
This is a repository copy of Dynamic Prioritization and Adaptive Scheduling using Deep
Deterministic Policy Gradient for Deploying Microservice-based VNFs.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/197772/

Version: Accepted Version

Proceedings Paper:
Chetty, Swarna Bindu, Ahmadi, Hamed orcid.org/0000-0001-5508-8757 and Nag, Avishek
(Accepted: 2023) Dynamic Prioritization and Adaptive Scheduling using Deep
Deterministic Policy Gradient for Deploying Microservice-based VNFs. In: IEEE ICC 2023.
IEEE . (In Press)

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Dynamic Prioritization and Adaptive Scheduling

using Deep Deterministic Policy Gradient for

Deploying Microservice-based VNFs

Swarna B. Chetty, Hamed Ahmadi , Avishek Nag

Abstract—The Network Function Virtualization (NFV)-
Resource Allocation (RA) problem is NP-Hard. Traditional
deployment methods revealed the existence of a starvation
problem, which the researchers failed to recognize. Basically,
starvation here, means the longer waiting times and even-
tual rejection of low-priority services due to a ‘time out’.
The contribution of this work is threefold: a) explain the
existence of the starvation problem in the existing methods
and their drawbacks, b) introduce ‘Adaptive Scheduling’
(AdSch) which is an ‘intelligent scheduling’ scheme using a
three-factor approach (priority, threshold waiting time, and
reliability), which proves to be more reasonable than tradi-
tional methods solely based on priority, and c) a ‘Dynamic
Prioritization’ (DyPr), allocation method is also proposed for
unseen services and the importance of macro- and micro-
level priority. We presented a zero-touch solution using
Deep Deterministic Policy Gradient (DDPG) for adaptive
scheduling and an online-Ridge Regression (RR) model for
dynamic prioritization. The DDPG successfully identified
the ‘Beneficial and Starving’ services, efficiently deploying
twice as many low-priority services as others, reducing the
starvation problem. Our online-RR model learns the pattern
in less than 100 transitions, and the prediction model has an
accuracy rate of more than 80%.

Index Terms—6G, Machine Learning, Internet of Things,
Resource allocation

I. INTRODUCTION

Although the fifth generation of mobile networks (5G)

is presently providing the fundamental support for the In-

ternet of Everything (IoE) and Ultra-Reliable Low Latency

Communications (URLLC), it is debatable if the current

5G systems can smoothly handle applications like Digi-

tal Twin (DT), connected robotics, autonomous systems,

Augmented Reality (AR)/ Virtual Reality (VR)/ Mixed

Reality (MR), and Blockchain and Trust technologies [1],

[2]. These upcoming applications are envisioned to request

services with stringent standards, such as high reliability,

low latency, and significant data rates [1]. Due to this

debate, there has been a significant research progress

towards sixth generation of mobile networks (6G).The

6G must be tailored to support the upcoming service

types like Computation Oriented Communications (COC),

Contextually Agile eMBB Communications (CAeC), and

Event Defined uRLLC (EDuRLLC) in addition to en-

hanced Mobile Broadband (eMBB), URLLC, and massive

Machine Type Communications (mMTC) services [3].

There are several initiatives on both the access and the

network side to facilitate the transition towards the 6G.

On the network side, the NFV architecture, introduced

in 2012 [4], is pushing towards the microservices-based

architecture [5], [6]. The NFV framework virtualizes the

Network Functions (NFs) from their dedicated proprietary

substrate appliances by allowing them to run as soft-

warized NFs (say, Virtual Network Functions (VNFs)) on

commodity hardware. This enables freedom, flexibility,

and agility for VNFs to migrate from one server to

another in response to dynamic variations in resource

demand. Although NFV is a promising technology, it

can be challenging when various applications coexist,

and simultaneously the underlying infrastructure requires

guaranteed resources for all the arriving Service Function

Chaining (SFC)1. This is an NP-Hard problem and is

known as the NFV-RA. In this type of NFV-RA, due to

the affinity and anti-affinity constraints2, the complexity

grows further, hindering effortless software updates and

routine maintenance. To address this, microservices offer

an increased degree of freedom in the scalability, flexible

upgrades and maintenance of VNFs. This cutting-edge

‘NFV-RA + Microservies’ strategy ppromises to offer

a solution (theoretically) closer to the optimum, despite

having an intensified design and deployment complexity.

