
tions of the average Ferret diameter r1, r2, . . . , rM for each type. Therefore, we associate
with each polyhedron Ki an appropriate type Ti ∈ {t1, t2, . . . , tL} of the average Ferret
diameter (a measure of particle size), denoted by Ri ∈ {r1, r2, . . . , rM}.

The number N of polyhedra that must be completely arranged into Ω is unknown,
therefore, we assume that N = VΩ/Ṽ. Here, Ṽ is the minimum volume of objects to
be placed.

The statistic probabilities p1, p2, . . . , pM of the appearance of the average Fere diame-
ters are given, where pm = (the number of packed polyhedra of radius rm)/(a total number
of packed polyhedra) ∑M

m=1 pm = 1 and statistical probabilities f1, f2, . . . , fL of object type
occurrence, where fl = (the number of packed polyhedra of type tl)/(a total number of
packed polyhedra), ∑L

l=1 fl = 1. Here, numerators and denominators are determined using
fragments of the test filling of the cuboid found experimentally.

We need to pack a set of polyhedra Ki, i ∈ IN minimizing the volume of a cuboidal
container Ω subject to the following placement conditions:

Pairwise non-overlapping of objects, i.e., intKi(ui) ∩ intKj(uj) = ∅, i > j ∈ IN, and con-
tainment of each object in the container Ω of variable sizes l, w, h, i.e., Ki(ui) ⊂ Ω(l, w, h), i ∈ IN
meeting statistical probabilities f1, f2, . . . , fL of the appropriate object type occurrence.

This problem is aimed at modeling the filling of the container Ω with polyhedra Ki
of type Ti of the average Ferret diameter Ri, i ∈ IN by “pouring” the polyhedral particles
down to the axis OZ into the container Ω, while calculating the packing factor (the inverse
of the porosity).

Many publications address packing non-spherical shapes (see [15–17] and correspond-
ing references). The approach presented in the next section permits formulating the packing
problem in the form of a nonlinear optimization problem. We use the phi-function technique
for the arrangement of non-spherical particles (polyhedra) in the container, considering
their continuous rotations [18–21].

3. Geometric Tools and Mathematical Model

We use a quasi-phi-function for two convex polyhedra Ki(ui) and Kj
(
uj
)

for describing
non-overlapping of particles.

Let convex polygons Ki(ui) and Kj
(
uj
)

be given by their vertices pi
k, k = 1, . . . , mi, and

pj
l , l = 1, . . . , mj. Let P(uP) = {(x, y, z) : ψP = α · x + β · y + γ · z + µP ≤ 0} be a half-space,

α = sin θ1
P sin θ2

P, β = − cos θ1
P sin θ2

P, γ = cos θ2
P. Here θ1

P and θ2
P are the corresponding

variable Euler angles (while θ3
P = 0).

A quasi-phi-function Φ′ij
(

ui, uj, u′ij = uP

)
for convex polyhedra Ki(ui) and Kj

(
ug
)

can
be defined in the form:

Φ′ij
(
ui, uj, uP

)
= min

{
ΦKi P(ui, uP), ΦKjP∗

(
uj, uP

)}
(1)

where ΦKiP(ui, uP) is the phi-function for the polyhedron Ki(ui) and the halfspace P(uP),
ΦKjP∗

(
uj, uP

)
is the phi-function for the polyhedron Kj

(
uj
)

and the halfspace
P∗(uP) = R3\intP(uP), intP(uP) is the interior of P(uP), uP =

(
θ1

P, θ2
P, µP

)
,

ΦKiP(ui, uP) = min
1≤k≤mi

ψP
(

pi
k
)
, ΦKjP∗

(
uj, uP

)
= min

1≤l≤mj

(
−ψP

(
pj

l

))
.

If Φ′KiKj
(
ui, uj, uP

)
> 0 then LP = {(x, y, z) : ψP(uP) = 0} is a separating plane for

convex polyhedra Ki(ui) and Kj
(
uj
)
.

