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Abstract: Automated stereological methods are presented for approximating the 3D size distribution

of unimodal or bimodal precipitate dispersions considering 2D and 1D measurements taken from

polydisperse spherical non-penetrating particle dispersions. A method to quantify the uncertainty of

the approximation as a function of the number of sampled particles is presented and demonstrated to

experimental data. The derivation and verification of the analytical stereological expressions used are

included. Two procedures are presented for estimating the 3D size distribution of bimodal particle

populations depending upon the relative size of the two particle populations. If the particles can

be characterised using micrographs of the same magnification, it is possible to estimate the volume

fraction of each particle population. For cases where micrographs have been taken at different

magnification, an estimate of the area fractions of the particle populations is needed to combine

the datasets and allow for the approximation of the 3D size distribution. These methods are useful

for use in determining the initial particle size distribution for use in modelling and determining

the appropriate number of micrographs and particles to measure when characterising a precipitate

dispersion.

Keywords: stereology; polydisperse; size distribution; microstructure reconstruction

1. Introduction

Stereology describes the scientific approach to the approximation of the 3D size and
morphology of objects utilising incomplete information. It is a fundamental aspect of
microstructure characterisation and reconstruction [1]. Many microstructures are char-
acterised through the quantitative image analysis of micrographs obtained from optical
or scanning electron microscopy. These micrographs provide information descriptive of
a 2D cross-section taken through the material. Serial sectioning is a powerful technique
enabling the comprehensive characterisation of 3D microstructures exhibiting complex
morphology, significant heterogeneity, and/or strong anisotropy [2]. For isotropic mi-
crostructures, information obtained from a single cross-section through the material is
sufficient for a reasonable estimate of the morphology of the restructure. Microstructure
reconstruction enables the quantitative analysis of the 3D size and morphology from
such data [3].The approaches to microstructure reconstruction can be categorised as either
optimisation-based approaches [4,5], texture synthesis [6,7], or machine-learning-based
texture synthesis approaches [8,9]. Optimisation-based approaches apply inverse analysis
to repetitively approximate the 3D microstructure, and then retrieve modelled data for
a like-for-like comparison with the measured data to create the cost function. Texture
synthesis approaches process the experimental data to reveal patterns and rules to use
when reconstructing microstructure, reconstructing a new instance of the microstructure in
one iteration. Bonstanabad et al. [8] replaced this with a neural network. This approach has
significant computational savings once the network is adequately trained in comparison to
optimisation-based approaches.
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The focus of this work is the determination of the 3D size of non-penetrating polydisperse
spherical particles using images descriptive of a cross-section through the dispersion. For this
simple geometry an analytical solution [10,11] is available for the 3D → 2D conversion. This
enables the use of optimisation-based approaches with small computational cost.

The shape descriptors used in this work include the equivalent radius of a circle with
the same area as the identified object and the linear intercept. It is important to quantify
the 3D size distribution of the precipitates when considering the kinetics of the evolution
of the microstructural feature [12,13]. Gerlt et al. [14] have improved upon scaling factors
used to approximate the mean 3D size and standard deviation from the mean 2D size and
standard deviation obtained from a cross-section of the microstructure. They consider a
unimodal dispersion where the shape of the particle size distribution is best captured by a
log-normal distribution.

Precipitate dispersions that evolve following Ostwald ripening kinetics will reach a
steady state where scaling laws can be applied to determine the continued evolution of the
mean size of the precipitates [15,16]. Chen and Voorhees [17] studied the coarsening kinetics
of precipitate dispersions and split behaviour into the transient and steady-state coarsening
regimes. During the transient coarsening regime, the shape of the precipitate distribution
may deviate from a log-normal type of distribution. Most precipitate strengthened alloys
are heat treated to optimise the precipitate dispersion and often the dispersions needed for
engineering applications are far from the steady-state regime. This work develops a method
to consider any shape of the size distribution, in addition to multi-modal dispersions,
applicable to both the transient and steady-state coarsening regimes.

Stereological functions for the 3D → 2D and 2D → 1D conversion of spherical precipitates
are needed to understand and simulate the evolution of a precipitate dispersion [13,18,19]. For
problems involving the coarsening or dissolution of an existing particle population, the ability
to approximate the initial 3D size distribution is needed to simulate behaviour using mean-field
models of kinetics. To compare predictions with experimental data taken from SEM or optical
micrographs, either the predicted 3D particle size distributions need to be converted into 2D, or
3D size distributions of the experimental data need to be approximated for comparison with
predictions.

Diogenes et al. [20] presented an optimisation-based procedure to approximate the 3D
size of a non-penetrating dispersion of spheres from equivalent radii of circles obtained
from a 2D intercept through the dispersion. They randomly cut discretely sampled particles
from the approximated 3D distribution to build up a 2D distribution function to compare
with the experimental data and explored different expressions to describe the 3D size dis-
tribution. They applied a simulated annealing algorithm to optimise the shape parameters
to approximate the 3D size distribution.

This approach works well for unimodal distributions; however, multi-modal particle
populations are encountered in many nickel-based superalloys. The aim of this work is
to develop automated stereological methods to approximate the 3D size distribution of
the bimodal particle populations observed in the turbine disc nickel superalloys RR1000
and IN738LC. The ability to approximate the initial particle size distribution is necessary
for the application of mean-field modelling simulation tools such as TC-Prisma [21]. It
is also useful in helping metallurgists determine the required number of micrographs to
process and particles to measure to obtain sufficient confidence and understanding of
the 3D size distribution of precipitates. Quantitative image analysis of micrographs to
measure precipitate size and area fraction can be labour intensive and time consuming.
Identifying the optimum number of micrographs to process and particles to measure can
save time and improve the accuracy of measurements through knowledge of the error of
the approximated 3D size distribution.