In [7] we provided a detailed analysis of this approach

and the criteria for executing dynamic decomposition, of

which, Section III-D provides an overview.

We examine a deeper analysis of the criteria for dynami-

cally prioritizing the online SFCs, the merits of embedding

an SFC over others and the significance of admission

control. Most research to date has concentrated exclu-

sively on deploying SFCs using First-in-First-out (FIFO).

Realistically, not all SFCs fall under the same priority

group and cannot be addressed equally. The traditional

method, FIFO, failed to recognize and give emergency

SFCs higher preference than non-emergency ones, causing

the rejection of highly critical SFCs. In a modified ap-

1Usually, multiple VNFs that are required by a service are ‘chained’
in the order in which they are accessed by a service. This is called a
SFC.

2Affinity and anti-affinity constraints refer to the ability to embed a
VNF on a particular node (affinity) and the converse of it (anti-affinity)

proach, the priority-based approach is established to prefer

the high-priority SFCs first over the lower ones [8], [9],

which overcomes the FIFO drawback. Nevertheless, this

introduced ‘starvation for lower-priority services, causing

a significant biasness in the system - an unfair design to

the users. To dismiss this biasness, the critical SFC should

not be classified based on priority levels but rather with

other essential attributes. Thus, requiring an ‘intelligent

fair system’. Moreover, with the lack of requested service

information, predicting the types of arriving SFCs and

their priority level will be challenging considering future

communications. Thus, we need to dynamically classify

the online services.

In this paper, to provide seamless support to more

realistic services for future networks, we propose a DyPr

and an AdSch module for arriving SFCs using the RR

model and DDPG approach, respectively, to diminish the

‘Starvation’ situation and provide a fair scheduling prin-

ciple. Our proposed DDPG-based algorithm identifies and

understands the importance of embedding the ‘Beneficial

SFC’ or ‘Starving SFC’ over others. The criteria and meth-

ods for assessing the priority of the online service have

also not been specified in the literature; instead, a static

approach has been adopted. Thus we have first proposed a

standard for estimating the priority of an SFC dynamically

by using the Machine Learning (ML) technique. Using

the achieved priority and other Quality of Service (QoS)

attributes, we trained our DDPG-based model to rank the

arriving SFCs based on their urgency and requirements.

Based on the SFC’s rank, the rescheduling for deployment

occurs; later on, the SFC has to go through the admission

control module, which provides permission or rejection for

deployment based on the waited time by the SFCs in the

queue. In summary, the main contributions of this paper

are:

• Establish a dynamic priority estimation criteria for all

the online services using the RR model.

• Develop a DDPG-based framework for recognizing

and understanding the importance of preferring an

SFC (say, ‘Beneficial and Starving SFC’) over others.

• Establish an admission control approach, based on

the SFC’s waiting time in the queue before being

deployed.

• Adapting the deep Q-Learning (QL) model along

with microserives concept for VNF embedding.

II. LITERATURE REVIEW

To meet the Service Level Agreements (SLAs) of

next generation networks, NFV has received a lot of

attention. The majority of the research has focused on

the placement of arriving SFCs in a FIFO fashion. For

instance, [10], [11] formulated the problem based on

the exact optimization method; however, the solutions

are delivered using heuristic or meta-heuristic models

due to the high computational cost. ML techniques are

commonly proposed as an effective technique for handling

complicated problems like NFV-RA. Authors in [12],

[13], [14], [15], [16] proposed reinforcement learning-

based approaches. In a realistic scenario, each service

has its own level of importance based on its type and

requirements. Following the FIFO technique can cause

failure in deploying emergency services over best-effort

ones. Methods that classify SFCs as either Premium (Pr)

or Best-Effort (BE), constantly prioritizes Pr services over

the BE ones, resulting in severe service deprivation for

low-priority services [8]. [17] and [18] demonstrated the

effectiveness of mapping the services depending on the

priority of VNFs. The authors of [17] discuss three types

of priority: per-service, per-VNF, and per-flow, where

service prioritization is based on the delay attribute and

per VNF priority is assigned randomly. This is an iterative

process that adjusts the solution after each iteration, which

is not scalable considering future requirements. Also the

predefined number of flows that a VNF can handle, ignores

the operational dynamics.

