
1. Introduction
TOPMODEL (Beven & Kirkby, 1979) continues to be one of the most widely applied hydrological models in 
both research and practice (Beven et al., 2021). It assumes that, independent of their specific spatial locations, 
some parts of the catchment will manifest similar tendencies to become, and remain, saturated during a storm. 
Based on a catchment-specific Topographic Index (TI) of similarity, these areas are grouped together to form 
Hydrologically Similar Units (HSUs), for which the numerical computations are performed when estimating a 
catchment's runoff response to rainfall. This grouping has enabled the dramatic reduction in runtimes associated 
with TOPMODEL, compared to fully spatially distributed models such as those of Freeze and Harlan (1969), 
Loague (2010), and Gao et al. (2015).

Though fast, TOPMODEL is a lumped model in that only a single value of catchment average subsurface storage 
is updated in each timestep, from which individual HSU subsurface storage values are back-calculated accord-
ing to the deviation of their TI value from the catchment average TI value (Beven,  2011,  p.  211); hence, it 
can be construed as a quasi single-store (equally a pseudo multi-store) model. Implicit in such application of a 
time-invariant TI is the assumption (a) that the transients of water-table between HSUs across the catchment are 
fast enough, that in each timestep water table can be approximated by a steady-state configuration. At the same 
time the (quasi) single-store representation leads to assumption (b) that during rainfall there is always downslope 
flow at each and every point in the catchment, equal to the recharge rate from all of the upslope areas draining 
to that point (i.e., there is always downslope connectivity everywhere, all the way to the stream network) (Beven 
et al., 2021). Both assumptions (a) and (b) are clearly approximations.

Dynamic-TOPMODEL of Beven and Freer (2001) relaxed both of the above assumptions by allowing subsurface 
storage of individual HSUs to vary locally and independently of both the catchment average storage and TI, 
by incorporating a time-dependent kinematic wave solution to the subsurface flow. However, since its intro-
duction 20 years ago, and despite significantly improving catchment representation, the original steady-state 
version has remained the preferred choice (albeit sometimes with modifications/improvements) (Arenas-Bautista 
et al., 2018; Fu et al., 2018; Gil & Tobón, 2016; Jeziorska & Niedzielski, 2018; J. Wang et al., 2020; Lane & 
Milledge, 2013; Li et al., 2019; Mukae et al., 2018; Park et al., 2019; Rogelis et al., 2016; Xue et al., 2018; Zhang 
et al., 2016). Aside from the considerable additional complexity in numerical implementation of the dynamic 
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versus the steady-state version, the lack of momentum in transitioning is most likely due to the substantially 
slower runtimes, making the dynamic version much less attractive for calibration purposes.

Although, naturally, longer runtimes are to some extent unavoidable due to additional CPU cost of numerically 
solving a more complex system, in Dynamic-TOPMODEL's case they are also partly due to the model setup 
requiring (at least in principle) thousands of HSUs at catchment scale. More specifically, the kinematic wave 
solution adapted by Dynamic-TOPMODEL requires HSUs to be “strictly” ordered downslope, because kinematic 
waves are unidirectional (have one characteristic direction) downslope, as opposed to for example, dynamic or 
diffusion waves which can travel upslope and downslope, hence better mimicking natural waves (see Lighthill & 
Whitham, 1955 for more information). Consequently, all Digital Elevation Model (DEM) cells in HSU#1 must 
be upslope of cells in HSU#2, and #2 upslope of #3, and so on. This poses a severe limitation on the way DEM 
cells can be grouped into HSUs while maintaining their “strict” downslope ordering status; resulting in the need 
for many HSUs at catchment scale. Few authors report numbers of HSUs in Dynamic-TOPMODEL applications. 
Among those who reported their numbers of HSUs, the downslope requirement is clearly only “approximately” 
enforced (e.g., Page et al. (2007) and Freer et al. (2004), 27 and 41 HSUs, respectively). Possibly to reduce runt-
imes, but these studies do not report any test (such as sensitivity analysis) or discussion of the potential repercus-
sions of such approximation.

In an attempt to improve runtimes while allowing a more flexible discretization, Metcalfe et al. (2015) proposed 
a flow distribution matrix (FDM) allowing for interactions between HSUs, where interactions are based on 
Quinn et al.'s (1991) multiple-direction downslope surface flow paths between DEM cells. The FDM essentially 
enforces a “strictly” downslope flow for any, and all HSU discretisations, such that fewer numbers of HSUs can 
be used without violating the subsurface kinematic wave's requirement. Surprisingly, however, while the FDM 
approach reduced the number of HSUs and subsequently lead to a significantly more spatially flexible discretiza-
tion, it did not improve model runtimes, rendering their Dynamic-TOPMODEL “currently inadequate” (Metcalfe 
et al., 2015) for calibration purposes or evaluation over longer time scales. This suggests that the additional matrix 
operations required in each timestep to account for HSU interactions (i.e., using FDM) counters the computa-
tional savings due to reduced numbers of HSUs.

We argue that this, at least in part, is because HSU interactions are evaluated unnecessarily in many of the time-
steps, due to inefficient use of adaptive multistep numerical schemes. In their setup, Metcalfe et al. (2015) use 
an outer loop with fixed timesteps equal to the steps in the input rainfall to advance the solution in time. LSODE 
(Livermore Solver for Ordinary Differential Equations [ODEs], Petzold, 1983) is then invoked in an inner loop 
to distribute subsurface flow between units (with an arbitrary maximum of four substeps, and thus no “numerical 
error control”). This leads to timestepping inefficiency because advanced algorithms such as LSODE are capable 
of maintaining a user-specified time integration error while maximizing the timestep size, for example, in the 
inter-storm period when the catchment is in, or close to, a steady-state and these solvers can take much larger 
steps without loss of accuracy.

In parallel to the inefficiency of fixed timestepping, which is widespread in numerical hydrology (La Follette 
et al., 2021), for nearly two decades there have been urgent calls to move away from these schemes (and toward 
adaptive multistep methods), due to their significant adverse impact on the numerical solution accuracy/stability 
(Clark & Kavetski, 2010), distorted parameter distributions obtained via calibration (Kavetski & Clark, 2010), and 
inconsistency of performance when applied across different calibration data resolutions (Kavetski et al., 2011; 
Schoups et al., 2010), in particular under extreme precipitation scenarios (La Follette et al., 2021). Despite having 
long been accepted as “essential” (Kahaner et al., 1989; Shampine, 1994) in other areas of science and engineer-
ing, adaptive schemes have rarely been applied in conceptual hydrological modeling; and even where they have, 
the applications have been limited to simpler models (e.g., simplified version of steady-state TOPMODEL; Clark 
& Kavetski, 2010; Kavetski et al., 2003) in conjunction with relatively simple adaptive schemes (e.g., Clark & 
Kavetski, 2010; Kavetski & Clark, 2010; Schoups et al., 2010).

To our knowledge, application of more complex models in general, and Dynamic-TOPMODEL in particu-
lar, together with more advanced libraries of canned solvers, such as MATLAB's ODE suite (Shampine & 
Reichelt,  1997) has not been attempted before. The lack of application is primarily due to code complexity 
and/or a lack of open source access (Clark & Kavetski, 2010), making it difficult to retrofit these sophisticated 
algorithms to handle problem-specific ODE physical solution constraints; not least in a theoretically based and 
efficient manner (Clark & Kavetski, 2010). Alternatively, the mathematical model can be reformulated into a 
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constraint-handling form to allow the use of such solvers without the need for retrofitting the solver code. This 
is the motivation for our paper. Here, we propose Generalized Multistep Dynamic (GMD) TOPMODEL, by 
modifying and reformulating Dynamic-TOPMODEL of Metcalfe et al. (2015), and solve the resulting system of 
equations using MATLAB's ODE suite.

Note that while there are core similarities between GMD-TOPMODEL proposed here and the Dynamic- 
TOPMODEL of Metcalfe et al. (2015), there are also key differences intended to: extend the model's applicability 
to a wider range of landscapes where previously Dynamic-TOPMODEL's assumptions would break down; provide 
flexibility in better representing spatial heterogeneity; and improve physical process representations. More specifi-
cally, these are: (a) an “iso-basin” hillslope discretization which allows flexibility to represent spatial heterogeneity 
where such information is available or is the study focus; (b) a flexible diffusion-wave hydraulic channel routing 
coupled to the hydrologic model within the ODE solution (requiring derivation of both upslope and downslope 
FDMs, as well as a diffusion matrix); (c) relaxation of the assumption of water-table parallelism to ground surface, 
and derivation of different FDMs for surface and subsurface flows (previously subsurface flows were distributed 
using surface FDM); (d) adoption of a general power-law vertical hydraulic conductivity profile as opposed to the 
more limiting exponential form traditionally used; (e) continuous representation of hydraulic conductivity across 
saturated and unsaturated zones (previously the two were unrelated); (f) depth dependent hillslope and channel 
velocities using Manning's equation (previously a constant); and (g) tilting the frame of reference to the more phys-
ically correct version, that is, along the slope, as opposed to a horizontal frame typically used, leading to extended 
applicability of the model to steeper catchments (previously only applicable to moderate slopes).

The justification for the above modifications can be derived either from first principles, or from existing studies, 
and are presented in the body of the article. Note that whether such modifications lead to improved model perfor-
mance under different conditions/catchments is a separate question which requires elaborate multi-catchment 
multi-period hypothesis testing and parameter-switch experiments to answer and is beyond our scope. However, 
by making our model open-source, we hope that these new model features will be put to the test fairly quickly 
as the model is applied to different catchment types. Importantly, here we demonstrate the successful imple-
mentation of GMD-TOPMODEL for a peatland catchment test case. We assess the model's performance within 
a Generalized Likelihood Uncertainty Estimation (GLUE) framework with limits of acceptability (LOA). We 
report model runtimes, curve fitting capabilities and sensitivity to resolution of both iso-basins and TI.