For completeness, the derivation of the analytical solution used to convert from 3D
to 2D to 1D data is presented, arriving at the same result as Hilliard and Lawson [10] and
Wicksell [11]. The derivation is verified against numerically generated results and then
applied within an inverse calculation of the 3D size of unimodal and bimodal particle
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populations measured from scanning electron micrographs. A procedure to quantify the
error associated with the 3D approximation is presented and then a discussion chapter notes
other forms of error and uncertainty. The paper finishes with a conclusion, summarising
the key findings.

2. Stereological Analytical Functions

2.1. Conceptual Framework

Let us consider a 3D volume containing polydisperse spherical precipitates. The
number volume concentration of particles with radius varying between R and R + dR
within a unit volume is given by the distribution function F3D(R)dR. Consider a cross-
section taken through the particle dispersion. The number area concentration of cross-
sections with a radius varying between r and r + dr is given by the distribution function
F2D(r)dr. Let us then take a line through this plane. Let 2l describe the linear intercept. The
number line concentration of line intercepts with a length varying between l and l + dl is
given by F1D(l)dl. This is illustrated in Figure 1.

Figure 1. (a) A 3D particle dispersion. (b) A cross-section through the dispersion, cutting through
particles. (c) A line intercept passing through particles.

The definitions used to define the geometry in 3D, 2D, and 1D are shown in Figure 2.
The radius of the particle in 3D is given by R. The radius of a cross-section of a spherical
particle is given by r, where a length of h has been removed, leaving a distance a between
the cut surface and the particle centre. Figure 2c shows a line intercepting a particle with a
length of 2l is present within the particle cross-section.

The particle radius distribution function captures key statistics of the dispersion. The
zeroth moment describes the number concentration within a volume, area, and line, considering
the 3D, 2D, and 1D distribution functions, respectively. Let ϕ3D, ϕ2D, and ϕ1D refer to the
volume fraction, area fraction, and line fraction of particles, respectively. For non-penetrating
spherical particle ensembles, it is true that ϕ3D ≡ ϕ2D ≡ ϕ1D. Let 〈R〉, 〈r〉, and 〈l〉 describe the
mean sizes encountered in the 3D, 2D, and 1D domains. This statistical information is obtained
from the following moments of the size distribution functions

〈R〉 =
∫ ∞

0 RF3D dR
∫ ∞

0 F3D dR
ϕ3D =

4π

3

∫ ∞

0
R3F3D dR Nv,3D =

∫ ∞

0
F3D dR (1)

〈r〉 =
∫ ∞

0 rF2D dr
∫ ∞

0 F2D dr
ϕ2D = π

∫ ∞

0
r2F2D dr Na,2D =

∫ ∞

0
F2D dr (2)

〈l〉 = 2

∫ ∞

0 lF1D dl
∫ ∞

0 F1D dl
ϕ1D = 2

∫ ∞

0
lF1D dl Nl,1D =

∫ ∞

0
F1D dl (3)

Normalised probability distribution functions are obtained by normalising the F3D,
F2D, and F1D by their zeroth moment
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f3D =
F3D

∫ ∞

0 F3D dR
f2D =

F2D
∫ ∞

0 F2D dr
f1D =

F1D
∫ ∞

0 F1D dl
(4)

If the volume fraction, area fraction, or line fraction of particles is known, it is simple to
calculate the F3D, F2D, and F1D functions from knowledge of the f3D, f2D, and f1D functions.
For example, the 3D particle radius distribution can be obtained from the normalised
probability distribution function as follows;

F3D =
ϕ3D

A
f3D A =

4π

3

∫ ∞

0
R3 f3D dR (5)

and for the 2D particle radius distribution function;

F2D =
ϕ2D

A
f2D A = π

∫ ∞

0
r2 f2D dr (6)

and for the 1D particle intercept distribution function;

F1D =
ϕ1D

A
f1D A = 2

∫ ∞

0
l f1D dl (7)

The particle number concentration can also be used in a similar manner to determine
the size distribution functions from size probability density functions.

Figure 2. The key geometry defining (a) the sphere, (b) the cross-section of a spherical particle, (c) the
line intercept taken through a circle cross-section of a particle.

The functions that convert the 3D → 2D and 2D → 1D distribution functions are
derived by calculating the mean particle radius of the cross-sections and line intercepts. The
conversion functions are revealed by using the property that the mean value of a probability
density is given by its first moment. The functions are determined for a monodisperse
particle system and then extended to the polydisperse case.

2.2. 3D→2D Conversion

Hilliard and Lawson [10] show how to derive analytical expressions to convert a 3D
particle size distribution to 2D area intercepts and 1D line intercepts. This work presents a
different derivation that reaches the same result.

First, let us consider a 3D mono-disperse particle system containing particles of radius
R. A plane cutting through the dispersion will result in a distribution of cross-sections
of cut particles. Figure 2b illustrates the cut particle of radius R. The particle is cut by a
distance of h resulting in a cross-section of radius r. Let the distribution of radii of cross-
sections created by the plane be defined by the vector rk, with the corresponding vector nk

describing the number of particles falling within each size interval. If there are m many size
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classes, the largest particle class in the distribution is given by rm = R. The mean particle
radius for the monodisperse scenario is then defined by

〈r〉m =
r1n1 + r2n2 + r3n3 + ... + rmnm

n1 + n2 + n3 + ... + nk
=

m

∑
k=1

rk

(

nk

η

)

(8)

where η = ∑
m
k=1 nk and is the total number of particle cross-sections found on the plane.