Priority-based scheduling and deployment is still an

issue requiring an ‘intelligent’ system to dynamically

establish the online service priority and re-schedule the

services according to the urgency and benefit. Researchers

have proposed Integer Linear Program (ILP) or heuristic

models in the literature, which are either computationally

costly or produce sub-optimal solutions. To overcome this

drawback, we propose ML-based algorithms to dynami-

cally assign priority to online services and train the model

to re-arrange the scheduling queue according to the needs.

III. SYSTEM MODEL

The physical topology is modelled as a directed

graph G = (H,N), where H = [h0, . . . , h|H|−1] and

N = [n0, . . . , n|N |−1] represent the set of physical

nodes (say high-volume servers) and physical links of

the topology, respectively. Each physical node hx′ =
[hx′,0, . . . , hx′,Jnode−1] denotes the amount of available

nodal resources like CPU core, RAM, etc, and Jnode
is the number of nodal resource types indexed from

0, 1, . . . , Jnode − 1. Similarly, each physical link ny′ =
[ny′,0, . . . , ny′,Jlink−1] signifies the amount of link re-

sources like bandwidth, latency, etc. Jlink stands for

the number of link resource types, the available re-

source for physical link. The VNF-Forwarding Graph

(VNF-FG) or SFC (Ψ) is represented as a directed

graph G′
Ψ = (VΨ,BΨ) with the set of VNFs (VΨ =

[vΨ,0, . . . , vΨ,|V |−1]) and Virtual Links (VLs) (BΨ =
[bΨ,0, . . . , bΨ,|b|−1]) , that delivers an end-to-end service.

Deploying these graphs onto the physical topology is

termed as the VNF-FG Embedding (VNF-FGE) problem.

Each VNF (vΨ,x = [rΨ,x,0, . . . , rΨ,x,Jnode−1]) and VL

(bΨ,y = [lΨ,y,0, . . . , lΨ,y,Jlink−1]) comprises of set of

requested resources like CPU core, delay, bandwidth etc.

The computing resources initialization in most related

works, is done in a random manner, disregarding the

high correlation between the CPU core and RAM. This

work outlines the link between the CPU core and RAM

as in [19]. In addition, we also considered delay, jitters,

packet loss, reliability and threshold waiting time as some

of the QoS attributes, thus making the Jnode = 6 in

our case. Similarly, Jlink = 2 in our studies, considering

latency and bandwidth.

A. Dynamic Prioritization

A major drawback of commonly-used methods of binary

classification of services into Pr and BE is that, the

pre-determined priority levels for the arriving services

are randomly allocated and the co-relation between the

service requirements and priority are ignored. In a realistic

scenario, the allocation of service priority should be based

on various factors of QoS, flow type, etc. Determining the

priority levels for the existing or well-aware services is

trivial. The complexity induces when future communica-

tions system expects frequent unseen ‘short-lived’ services

with instant placement requirements. To fulfil this need,

an intelligent and DyPr model is anticipated rather than

a static or conventional method. In the DyPr model, we

investigate the relationship between the requested QoS

factors of the arriving service and, based on it, a dynamic

priority level is assigned. This problem is viewed as a

multiple regression task with various independent variables

A[0] . . . A[p] (like QoS factors with p as the number of

factors), to predict a dependent continuous variable Y ′ as

referred in Eqn. (1). Here W and B are the regression co-

efficient and residual term respectively, which are learned

during the training. The adopted model discovers the

linearity between the dependent and independent variables.

In our case, these independent variables are threshold

jitters, delay, and packet loss, which a service can tol-

erate, and the dependent variable denotes the appropriate

priority level. However, the multiple regression data suffers

from multi-colinearity, which causes the estimation of

regression coefficients to be inaccurate. As a result, its

existence reduces the model’s performance by causing the

predicted value to differ significantly from the actual value.

One way to diminish this is by adopting the RR model,

which performs L2 regularization, due to which the model

is more restricted and causes less over-fitting [20]. The

objective is to minimize the cost function mentioned in (2),

where M is the number of samples (services per run), YΨ

is the actual value. The λ (penalty term) regularizes the

coefficients in such a way that the optimization function

is penalized if the coefficients assume high values.