Thus, if intKi(ui) ∩ intKj(uj) = ∅, then there exists a vector uP =
(
θ1

P, θ2
P, µP

)
, such

that max
uP

Φ′ij
(
ui, uj, uP

)
> 0.

Therefore, Φ′ij
(
ui, uj, uP

)
≥ 0 for some uP implies intKi(ui) ∩ intKj

(
uj
)
= ∅.

Let us describe the containment constraint, Ki(ui) ⊂ Ω⇔ intKi(ui) ∩Ω∗ = ∅ .
Denote vertices of a convex polyhedron Ki(ui) by pi

k, k = 1, . . . , mi, pi
k =

(
pi

xk, pi
yk, pi

zk

)
.
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A phi-function for Ki(ui) and the container Ω∗ can be defined in the following form:

ΦKiΩ
∗
(l, w, h, ui) = min

{
min

1≤k≤mi
ϕi

k j(l, w, h, ui), j = 1, . . . , 6
}

, (2)

ϕi
k1(ui, l, w, h,) = xi + pi

xk, ϕi
k2(ui, l, w, h,) = −

(
xi + pi

xk

)
+ l,

ϕi
k3(ui, l, w, h) = yi + pi

yk, ϕi
k4(ui, l, w, h,) = −

(
yi + pi

yk

)
+ w,

ϕi
k5(ui, l, w, h,) = zi + pi

zk, ϕi
k6(ui, l, w, h,) = −

(
zi + pi

zk

)
+ h.

Using continuous functions (1), (2), a mathematical model of the polyhedral packing
problem can be stated in the form:

minκ(u) (3)

subject to:

Φ′ ij(ui, uj, u′ ij) ≥ 0, (i, j) ∈ IN × IN , i < j, Φi(ui, l, w, h) ≥ 0, i ∈ IN (4)

where u ∈ Rσ is a vector of all variables; σ = 3 + 6N + 3N(N − 1)/2 is the number
of the problem variables; u = (ς, τ) ∈ Rσ, ς = (u1, . . . , uN , l, w, h, ); l, w, h are variable
metrical characteristics of cuboid Ω; ui = (vi, θi) is a variable motion vector of Ki(ui);
τ = (u′1, . . . , u′m) is a vector of auxiliary variables; u′s = (θ1s

P , θ2s
P , µs

P), s = 1, . . . , m,
m = 3N(N − 1)/2; κ(u) = l · w · h, Φ′ ij is a quasi-phi-function (1) for Ki(ui) and Kj(uj); Φi
is a phi-function (2) for Ki(ui) and Ω∗(l, w, h).

4. Solution Approach

The non-spherical particle packing algorithm is a modification of the spherical particle
packing algorithm [22]. In practice, millions of polyhedral particles are used for filling
a given volume to define the correspondence between the cuboid dimensions and the
average Fere diameters of polyhedra. Taking into account the additive production, all
filling operations should be performed in the upper layer of the container, which is referred
to as an active layer. The placement of non-overlapping polyhedra is controlled in the
active layer only. The height of the active layer is iteratively updated to the current data.
This way, the simulation time can be reduced significantly.

The following iterative algorithm simulates filling the cuboid with different shapes
and sizes of polyhedra. The active level parameters are updated in each iteration of
the procedure.

4.1. The Principal Steps of the Approach

Step 1. “Normalizing” objects and the container Ω.
Define

r′ =
(
r′1, r′2, . . . , r′M

)
=
( r1

r
,

r2

r
, . . . ,

rM
r

)
, L =

l
r

, W =
w
r

, H =
h
r

, r =
1
M ∑M

m=1 rm · pm,M =∑M
m=1 rm

Next, consider packing polyhedra of type Ti ∈ {t1, t2, . . . , tL} associated with the appropri-
ate radii Ri ∈

{
r′1, r′2, . . . , r′M

}
into a cuboid of sizes L×W × H.

Step 2. Set i = 2, j0 = 1, hmax, ∆ = 4 ·max
{

r′1, r′2, . . . , r′M
}

. Define P = (P1, P2, . . . , PM),
Pm = ∑m

j=1 pj, m = 1, 2, . . . , M. Set F = (F1, F2, . . . , FL), where Fl = ∑l
j=1 f j.