The term nk/η is the probability that the plane intercepts a particle at the location within
the distance between h and h + dh. Thus, the probability is given by nk/η = dh/R, and dh
is a small increment of h described in Figure 2b. This allows Equation (8) to be expressed as

〈r〉m =
m

∑
k=1

rk

(

dh

R

)

(9)

Using these definitions for the geometry, the following is true

R2 = (R − hk)
2 + r2

k ≡ a2
k + r2

k (10)

where hk and ak refer to the distances h and a defined in Figure 2b for the kth particle
intercepted by the plane. Equation (10) may be arranged for a and differentiated with
respect r to obtain,

da

drk
= − rk

√

R2 − r2
k

(11)

As dh = −da, we can express Equation (11) in terms of dh

dh =
rk

√

R2 − r2
k

drk (12)

Equation (12) is then substituted into Equation (9)

〈r〉m =
m

∑
k=1

rk
rk

R
√

R2 − r2
k

drk (13)

We can convert Equation (13) into an integral under the limit drk → 0

〈r〉m = lim
drk→0

m

∑
k=1

rk
rk

R
√

R2 − r2
k

drk =
∫ R

0
r

r

R
√

R2 − r2
dr (14)

Revealing the 3D→ 2D conversion function

ξ(R, r) =
r

R
√

R2 − r2
(15)

The mean radius of cross-sections for the monodisperse system is given by

〈r〉m =
∫ R

0
r ξ(R, r) dr (16)

We now extend the approach to a consider a polydisperse particle population. The
mean radius of particle intersections can be determined by the summation of the particle
size classes that cover the size range of particles present within the system. Let the vector
Rj define the mean radius of the size classes, and Nj describe the number of particles within
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each size range, with a total of n particle size classes. The mean radius of the cross-sections
obtained from the cut through the microstructure is given by

〈r〉p =
N1〈r(R1)〉m + N2〈r(R2)〉m + N3〈r(R3)〉m + ... + Nl〈r(Rn)〉m

N1 + N2 + N3 + ... + Nn
(17)

where 〈r〉m and 〈r〉p refer to the mean particle radius of cross-sections from a monomodal
and a polydisperse ensemble, respectively. We can use the normalised probability density
describing the particle radius distribution of 3D particles to determine Nk

Nk

∑
n
i=1 Ni

= f3D(Rk) dRk (18)

where dRk is the range of the size class of particles Nk. Equation (17) may now be expressed as

〈r〉p =
n

∑
k=1

f3D(Rk)〈r(Rk)〉m dRk (19)

Substitute Equation (16) into Equation (19)

〈r〉p =
n

∑
k=1

f3D(Rk)
∫ Rk

0
r ξ(Rk, r) dr dRk (20)

The summation can be converted into an integral as dRk → 0

〈r〉p =
∫ ∞

0
f3D(R)

∫ R

0
rξ(R, r) dr dR (21)

The order in which the integral is performed may be switched, and the integral
manipulated, to arrive at

〈r〉p =
∫ ∞

0
r
∫ ∞

r
f3D(R) ξ(R, r) dR dr (22)

Revealing the following 3D→2D conversion function for a polydisperse ensemble

f2D(r) =
∫ ∞

r

f3D(R) r

R
√

R2 − r2
dR (23)

This is the same result as Hilliard and Lawson [10] and Wicksell [11].

2.3. 2D→1D Conversion

The same process can be followed to determine the conversion to 1D data from 2D
data. Let us now consider the distribution of line intercepts present in a 2D system of
monodisperse circles. The geometry of the line intercept is given in Figure 2c), where the
line intercept present in the particle phase is given by 2l. Following the same procedure,
the following 1D distribution function is obtained

f1D(l) =
∫ ∞

r

f2D(r) l

r
√

r2 − l2
dr (24)

3. Model Verification

The functions shown in Equation (15) consider the cross-sections of a single size of
particle. Figure 3 compares the analytical ξ(R, r) function to numerically generated data
considering a particle with a radius of 1m. The numerical solution is obtained by using
a pseudo-random number generator to take cross-sections or intersections through the
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particle, binning the radius of the cut into a histogram, and then converting the histogram
into a probability density.

Figure 3. Comparison of the numerically and analytically generated f2D distribution functions
Equation (15) for a monodisperse particle ensemble.

The polydisperse analytical 3D → 2D and 2D → 1D functions are applicable to any f3D
distribution function. They have been tested against numerically generated distributions
of equivalent radii and linear intercepts using a pseudo-random number generator to
sample the distribution and create the distribution of cross-sections and linear intercepts.
Table 1 lists the expressions used to create particle dispersions to verify the conversion.
The parameter σ is the standard deviation and µ is the mean of the normal and log-normal
distributions. The term ζ is the fraction weighting applied to the distributions in the
bimodal case. The parameters used in the Weibull waveform include γ, which is an offset
of the distribution, α, which impacts the distribution shape, and β, which determines the
mean of the distribution.

Table 1. This table lists the Gaussian waveforms used to assess the 3D → 2D conversion functions.