Y ′

Ψ
= W [0]×AΨ[0] + · · ·+W [p]×AΨ[p] +B (1)

M
∑

Ψ=0

(YΨ − Y ′

Ψ
)2 =

M
∑

Ψ=1

(YΨ −

p
∑

j=0

Wj ×AΨ,j)
2 + λ

p
∑

j=0

W 2

j (2)

The RR model is supervised learning, which uses pre-

existing datasets for training purposes. Our study evaluates

the model’s performance for future unseen services; hence,

we assume no helpful service information is available to

us. The traditional RR model would not provide enough

support due to the lack of sufficient datasets. To support the

dynamism, we have modified it by adding an observation

phase before the learning phase. This helps in constructing

our training datasets, making an ‘Online-RR’ model. In

the observation phase, due to the unavailability of service

information, the model saves (observes) the online ser-

vices in a memory buffer until the minimal transitions is

achieved to begin the training phase. During this time, the

allocation of priority is performed uniformly. Later, once

the saved transition threshold is surpassed, the learning

phase starts, which uses the current and saved transitions

for model training. These saved transitions (batch transi-

tions) are selected randomly from the memory to avoid any

chance of overfitting (co-relation between the transitions).

The model’s accuracy is checked periodically. Once the

model reaches the desired accuracy, the trained model

state changes from ‘Train’ to ‘Predict’. The overview

of DyPr is shown in Fig. 1. Moreover, this model was

chosen after a thorough evaluation of model performances

using several methodologies, including Artificial Neural

Network (ANN) and Lasso. Of all the models, the online-

RR model outperformed expectations. This model is con-

structed with an envision to support future unseen services

by introducing a zero-touch cognitive system. Tradition-

Environment

Status

Trained RR

model

Memory

Threshold

Priority

Level

Training RR

model

Heuristic

model

Status = “Train”

Status = “Predict”

Environment

Actor

Actor

Actor

Critic

Loss Function

Observed

StateAction

Transitions
Experience

Replay

Policy

Gradient

Minibatch

DDQL model

Dynamic Prioritization

Adaptive Scheduling

SFC 0

SFC 1

SFC 2

SFC 2

SFC 1

SFC 0

Pr

Pr

Pr

SFC 2

SFC 0

SFC 1

Admission

Control

SFC 2

SFC 1

Fig. 1: Overview of the DyPr scheme.

ally, the services are categorized into two cardinalities,

which diminishes the value of services relative to one

another within a class. Most research has ignored the intra-

class priority aspect; however, given the future demands, it

should be considered. To overcome this, a service priority

is ranked between 0.0 to 1.0, with 0.0 represents the

least essential service, and 1.0 being the most crucial.

Each priority level is expressed in macro-class priority

and micro-class priority. While the micro-class priority

establishes the priority status inside a class, the macro-

class priority categorizes the class to which it belongs.

For example, the priority of SFC A and SFC B is 0.79

and 0.72, respectively. Though both the SFCs belong to

the same class (i.e., macro-class is 7), SFC A with a

micro-class as 9 will be prioritized over the SFC B with

a micro-class as 2, due to the higher value. This delivers

more details about the importance of services within the

class, which is beneficial, especially for time-Sensitive

or critical applications and for the adaptive scheduling

phase. Therefore, in our work, the DyPr is considered as

a Regression model rather than classification.

B. Adaptive Scheduling

Conventionally, high-priority services are preferred over

others, leaving the low-priority services to wait for ex-

tended periods of time, resulting in their starvation. This

highlights the second drawback of conventional binary

classification of services. A biased scheduling system,

which raises the questions like, ‘Can the priority attribute

be the most effective scheduling decision-making factor?’

‘Will the decision be more optimal by considering addi-

tional factors, such as service waiting time or reliability?’

In a search for an unbiased scheduling system, we have

proposed an intelligent Adaptive Scheduling module using

the DDPG approach. This approach weighs more than

one factor and provides an optimal decision. Let us say,

that a high-priority SFC A has a higher waiting threshold

than a lower-priority SFC B (which is about to expire

soon). According to the traditional model, SFC A will

be selected, ignoring the SFC B to expire, affecting the

Quality of Experience (QoE). However, our model, which

considers more than one factor, prefers SFC B over SFC A,

understanding that there will not be any negative impact

on SFC A if it waits in a queue a little longer, providing

scheduling optimality.