2. Mathematical Model Underlying GMD-TOPMODEL
2.1. Underlying Assumptions

2.1.1. Dynamic-TOPMODEL

The core assumptions of Dynamic-TOPMODEL (Beven & Freer, 2001; Metcalfe et al., 2015) are: (a) phreatic 
surface is always parallel to the ground surface, thus the hydraulic gradient in the saturated zone is approximated 
using the mean local “surface” slope 𝐴𝐴 𝛽𝛽 (°); and (b) lateral transmissivity decays exponentially with depth. Under 
these assumptions, during a rainfall event local propensity to saturation at DEM cell k is estimated using the TI 
of M. Kirkby (1975):

𝛾𝛾∗
𝑘𝑘
= ln

⎛⎜⎜⎜⎝

𝑎𝑎𝑘𝑘

tan

(
𝛽𝛽𝑘𝑘

)
⎞⎟⎟⎟⎠

 (1)

where 𝐴𝐴 𝛽𝛽𝑘𝑘 is the local slope at cell k, and ak (L) is the upslope contributing area per unit contour length (contour 
length is taken to be equal to DEM cell size cs (L)) draining to cell k. We recall the prerequisites for a justified 
application of the above two assumptions, which are (Beven et al., 2021): (a) shallow systems with (b) moderate 
slopes, where (c) exponential hydraulic conductivity profile is likely to be valid.

Our interpretation of the shallowness requirement (a) is that in landscapes where the thickness of the permea-
ble upper layer is small relative to hillslope length, there is very little piezometric head buildup possible before 
water reaches the surface. Meaning that before the phreatic surface gradient deviates significantly from that of 
the ground surface, water is out of the subsurface domain. But the same is not true for deeper systems where 
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approximation of phreatic surface slope using local surface gradient can lead to significant under/over-estimation 
(C. Harman & Sivapalan, 2009; C. J. Harman et al., 2010).

Regarding the “moderate” slope requirement (b), note that appearance of 𝐴𝐴 tan

(
𝛽𝛽𝑘𝑘

)
 , as opposed to 𝐴𝐴 sin

(
𝛽𝛽𝑘𝑘

)
 , in 

Equation 1 is the consequence of choosing a horizontal frame of reference independent of the hillslope orientation. 

Using 𝐴𝐴 tan

(
𝛽𝛽𝑘𝑘

)
 is equivalent to imposing a lateral subsurface hydraulic gradient of 𝐴𝐴 tan

(
𝛽𝛽𝑘𝑘

)
 , that induces a base 

flow horizontally over the plan distance cs. Whereas in the more physically correct frame of reference wherein 

subsurface water moves parallel to the phreatic line, the true hydraulic gradient is 𝐴𝐴 sin

(
𝛽𝛽𝑘𝑘

)
 Montgomery and 

Dietrich (2002, 1994), Borga et al. (2002), and Chirico et al. (2003). This explains why Dynamic-TOPMODEL 
(Beven & Freer, 2001; Metcalfe et al., 2015) should not be applied to very steep catchments, because the error 
in approximation increases with slope. But Dynamic-TOPMODEL is also not applicable at very gentle (near 
flat) catchments, because in such terrain diffusion dominates the flow rather than topographic gradient as 
Dynamic-TOPMODEL assumes; hence the applicability of Dynamic-TOPMODEL only to “moderate” slopes 
(not very steep or flat).

Regarding requirement (c), note that the choice exponential profile is a legacy of the original TOPMODEL's 
(Beven & Kirkby,  1979) steady-state and spatial uniformity of runoff assumptions (assumptions (a) and (b) 
discussed in the introduction), in which case an exponential profile is mathematically and physically more 
consistent, because it leads to very rapid transients, quickly leading to a steady state, in turn leading to rapid 
dissipation of any initial spatial nonuniformity in runoff (M. J. Kirkby, 1997). However, due to relaxation of both 
of (a) and (b) assumptions, Dynamic-TOPMODEL no longer requires the exponential profile for its consistent 
mathematical derivation or physical interpretation. In fact, the recession limb of hydrographs is not always of 
the first-order hyperbolic function of time that an exponential profile implies (Beven et al., 2021). Thus, a more 
general profile (such as power-law (Duan & Miller, 1997; Iorgulescu & Musy, 1997)) is an obvious extension to 
fully utilize a “dynamic” model.

For a more general-purpose model, we seek to free GMD-TOPMODEL from the requirements (a), (b), and (c), 
as discussed in the following section.

2.1.2. GMD-TOPMODEL

To extend the applicability of GMD-TOPMODEL to systems with deeper subsurface layers, we relax assumption 
(a). We still assume that base flow runs parallel to the phreatic line of slope 𝐴𝐴 𝛼𝛼𝑘𝑘 , but the phreatic line is not neces-
sarily parallel to the surface slope 𝐴𝐴 𝛽𝛽𝑘𝑘 . To estimate 𝐴𝐴 𝛼𝛼𝑘𝑘 from the available DEM, similar to Hjerdt et al. (2004), we 
also recognize that, in general, the phreatic surface tends to be smoother than the ground surface. The level of 
this smoothness can be controlled by a parameter which determines how much of the surface microtopography 
is to be filtered out in order to reconstruct an estimate of phreatic surface gradient from the available data, that 
is, surface topography.

To do this Hjerdt et al. (2004) defines a reference elevation drop ΔZref (L) then finds the distance that a parcel of 
water has to travel along the single direction downslope surface flowpath, for its elevation to drop ΔZref meters 
(see Hjerdt et al., 2004 for visual representation). They then define mean phreatic surface gradient 𝐴𝐴 𝛼𝛼

∗

𝑘𝑘 as:

𝛼𝛼
∗

𝑘𝑘 = tan
−1

(
Δ𝑍𝑍ref

𝑑𝑑𝑘𝑘

)
 (2)

where dk (L) is the downslope distance from cell k along the single direction surface flowpath over which 
hydraulic head drops by ΔZref. While this method is an improvement in that it allows a distinction between 
surface and subsurface hydraulic gradients, it has two drawbacks. First, it assumes subsurface flow follows the 
downslope surface flow path, but there is no objective reason to suggest that this is always the case, especially in 
deeper  systems where there tends to be less correlation between surface topography and water-table shape (Beven 
et al., 2021). Second, it ignores the gradient in other directions and assumes all subsurface water flows to the 
single steepest downslope cell, which is also generally not the case (Quinn et al., 1991).

Here, we do not assume that subsurface water necessarily follows surface flowpaths, nor that it flows only in the 
direction of steepest descent. Instead, for DEM cell k, we consider the nearest distance in eight directions in which 
the elevation drops by ΔZref meters. Clockwise from target cell k these are: north (0° or 360°), north east (45°), 
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east (90°), south east (135°), south (180°), south west (225°), west (270°), and north west (315°). Subsurface 
hydraulic gradient in each direction is then given by (r = 1, 2, …, 8 denotes the direction IDs):

𝛼𝛼𝑟𝑟

𝑘𝑘
= tan

−1

(
Δ𝑍𝑍ref

𝑑𝑑𝑟𝑟

𝑘𝑘

)
 (3)

Consider an X-Y coordinate system wherein each DEM cell's location is defined by a unique (X, Y) combination. 
The positional angles of cell k with respect to all other DEM cells will not necessarily be equal to the eight direc-
tions defined above. For this reason, after calculating the positional angles between cell k and all other DEM cells, 
we group these angles into eight bins. When searching for the nearest distance in direction r, that is, 𝐴𝐴 𝐴𝐴𝑟𝑟

𝑘𝑘
 , we take 

the nearest distance experiencing the head drop ΔZref among all cells that fall into bin #r.

Note that depending on the ΔZref value, some or most DEM cells may not experience a head drop ΔZref in all 
eight directions, no matter how far in those directions the search is extended, within the bounds of the catch-
ment (treated as no-flow boundaries), for example, on local ridges. In extreme cases where a DEM cell does not 
experience ΔZref head drop in any direction (such as at or near catchment boundaries), to avoid having cells that 
eternally accumulate water, ΔZref value is progressively halved until the cell experiences a head drop in at least 
one direction. This way each cell k will have at least one, and at most eight α values. We then take the mean 
hydraulic gradient for cell k, 𝐴𝐴 𝛼𝛼𝑘𝑘 , to be the linearly weighted mean of downslope gradients, where larger gradients 
get larger weights and vice versa.

This approach comes with the caveat that it relies on the subjective choice of ΔZref. Hjerdt et al. (2004) suggest 
that the typical elevation difference between adjacent cells can give an indication of the proper value for ΔZref in a 
catchment-specific way. We further propose that the water-table depth during inter-storm periods (i.e., indicative 
of maximum water-table depth), if known, would be another useful indicator of the proper ΔZref value, because 
it provides an objective estimate of the range within which the water table is expected to be able to fluctuate. 
In other words, “reasonable” ΔZref, and the resulting “reasonable” search radius in the eight directions, should 
be dependent on both the DEM relief and soil thickness (or depth to the impermeable bed boundary), such that 
if the thickness is less than typical relief, then it provides an upperbound on ΔZref, otherwise the average eleva-
tion difference can be used as a guide value. For example, our peatland catchment case study (introduced in 
Section 4), has a shallow water table, that is, no more than 1m deep, whereas DEM relief can be much larger than 
1 m in some parts. Therefore in this case we set ΔZref = 1.

Despite the above caveat, the eight-directional subsurface gradients obtained using our method have two impor-
tant implications: (a) for the first time, they allow calculation of FDM (containing information regarding the 
fraction of flow going from each HSU, to other HSUs—will be discussed in Section 2.3.1) for subsurface flow, 
that differs from surface flow FDM. The level of deviation of the two is controlled by ΔZref such that larger values 
will produce a smoother phreatic surface compared to the ground surface. (b) When calculating the TI using this 
new subsurface hydraulic gradient (see Equation 4), we are taking into account not only the upslope controls on 
local saturation (through upslope contributing area), but also downslope controls (reflected in 𝐴𝐴 𝛼𝛼𝑘𝑘 ) known to be a 
significant control in some cases (Hjerdt et al., 2004; Lanni et al., 2011; Speight, 1980).