Gaussian Waveforms

(a) Normal unimodal f3D(R) =
1

σ
√

2π
exp

[

−(R − µ)2

2σ2

]

(25)

(b) Normal bimodal f3D(R) =
ζ

σ1
√

2π
exp

[

−(R − µ1)
2

2σ2
1

]

+
1 − ζ

σ2
√

2π
exp

[

−(R − µ2)
2

2σ2
2

]

(26)

(c) Log-normal f3D(R) =
1

σ
√

2πR
exp

[

− 1
2

(

ln(R)− µ

σ

)2
]

(27)

(d) Weibull f3D =
α

β

(

R − γ

β

)α−1

exp

[

−
(

R − γ

β

)α]

(28)

Figure 4 compares the numerically calculated 2D and 1D distribution functions de-
scriptive of the equivalent radius and linear intercept for the four distribution functions
described in Table 1. The parameters used to define the 3D distribution functions are
outlined in Table 2. It can be seen that the analytical solution agrees with numerically
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generated data for a variety of distribution shapes and unimodal and bimodal distributions.
Equation (23) has been applied to the f3D(R) distribution function to obtain an approxima-
tion of f2D(r). Equation (24) is then applied to the predicted f2D distribution function to
determine the f1D(l) distribution function.

Figure 4. Comparison of the numerical and analytical 2D and 1D distributions of the radii of cross-sections
and linear intercepts considering (a) a normal distribution, (b) a bimodal distribution, (c) a log-normal
distribution, and (d) a Weibull distribution. The 3D distribution is shown in the solid black line. The
numerically generated 2D and 1D distribution functions are shown in the red and blue crosses, respectively.

Table 2. The parameters to generate different shapes of particle size distributions, corresponding to
the waveforms presented in Table 1.

Distribution Type µ (µm) σ (µm) ζ γ (µm) α β (µm)

(a) Normal-unimodal 1 0.1 - - - -
(b) Normal-bimodal 0.75, 1.25 0.07, 0.25 0.5 - - -
(c) Lognormal 0.05 0.25 - - - -
(d) Weibull - - - 0.5 3 0.5

4. Automated 3D Approximations of Spherical Particle Dispersions

4.1. Inverse Analysis

This section presents the algorithms for the objective functions used in the inverse
analysis of the size distribution of both unimodal and bimodal dispersions. These are im-
plemented using the optimisation algorithms provided in MATLAB [22,23] and Python [24].
The default optimisation routines are used, which are the simplex method and the Broyden–
Fletcher–Goldfarb–Shanno (BFSG) algorithm, respectively. Exploration of different opti-
misation routines is beyond the scope of this work; however, there are differences in the
converged solutions comparing the two techniques. First, the processing of the raw data is
described to determine suitable approximations for the initial guess. Next, the objective
functions for the inverse analysis are described. Examples are presented for approximating
the 3D particle size distribution from scanning electron micrographs taken from precipitate
dispersions in nickel superalloys. The last section presents a method for quantifying the
error and uncertainty as a function of the sample size of precipitate measurements.
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4.2. Unimodal Dispersions

The inverse calculation involves the calibration of the unknown parameters α, β, and
γ for the Weilbull waveform shown in Equation (28). The measured 2D data can be used to
approximate the initial guess of the parameters. The mean 3D particle radius of the Weibull
equation presented in Table 1 is given by

〈R3D〉 =
∫ ∞

0
f3D R dR = γ + β Γ

[

1 +
1
α

]

(29)

where Γ is the gamma function.
Let us introduce the parameter K to relate the mean 2D intercept radius with the

mean 3D radius of the spheres, so that 〈R3D〉 = K〈R2D〉. Let 〈R∗
2D〉 describe the mean

radius of cross-sections measured from the experimental data. For the initial guess, we
can approximate K = 4/π. The γ parameter in the Weibull Equation describes an offset
applied to the distribution. We can express the offset by the term ψ, which is normalised by
the measured 〈R∗

2D〉. The initial guess for γ can be expressed as a function of the parameter
ψ and the measured mean 2D particle radius, so that

γ ≈ 4
π

ψ〈R∗
2D〉 (30)

where 0 < ψ < 1. The initial guess for β can now be obtained by rearranging Equation (29)
for β and substituting Equation (31). The resulting equation may be rearranged to arrive at

β ≈ 4〈R∗
2D〉(1 − ψ)

π Γ
[

1 + 1
α

] (31)

This reduces the number of variables for the initial guess from three parameters to
two; α and ψ. An initial guess of 2.5 has been used for α, and 0.5 for ψ.

Upper and lower limits are needed for the optimisation of the unknown parameters
α, β, and γ. Two times the maximum measured 2D particle size can be used to define the
upper bounds for β and γ. The α parameter has been constrained between the interval of
1.5 and 10.

Inverse analysis requires an objective function which returns an absolute scalar value
descriptive of the error. The error may be calculated from the integral of the absolute error
between the measured and predicted 2D distributions. This can be achieved by compar-
ing the measured and modelled particle radius distribution functions or the associated
cumulative distribution function, p2D, as shown below:

error =
∫ rmax

rmin

| f data
2D (r)− f model

2D (r)| dR

error =
∫ rmax

rmin

|pdata
2D (r)− pmodel

2D (r)| dR

(32)

where rmin and rmax are the minimum and maximum radii of the measured 2D data
of particle cross-sections. f data

2D (r) and f model
2D (r) are the 2D particle radius probability

distribution functions obtained from the experimental data and model, respectively. pdata
2D (r)

and pmodel
2D (r) are the cumulative frequency densities associated with the f data

2D (r) and
f model
2D (r) probability distribution functions. To enable the comparison of the data and

model, the modelled 2D particle size distribution function f model
2D (r) is linearly interpolated

onto the same discretisation used to define the data, or vice versa, when the cumulative
frequency density functions are used to quantify the error.