DDPG is an actor-critic Reinforcement Learning (RL)

model, trained to identify ‘Beneficial and Starving’

services based on 3-factors: Threshold Waiting Time

(TWT) (T), Reliability (Γ), and Priority (P) of the ser-

vice. The state-space for the requested service Ψ is repre-

sented as (TΨ,ΓΨ, PΨ). Based on these factors, the DDPG

agent determines a rank for each service (i.e., action-

space (AΨ)), indicating the significance of deploying the

service. With a higher rank, the necessity to deploy the

service is significant, resulting in a rank-based scheduling

method. In order to train the DDPG model, an appropriate

reward function is essential since it provides feedback

to the agent based on the given action’s effectiveness.

Equation (3) describes the reward function R(·), which

comprises two parts: Beneficial-cost (Υ) and Starvation-

cost (Φ), providing a trade-off between the high-priority,

starvation, and high-reliable services. The R(·) is a point-

based function; depending upon the significance of factors,

the reward points (θpts) are scaled, as in Eqns. (4) and (5),

where n(·) is the normalized function.

R(Ψ) = ΥΨ +ΦΨ, (3)

ΥΨ = [(1− n(TΨ)× θpts) + (ΓΨ × θpts) + (PΨ × θpts)], (4)

ΦΨ = ζΨ × θpts, (5)

ζΨ =

{

α(1− ϵ)κ, if ZΨ = 1

0, otherwise,
(6)

ZΨ =

{

1, if PΨ ≤ 0.2

0, otherwise,
(7)

Equation (5) introduces the biasness to diminish the starva-

tion issue, where ζΨ represents the starvation factor, which

decays exponentially with the SFC’s rank. According to

Eqn. (7), our algorithm determines if the arriving service

qualifies as a ‘Potential Starving’ service or not. On

affirmative, the algorithm checks its placement position

κ in the adaptive scheduling queue, which impacts the

starvation cost. κ is determined using the exponential

decay formula, with α as 1 and decay rate (1− ϵ) as 0.1.

The decay rate induces greediness in the system when the

service is positioned at the beginning by giving higher

rewards than others. Thus, making the agent position the

starving services at the beginning.

C. Admission Control

After achieving an optimal scheduling queue, we con-

structed an admission-control model to evaluate the ex-

tent to which the ‘Potential Starving’ and ‘High-priority’

services are deployed before expiration. This determines

the trade-off between starvation and traditionally-preferred

services. When a service is under placement, the wait-

ing period (∆) for the reminder services is recorded,

which is illustrated in a 2-D matrix as below. A schedul-

ing queue, for instance, is [SFC0, SFC1, SFC2, SFC3].
When SFC0 is placed, the remainder services’ waiting

span is x0, which is the deployment time of SFC0. With

the deployment of SFC1, the waiting time for SFC2 and

SFC3 is increased by x1 and so on. ∆Ψ,Ψ depicts the

total waited time by the service Ψ in the queue.

∆ =







SFC0 SFC1 SFC2 SFC3

SFC0 ∆0,0 ∆0,1 ∆0,2 ∆0,3

SFC1 ∆1,0 ∆1,1 ∆1,2 ∆1,3

SFC2 ∆2,0 ∆2,1 ∆2,2 ∆2,3

SFC3 ∆3,0 ∆3,1 ∆3,2 ∆3,3







∆ =







SFC0 SFC1 SFC2 SFC3

SFC0 0 x0 x0 x0

SFC1 0 x0 x0 + x1 x0 + x1

SFC2 0 x0 x0 + x1 x0 + x1 + x2

SFC3 0 x0 x0 + x1 x0 + x1 + x2







To initiate the placement, the service must satisfy the

requirement as in Eqn. (8).