To extend applicability of GMD-TOPMODEL to steeper hillslopes, we use the correct frame of reference wherein 
water moves along the slope and not horizontally over a plan distance, which allows us to better account for slope 
when calculating surface, unsaturated zone and saturated zone fluxes. We discuss these in detail in the next 
section where we introduce the model equations.

Finally, we also extend GMD-TOPMODEL's applicability to a wider range of lateral transmissivity (depth inte-
grated hydraulic conductivity) profiles by relaxing assumption (b) of Section 2.1.1. We do so by assuming that 
the transmissivity profile takes a more general power-law form, of which the default TOPMODEL's exponential 
profile is a special case, as shown by Duan and Miller (1997) and Iorgulescu and Musy (1997).

Taking into account these modifications, the new TI for cell k takes the more general form:

𝛾𝛾𝑘𝑘 =

(
𝑎𝑎𝑘𝑘

sin
(
𝛼𝛼𝑘𝑘

)
)1∕𝑑𝑑

 (4)

where d (-) is the power-law exponent. In the following section, we derive the governing equations based on the 
generalized assumptions discussed here.
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2.2. Inside Each HSU

In Figure 1, η (L) and ξ (L) define the reference frame for the model: η is the slope parallel, and ξ (L) is the 
slope perpendicular direction. Both are expressed as lengths but (in common with previous TOPMODEL formu-
lations), η is a physical length while ξ is a “water column,” or saturation thickness. To convert ξ to a physical 
thickness it must be divided by the porosity of the medium.

We represent each HSU with three main stores SW (L), Su (L), and Sx (L). Storage is always expressed as volume 
of water per unit area (thus with dimensions of length). Sw is the total storage in the saturated zone (i.e., below the 
water-table). Su is the total storage in the unsaturated zone (i.e., between the ground surface and the water table). 
Sx is the total surface excess storage.

GMD-TOPMODEL has seven uncertain input parameters which are to be obtained via calibration. Note that 
these parameters are spatially averaged across the area of each HSU (i.e., lumped at the HSU level). These 
are listed in Table 1. For tractability, in the upcoming subsections we introduce parameters and fluxes shown 
in Figure 1 separately for each store. To better follow the derivations, keep in mind that Sx, Su, and Sw are our 
primary solution variables (more details in Section 3), meaning that the values of these three variables are 
known in each timestep. Given the set of input parameters listed in Table 1, all other variables and fluxes can 
be found. Thus, what follows describes how model internal parameters and fluxes are obtained as a function of 
the three primary variables and input parameters. Finally, to highlight and distinguish model input parameters 
from other variables/parameters, we denote input parameters with (ˆ) throughout this paper (as presented in 
Table 1).

Figure 1. Schematic of the parameters and fluxes within each Hydrologically Similar Unit in Generalized Multistep 
Dynamic-TOPMODEL. Sx, Su, and Sw are solution variables and therefore known in each timestep. Given the input parameters 
listed in Table 1, all other variables/fluxes can be calculated.

Table 1 
Generalized Multistep Dynamic-TOPMODEL's Uncertain Model Parameters and Their Units

Parameter Description Unit

𝐴𝐴 𝑑𝑑  Power-law exponent of transmissivity decay with depth m

𝐴𝐴 �̂�𝑇max Maximum transmissivity at saturation (at the surface) m s −1

𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 Annual average daily potential evapotranspiration rate m day −1

𝐴𝐴 �̂�𝑆max Maximum static surface storage m

𝐴𝐴 𝐴𝐴𝐴ℎ𝑠𝑠 Hillslope Manning's roughness coefficient
s 𝐴𝐴 m

−
1

3

𝐴𝐴 𝐴𝐴𝐴𝑐𝑐𝑐 Channel Manning's roughness coefficient
s 𝐴𝐴 m

−
1

3

𝐴𝐴 �̂�𝐻max Catchment average maximum total subsurface storage m

 19447973, 2023, 1, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
032198 by T

est, W
iley O

nline L
ibrary on [28/03/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Water Resources Research

GOUDARZI ET AL.

10.1029/2022WR032198

7 of 27

2.2.1. At the Surface

With reference to Figure 1, surface excess storage, Sx, is filled by rainfall rate 𝐴𝐴 �̇�𝑅 (LT −1), overland inflow from 
other HSUs 𝐴𝐴 𝐴𝐴𝑜𝑜𝑖𝑖 (LT −1), and fluxes from the subsurface, Qu (LT −1) and Qw (LT −1). It is emptied by overland 
outflow Qo (LT −1), infiltration rate, Qx (LT −1), as well as actual evapotranspiration Ea (LT −1).

Following Goudarzi et al. (2021), we conceptualize the total surface storage as the sum of a “static” storage, Ss 
(L), and a “kinematic” storage, Sk (L):

𝑆𝑆𝑠𝑠 =

⎧⎪⎨⎪⎩

𝑆𝑆𝑥𝑥, 𝑆𝑆𝑥𝑥 ≤ �̂�𝑆max

�̂�𝑆max, 𝑆𝑆𝑥𝑥 > �̂�𝑆max

 (5)

where 𝐴𝐴 �̂�𝑆max (L) is the maximum possible static storage, and kinematic storage is given by:

𝑆𝑆𝑘𝑘 = 𝑆𝑆𝑥𝑥 − 𝑆𝑆𝑠𝑠 (6)

Conceptually, “static” storage represents the portion of total surface water, Sx, that is unable to flow to other 
locations and is thus spatially fixed/immobile, that is, interception storage by vegetation canopy, storage in 
plant roots and pond storage. In contrast, kinematic storage, Sk, is the portion of Sx that is in motion at any 
given point in time; it is representative of the thickness of the sheet of water flowing over the surface. Note 
that Ss has to be filled before any water can flow either laterally (through Qo) and/or vertically into the soil 
(through Qx).

Given the above internal structure of our surface storage, we follow the previous versions of TOPMODEL (Beven 
& Kirkby, 1979; Metcalfe et al., 2015) in defining actual evapotranspiration ea (LT −1) as the potential (maximum) 
evapotranspiration ep (LT −1) scaled by water availability for evapotranspiration:

𝑒𝑒𝑎𝑎 =

(
𝑆𝑆𝑠𝑠

�̂�𝑆max

)
𝑒𝑒𝑝𝑝 × (24 ∗ 60 ∗ 60)

−1 (7)

ep (LT −1) is the potential “daily” evapotranspiration rate, hence the conversion from m/day to m/s above. A range 
of models of varying complexity exist to predict ep. We choose to account for variation of ep across a calendar 
year with the simple and commonly used sine curve approach (Ponce, 1989, pp. 222), and a similar sine wave for 
intra-daily variations, such that it is at its maximum at noon time and at its minimum at night time (respectively, 
the first and second square brackets below):

𝑒𝑒𝑝𝑝 =
𝑒𝑒𝑝𝑝

2

[
2 + sin

(
2𝜋𝜋 × day

365
−

3𝜋𝜋

4

)]
×

[
2 + sin

(
2𝜋𝜋 × hour

24
−

𝜋𝜋

2

)]
 (8)

where day (-) is the day number starting from first of January, and hour (-) is the hour number starting from 
midnight; 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 (LT −1) (Table 1), is the annual average daily potential evapotranspiration rate. Note that this param-
eter can vary with catchment/period upon calibration.

There are physical solution constraints that need to be enforced when numerically (and therefore inexactly) 
obtaining the solution to a flow system. We introduce these constraints where they appear in the equations. For 
instance, here, depending on the 𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 value (which is a calibrated parameter), it is possible for ea to become larger 
than the stored water available for evapotranspiration, that is, static storage Ss. Thus, we enforce:

𝐸𝐸𝑎𝑎 =

⎧⎪⎨⎪⎩

𝑒𝑒𝑎𝑎, 𝑒𝑒𝑎𝑎 ≤ 𝑆𝑆𝑠𝑠

𝑆𝑆𝑠𝑠, 𝑒𝑒𝑎𝑎 > 𝑆𝑆𝑠𝑠

 (9)

The mobile portion of surface storage, or the “kinematic” storage, Sk given by Equation 6, is routed on the surface 
and out of the HSU with overland flow flux qo (LT −1):

𝑞𝑞𝑜𝑜 =
𝑣𝑣𝑣𝑣𝑘𝑘

𝑐𝑐𝑠𝑠
 (10)
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where overland flow velocity is obtained from the diffusion wave approximation to the St Venant (shallow water) 
equations:

𝑣𝑣 = ±
𝑅𝑅

2∕3

𝐻𝐻

𝑁𝑁

(
±

[
sin(𝛽𝛽) − cos(𝛽𝛽)

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑

])1∕2

 (11)

where N (TL −1/3) is the Manning's roughness coefficient, which is either the 𝐴𝐴 𝐴𝐴𝐴ℎ𝑠𝑠 or 𝐴𝐴 𝐴𝐴𝐴𝑐𝑐𝑐 parameter (Table  1), 
depending on whether the HSU in question is a hillslope or channel, respectively. RH (L) is the hydraulic radius 
defined as the ratio of cross sectional flow area to the wetted perimeter. For channel HSUs, assuming rectangular 
channel, 𝐴𝐴 𝐴𝐴𝐻𝐻 =

𝑤𝑤𝑤𝑤𝑘𝑘

2𝑤𝑤𝑘𝑘 +𝑤𝑤
 , where w (L) is the channel width; for hillslope HSUs RH = Sk. Our DEM data is at 2m 

resolution, which happens to be a reasonable width for channels in Upper Ashop, thus we set the channel width 
to w = cs in this case.

Note that the ± signs are necessary to ensure real roots for the velocity term. As was mentioned in the introduc-
tion, physically the ± represent the direction of propagation (see Lighthill and Whitham (1955) for more informa-
tion). The first term in Equation 11 represents the topography-driven flux which would generate flow only in the 
downslope direction, while the second term is the diffusion flux, which would dominate only in flatter areas and 
could result in upslope (when v < 0) as well as downslope (v > 0) flow. This requires derivation of both upslope 
and downslope FDMs, which are discussed in Section 2.3.1. Obtaining 𝐴𝐴

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
 for each HSU requires derivation of a 

diffusion matrix which is discussed separately in Section 2.3.2.