Step 3. Randomly generate the radius R1 (see algorithm Q) associated with the polyhedron
K1 of type T1 (see algorithm G).
Step 4. Place the center of the polyhedron K1 at a point (x1, y1, z1), where x1 ∈ [R1, L− R1],
y1 ∈ [R1, W − R1], z1 = R1. Assume Euler angles are random variables.
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Step 5. Create the arrangement of the object with the center at a random point
(

x0
i , y0

i , z0
i
)

in a cuboid with dimensions L×W × (H + 2Ri), providing non-overlapping with already
packed polyhedra (algorithm S). If a feasible point cannot be found, then go to step 9.
Step 6. Solve the nonlinear programming problem to search for the minimum of zci (coordinate
of the gravity center of the polyhedron Ki):

min(zci), s.t.
(
ui, u′

)
∈ Vi

Vi =
{(

ui, u′ij
)
∈ Rσ

∣∣∣Φ′ij(ui, uj, u′ij
)
≥ 0,

ΦKiΩ
∗
(ui) ≥ 0, zi > zmin, j = j0, j0 + 1, . . . , i− 1

}
where ui = (xi, yi, zi, θi), θi = θ1

i , θ2
i , θ3

i , Φ′ij
(

ui, uj, u′ij
)

is the quasi-phi-function (3) for fixed

uj, ΦKiΩ
∗
(ui) is the phi-function (4), σ = 6+ 2(i− j0) zmin (algorithm S). The corresponding

optimal solution
(

x0
i , y0

i , z0
i , θ0

i , u′0ij
)

gives the appropriate placement parameters of the
polyhedron Ki and is considered as the initial point for the algorithm D below.
Step 7. Updating the size of the active layer:

• Change the thickness of the active layer: if zi = hmax + Ri − ∆ then define ∆ = 1.1× ∆
(increasing the thickness if the lower limit of the active layer is attained) and set
j0 = j0 − 1, while j0 > 1 and zj0 ≥ hmax − Rj0 − ∆ (see Figure 2);

• Set H = 1000 (the maximal height of the active layer). If zi > H then set
hmax = hmax +

zi−H
H , otherwise set hmax = hmax +

zi
H to determine the upper bound of

the active layer.
• Polyhedra that are arranged under the active layer are not considered: set j0 = j0 + 1

for zj0 < hmax − Rj0 − ∆ (Figure 1).
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Step 8. If i < N, set i = i + 1 and go to step 4, otherwise, go to step 9.
Step 9. Recalculate corresponding coordinates for the centers of polyhedra, multiplying
them by r while updating the original size of the polyhedra and the cuboid.
Step 10. Delete from the set of polyhedra that are not completely packed in a cuboid with
dimensions l × w× h.

4.2. Description of Algorithms Q, G, S, and D Used in This Optimization Procedure

In the subsection, we provide a brief description of algorithms Q, G, S, and D used in
this optimization procedure.

Algorithm Q. Generating a discrete value of the radius R depending on vectors r′ and P.
Step Q1. Find random value of p ∈ [0, 1].
Step Q2. Find the minimum index m for which p ≤ Pm.
Step Q3. Set R = r′m.
Algorithm G. Generating a discrete value of the type T with distribution law defined by
vectors t′ and F.
Step G1. Find random value of f ∈ [0, 1].
Step G2. Find the minimum index m for which f ≤ Fm.
Step G3. Set T = t′m.
Algorithm S. Generating a feasible packing of polyhedra (with radius R) of the active layer
of the cuboid with size L×W × (H + 2R) subject to i already packed polyhedra.
Step S1. Select g ∈ [1, 100] to determine the “gravity” that affects the particles and define
zmin = H + 2R.
Step S2. Set k = 1, zmin = 9999999 (a large number) and fix the angles of rotation of
the object.
Step S3. Form and fix randomly chosen values of variables xi ∈ [R, L− R], yi ∈ [R, W − R].
Step S4. Define an index set