One problem encountered when comparing predicted f model
2D (r) and measured f data

2D (r)
distribution functions is that the measured data is limited by the minimum particle that
can be detected. There are numerous causes for this limitation, such as those arising from
the microscopy technique, to the resolution of precipitations within the micrograph. As a
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result, there is always error comparing the left-hand tail of the f model
2D (r) distribution with

the f data
2D (r) distribution where no data exists. In this work, we avoid this issue by only

comparing data between the limits of rmin and rmax and scaling the predicted distribution
so that, within these size intervals, the zeroth moment of the distribution moment is unity.

An example application of applying the automated stereological method is shown in
Figure 5, where (a) and (b) show the identified particles from scanning electron micrographs
taken from commercially cast IN738LC aged at 900 ◦C for 10,000 h [13], and the primary
particle population in air-quenched fine grain RR1000 [18]. The microstructures of interest
contain a γ phase and globular γ′ precipitates. Figure 5c,d show the measured 2D particle
size distributions for IN738LC and RR1000 and compared with the calibrated 2D and 3D
distributions obtained from the inverse analysis. The figures compare model predictions
from using the simplex method and BFSG algorithm. In both examples, the results from
the simplex method predict a larger 3D size distribution, with a smoother left-hand tail. In
both cases, the simplex method converged to a solution with lower error compared to the
BFSG algorithm. The steps taken to create the objective function considering a unimodal
dispersion using the accumulative probability density are described in Algorithm 1.

Figure 5. Example applications of the inverse analysis of the 3D size of the particle distribution,
considering (a) the γ′ distribution in CC IN738LC aged at 900 ◦C for 10,000 h. (b) The primary γ′

in air quenched fine grain RR1000. (c,d) present the measured distribution of particle cross-sections
compared with the approximated 3D and 2D distributions obtained using the BFSG algorithm and
simplex method.

Algorithm 1 Unimodal 3D→2D approximation

Create f model
3D for the latest approximation of α, β and γ.

Convert f model
3D to f model

2D .
Interpolate f model

2D onto the same grid spacing as the experimental data.
Calculate the accumulative frequency density pmodel

2D .
Calculate the relative absolute error comparing pmodel

2D and pdata
2D .

Return the integral of the relative absolute error.
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4.3. Bimodal Dispersions

The method has been extended to consider bimodal distributions. Although the
previous unimodal approach could be applied for each individual particle population, this
would not account for overlap of the larger 2D particle size distribution with the smaller
particle size distribution. It would not account for the fact that a small cross-section on
the 2D plane could come from either particle population in the bimodal distribution. Two
scenarios have been considered depending upon the relative difference in size between the
particle populations:

• The bimodal particle populations have comparable size and both precipitate popula-
tions can be resolved on the same micrographs. A vector of measured particle radii is
obtained describing both particle populations and a clear cut-off in size is identified
splitting the two populations.

• The particle populations vary in size by an order of magnitude and both particle
populations cannot be effectively characterised at the same magnification. Two vectors
of particle radii have been measured for each dispersion and the area fraction of the
particle populations has been approximated.

The characterisation of the evolution of the bimodal gamma prime population in
IN738LC [13] to a unimodal dispersion is used for an example of particles characterised
using the first method. The gamma prime dispersion in as-heat-treated coarse grain
RR1000 [18] is used as an example for the latter.

First, let us consider approximating the 3D size from data from each particle population
that can be simply combined. In this case, two Weibull distributions are used with a
fraction ζi used to determine the weighting from each particle population. This is shown in
Equation (33).

f3D(R) =
2

∑
i=1

[

ζi
αi

βi

(

R − γi

βi

)αi−1

exp

[

−
(

R − γi

βi

)αi
]

]

(33)

There are seven unknown parameters that are calculated: the αi, βi and γi shape
parameters of the ith particle population and either ζ1 or ζ2, as ζ1 + ζ2 = 1. A cut-off
that separates the two particle populations in the experimental data is useful in providing
reasonable estimates for the initial guesses for these parameters.

One way to approach this problem would be to calculate both Weibull curve parame-
ters at the same time, with seven unknown parameters using the cumulative probability
density to determine the error in the objective function. The results are shown in Figure 6,
which presents the calibrated probability density functions and cumulative distribution
functions, respectively. Algorithm 2 presents the steps taken within the objective function.

Algorithm 2 Simultaneous bimodal 3D → 2D approximation

Create two f model
3D distributions for the latest approximation of α1, α2, β1, β2, γ1, γ2, and

ζ1.
Convert both f model

3D distributions to f model
2D

Combine both f model
2D dispersions using ζ1 and ζ2 to weight the populations.

Interpolate the combined f model
2D onto the same grid spacing as experimental data

Calculate pmodel
2D considering particles greater than the smallest available from the experi-

mental data.
Calculate the relative absolute error comparing pmodel

2D and pdata
2D .

Return the integral of the relative absolute error.
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Figure 6. (a) Comparison of the measured 2D data with the approximated 2D and 3D particle size
distribution functions. The histogram presents the data, whilst the red and blue continuous lines
describe the calculated 2D and 3D distribution functions. (b) The cumulative distribution functions
comparing the 2D data and the 2D model, with the data described using the continuous black line,
and the calculation in the dashed red line.

Another approach is to examine each population sequentially, starting with the largest
population and then proceeding through the populations in descending order of size. This
allows for 2D particle cross-sections that arise from the larger population of particles to be
accounted for when examining the smaller particle populations. It is slightly faster than the
previous method, needing to calibrate three parameters for the larger particle population
(α1, β1 and gamma1), and then four parameters (α2, β2, gamma2, and ζ2) for the secondary
population. The probability density function has been used to determine to determine the
error that defines the objective function. The results are shown in Figure 7. In this approach,
Algorithm 1 is first applied to the largest population of particles to approximate their size
distribution. Algorithm 3 is then used to approximate the smaller particle population.