Here, the physical solution constraint requires that the flux out of surface units does not exceed the available kine-
matic surface storage, that is, qo ≤ Sk, at all times (which can be violated depending on the Manning's roughness 
coefficient value). Thus:

𝑄𝑄±

𝑜𝑜 =

⎧⎪⎨⎪⎩

𝑞𝑞𝑜𝑜, |𝑞𝑞𝑜𝑜| ≤ 𝑆𝑆𝑘𝑘

𝑞𝑞𝑜𝑜

|𝑞𝑞𝑜𝑜|𝑆𝑆𝑘𝑘, |𝑞𝑞𝑜𝑜| > 𝑆𝑆𝑘𝑘

 (12)

Flux into the surface store from other HSUs, that is, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑖𝑖 (LT −1) in Figure 1, stems from the interaction between 
different HSUs and is described in Section 2.3.1.

2.2.2. In the Unsaturated Zone

Qx (LT −1) in Figure 1 is the infiltration flux from the surface to the unsaturated zone. Currently, it represents the 
case where there is no limit to the infiltration rate, and all mobile (kinematic) surface water (Equation 6) infil-
trates until the subsurface is saturated, which is suited for our study catchment that is dominated by saturation 
excess overland flow. Infiltration excess overland flow could easily be incorporated for other catchment types, but 
it is not pursued here. To define the infiltration flux, we first need to know the volume (per unit area) available to 
receive infiltration in the subsurface. We define this as a storage deficit:

𝐷𝐷 = �̂�𝐻max − 𝑆𝑆𝑤𝑤 − 𝑆𝑆𝑢𝑢 (13)

𝐴𝐴 �̂�𝐻max (L) is the catchment average maximum subsurface storage (Table 1). After calculating the subsurface stor-
age deficit, D (L), the infiltration flux is given by:

𝑄𝑄𝑥𝑥 =

⎧⎪⎨⎪⎩

𝑆𝑆𝑘𝑘, 𝑆𝑆𝑘𝑘 ≤ 𝐷𝐷

𝐷𝐷, 𝑆𝑆𝑘𝑘 > 𝐷𝐷

 (14)

Traditionally in Dynamic-TOPMODEL, the process of percolation of water through the unsaturated zone and to 
the water table is represented by a linear reservoir model where vertical flux from the unsaturated zone to the 
saturated zone is taken to be 𝐴𝐴

1

𝑡𝑡𝑑𝑑

𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

 , that is, the ratio of the available unsaturated zone storage, Su, to the thickness 
of the unsaturated zone delayed by a mean residence time, td (TL −1), where Hu (L) is defined as:

𝐻𝐻𝑢𝑢 = �̂�𝐻max − 𝑆𝑆𝑤𝑤 (15)
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Comparing the 𝐴𝐴
1

𝑡𝑡𝑑𝑑

𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

 approximation to single phase Darcy's Law, which approximates vertical flux as 𝐴𝐴 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 , where 

ψ (L) is vertical hydraulic head in ξ direction and K (LT −1) is hydraulic conductivity in ξ direction, shows that 
the 𝐴𝐴

𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

 is equivalent to an average hydraulic head across the thickness of the unsaturated zone (i.e., Hu), and td 
represents an inverse of a depth-averaged vertical hydraulic conductivity (averaged across Hu).

Given that the saturated zone's hydraulic conductivity is represented by Equation 16 (expressed as transmissiv-
ity, which is a depth integrated conductivity), it is clear that allowing an independent parameter td to govern the 
unsaturated zone's hydraulic conductivity is equivalent to assuming two unrelated conductivity profiles for the 
same soil. Since soil conductivity profile is often defined as a function of moisture content alone (Boll et al., 1998; 
Frankenberger et al., 1999; Walter et al., 2002) such a two-profile representation is somewhat arbitrary. A better 
approach would recognize that both saturated and unsaturated hydraulic conductivity are constrained by the same 
physical soil properties with their difference controlled by moisture content.

Having said that, relating hydraulic conductivity to soil moisture content generally requires informa-
tion on residual water content and empirical shape parameters describing the soil water retention curve 
(Van Genuchten,  1980), thus introducing at least three additional uncertain parameters to be calibrated. 
This problem can be worse in specific catchment types such as peatlands, which may require a dual porosity 
function to differentiate between macropore flow and flow through peat matrix (Holden, 2009; Rezanezhad 
et  al.,  2016). Thus, any potential gain from improved, moisture content dependent hydraulic conductivity 
representation may be lost to equifinality in  the additional uncertain parameters (Perrin et al., 2001). Here, we 
suggest that a better (single-profile) representation of hydraulic conductivity is possible without resorting to 
additional parameters.

Using the hydraulic conductivity profile for the saturated zone to derive the unsaturated zone profile. 
GMD-TOPMODEL uses a general power-law saturated transmissivity profile suggested by Duan and 
Miller (1997), and also Iorgulescu and Musy (1997) (as opposed to dynamic-TOPMODEL which assumes an 
exponential profile, as was discussed in Section 2.1):

𝑇𝑇 = �̂�𝑇max

(
𝑆𝑆𝑤𝑤

�̂�𝐻max

)𝑑𝑑

 (16)

where 𝐴𝐴 �̂�𝑇max (LT −1) (Table 1) is the maximum lateral transmissivity (when soil is fully saturated), 𝐴𝐴 �̂�𝐻max is the 
average maximum subsurface storage, and d (L) (Table 1), is the power law exponent which controls the rate of 
decay of transmissivity with depth. For the unsaturated zone, we propose a vertical head-based Darcy's flux, for 
two-phase flow, but when one of the phases is assumed inviscid (i.e., air in this case). Under such assumptions, 
the vertical flow in the unsaturated zone can be approximated by (L. Wang et al., 2009; Smith et al., 2006; Yang 
et al., 2000):

𝑞𝑞𝑣𝑣 = 𝐾𝐾

(
−
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
+ 1

)
 (17)

We retain the original TOPMODEL's vertical hydraulic gradient in the unsaturated zone 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
≈

𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

 , that is, as an 
effective hydraulic head across the thickness of the unsaturated zone, Hu. Since a mean hydraulic gradient over 
thickness Hu is assumed, the corresponding mean hydraulic conductivity needs to be calculated from Equation 16 
and the following integral:

𝐾𝐾 =
1

𝐻𝐻𝑢𝑢 ∫

0

𝐻𝐻𝑢𝑢

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
.𝑑𝑑𝑑𝑑 =

(
�̂�𝑑max − 𝑑𝑑

𝐻𝐻𝑢𝑢

)
 (18)

But the above integral is valid under “saturated” soil conditions (because T (LT −1) in Equation 16 is the saturated 
transmissivity). Thus we assume that deviation of depth-averaged “unsaturated” hydraulic conductivity from that 
of saturated conductivity is proportional to the deviation of the unsaturated layer from fully saturated conditions 
which is 𝐴𝐴

𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

 :

𝐾𝐾 =

(
�̂�𝑇max − 𝑇𝑇

𝐻𝐻𝑢𝑢

)(
𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

)
 (19)
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which leads to the following vertical flux from unsaturated zone to saturated zone:

𝑞𝑞𝑣𝑣 = 𝐾𝐾

(
−
𝑆𝑆𝑢𝑢

𝐻𝐻𝑢𝑢

cos(𝛽𝛽) + 1

)
 (20)

The cos(β) term adjusts the unsaturated zone thickness Hu, which is measured in a surface normal direction, to 
account for vertical unsaturated zone flow, which travels a longer distance than the surface normal distance to 
reach the water table.

Another solution constraint is required here, because depending on the 𝐴𝐴 �̂�𝑇max value (Table 1), qv may be larger than 
the available Su, which requires the following solution constraint to be enforced:

𝑄𝑄𝑣𝑣 =

⎧⎪⎨⎪⎩

𝑞𝑞𝑣𝑣, 𝑞𝑞𝑣𝑣 ≤ 𝑆𝑆𝑢𝑢

𝑆𝑆𝑢𝑢, 𝑞𝑞𝑣𝑣 > 𝑆𝑆𝑢𝑢

 (21)

In defining Qu in Figure 1, we note that depending on the balance of input and output fluxes to the unsaturated 
zone, during numerical solution its storage may exceed the available storage in this zone. This mimics the situ-
ation where this store is full, but the extra storage cannot simply be discarded (issue of manually “zeroing the 
fluxes” Clark & Kavetski, 2010). Thus, the excess unsaturated zone storage is added to the surface as surface 
excess. This flux is given by:

𝑄𝑄𝑢𝑢 =

⎧⎪⎨⎪⎩

𝑆𝑆𝑢𝑢 −𝐻𝐻𝑢𝑢, 𝑆𝑆𝑢𝑢 > 𝐻𝐻𝑢𝑢

0, 𝑆𝑆𝑢𝑢 ≤ 𝐻𝐻𝑢𝑢

 (22)

2.2.3. In the Saturated Zone

In the saturated zone, the base flow along the slope α is given by the Boussinesq equation (Childs, 1971):

𝑞𝑞𝑏𝑏 =
𝑇𝑇

𝑐𝑐𝑠𝑠

(
sin(𝛼𝛼) − cos(𝛼𝛼)

𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑑𝑑

)
 (23)

where the first term represents flow due to hydraulic gradient and the second term flow due to diffusion, and T is 
given by Equation 16. Here again if diffusion dominates, it can generate flow in the upslope direction, which will 
be routed using an upslope FDM (see Section 2.3.1). How to obtain 𝐴𝐴

𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑑𝑑
 for each HSU is discussed separately in 

Section 2.3.2. Physical solution constraint requires:

𝑄𝑄±

𝑏𝑏
=

⎧⎪⎨⎪⎩

𝑞𝑞𝑏𝑏, |𝑞𝑞𝑏𝑏| ≤ 𝑆𝑆𝑤𝑤

𝑞𝑞𝑏𝑏

|𝑞𝑞𝑏𝑏|𝑆𝑆𝑤𝑤, |𝑞𝑞𝑏𝑏| > 𝑆𝑆𝑤𝑤

 (24)

Flux into the subsurface store from other HSUs, that is, 𝐴𝐴 𝐴𝐴𝑏𝑏𝑖𝑖 (LT −1) in Figure 1 is described in Section 2.3.1.