ΞΨ =

{

1, if ∆Ψ,Ψ ≤ TΨ

0, otherwise,
(8)

D. VNF-FGE Problem Formulation

Result of [7] show that the Double Deep Q Learning

(DDQL) model solves the NFV-RA problem efficiently,

intending to embed maximum SFCs onto the substrate

network under certain defined constraints. In [7] we con-

sidered the physical topology as an environment comprised

of high-volume servers. Each VNF-Forwarding Graph

(FG) and its resource requirements are represented as state-

space (S). The amount of physical nodes/servers present

in the topology is described as the action-space (A). The

Local reward function (i.e., the Eqn. (13) in [7]) has been

modified as Eqn. (9) , which is constructed based on the

four attributes:

1) Rquality,y , the quality of the selected node (y) for

deploying the VNF, (x) is the ratio of available re-

sources (Ary) in the node to the initialized resources

(Iry), as in Eqn. (11). The availability of resources

in a physical node determines its quality.

Lreward(x) =

{

Rvnf , if Φy
x = 1

P
pt
vnf

, otherwise
(9)

Rvnf = Rquality,y +Rpriority +Rrel+Rplacement (10)

Rquality,y =
Ary

Iry
×R

pt
vnf

(11)

Rpriority = PΨ ×R
pt
vnf

(12)

Rrel = ΓΨ ×R
pt
vnf

(13)

Rplacement = Jx
y ×R

pt
vnf

(14)

2) Based on the service priority (Rpriority), as in Eqn.

(12).

3) Based on the requested service reliability (Rrel), as

Eqn. (13).

4) Time taken by the DDQL model to find an appropri-

ate node for the placement (Jx
y), Eqn. (14) represents

the placement reward function (Rplacement).

Algorithm 1 describes the overall model.

IV. SIMULATION RESULTS

In this section, the effectiveness of the DDPG and

RR models for AdSch and DyPr are examined under

various conditions, for NetRail (7 nodes, 10 links) and

BtEurope (24 nodes, 37 links) topologies, under diverse

substrate nodal and link capacities (i.e., from highly avail-

able resource topology to easily exhausted). The online

services are constructed using the Erdős–Rényi model with

different structural complexity and resource requirements.

Each run consists of 2000 episodes, and each episode is

expected to have a maximum of 100 services. The DDPG

and Ridge model is designed in Python language using the

PyTorch library, and the simulations are run on an Intel

Algorithm 1: DyPr and AdSch

1 Initialize DDPG Model: Critic, Actor, Target Critic, Target
Actor Networks, DDPG Replay BufferBDDPG

2 Initialize RR Memory Buffer BRR

3 foreach episode i = 1... epi do

4 Reset the Environment
5 Initialize substrate node resource RH , substrate link RN

6 Received arriving T services
7 while for all T services do

8 Using DyPr method; online-RR model
9 if status = ”Train” then

10 if Transition < Threshold Transition then

11 Priority is selected randomly
12 else
13 Online-RR model gets trained
14 end
15 else

16 Prediction: using Trained model
17 end

18 Using AdSch method; DDPG model
19 Achieve the Rank for each services
20 end

21 Sort the T service in ascending order (T’), according to
achieved rank

22 foreach time-step t’ = 1...T’ do

23 Admission Control
24 Deployment initiate
25 end

26 end

TABLE I: Parameters

DDPG Model

Alpha 0.0001
Beta 0.001

Gamma 0.99
Batch Size 64
Optimizer Adam

Memory Size 50000
Hidden Layers 6

Neurons per Layer 300
Neural Network 2

Activation function Sigmoid

Core i7 processor with 64 GB RAM. Table I lists the

parameters applied to develop the models and services.

In this work, we are considering a ‘worse-case’ scenario,

where maximum of 100 services arrive at once, imposing

a significant load and high variation on the topology.

Moreover, most arriving services need to be deployed

sooner, as their threshold waiting time is considerably

less, which adds to the system’s complexity. Our model’s

efficiency is compared with traditional queuing models

like FIFO, Weighted Fair Queuing (WFQ), and High-

Priority-based scheduling.

A. Need for Priority

Figures 2 represents the deployment of high and low-

priority SFCs in a FIFO manner for Netrail and BtEurope.

The model deploys the services as it comes, unable to

distinguish between emergency and non-emergency ser-

vices as the deployment occurrs without any guidelines

or prior knowledge of the service. As a result, less than

6% of urgent/emergency services are preferred, causing

0 250 500 750 1000 1250 1500 1750
Episodes

2

4

6

8

10

12

14

De
pl

oy
ed

 S
FC

s
BtEurope: 12-8: Low
BtEurope: 12-8: High
Netrail: 12-4: Low
Netrail: 12-4: High

Fig. 2: Performance of FIFO

considerable rejection of them. This shows the need for

priority which is predicted by the online-RR model.