Algorithm 3 Sequential bimodal 3D→2D approximation

Input the known f model
2D particle size distribution for the primary particles obtained from

applying Algorithm 1 to the primary dispersion in addition to f data
2D describing both

populations.
Create the f model

3D distribution for the latest approximation of α, β, and γ for the secondary
particles.
Convert the f model

3D for the secondary particle distribution into f model
2D .

Use the estimated ζ1 term to combine both f model
2D dispersions.

Interpolate the combined f model
2D onto the same grid spacing as experimental data

Calculate the relative absolute error comparing f model
2D and f data

2D .
Return the integral of the relative absolute error.

The second case considered is when the two particle populations vary significantly in
size. A high magnification micrograph is needed to measure the smaller particles accurately,
but, if the same magnification was used to assess the larger particles, the sample size would
be too small. Micrographs can be taken at different magnifications to characterise each
population separately. Knowledge of the area fraction or number concentration of each
type of particles allows for the datasets to be combined. In this case the area fraction of
each population was approximated.

The example used is the as-heat-treated coarse grain RR1000 presented by Anderson
et al. [18]. A vector of particle sizes and the approximated area fraction of each population
was determined. The vectors of particle sizes have been transformed into histograms and
then probability densities. Knowledge of their area fraction allows the determination of the
distribution functions using Equation (6). The same histogram bin sizes are used to assess
both populations so that the resultant distribution functions can be combined.
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Figure 7. (a) The comparison of the measured and calibrated probability size distribution functions,
showing the 2D data, 2D prediction, and approximated 3D size distribution considering only the
primary particles. (b) The comparison of the measured and calibrated probability size distribution
functions for both primary and secondary populations.

When the mean size between particle populations varies significantly, the magnitude of
the particle radius distribution function can vary significantly for each population, incurring
loss of significance issues. This can be addressed by viewing the particle distribution
function in G(R) or g(r) space, were the particle radius number density concentration is
weighted by the volume or area of the particle, as described in the following equations

G2D(r) = πF2D(r) r2

g2D(r) = A−1 f2D(r) r2

G3D(R) =
4π

3
F3D(R) R3

g3D(R) = A−1 f3D(R) R3

(34)

where g2D(r) and g3D(R) are probability density functions. The term A is an integration
constant that ensures that the zeroth moment of g2D(r) and g3D(R) is unity. The error used
to define the objective function is performed in g2D(r) space

error =
∫ rmax

rmin

|gdata
2D − gmodel

2D | dr (35)

Figure 8 shows an example application of this approach, approximating the 3D size
distributions for the secondary and tertiary particles in fine grain RR1000 comparing results
obtained from the simplex and BFSG methods. The figure presents the size distributions
using the area fraction and volume fraction weighted space, as shown in Equation set (34).
Figure 8a compares the measured 2D distribution of particle cross-sections extracted from the
micrographs with the inverse analysis of the 3D distribution obtained from using the BFSG
algorithm and Simplex method. Figure 8b shows the associated 3D distributions. There is a
significant difference in the width of the distributions, with the Simplex method capturing
the right-hand tail of the data more closely than the BFSG algorithm, with reduced error.
The algorithm is described below, and applies Algorithm 1 to approximate the particle size
distribution of the largest particle population first; however, it converts the f2D distribution
into F2D with knowledge of the area fraction of the larger particles. This is then converted into
G2D. Algorithm 4 is used to approximate the smaller particle population.
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Algorithm 4 Simultaneous bimodal 3D→2D approximation using g space

Input the known Gmodel
2D particle size distribution for the primary particles obtained from

applying Algorithm 1 in addition to gdata
2D describing both populations. Note that the

Gmodel
2D distribution function captures the area fraction of primary particles.

Create the f model
3D distribution for the latest approximation of α, β, and γ.

Convert the f model
3D for the secondary particle distribution into f model

2D .
Use the approximation of the area fraction of secondary particles to convert f model

2D to
Fmodel

2D .
Reformulate Fmodel

2D for the secondary particles into Gmodel
2D .

Combine the Gmodel
2D functions for the primary and secondary particles.

Normalise the combined Gmodel
2D function to a gmodel

2D function.
Interpolate the combined g2D function onto the same grid spacing as experimental data
Calculate the relative absolute error comparing gmodel

2D and gdata
2D .

Return the integral of the relative absolute error.

Figure 8. The results from the inverse analysis of the bimodal γ′ size distribution in as-heat-treated
coarse grain RR1000, comparing the simplex and BFSG methods. (a) presents the measured 2D
distribution of particle cross-sections compared with calibrated 2D approximations of the data
obtained from a Python and MATLAB implementation. (b) presents the approximated 3D size
distributions in comparison to the measured 2D data.

4.4. Error Quantification

A method was developed to assess the error as a function of the sample size. The
method involves first approximating the 3D size distribution and using this approximation
to re-sample the 2D distribution function numerically, and then re-calculating the 3D
dispersion from the newly sampled 2D data. This is repeated, sampling the new 2D
particles from the initial 3D approximation until sufficient data has been generated to assess
the scatter and variation in the predicted 3D dispersion.