Similar to Qu (Equation 22), in defining Qw in Figure 1, we note that depending on the balance of input and output 
fluxes to the saturated zone, its storage may exceed the available storage in this zone. Thus, the excess unsaturated 
zone storage is added to the surface as surface excess. This flux is given by:

𝑄𝑄𝑤𝑤 =

⎧⎪⎨⎪⎩

𝑆𝑆𝑤𝑤 − �̂�𝐻max, 𝑆𝑆𝑤𝑤 > �̂�𝐻max

0, 𝑆𝑆𝑤𝑤 ≤ �̂�𝐻max

 (25)

Note that threshold functions such as Equation  25 are impossible to integrate due to presence of singulari-
ties (Kavetski & Kuczera,  2007). Thus, for numerical implementation of the physical solution constraints in 
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Equations 5, 9, 12, 14, 21, 22, 24 and 25, we use a continuous differentiable hyperbolic tangent function of the 
form below to evaluate the step-wise fluxes in those equations:

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
1

2

(
1 + tanh

(
𝐹𝐹 − 𝐹𝐹0

𝜀𝜀

))
 (26)

where ɛ (-) is machine precision, set equal to 10 −64 in our case. For condition F > F0, the above function produces 
ones for HSUs where the condition is met and zeros for all other HSUs, this enables vectorized and therefore 
faster computations in MATLAB.

2.3. Interactions Between HSUs

2.3.1. Bulk Flow Distribution Matrices

The M8 multiple flow directional algorithm of Quinn et  al.  (1991) leads to a weighting matrix that assigns 
fractional flow from each DEM cell to its eight neighboring cells (see Section 2.1.2). Upslope neighbors, with 
elevation higher than the central (target) cell receive no flow. The remaining neighbors receive flow proportional 
to the slope in those directions. Thus for N cells, M8 generates an N × N sparse matrix of the fractional flows from 
each cell to all other cells. A computationally efficient MATLAB algorithm for generating this sparse matrix is 
available in TopoToolbox of Schwanghart and Scherler (2014).

Metcalfe et al. (2015) used the above fractional flow matrix to derive a downslope FDM for overland flow, 𝐴𝐴 𝐖𝐖
+

𝑜𝑜  
(+ denotes downslope and o overland flow) specific to the HSU discretization being used. For any given HSU 
classification, 𝐴𝐴 𝐖𝐖

+

𝑜𝑜  contains information regarding the portion of downslope surface fluxes from each HSU enter-
ing other units. Given that many (or some, depending on HSU sizes) cells in each HSU will only have neighbors 
that are in the same HSU, most of the flow is recirculated within the same HSU, and only some is transferred 
to other units. This is referred to as the “recycling” property of the FDM, which accounts for the time each 
flow parcel spends within a given HSU. Metcalfe et al. (2015) used 𝐴𝐴 𝐖𝐖

+

𝑜𝑜  to also distribute subsurface flow in the 
downslope direction, based on the assumption that phreatic surface is always parallel to the ground surface. Since 
this assumption has been relaxed in GMD-TOPMODEL, here, using the eight-directional subsurface gradients 
introduced in Section 2.1, we are able to derive a separate FDM for the subsurface in the downslope direction, 
that is, 𝐴𝐴 𝐖𝐖

+

𝑏𝑏
 (b referring to baseflow). Note that the derivation of 𝐴𝐴 𝐖𝐖

+

𝑏𝑏
 is exactly the same as 𝐴𝐴 𝐖𝐖

+

𝑜𝑜  except that it uses 
subsurface gradients instead of surface gradients.

As mentioned in the previous section, it is possible for water to flow against the topographic surface gradient if 
the diffusion term in Equations 11 and 24 exceeds the gradient term (reflecting a dominance of pressure head over 
elevation head). In such situations, it is not appropriate to distribute the flow using a downslope FDM. To obtain 
an upslope FDM for the overland flow, that is, 𝐴𝐴 𝐖𝐖

−
𝑜𝑜  , we first invert the DEM, reversing the upslope-downslope 

relationships between adjacent DEM cells, such that the FDM routes the flow in the upslope direction. However, 
care is required because in the upslope direction cells with larger gradients relative to the central cell must receive 
less flow. Therefore, to obtain an upslope FDM for the subsurface, that is, 𝐴𝐴 𝐖𝐖

−

𝑏𝑏
 , we use the inverted DEM and the 

same ΔZref discussed in Section 2.1 to obtain new phreatic surface gradients in upslope direction, from which we 
then calculate a 𝐴𝐴 𝐖𝐖

−

𝑏𝑏
 in the same way as 𝐴𝐴 𝐖𝐖

−
𝑜𝑜  .

Note that FDMs also contain some boundary condition information. In particular, 𝐴𝐴 𝐖𝐖
+

𝑜𝑜  and 𝐴𝐴 𝐖𝐖
−
𝑜𝑜  are modified such 

that channel HSUs give flow only to other channel HSUs, meaning that once water reaches the channel network it 
remains within the channel network, unless it infiltrates to the subsurface through a dry channel segment. We do 
not impose the same boundary condition for subsurface channel HSUs, because surface flows are focused by the 
banks of streams and rivers while subsurface flows do not experience the same topographic focusing.

Overland flow fluxes from other units into each HSU, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑖𝑖 (LT −1) (o denotes overland flow and i denotes influx), 
are calculated using 𝐴𝐴 𝐖𝐖

+

𝑜𝑜  , 𝐴𝐴 𝐖𝐖
−
𝑜𝑜  and the fluxes out of each HSU, Qo (Equation 12). The overall surface flux into each 

HSU, 𝐴𝐴 𝐴𝐴𝑜𝑜𝑖𝑖 in Figure 1, is calculated using:

𝑄𝑄𝑜𝑜𝑖𝑖 =
1

𝐴𝐴𝑇𝑇

[
𝐖𝐖

+

𝑜𝑜 ∗
(
𝐴𝐴 𝑄𝑄+

𝑜𝑜

)
+𝐖𝐖

−
𝑜𝑜 ∗ (𝐴𝐴 𝑄𝑄−

𝑜𝑜 )
]

 (27)

where 𝐴𝐴 𝐴𝐴+

𝑜𝑜  and 𝐴𝐴 𝐴𝐴−
𝑜𝑜  are the positive (downslope) and negative (upslope) branches of the surface flux in Equation 12 

(note that 𝐴𝐴 𝐖𝐖
+

𝑜𝑜  and 𝐴𝐴 𝐖𝐖
−
𝑜𝑜  are matrices of size nc × nc whereas 𝐴𝐴 𝐴𝐴+

𝑜𝑜  and 𝐴𝐴 𝐴𝐴−
𝑜𝑜  are vectors of size nc). AT is the total catch-

ment area, which is sum of all HSU areas. A is the vector of surface areas of each HSU.
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Traditionally, for a DEM of resolution cs meters, A is taken to be the plan area equal to 𝐴𝐴 𝐴𝐴cell × 𝑐𝑐2𝑠𝑠 where ncell is the 
number of DEM cells in a given HSU. An alternative way of calculating HSU areas, which we advocate, is to first 
estimate DEM cell areas along their slope and then aggregate HSU areas, such that cells with steeper slope have 
larger surface areas (proportional to their slope) than flat cells.

The plan area method is appealing because it is cheaper to numerically evaluate once ncell is known, and because 
input rainfall to each DEM cell is always per unit plan area, no matter the cell slopes. However, this is an incom-
plete account of the role of surface areas, because they also affect the time each water parcel spends in a cell, 
the total volume of water it can hold; and subsequently, the inflow/outflow rate from/to other cells (as is evident 
in Equation 27), and total actual evapotranspiration, meaning that more accurate estimates of cell surface areas 
can be important, especially in landscapes with significant spatial variability in topographic characteristics, over 
length scales ≥ cs. Thus for HSU #k we calculate surface area using:

𝐴𝐴𝑘𝑘 =

𝑛𝑛cell∑
𝑙𝑙=1

𝑐𝑐2𝑠𝑠

cos

(
𝛽𝛽𝑙𝑙

) (28)

where 𝐴𝐴 𝛽𝛽𝑙𝑙 (°) is the linearly weighted mean of downslope surface gradients for DEM cell l, and ncell (-) is the 
number of DEM cells in HSU #k. To ensure that the effect of such area treatment on rainfall input to each HSU 
is minimal, each HSU receives a fraction of total rain based on the fraction of the total planform catchment area 
it occupies.

Similarly to Equation 27, base flow distribution between HSUs is carried out using 𝐴𝐴 𝐖𝐖
+

𝑏𝑏
 , 𝐴𝐴 𝐖𝐖

−

𝑏𝑏
 and the fluxes out 

of each HSU, Qb (Equation 24):

𝑄𝑄𝑏𝑏𝑖𝑖 =
1

𝐴𝐴𝑇𝑇

[
𝐖𝐖

+

𝑏𝑏
∗
(
𝐴𝐴 𝑄𝑄+

𝑏𝑏

)
+𝐖𝐖

−

𝑏𝑏
∗
(
𝐴𝐴 𝑄𝑄−

𝑏𝑏

)]
 (29)

2.3.2. Bulk Diffusion Matrix

To calculate the 𝐴𝐴
𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
 and 𝐴𝐴

𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑑𝑑
 terms in Equations 11 and 23, we note that both these equations are written in bulk 

form for a given HSU where every quantity appearing in them is averaged across the HSU area (including the 
topographic and phreatic gradients β and α, which are averaged in all eight directions and for all DEM cells in a 
given HSU). Thus the only values for the 𝐴𝐴

𝑑𝑑𝑑𝑑𝑘𝑘

𝑑𝑑𝑑𝑑
 and 𝐴𝐴

𝑑𝑑𝑑𝑑𝑤𝑤

𝑑𝑑𝑑𝑑
 that are commensurate with the HSU based formulation is 

the bulk storage gradient, that is, average spatial gradient of storage for a given HSU, or, mean of 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 (dropping the 

subscript to mean either of k or w) in all directions and for DEM cells that are in one HSU.