0 20 40 60 80 100
Services (SFCs)

0

10

20

30

40

50

60

70

Er
ro

r %

Traing Phase
Prediction Phase

Fig. 3: Performance of Online Ridge Regression Model

Figure 3 shows the training phase and Prediction phase

of the online-RR model. The model gets trained until its

accuracy exceeds 80%, however we only displayed for

episode 0 for training phase. Initially, the model observed

the SFC till 32 iterations; later, it commenced learning

by discovering a logistical approach. Figure 3 depicts the

prediction for last episode of a run. It is evident that the

model performed well in predicting the priority, as the

error% between the predicted and target priority values

are less than 10%. Thus, the predicted model’s accuracy

was also above 80%.

B. Existence of Starvation

The effectiveness of the high-priority-based scheduling

paradigm is seen in Fig. 4. Here, the model favours high-

priority SFCs above others to avoid the problems caused

by FIFO. This triggers a prolonged wait for low-priority

SFCs to be deployed, creating a ‘Starvation’ experience

and a low acceptance rate. Even with the large nodal

resource or higher density topology, as seen in Figure 4,

starvation still exists. This starvation gap might slightly get

reduced over time for much denser topologies with ample

available resources. However, this is unrealistic topology

due to the dynamism, where the plentiful resources is not

always available.

0 250 500 750 1000 1250 1500 1750
Episodes

1

2

3

4

5

6

7

8

9

De
pl

oy
ed

 S
FC

s

BtEurope: 12-4: High
BtEurope: 12-4: Low
Netrail: 12-4: High
Netrail: 12-4: Low

Fig. 4: Priority Algorithm Netrail SAR: 12-4 scenario

C. Diminish of Starvation

Figure 5 represents the Service Acceptance Rate (SAR)

(contains all priority levels, excluding lower-priority

SFCs), and Figure 6 depicts the SAR exclusive for low-

priority SFCs for Netrail and BtEurope topologies with

12-4 and 12-8 CPU cores. In Figure 5, the WFQ and

high-priority-based models embed a large number of high-

priority SFCs to establish a deploying rule. This pattern

is repeated when topological density or nodal capacity

increases. From the figures, the WFQ and high-priority-

based models established a deploying rule by embedding

only beneficial SFCs. This pattern is repeated when topo-

logical density or nodal capacity increases. The DDPG

model, on the other hand, discovered a trade-off between

high and low-priority SFCs by identifying ‘Beneficial and

Starving’ SFCs, resulting in a higher rate of deployment of

low-priority SFCs than other models. DDPG, like Netrail

12-4 CPU cores, was able to deploy five times more low-

priority SFCs than WFQ at the expense of three less

high-priority SFCs. However, in the remaining scenarios

(Netrail 12-8; BtEurope 12-4, and BtEurope 12-8), there is

a 100% increase in the deployment of low-priority services

(Fig.6). This affected high-priority service deployment,

with a 30% reduction in Netrail and a 25% reduction in

BtEurope (Fig.5) respectively.

Netrail:12-4 Netrail:12-8 BtEurope:12-4 BtEurope:12-8
Topology

0

5

10

15

20

M
ea

n
SF

Cs

DDPG
Priority
WFQ

Fig. 5: SAR: Deploying Beneficial services

V. CONCLUSIONS

The main aim of this study was to showcase the

existence of the starvation problem, which the researchers

have neglected. In this work, we have explained the

Netrail:12-4 Netrail:12-8 BtEurope:12-4 BtEurope:12-8
Topology

0

2

4

6

8

10

M
ea

n
SF

Cs

DDPG
Priority
WFQ

Fig. 6: SAR: Deploying Starving services

existence of the starvation problem in the current schedul-

ing methods and how the scheduling process should not

be based only on priority but also on other important

factors like threshold waiting time and reliability. With

a motive to propose an intelligent scheduling scheme,

our model DDPG has performed efficiently by deploying

twice as many low-priority services as others. The DDPG

agent successfully identified the ‘Beneficial and Starving’

services, which caused a reduction in the starvation of low-

priority services. Moreover, we have proposed a method to

define dynamic priority for the upcoming services without

hindrance. Our online-RR model learns the pattern within

100 transitions, and the accuracy rate for the prediction

model is above 80%. The presence of these problems

can have a negative impact in the future if not addressed

correctly.