The algorithm is presented in Figure 9. The input data are the measurements of
the radii of particles observed from cross-sections through the dispersion of interest. An
initial inverse calculation is performed to approximate the 3D size, f3D. Particles are then
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repeatedly sampled from f3D using the same number of sampled particles as the measured
data. Each time, the sampled particles are then cut to create a vector of cross-sectional radii.
This is then used as the input for the inverse calculation of the 3D particle size distribution
f ∗3D. The output is the calibrated parameters for the Gaussian waveform used to define f ∗3D.
This process is repeated until sufficient statistics are obtained to capture the variation and
uncertainty in the approximation of the 3D size distribution.

Figure 9. A flowchart for uncertainty quantification when approximating the 3D size distribution
from cross-sectional data.

The method is demonstrated using the example considering the bimodal γ′ distri-
bution in as-heat-treated IN738 shown in Figure 6, which was obtained with a total of
2748 particle measurements. Figure 10 shows the error associated with the predicted
volume fraction of primary and secondary particles. This error is of a similar magni-
tude to the error encountered when quantifying microstructural features obtained from
image-processing of micrographs. For example, the variation in area fraction comparing
quantified micrographs taken in IN738LC is 5%, which is comparable to the extremes



Crystals 2023, 13, 464 16 of 22

of ±2.5% observed in the secondary particles in Figure 10b. It would have a significant
impact upon any calculation of mechanical properties that utilise the data.

Figure 10. Boxplots show the scatter in the predicted volume fraction of the (a) primary and (b) secondary
particle populations considering a total of 2748 particle measurements.

The impact of the sample size upon error and uncertainty was assessed, varying the
sample size from 300 to 30,000. For each sample size considered, the inverse calculation
was repeated 15,000 times to generate the scatter and variation presented in Figure 11. This
figure shows a continuous field of percentiles descriptive of the variation in the predicted
G3D(R) distribution functions, where symmetry is applied around the 50th percentile, so
that the same colour represents the 2nd and 7th percentiles.

Extreme error and uncertainty is shown for a sample size of 300, which is sometimes
used to quantify unimodal distributions. This has a significant impact upon the estimated
3D number concentration, mean size, and volume fraction of the different populations, as
shown in Figure 12. Figure 12a,b presents the scatter in predicted 3D mean particle radius
and 3D number concentration considering the total distribution. Figure 12c,d present the
variation in mean size and volume fraction of the primary particles, and Figure 12e,f show
the scatter in mean size and volume fraction for the secondary particles. A sample size of
less than 1000 results in unacceptable error in all the statistics examined. A sample size of
3000 particles is a reasonable number of particles; however, it still results in considerable
uncertainty in particle volume fraction in the bimodal distribution, as shown in Figure 10,
with 5% variation considering the 5th and 95th percentiles.
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Figure 11. The error and Uncertainty in the approximated 3D size distribution as a function of sample
size, where (a) has a sample size of 300, (b) has 1000, (c), has 3000, (d) has 10,000, and (e) has a sample
size of 30,000.

The method has been applied to quantify the error and uncertainty arising from
sample sizes for the measurements taken to quantify the coarsening kinetics of γ′ in the
nickel superalloy IN738LC [13]. The results are shown in Figure 13, using the same sample
size as obtained from the quantitative image processing of the micrographs taken from the
aged specimen.
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Figure 12. Variation in predicted particle statistics as a function of sample size. (a,b) show the
variation in percentiles for the mean particle radius and particle concentration considering the
entire dispersion. (c,d) compare the mean particle radius and particle volume fraction for the
primary particles, whilst (e,f) show the variation in mean particle radius and volume fraction for the
secondary particles.

Figure 13. The scatter and variation in approximated 3D particle size distributions in γ′ precipitates
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in IN738LC, aged at 850 ◦C and 900 ◦C for 1000 h, 2000 h, 3000 h, 10,000 h, and 20,000 h. (a,c,e,g,i) show
the results from aging at 850 ◦C whilst figures (b,d,f,h,j) show the results from aging at 900 ◦C.
(a,b) refer to aging times of 1000 h, (c,d) to 2000 h, (e,f) for 3000 h, (g,h) to 10,000 h, and (i,j) to 20,000 h.

5. Discussion

For unimodal precipitate dispersions, where the size distribution can be approximated
as log-normal, the mean 3D size and standard deviation can be accurately estimated
using the approach of Gerlt et al. [14]. If the distribution deviates from log-normal, the
approach of Diogenes et al. [20] has the advantage that they can be easily modified to use
different expressions to approximate the 3D size distribution. This work shows how such
an approach can capture bi-modal dispersions. Improved computation time and accuracy
can be achieved by using the analytical solutions to the 3D → 2D conversion opposed to
numerically sampling and cutting precipitates. This approach can be extended to capture
more particle populations by following the same procedure, starting with the largest particle
population and then performing inverse analysis on each population sequentially in order
of descending particle size. The algorithms presented focus on using 2D information;
however, it is trivial to perform the 2D → 1D conversion and perform the analysis using
1D linear intercept measurements instead of 2D equivalent circular radii.

Although the error arising from the sample size has been investigated, there are many
other sources of error and uncertainty when considering the approximation of the 3D size
distribution of γ′ precipitates utilising SEM backscatter micrographs. The electrons that
produce the image penetrate the sample, so that the image is not a true cross-section of
the sample [25]. The voltage used to scan the image determines the depth of the electron
penetration. Subsurface precipitates can be identified by their gradual transition into the
matrix, compared with sharp interfaces for particles closer to the surface [26]. The etching of
the matrix to reveal the precipitate phase also contributes to error when approximating the
SEM backscatter image as a clean cross-section through the matrix [27]. The etching process
can remove small particles and further reveal larger particles, impacting the observed 2D
distribution [18]. Error may also arise from several issues associated with taking the image,
ranging from poor focusing of the microscope impacting image quality to defects present
from sample preparation.