Similar to FDM derivation, most (or some, depending on HSU size) DEM cells within HSU#k are adjacent only 
to the cells that are within the same HSU, which by definition have the same storage value, therefore their stor-
age gradient is zero. For DEM cells in boundaries of HSU #k with HSU #j, the gradient would be 𝐴𝐴

𝑆𝑆𝑘𝑘 −𝑆𝑆𝑗𝑗

𝑐𝑐𝑠𝑠
 . Thus, 

the bulk storage gradient would be the weighted average of 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 for DEM cells in HSU#k. For HSUs #k and #j, 

this weight would be the total number of DEM cells in HSU #k that are in contact with HSU #j, divided by total 
number of cells in HSU #k (so that weights sum to one). For internal cells that neighbor only the same HSU 
cells, the weight would be: total number of HSU cells minus those with different HSU neighbors, divided by total 
number of cells in HSU #k.

As such, the bulk diffusion matrix, �� , which is calculated once before running the model, is a matrix that 

contains the weights with which the bulk gradient 𝐴𝐴
𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
 should be calculated from the individual HSU storage values 

(whether it is Sk or Sw). For HSU#k:

𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
|𝑘𝑘 = 𝐃𝐃𝑀𝑀 ∗

(
𝐒𝐒 − 𝑑𝑑𝑘𝑘

𝑐𝑐𝑠𝑠

)
 (30)

where S is the vector of storage values for all HSUs. When implementing in MATLAB, we vectorize this opera-
tion such that it is performed for all HSUs at once during the solution, rather than in a one-at-a-time manner (i.e., 
in a loop) as Equation 30 denotes.
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3. Adaptive Multistep Numerical Solution
3.1. Casting the Governing Equations in ODE Form

When solving numerical problems, it is necessary to distinguish between dependent and independent variables. 
In this case, space and time are independent variables, all other variables are dependent variables. Among the 
dependent variables, we chose the three storage Sx, Su, and Sw (see Figure 1) as Primary Dependent Variables 
(PDVs), or state variables, because the state of the system can be known once these three PDVs are known. 
The mathematical problem can then be described by three coupled mass conservation equations, which can be 
represented by Partial Differential Equations (PDEs) in space and time. Spatial discretization into HSUs further 
reduces the governing PDEs to coupled sets of ODEs in time only. These ODEs are:

⎧⎪⎪⎨⎪⎪⎩

𝑑𝑑𝑑𝑑𝑥𝑥∕𝑑𝑑𝑑𝑑 = �̇�𝑅 − 𝐸𝐸𝑎𝑎 −𝑄𝑄𝑥𝑥 +𝑄𝑄𝑢𝑢 +𝑄𝑄𝑤𝑤 +𝑄𝑄𝑜𝑜𝑖𝑖 −𝑄𝑄𝑜𝑜

𝑑𝑑𝑑𝑑𝑢𝑢∕𝑑𝑑𝑑𝑑 = 𝑄𝑄𝑥𝑥 −𝑄𝑄𝑣𝑣 −𝑄𝑄𝑢𝑢

𝑑𝑑𝑑𝑑𝑤𝑤∕𝑑𝑑𝑑𝑑 = 𝑄𝑄𝑏𝑏𝑖𝑖 −𝑄𝑄𝑏𝑏 +𝑄𝑄𝑣𝑣 −𝑄𝑄𝑤𝑤

 (31)

Note the coupling of Sx with Su through Qx and Qu, coupling of Su with Sw through Qv, and coupling of Sx with Sw 
through Qw; also the coupling of HSUs through 𝐴𝐴 𝐴𝐴𝑜𝑜𝑖𝑖 and 𝐴𝐴 𝐴𝐴𝑏𝑏𝑖𝑖 terms. We initialize the system using:

⎧⎪⎪⎨⎪⎪⎩

𝑆𝑆𝑥𝑥 = 0, 𝑡𝑡 = 0

𝑆𝑆𝑢𝑢 = 0, 𝑡𝑡 = 0

𝑆𝑆𝑤𝑤 = �̂�𝐻max, 𝑡𝑡 = 0

 (32)

but allow a few days of “spin up” period at the beginning of the record to allow the system to re-balance; during 
this period model's performance/prediction is not considered.

The modeled total output discharge (Q (LT −1)) consists of a base flow component (Qb (LT −1)) and a overland flow 
component (Qo (LT −1)). At any given time, surface flow reaching the outlet HSU, the outlet DEM cell, will leave 
the system with a rate given by Equation 12. Subsurface contribution to output hydrograph at the outlet cell is 
calculated via Equation 24. Thus, modeled output hydrograph is given by 𝐴𝐴 𝐴𝐴(𝑡𝑡) = 𝐴𝐴∗

𝑏𝑏
(𝑡𝑡) +𝐴𝐴∗

𝑜𝑜(𝑡𝑡) , where * denotes 
outlet cell (HSU).

Finally, to minimize the effects of unknown antecedent conditions on our calibration, we use a “spin up” period 
(as shown in Figure 3b1) where that period of the record is not included when evaluating model performance.

3.2. Solution Using MATLAB's ode15s

We integrate Equation 31 in the time domain using the Method of Lines approach in which the spatially discre-
tized PDEs (now ODEs in time) are solved simultaneously using any ODE-solver of choice. We use MATLAB's 
adaptive multistep stiff ODE-solver, ode15s, which solves initial value problems governed by first-order systems 
of ODEs. ode15s uses the so-called Numerical Differentiation Formulae (NDF), which are a modified version of 
Backward Differentiation Formulae (BDF) associated with Gear's method (Shampine & Reichelt, 1997). Both 
NDF and BDF methods are available in ode15s. In our simulations, we use NDF rather than BDF, as they are 
typically more efficient.

The Jacobian matrix contains information regarding the interdependencies of the components of the ODE set 
Equation 31 on one another. Since the Jacobian matrix of complex ODE sets, such as Equation 31, is always time 
variable, in MATLAB it is possible to provide the ODE-solver with a Jacobian “pattern” as a sparse matrix of 
zeros and ones to indicate where the Jacobian matrix is nonzero and thus needs to be evaluated. Specifying the 
Jacobian pattern a-priori can lead to savings in computation time because the solver avoids unnecessarily eval-
uating the full matrix. Note that HSUs only interact through the Sx and Sw variables. The sparsity pattern of this 
interaction is determined by GMD-TOPMODEL's catchment-specific FDMs, that is, 𝐴𝐴 𝐖𝐖

+

𝑜𝑜  , 𝐴𝐴 𝐖𝐖
−
𝑜𝑜  , 𝐴𝐴 𝐖𝐖

+

𝑏𝑏
 and 𝐴𝐴 𝐖𝐖

−

𝑏𝑏
 , as 

well as the diffusion matrix �� .
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ode15s uses a variable timestepping scheme which changes the step-size according to accuracy requirements of 
the problem being solved, which are known to the solver using relative and absolute tolerance values (RelTol and 
AbsTol). RelTol controls the number of correct digits relative to the true solution, in the computed solution and 
AbsTol controls the absolute difference between the computed solution and the true solution. At each step, the 
error e in component i of the solution y must satisfy:

|��| ≤ max(���� �� ∗ |��|,AbsTol) (33)

In each timestep, and based on the above criterion, the solver decides whether the timestep needs to be reduced 
further, or, if a larger timestep will be sufficient (to save computation time). We use MATLAB's default RelTol (-) 
and AbsTol (-) values of 10 −3 and 10 −6, respectively. For more information regarding how the solver works, see 
Shampine and Thompson (2001) and Shampine and Reichelt (1997).

Effectively, irrespective of the validation or forcing data resolution, ode15s uses a variable timestep such that the 
solution in time is always accurate at least to six digits (AbsTol); meaning that all stores of all HSUs are solved in 
a fully-coupled manner. In other words, continually through time, timesteps are chosen such to ensure all solution 
components (HSUs and their stores) simultaneously satisfy their respective mass conservation statement with a 
uniform and fixed accuracy.

Note that due to its variable step nature, ode15s will require rainfall intensity values (𝐴𝐴 �̇�𝑅 in Equation 31) at times 
that lie between the available observed rainfall data points. For this reason, during solution, the solver uses cubic 
interpolation to obtain rainfall intensity values depending on the solver's time.

Having described all the model features, for tractability we summarize the differences between 
Dynamic-TOPMODEL and GMD-TOPMODEL in Table 2.

4. Case Study Description
4.1. The Catchment

The case study catchment of the River Ashop (Figure 2) is a 9.02 km 2 headwater system in the Peak District 
of northern England, ranging from 625 to 315  m altitude with around 1,550  mm of precipitation per year 
(Pawson et al., 2012). The catchment is dominated by blanket peat cover. Blanket peatlands are characterized by 
organic-rich deposits, typically 1–3 m thick, that form over largely impermeable substrates. The accumulated peat 
tends to cloak the underlying topography. Generally, these rain-fed peatland systems are dominated by shallow 
water tables for most of the year (Evans et al., 1999), a high saturated hydraulic conductivity in the upper parts of 
the soil profile, but a very low saturated hydraulic conductivity the rest of the soil profile (Holden & Burt, 2003a), 
such that waterlogging of the deeper layers is maintained year round. Saturation-excess overland flow tends to 
dominate the runoff response in blanket peatlands (Holden & Burt, 2003b). However, where the blanket peatland 
has been degraded, gully erosion can develop, and this erosion is thought to be particularly severe in the Ashop 
system with a high density of steep-sided channels that have incised into the peatland and frequent remnant 
hagg systems forming complex terrain (Pawson et al., 2012). Thus, water tables across the Ashop system can be 

Table 2 
Differences Between Dynamic-TOPMODEL and Generalized Multistep Dynamic-TOPMODEL

Feature Dynamic-TOPMODEL GMD-TOPMODEL

Time-stepping Fixed Adaptive

Channel routing None Diffusion wave

Frame of reference Horizontal Along the slope

Phreatic surface slope Fixed to surface slope Independent

Overland flow velocity Fixed Depth-dependent

Soil hydraulic conductivity profile Exponential General power law

Continuous hydraulic conductivity profile No Yes

Mechanism for constraining spatially distributed information None Isobasins
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considerably deeper than in more intact blanket peatlands (Allott et al., 2009). However, these catchment features 
mean that we have a good test case for our model, aligning with our revised model assumptions.