Ξ = {j : j = j0, j0 + 1, . . . , i− 1,
∣∣xi − xj

∣∣ < Ri + Rj,
∣∣yi − yj

∣∣ < Ri + Rj
}
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Step S5. Solve the nonlinear programming problem

min(zi), s.t.
(
zi, u′ ij

)
∈ Vi

Vi =
{(

zi, u′ij
)
∈ R1+3q

∣∣Φ′ ij(ui, uj, u′ ij
)
≥ 0, (i, j) ∈ Ξ,

z ≥ max(zki, zmin)}

where Φ′ij
(
ui, uj, u′ ij

)
is the quasi-phi-function of the form (2) provided that xi, yi, θi,uj are

fixed, q is the cardinality of the set Ξ.
Step S6. If zmin > zi then set xmin = xmax, ymin = ymax, zmin = zmax.
Step S7. Set k = k + 1. If k > g, then terminate algorithm S, otherwise go to step S2.
The output of algorithm S is a point (xmin, ymin, zmin, θi).
If zmin > H + R, then the current polyhedron cannot be placed in a cuboid with dimensions
L×W × (H + 2R).
Algorithm D. Finding the minimal value of the z-th coordinate of a polyhedron using

(
x0, y0, z0, θ0)

as a starting feasible point.
Step D1. Set k = 0 and perform the decomposition step δ = 2 for the problem with normalized
dimensions of the polyhedron.
Step D2. Define

Ξk = {j : j = j0, j0 + 1, . . . , i− 1,
∣∣x− xj

∣∣ < Ri + Rj + δ,
∣∣y− yj

∣∣ < Ri + Rj + δ
}

Step D3. Obtain the zth-coordinate of the i-th polyhedron by solving the following nonlinear
programming problem:

min(zci), s.t.
(
ui, u′ ij

)
∈ Vk

i
Vk

i =
{
(ui, u′ ij) ∈ R6+3q

∣∣ Φ′ ij
(
ui, uj, u′ ij

)
≥ 0, (i, j) ∈ Ξk

ΦKiΩ
∗
(ui) ≥ 0, zi > zmin, j = j0, j0 + 1, . . . , i− 1

}
where ui = (xi, yi, zi, θi), θi = (θ1

i , θ2
i , θ3

i ), Φ′ ij is the quasi-phi-function (1), provided that
the vector uj = (xj, yj, zj, θj) is fixed, ΦKiΩ

∗
is the phi-function (2), q is the cardinality of the

set Ξk.
Take

(
xk

i , yk
i , zk

i , θk
i , u′kij

)
as a starting point.

Step D4. Find a vector of coordinates
(

xk+1, yk+1, zk+1
)

of the center of the polyhedra.

Step D5. If zk+1 = zk, then algorithm D is terminated, otherwise, set k = k + 1 and go to
step D2.

5. Computational Results and Comparison with Experimental Findings

Computational results found by our algorithm and compared with experimental
findings are considered in this section. We used AMD FX(tm)-6100, 3.30 GHz computer,
Programming Language C++, Windows 7. The open solver IPOPT [23] was used for local
optimization under default options.

The study was performed for powders of titanium alloys VT20 with particle sizes
from 100 to 300 µm. The corresponding chemical composition (in %) was as follows: 88.9Ti,
6.5Al, 0.3Fe, 0.1C, 0.15Si, 1.0Mo, 0.8V, 0.05N, 0.7Zr, 0.5 impurities.

The sieve method was used to get powder fractions with a small variance of particle
sizes (Figure 3). Metallographic analysis demonstrates that (after the hydrogenation-
dehydrogenation process) the powder particles have non-spherical shapes and similar sizes.
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(a) 200–250 µm, (b) 160–200 µm, (c) 100–160 µm.

To get a quality product, the parameters of powders of titanium alloys must be
optimized. In particular, the powder particles must be maximally homogeneous.