REFERENCES

[1] W. Saad et al., “A Vision of 6G Wireless Systems: Applications,
Trends, Technologies, and Open Research Problems,” IEEE netw.,
2019.

[2] H. Ahmadi et al., “Networked Twins and Twins of Networks: An
Overview on the Relationship Between Digital Twins and 6G,”
IEEE Commun. Stan. Mag., vol. 5, no. 4, pp. 154–160, 2021.

[3] K. B. Letaief et al., “The roadmap to 6G: AI empowered wireless
networks,” IEEE Commun. Mag., vol. 57, no. 8, pp. 84–90, 2019.

[4] Network functions virtualisation – introductory white paper.
[Online]. Available: https://portal.etsi.org/NFV/NFV White Paper.
pdf

[5] M. Nekovee et al., “Towards AI-enabled Microservice Architecture
for Network Function Virtualization,” in IEEE ComNet, 2020, pp.
1–8.

[6] S. R. Chowdhury et al., “Re-architecting NFV Ecosystem with
Microservices: State of the Art and Research Challenges,” IEEE

Netw., vol. 33, no. 3, pp. 168–176, 2019.
[7] S. B. Chetty et al., “Dynamic decomposition of service function

chain using a deep reinforcement learning approach,” IEEE Access,
pp. 1–1, 2022.

[8] P. Cappanera et al., “Vnf placement for service chaining in a dis-
tributed cloud environment with multiple stakeholders,” Computer

Communications, vol. 133, pp. 24–40, 2019.
[9] A. Mohamad and H. S. Hassanein, “Psvshare: A priority-based

sfc placement with vnf sharing,” in 2020 IEEE Conference on

Network Function Virtualization and Software Defined Networks

(NFV-SDN). IEEE, 2020, pp. 25–30.
[10] R. Mijumbi et al., “Design and Evaluation of Algorithms for

Mapping and Scheduling of Virtual Network Functions,” in IEEE

NetSoft. IEEE, 2015, pp. 1–9.
[11] S. Agarwal et al., “VNF Placement and Resource Allocation for the

Support of Vertical Services in 5G Networks,” IEEE/ACM Trans.

on Netw., vol. 27, no. 1, pp. 433–446, 2019.

[12] Y. Yuan et al., “A Q-learning-based Approach for Virtual Network
Embedding in Data Center,” Neural Comput. & Appl., vol. 32, no. 7,
pp. 1995–2004, 2020.

[13] V. Sciancalepore et al., “z-TORCH: An Automated NFV Orchestra-
tion and Monitoring Solution,” IEEE Trans. Netw. & Serv. Manag.,
vol. 15, no. 4, pp. 1292–1306, 2018.

[14] P. T. A. Quang et al., “A Deep Reinforcement Learning Approach
for VNF Forwarding Graph Embedding,” IEEE Trans. Netw. &

Serv. Manag., vol. 16, no. 4, pp. 1318–1331, 2019.
[15] S. B. Chetty et al., “Virtual Network Function Embedding under

Nodal Outage using Reinforcement Learning,” in IEEE Intern.

Conf. Adv. Netw. & Telec. Sys. IEEE, 2020.
[16] ——, “Virtual Network Function Embedding under Nodal Outage

Using Deep Q-Learning,” Future Internet, vol. 13, no. 3, p. 82,
2021.

[17] F. Malandrino et al., “Reducing service deployment cost through
vnf sharing,” IEEE/ACM Transactions on Networking, vol. 27,
no. 6, pp. 2363–2376, 2019.

[18] M. Jalalitabar et al., “Service function graph design and mapping
for nfv with priority dependence,” in 2016 IEEE Global Commu-

nications Conference (GLOBECOM). IEEE, 2016, pp. 1–5.
[19] A. Gupta et al., “On service-chaining strategies using virtual

network functions in operator networks,” Comput. Netw., vol. 133,
pp. 1–16, 2018.

[20] A. C. Müller and S. Guido, Introduction to Machine Learning with

Python. O’Reilly Media, Inc., 2016.