All simulations in our study are for a 3 month period starting from 1 October 2014. Rainfall data were collected 
from a tipping bucket raingauge recording tips per timestep at 10 min resolution. 10 min resolution discharge 
data was estimated from a rated section of the channel where stage was measured using a pressure transducer. 
The rating curve was constructed from 10 salt dilution gaugings across a discharge range of 0.086–2.10 m 3/s 
(30% of peak discharge in the study period) with excellent agreement to a power law stage-discharge relationship 
(r 2 = 0.997—more details in Section 5.3).

4.2. Discretization Into HSUs

Traditionally, similarity based hydrological models group DEM cells into HSUs based on a catchment-specific 
TI of similarity, the most common form of which is Equation 1. This grouping is controlled by specifying the 
number of similarity groups (classes) nc. Once nc is specified, cells are grouped into HSUs either based on their 
TI rank, that is, the 𝐴𝐴

𝑁𝑁

𝑛𝑛𝑐𝑐
 smallest index values are grouped together as HSU#1, through to the 𝐴𝐴

𝑁𝑁

𝑛𝑛𝑐𝑐
 largest which form 

HSU#nc; or based on predefined nc + 1 bin edges. See for example, Figure 2b for rank-based grouping and nc = 5. 
This grouping assumes that cells with similar values of γ tend to exhibit similar rainfall-runoff (RR) behavior 
independent of their specific spatial location, such that numerical solution of the representative units, that is, 
HSUs, would be sufficient to reproduce the catchment's response to rainfall.

By definition, however, when grouping is carried out solely based on γ values, local spatial information is lost, 
because similar γ values can exist anywhere within the catchment (the HSUs are often patchy and scattered 

Figure 2. Upper Ashop catchment maps: (a) elevation (in meters); (b) Topographic Index values, from Equation 4, grouped into five bins (nc = 5); (c) break up of 
catchment into smaller “iso-basins” each (roughly) 500,000 m 2 in area; (d) number of Hydrologically Similar Units that results from the combination of panels (b and c) 
groupings.
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across the catchment as in Figure 2b). Increasing nc can improve spatial representation, but not in a systematic 
manner, for example, even setting nc equal to the number of DEM cells does not guarantee convergence to a fully 
spatially distributed representation wherein each DEM cell is an HSU (in fact convergence is very unlikely). 
This is because various slope-area pairs (see Equation 4) can produce duplicate γ values (the likelihood of which 
increases with domain size). This can be a problem in that it would be difficult to reliably assess a model's sensi-
tivity to the resolution of spatial discretization when it is not asymptotic to the fully spatially distributed case.

Additionally, given that similarity based discretization is predicated on the tendency to saturation according 
to non-unique (thus non-location-specific) topographic characteristics, where there are other location-specific 
factors (such as land cover, or rainfall, etc.) that may alter the catchment hydrograph response, similarity based 
discretization alone lacks flexibility in constraining or incorporating the location-specific information.

Consider, for example, a storm cell of size smaller than a catchment discretized based only on similarity of its 
DEM cells' γ values. Assuming spatially uniform rainfall across the entire catchment, will lead to both spatial 
and temporal approximation errors. Even if input rainfall to each HSU is specified as a separate time-dependent 

Figure 3. (a1–a7) Posterior parameter distributions for the base case, that is, with 16 iso-basins and 5 Topographic Index (TI) classes. (b1–b4) Corresponding discharge 
predictions where orange clouds are all behavioral predictions, and cyan lines indicate the best model prediction when compared to the observed discharge (black dotted 
lines), and according to the four performance metrics in Table 4. Y-axes are days starting from 1 October 2014.
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boundary condition, the rainfall signal is still spatially diluted (dispersed) because HSUs will contain cells 
in (potentially) widely distant locations. One solution would be to include the rainfall in the similarity index, 
as suggested, for example, by Coxon et  al.  (2019). Given the non-stationary nature of the storm cell and its 
time-dependent rainfall rate, such a similarity index will be variable with time, meaning that the HSU grouping 
needs to be performed in each timestep. But the CPU time it takes to process DEM data is prohibitive, even for 
small catchments (which is why HSU formation is usually a pre-processed task). Also note that, as shown by Gao 
et al. (2018), this problem will not occur for a fully spatially distributed model, but the downside is considerably 
longer runtimes.

As such, to provide more flexibility, overlaying the γ based discretization, we devise an additional discretization 
which allows more flexible incorporation of spatial information, and in a way that it approaches the fully spatially 
distributed case upon successive refinements. Inspired by Lindsay (2018), but using a different algorithm, we 
discretize the catchment into smaller drainage areas. The size of these areas are controlled by a target area value 
Atr. Based on Atr our algorithm finds roughly similar size “iso-basins.” To do this, it first narrows the search 
by finding the list of DEM cells with upslope areas ≥ Atr; then it loops through the list to find those cells with 
upslope areas equal to Atr± 5% tolerance, it then updates the “global” iso-basins map after each iteration of the 
loop. From the list, it then eliminates cells that are sat within an iso-basin to further narrow the search. At the 
end of the loop, if there are parts of the catchment that have not been assigned an iso-basin, the tolerance value is 
relaxed until no unassigned cells remain. Note that the smaller the Atr and/or the larger the catchment the longer 
this process will take. However, this is a pre-processing task that only needs to be performed once per catchment/
Atr value. In our case, the iso-basin discretization process took roughly 2 hr on a PC with a 3.1 GHz CPU.

In simple terms, this modification gives users the flexibility to better constrain the model such that its HSUs are 
not allowed to send/receive mass (water) to/from DEM cells that are “too” far away, where this distance is set by 
adjusting Atr. Others (e.g., Takeuchi et al., 1999) have chosen to discretize the catchment using square blocks of 
specified width, we believe the iso-basin approach is superior because it honors flowpaths. Note that iso-basins 
can be used to constrain any type of spatially distributed information. Note that through the use of iso-basins the 
model can be used to study land-cover change or soil types without further modification. However, for studying 
spatially variable rainfall additional modifications are needed which were not required for our study. Users inter-
ested in including spatially variable rainfall should define different rainfall zones within the model and assign 
IDs to “sets” of iso-basins that sit within each zone. Within the ODE function, separate rainfall time-interpolation 
for each zone needs to take place (because, being time-continuous the ODE solver's time will fall in between two 
rainfall data points; hence the need for interpolation).

Figure 2c, shows the iso-basin IDs for the case of Atr = 500,000 m 2. Figure 2d, shows the 112 HSUs that result 
from combining (b) and (c), that is, each TI class in each iso-basin is assigned a different ID. Note that some of 
the 112 HSUs are channel reaches, which are defined as separate HSUs to be used in the channel routing. To 
define channel reaches, we first identify a channel network based on a channel initiation threshold area Ach. The 
white lines in Figures 2b and 2c are the channel map at Ach = 40, 000 m 2, that is, all DEM cells with ≥40,000 m 2 
of drainage area are taken to be channels. The channel network is then broken up at the channel intersections into 
smaller reaches, but also at points where a channel segment spans across two neighboring iso-basins. The catch-
ment outlet (i.e., the DEM cell with the largest upslope contributing area) is defined as a separate HSU, which is 
the HSU from which the hydrograph (surface + subsurface runoff) is extracted. In this case, the combinaiton of 
Ach together with Atr resulted in 38 different channel reaches each assigned a separate HSU ID.

Note that the channel network discretization can be completely independent of the iso-basins, and in the finest 
discretization limit, each DEM cell within the channel network can be defined as a separate HSU. This provides 
further flexibility in modeling the detailed channel network if needed, and where sufficient computational 
resources are available.

5. Model Calibration
5.1. Uncertainty Estimation Framework

Recall the uncertain input parameters of GMD-TOPMODEL listed in Table 1. These seven parameters are here-
after referred to as a parameter-set. We chose to use the GLUE methodology of Beven and Binley (1992) for our 
calibration. However, there are other “formal” Bayesian approaches available to choose from. For more discussion 
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on pros and cons of each approach readers are referred to Clark et al. (2011) 
and the references therein. We assume a uniform prior “likelihood” distribu-
tion for all parameters. We then run 20,000 simulations with parameter-sets 
sampled randomly from this uniform prior distribution using a Latin Hyper-
cube method. We then retain only the “behavioral” sets to generate the poste-
rior distribution. Behavioral parameter-sets are those which result in modeled 
discharges that are within the “LOA” of the observed discharge, for 95% of 
the record, as well as fully within our Base Flow Limit (BFL). If the model 
identifies Nb number of behavioral predictions, then there will be Nb number 
of associated parameter-sets. Posterior distribution of individual parameters 
can then be obtained by constructing a histogram where the y-axis denotes 
the number of behavioral parameters in each histogram bin.

5.2. Parameter Ranges

In choosing the parameter ranges, we took a similar approach to Lane and 
Milledge  (2013). We start with a wide range and sample the parameter 
space 5,000 times (Run1). We run the model and plot parameter distribu-
tions weighted based only on their performance metrics (NSE, PTE, and 

PME), regardless of whether they satisfy LOA (see Section 5.3) and BFL. This is only to get a sense for roughly 
where in the selected range the model is likely to concentrate its best predictions. Based on visual inspection 
of Run1 parameter distributions, we conservatively narrow each parameter range and re-sample another 5,000 
parameter-sets (Run2). We repeat the process and further narrow the parameter ranges. Once we obtain a reason-
ably narrow range, we sample each parameter 20,000 times and perform the final and main run (Run3). On Run3, 
we impose the LOA and BFL to obtain parameter distributions and retain only the behavioral sets when assessing 
model performance. Parameter ranges for each run are shown in Table 3.