The sizes of the particles in titanium alloy powder VT20 were analyzed by the image
analysis software ImageJ [24,25]. Corresponding results are presented in Figure 4.
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Distribution histograms for powder particles of the alloy BT20 show that in the fraction
200–250 µm, dominant particles have an average diameter 226 µm, while for the fraction
160–200 µm, the dominant diameter is 177 µm, and for 100–160 µm—114 µm, respectively.

As can be seen from Figure 4, decreasing the average particle size of the powder
within a certain fraction results in increasing the scatter of sizes relative to this value of
other particles.

Numerical results are presented in Table 1. Here, columns 3 and 4 present distributions
of sizes of particles, absolute and percentage, while Ferret diameters corresponding to each
fraction are presented in column 2. From Table 1, we may conclude that the fractions of the
powder are well homogeneous for use in 3D printing processes.

Table 1. Experimental distribution of titanium alloy powder particle sizes with polyhedral shapes.

Powder Fraction
Experimentally Determined Particle

Sizes by Ferret Diameter, µm
Number of Particles

Pcs. %

Fraction 1 (200–250 µm)

96.6 1 2.3
156.9 2 4.7
199.7 12 27.9
214.5 17 39.5
228.3 5 11.6
241.3 6 14.0

Fraction 2 (160–200 µm)

178.8 14 19.2
183.4 7 9.6
187.6 18 24.7
193.6 14 19.2
200.1 20 27.4

Fraction 3 (100–160 µm)

75.9 5 6.6
92.3 3 3.9

106.2 7 9.2
118.4 6 7.9
129.5 5 6.6
139.8 2 2.6

149.3 7 9.2
158.3 20 26.3
166.8 21 27.6

Table 2 presents results obtained by the proposed algorithm for powder filling into a
cuboid with (l, w, h) = (2000, 2000, 2000) compared with experimental results. The experi-
mental results correspond to the bulk packing density of VT20 alloy powder particles [26].
For each fraction, the filling factor was defined as the ratio (total volume of packed poly-
hedra)/(container volume). As can be seen from Table 2, the difference between the
algorithmic results and the experimental findings is less than 5%. The arrangement of
particles calculated by the algorithm for 13 h 24 m, 18 h 35 m, and 27 h 41 m are presented
in Figures 5–7, correspondingly.

Table 2. Filling factors for polyhedral particles.

Powder Fraction Experimental Filling Factor, % Calculated Filling Factor, % Error, %

Fraction 1 (200–250 µm) 62.07 59.43 2.64

Fraction 2 (160–200 µm) 67.18 62.21 4.97

Fraction 3 (100–160 µm) 73.56 68.77 4.79
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We may conclude that the proposed approach is reliable and can be applied to estimate
the density (inverse of the porosity) for powders with different fractional compositions. Thus,
cheaper numerical simulations can be used instead of expensive experimental research.

6. Conclusions

The size of fractions for non-spherical powders in VT20 titanium alloy is important
to reduce defects in built-up layers. The surface morphology of VT20 alloy powder with
different fractional compositions is studied. In contrast to traditional DEM methods used
for analyses of granular structures [27–30], here, an optimization approach was applied.
The results of the algorithm demonstrate that the built-up layers of non-spherical powders
of Fraction 1 (200–250 microns) of VT20 titanium alloy have the best micromechanical
properties. To avoid nonlinear optimization problems, simple grid approximations [31,32]
can be considered to linearize optimized packing problems. The proposed models and
algorithm can also be used for other alloys, such as stainless steels and superalloys, subject
to adjusting the corresponding input parameters.

In this paper, non-spherical shapes of the alloy powder particles were studied. Com-
pared with pure spherical shapes, considering convex polyhedral particles provides a
more realistic approximation of real shapes and gives novel modeling opportunities. How-
ever, to make analyses of granular structures more realistic, more sophisticated shapes
must be introduced. Considering irregular, non-convex, or convex-composed shapes is
an interesting area for future research. Some results in this direction are on the way. The
proposed modeling and algorithmic approach can also be used for ceramic materials [33,34].
Testing the approach for ceramics based on zirconium oxide modified with yttrium oxide
is planned in the near future.