The method discussed in this paper focuses on spherical precipitates, whilst the γ′

dispersions used as an example can vary considerably in morphology [28].
The geometry of some of the primary γ′ precipitates shown in Figure 5b deviate from

spheres. Kruk et al. [2] and Pinz et al. [3] demonstrate the need to perform advanced
characterisation and full-field microstructure reconstruction to fully understand the mor-
phology and size of γ′ precipitate dispersions when it is no longer reasonable to estimate
their geometry as spherical.

6. Conclusions

The analytical expressions for the 3D → 2D particle size distribution conversion and
2D → 1D particle size distribution conversion are presented for use in reconstructing spher-
ical non-penetrating particle systems. The descriptions and implementations have been
verified using a range of shapes for the particle size distribution, including normal, bimodal,
log normal, and Weibull Gaussian functions. The 3D, 2D, and 1D size distribution function
shapes show significant differences in shape, demonstrating the importance of correct
stereological treatment when analysing measured size distributions from experimental
data. Algorithms for the approximation of the 3D size distribution of bimodal particle
size distributions have been developed and applied to the measurements of RR1000 and
IN738LC. Multi-modal precipitate dispersions are commonly encountered in nickel-based
superalloys used in turbine disc applications. They are critical components within a turbine
engine, and the microstructure and properties must be fully understood.

A method for quantifying uncertainty in the approximated 3D size distribution is presented
as a function of the sample size of measured particles. The approximated 3D particle size
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distribution is repetitively randomly sampled for particles using the same sample size as the
characterisation, determining the error in mean size, standard deviation, and volume fraction of
each particle population.

The method has been applied to the characterised dispersions in IN738LC [13], revealing
an error as high as ±2.5% for the volume fraction of secondary particles. This is significant and
impacts the accuracy of calculations of precipitate strengthening [29].

The approach approximates the geometry of the precipitates as spherical, which may
not be accurate for the conditions and alloy of interest.
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Nomenclature

The following nomenclature is used in this manuscript:

g3D(R)
The probability density form of the G3D(R) function. It describes the probability density that a volume containing a
particle has a radius varying within the range of R and R + dR (1/m)

G3D(R) The probability density that a volume contains a particle with a radius varying between R and R + dR. (1/m)

g2D(r)
The probability density form of the G2D(r) function. It describes the probability density that an area containing a particle
has a radius varying within the range of r and r + dr (1/m). (1/m)

G2D(r) The probability density that an area contains a particle with a radius varying between r and r + dr. (1/m)
p2D(r) The accumulative frequency density associated with the f2d(r) distribution function.

ψ
The γ parameter normalised by the mean measured particle radius used to determine the initial approximation of
Weibull parameters.

Γ The gamma function.
β A scale parameter that adjusts the size in the Weibull distribution function. (m)
γ A shift parameter that offsets the distribution in the Weibull distribution function. (m)
α A shape parameter used in the Weibull distribution function.

ζi
A weighting applied to individual distributions in multi-modal distribution functions, where the sum of ζ is unity and
0 < ζi < 1.

µ The expectation value of the distribution function. (m)
σ The standard deviation of the normal and log-normal distribution function. (m)
ξ The 3D→2D conversion function. (1/m)

g
The distance between the particle surface and a line intersecting the particle, considering a line coincident with the
particle centre as illustrated in Figure 2. (m)

h
The distance between the particle surface and the cutting plane intersecting the particle, considering a line coincident
with the particle centre as illustrated in Figure 2. (m)

b The distance between the particle centre and a line intersecting the particle as illustrated in Figure 2. (m)
a The distance between the particle centre and a cutting plane intersecting the particle as illustrated in Figure 2. (m)
η The total number of cross-sections created by a plane intersected a system of spherical particles.
ni(ri) The number of particle cross-sections created by a plane intersected a system of spheres that have a radius of ri.
A An integration constant.
Nv,1D The line concentration of particle segments created by a line cutting through a 3D dispersion of particles. (1/m)
Nv,2D The area concentration of particle intersections created by a plane cutting through a 3D dispersion of particles. (1/m2)
Nv,3D The volume concentration of particles. (1/m3)

〈l〉 A half of the mean size of line segments created by the intersection of a line through a dispersion of spheres within a 3D
volume. (m)

〈r〉 The mean size of circles created by the intersection of a plane through a dispersion of spheres within a 3D volume. (m)
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〈R〉 The mean size of spheres present within a 3D volume. (m)

f1D(l)
The probability density that a line intersecting a particle has a length varying between the closed interval of 2l and
2l + 2dlthat. (1/m)

f2D(r)
The probability density that the radius of a particle cross-section created by the intersection of a plane through a 3D
ensemble of spherical particles has a radius varying between r and r + dr. (1/m)

f3D(R) The probability density that a given particle has a radius varying between R and R + dR. (1/m)
l Half the length of a line intersecting a particle. (m)
r The radius of an intersection created by cutting a sphere by a plane. (m)
R The 3D radius of spheres present in the volume. (m)
φ1D The line fraction of particles.
φ2D The area fraction of particles.
φ3D The volume fraction of particles.

F1D(l)
The concentration density of line segments of length 2l found when a line intersects through a dispersion of spheres.
(1/m2)

F2D(r)
The radius distribution function describing the size density of circles of radius r created by the intersection of a plane
through a system of spheres considering a unit area. (1/m3)

F3D(R) The number concentration density of particles that have a radius varying between R and R + dR. (1/m4)
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