Computation 2023, 11, 22 12 of 13

Author Contributions: Conceptualization, Z.D., T.R. and I.L. (Igor Litvinchev); methodology, A.P.
and J.B.; software, A.P., I.L. (Igor Lemishka) and S.M.; validation, Z.D. and A.P.; formal analysis,
T.R. and I.L. (Igor Litvinchev); investigation, T.R., I.L. (Igor Litvinchev) and J.B.; resources, I.L.
(Igor Litvinchev) and J.B.; data curation, Z.D., A.P. and S.M.; writing—original draft preparation,
Z.D., T.R. and I.L. (Igor Litvinchev); writing—review and editing, T.R. and I.L. (Igor Litvinchev);
visualization, A.P., S.M.; supervision, T.R. and I.L. (Igor Litvinchev); project administration, T.R.;
funding acquisition, T.R. and I.L. (Igor Litvinchev). All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: Tetyana Romanova was supported by Volkswagen Foundation under
grant # 97775, 9C086, grant # 02.2020/167 of the National Research Foundation of Ukraine.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gibson, I.; Rosen, D.; Stucker, B. Additive Manufacturing Technologies, 1st ed.; Springer: New York, NY, USA, 2010. [CrossRef]
2. Romanova, T.; Stoyan, Y.; Pankratov, A.; Litvinchev, I.; Avramov, K.; Chernobryvko, M.; Yanchevskyi, I.; Mozgova, I.; Bennell, J.

Optimal layout of ellipses and its application for additive manufacturing. Int. J. Prod. Res. 2019, 59, 560–575. [CrossRef]
3. Milewski, J.O. Additive Manufacturing of Metals, 1st ed.; Springer: New York, NY, USA, 2017. [CrossRef]
4. Gibson, I.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies, 3rd ed.; Springer: New York, NY, USA, 2021.
5. Qian, M.; Froes, F.H. Titanium Powder Metallurgy: Science, Technology and Applications; Butterworth-Heinemann: Oxford, UK, 2015.
6. Duriagina, Z.A.; Lemishka, I.A.; Trostianchyn, A.M.; Kulyk, V.V.; Shvachko, S.G.; Tepla, T.L.; Pleshakov, E.I.; Kovbasyuk, T.M. The

Effect of Morphology and Particle-Size Distribution of VT20 Titanium Alloy Powders on the Mechanical Properties of Deposited
Coatings. Sov. Powder Met. Met. Ceram. 2019, 57, 697–702. [CrossRef]

7. Duriagina, Z.; Holyaka, R.; Tepla, T.; Kulyk, V.; Arras, P.; Eyngorn, E. Identification of Fe3O4 Nanoparticles Biomedical Purpose by
Magnetometric Methods; InTech: Rijeka, Croatia, 2018; Chapter 17. [CrossRef]

8. Izonin, I.; Trostianchyn, A.; Duriagina, Z.; Tkachenko, Z.; Tepla, R.; Lotoshynska, T.N. The combined use of the wiener poly-nomial
and SVM for material classification task in medical implants production. Int. J. Intell. Syst. Appl. 2018, 10, 40–47.

9. Tepla, T.; Izonin, I.; Duriagina, Z.; Tkachenko, R.; Trostianchyn, A.; Lemishka, I.; Kulyk, V.; Kovbasyuk, T. Alloys selection
based on the supervised learning technique for design of biocompatible medical materials. Arch. Mater. Sci. Eng. 2018, 1, 32–40.
[CrossRef]

10. Vastola, G.; Pei, Q.; Zhang, Y.-W. Predictive model for porosity in powder-bed fusion additive manufacturing at high beam energy
regime. Addit. Manuf. 2018, 22, 817–822. [CrossRef]

11. Bayat, M.; Dong, W.; Thorborg, J.; To, A.C.; Hattel, J.H. A review of multi-scale and multi-physics simulations of metal additive
manufacturing processes with focus on modeling strategies. Addit. Manuf. 2021, 47, 102278. [CrossRef]

12. Hebert, R.J.; Sun, Y.; Aindow, M.; Garboczi, E.J. Three-dimensional particle size, shape, and internal porosity characterization:
Application to five similar titanium alloy (Ti–6Al–4V) powders and comparison to two-dimensional measurements. Addit. Manuf.
2021, 44, 102060. [CrossRef]

13. Liu, R.; Liu, S.; Zhang, X. A physics-informed machine learning model for porosity analysis in laser powder bed fusion additive
manufacturing. Int. J. Adv. Manuf. Technol. 2021, 113, 1943–1958. [CrossRef]

14. Wang, W.; Ning, J.; Liang, S.Y. Analytical prediction of keyhole porosity in laser powder bed fusion. Int. J. Adv. Manuf. Technol.
2022, 119, 6995–7002. [CrossRef]

15. Liu, X.; Liu, J.-M.; Cao, A.-X.; Yao, Z.-L. HAPE3D—A new constructive algorithm for the 3D irregular packing problem. Front. Inf.
Technol. Electron. Eng. 2015, 16, 380–390. [CrossRef]

16. Leao, A.A.; Toledo, F.M.; Oliveira, J.F.; Carravilla, M.A.; Alvarez-Valdés, R. Irregular packing problems: A review of mathematical
models. Eur. J. Oper. Res. 2019, 282, 803–822. [CrossRef]

17. Kallrath, J. Business Optimization Using Mathematical Programming, 2nd ed.; Springer: New York, NY, USA, 2021; Chapter 15.
[CrossRef]

18. Stoyan, Y.; Pankratov, A.; Romanova, T. Placement Problems for Irregular Objects: Mathematical Modeling, Optimization and Applications;
Springer: Cham, Germany, 2017; Volume 130, pp. 521–559. [CrossRef]

19. Stoyan, Y.; Pankratov, A.; Romanova, T.; Fasano, G.; Pintér, J.D.; Stoian, Y.E.; Chugay, A. Optimized Packings in Space Engineering
Applications: Part I; Springer: Cham, Germany, 2019; Volume 144, pp. 395–437. [CrossRef]

20. Pankratov, A.; Romanova, T.; Litvinchev, I. Packing ellipses in an optimized convex polygon. J. Glob. Optim. 2019, 75, 495–522.
[CrossRef]

21. Romanova, T.; Litvinchev, I.; Pankratov, A. Packing ellipsoids in an optimized cylinder. Eur. J. Oper. Res. 2020, 285, 429–443.
[CrossRef]

http://doi.org/10.1007/978-1-4939-2113-3
http://doi.org/10.1080/00207543.2019.1697836
http://doi.org/10.1007/978-3-319-58205-4
http://doi.org/10.1007/s11106-019-00033-8
http://doi.org/10.5772/intechopen.69717
http://doi.org/10.5604/01.3001.0012.6944
http://doi.org/10.1016/j.addma.2018.05.042
http://doi.org/10.1016/j.addma.2021.102278
http://doi.org/10.1016/j.addma.2021.102060
http://doi.org/10.1007/s00170-021-06640-3
http://doi.org/10.1007/s00170-021-08276-9
http://doi.org/10.1631/FITEE.1400421
http://doi.org/10.1016/j.ejor.2019.04.045
http://doi.org/10.1007/978-3-030-73237-0
http://doi.org/10.1007/978-3-319-68640-0_25
http://doi.org/10.1007/978-3-030-10501-3_15
http://doi.org/10.1007/s10898-019-00777-y
http://doi.org/10.1016/j.ejor.2020.01.051


Computation 2023, 11, 22 13 of 13

22. Duriagina, Z.; Lemishka, I.; Litvinchev, I.; Marmolejo, J.A.; Pankratov, A.; Romanova, T.; Yaskov, G. Optimized Filling of a Given
Cuboid with Spherical Powders for Additive Manufacturing. J. Oper. Res. Soc. China 2020, 9, 853–868. [CrossRef]

23. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2005, 106, 25–57. [CrossRef]

24. Duriagina, Z.A.; Tkachenko, R.O.; Trostianchyn, A.M.; Lemishka, I.A.; Kovalchuk, A.M.; Kulyk, V.V.; Kovbasyuk, T.M. Deter-
mination of the best microstructure and titanium alloy powders properties using neural network. J. Ach. Mater. Manuf. Eng. 2018,
87, 25–31.

25. Verguet, A.; Messaoudi, C.; Marco, S.; Donnadieu, P. An ImageJ tool for simplified post-treatment of TEM phase contrast images
(SPCI). Micron 2019, 121, 90–98.

26. OriginLab. Available online: http://www.originlab.com/doc/User-Guide (accessed on 3 December 2022).
27. Zhao, B.; An, X.; Wang, Y.; Zhao, H.; Shen, L.; Sun, X.; Zou, R. Packing of different shaped tetrahedral particles: DEM simulation

and experimental study. Powder Technol. 2019, 360, 21–32. [CrossRef]
28. Zhao, B.; An, X.; Zhao, H.; Gou, D.; Shen, L.; Sun, X. DEM simulation on random packings of binary tetrahedron-sphere mixtures.

Powder Technol. 2019, 361, 160–170. [CrossRef]
29. Li, J.; An, X.; Wang, J.; Zhao, H.; Zou, R.; Dong, K.; Gou, D. Experimental study on 3D vibrated packing densification of

mono-sized dodecahedral particles. Powder Technol. 2020, 367, 703–712. [CrossRef]
30. Wang, H.; Lim, J.Y. Metal-ceramic bond strength of a cobalt chromium alloy for dental prosthetic restorations with a porous

structure using metal 3D printing. Comput. Biol. Med. 2019, 112, 103364. [CrossRef] [PubMed]
31. Litvinchev, I.; Infante, L.; Espinosa, E.L.O. Approximate Circle Packing in a Rectangular Container: Integer Programming

Formulations and Valid Inequalities. In Computational Logistics. ICCL 2014. Lecture Notes in Computer Science; González-Ramírez,
R.G., Schulte, F., Voß, S., Ceroni Díaz, J.A., Eds.; Springer: Cham, Switzerland, 2014; Volume 8760, pp. 47–60. [CrossRef]

32. Litvinchev, I.; Espinosa, E.L.O. Integer Programming Formulations for Approximate Packing Circles in a Rectangular Container.
Math. Probl. Eng. 2014, 2014, 317697. [CrossRef]

33. Michaelis, A.; Scheithauer, U.; Moritz, T.; Weingarten, S.; Abel, J.; Schwarzer, E.; Kunz, W. Advanced Manufacturing for Advanced
Ceramics. Procedia CIRP 2020, 95, 18–22. [CrossRef]

34. Abel, J.; Scheithauer, U.; Janics, T.; Hampel, S.; Cano, S.; Müller-Köhn, A.; Günther, A.; Kukla, C.; Moritz, T. Fused Filament
Fabrication (FFF) of Metal-Ceramic Components. J. Vis. Exp. 2018, 143, e57693. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s40305-020-00314-9
http://doi.org/10.1007/s10107-004-0559-y
http://www.originlab.com/doc/User-Guide
http://doi.org/10.1016/j.powtec.2019.09.072
http://doi.org/10.1016/j.powtec.2019.09.055
http://doi.org/10.1016/j.powtec.2020.04.020
http://doi.org/10.1016/j.compbiomed.2019.103364
http://www.ncbi.nlm.nih.gov/pubmed/31369941
http://doi.org/10.1007/978-3-319-11421-7_4
http://doi.org/10.1155/2014/317697
http://doi.org/10.1016/j.procir.2020.11.002
http://doi.org/10.3791/57693

	Introduction 
	Formulation of the Packing Problem 
	Geometric Tools and Mathematical Model 
	Solution Approach 
	The Principal Steps of the Approach 
	Description of Algorithms Q, G, S, and D Used in This Optimization Procedure 

	Computational Results and Comparison with Experimental Findings 
	Conclusions 
	References