5.3. Limits of Acceptability

LOA are upper and lower bound limits on the measured discharge within which the model predictions must lie to 
be deemed “behavioral” and thus accepted. Note that, if available, it is better to use more than one flow gauge to 
improve the reliability of LOA (i.e., make LOA a harder criterion to satisfy), but we felt that a single gauge was 
sufficient for the purpose of demonstrating our model. In calculating the LOA we use the “voting point” likelihood 
method of H. K. McMillan and Westerberg (2015) to account for both aleatory and epistemic errors by randomly 
sampling single segment rating curves of the form q = bS a, where q (LT −1) is the discharge, S (L) is the stage, and 
b (-) and a (-) are coefficients of the rating curve. The choice of single segment curves is based on the 10 available 
gauging points (10 stage and 10 discharge) from the study site, with the official rating curve q = 9.7S 3.22, showing 
that a single segment power-law curve fits the data very well. We randomly sample a and b values from a uniform 
prior distribution 10,000 times. We sampled b from the 5–15 range, and a from the 2–6 range.

H. K. McMillan and Westerberg (2015) represent aleatory errors using a logistic distribution with scale parameter 
σ a function of normalized discharge (normalized by mean flow) fitted using an exponential relationship, with the 
location parameter μ set to zero. For our gauging data set however, we found that a nonzero location factor was 
necessary. We thus fit both σ and μ to the normalized discharge also using a power-law relationship. Further, H. K. 
McMillan and Westerberg (2015) assumed stage measurement errors are negligible relative to discharge measure-
ment errors. However, here we chose to also account for stage measurement errors using the method provided by 
(Petersen-Øverleir & Reitan, 2005). Following Keeland et al. (1997), and making the conservative assumption that 
stage measurement accuracy was low for pressure transducers of the type used at our sites, we assume the standard 
deviation of error in the stage measurement was Ω = ±7.5 mm. We then propagate this stage error through the 
official rating curve using a standard frequentist inferential methodology (Petersen-Øverleir & Reitan, 2005) to 
calculate 95% uncertainty bounds on the discharge as a consequence of stage measurement error alone:

𝑑𝑑𝑑𝑑 = ±1.96 × 𝑏𝑏.𝑏𝑏.Ω.𝑆𝑆𝑚𝑚−1 (34)

dq is then the contribution stage measurement errors to the LOA and added to the rating curve + discharge meas-
urement error contributions calculated earlier.

Table 3 
Calibration Parameter Ranges

Parameter (unit) Run1 Run2 Run3

𝐴𝐴 𝑑𝑑  (m) 1–10 1–5 1.5–2

𝐴𝐴 �̂�𝑇max (m s −1) 10 −6–1 0.01–1 0.1–0.5

𝐴𝐴 𝐴𝐴𝐴𝑝𝑝 (m day −1) 10 −8–0.1 10 −6–0.1 0.001–0.02

𝐴𝐴 �̂�𝑆max (m) 10 −8–0.1 10 −8–0.01 10 −8–10 −4

𝐴𝐴 𝐴𝐴𝐴ℎ𝑠𝑠 (s 𝐴𝐴 m
−
1

3 )
0.001–10 0.1–10 0.1–5

𝐴𝐴 𝐴𝐴𝐴𝑐𝑐𝑐 (s 𝐴𝐴 m
−
1

3 )
0.001–10 0.01–5 0.01–2

𝐴𝐴 �̂�𝐻max (m) 10 −8–1 10 −4–0.1 0.01–0.1
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Note that there are other errors (e.g., input rainfall errors, sensor drift) that we have not been able to quantify and 
include in our LOA. Consequently, we have sought to allow for the above errors by retaining models even when 
their predictions fall outside LOA for up to 5% of the observed data points.

5.4. Base Flow Limit

Since performance metrics (e.g., Nash Sutcliffe) are not necessarily a reliable measure of model internal fluxes 
(Khatami et al., 2019), we impose an extra condition to reflect field observations in UK upland blanket peat-
lands which is discharge response to rainfall is dominated by overland flow (e.g., Daniels et al., 2008; Holden 
& Burt, 2002, 2003b). Thus, the BFL requires that <30% of predicted outlet discharge can be composed of base 
flow.

6. Results
From the 20,000 simulations performed during calibration, GMD-TOPMODEL produced 549 behavioral 
discharge predictions. The combination of 549 behavioral sets led to a set of parameter distributions (one for 
each uncertain parameter). These distributions are shown in Figures 3a1–3a7 as 20-bin histograms, where x-axes 
are parameter values and the y-axes are the normalized (by the total) number of behavioral predictions in each 
bin. The y-axes range from 0 to 1, and are plotted in log scale. These distributions provide insight into the inter-
nal processes of the model, and are particularly useful when comparing different catchments/interventions by 
comparing and analyzing shifts in their distributions (e.g., Goudarzi et al., 2021).

Figure  3b1 shows the entire 3-month record, and Figures  3b2–3b4 the three largest storms, visualizing both 
predicted and observed discharge (dotted black line). The collection of all behavioral predictions is shown as the 
orange cloud. The cyan line shows the best performer according to our performance metrics in Table 4. To ensure 
the best prediction is chosen such that it captures all stages of the hydrograph accurately, we use both high-flow 
weighted and low-flow weighted metrics as shown in Table 4. The best prediction is that with the highest perfor-
mance across all four metrics, where all metrics are given equal importance.

Note that throughout the rest of this paper, when assessing model performance, we are only concerned with the 
single behavioral prediction that best matches the single available observation (and not the mean of performances 
of all behavioral predictions, nor the performance of the mean of all behavioral predictions). The reasons for this 
are explained in the discussion section. In this case, the identified best prediction shows good performance across 
all metrics: NSEH = 0.84 (-), NSEL = 0.81 (-), RMSEH = 0.29 (m 3/s), and RMSEL = 0.135 (m 3/s).

We also test the model's sensitivity to spatial discretization into HSUs, both in terms of the number of iso-basin 
and number of TI classes. In order to do this, using the results presented above as the “base case,” we consider two 
scenarios: (1) when spatial discretization is changed (refined and coarsened) while the model is allowed to freely 

pick its behavioral parameters from the same pool of 20,000 prior parameters 
discussed in Section 5.2; and (2) when behavioral parameter-sets are fixed to 
those of the base case and only spatial discretization is changed. Scenario (1) 
assesses whether refining spatial discretization leads to improved model perfor-
mance; equally whether coarser discretization results in degradation in perfor-
mance. Scenario (2) assesses whether parameter-sets obtained via calibration 
at a certain spatial resolution, are applicable at coarser and/or finer resolutions.

Within each of the above scenarios, we separately apply the model when its 
number of iso-basins is halved and then when it is doubled. Similarly, when 
its number of TI classes is (approximately) halved and when it is doubled. 
This makes a total of five cases within each scenario. Figure 4 shows the 
parameter distributions for all five cases in scenario (1). Note that parameter 
distributions for all five cases in scenario (2) are by definition the same as 
base case (black color). When the model is allowed to change its parameter 
distributions (scenario (1)), visually, very significant variations in distribu-
tions are detectable when changing spatial resolution, whether it is changing 
number of iso-basins or TI classes.

Table 4 
Performance Metrics

Performance metric (unit) Equation

NSEH (-)
𝐴𝐴 1 −

∑
(𝑄𝑄𝑜𝑜 −𝑄𝑄𝑝𝑝)

2

∑(
𝑄𝑄𝑜𝑜 −𝑄𝑄

)2  

NSEL (-)
𝐴𝐴 1 −

∑
(log(𝑄𝑄𝑜𝑜 +0.1)−log(𝑄𝑄𝑝𝑝 +0.1))

2

∑(
log(𝑄𝑄𝑜𝑜 +0.1)−𝑄𝑄

)2  

RMSEH (m 3/s)
𝐴𝐴

√∑
(𝑄𝑄𝑜𝑜 −𝑄𝑄𝑝𝑝)

2

𝑁𝑁𝑜𝑜

 

RMSEL (m 3/s)
𝐴𝐴

√∑
(log(𝑄𝑄𝑜𝑜 +0.1)−log(𝑄𝑄𝑝𝑝 +0.1))

2

𝑁𝑁𝑜𝑜

 

Note. H denotes high-flow weighted, and L low-flow weighted. In all cases Qo 
is observed discharge, Qp is predicted discharge. For NSEH, 𝐴𝐴 𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑄𝑄𝑜𝑜) 
and for NSEL, 𝐴𝐴 𝑄𝑄 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(log(𝑄𝑄𝑜𝑜 + 0.1)) . Note that we cap low flows at 
0.1 m 3/s; roughly 4.5% of the observed flow range was below this level.
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To assess the impact of changes in distributions on model performance, we monitor best model prediction in 
each case, as shown in Figure 5. In this figure, scenario (1) is shown as solid squares and scenario (2) as hollow 
triangles. Each panel shows values for the four performance metrics in Table 4, for the best prediction. When 
parameter distributions are allowed to change in order to produce the best prediction possible (scenario (1)—
squares), there is a relatively small variation in performance, independent of whether spatial discretization was 
refined or coarsened. Refining iso-basins leads to a slight improvement in performance across all four metrics. 
But both refining and coarsening of the TI classes seem to result in degradation in performance across all metrics. 
This may suggest that there is a specific number of TI classes that best conforms to the catchment-period pair in 
question. We note more on this in the discussion section.

When parameter distributions are fixed to those of the base case (scenario (2)—triangles), any change in resolu-
tion of spatial discretization leads to worse performance across the board. However, on a relative scale, the model 
is much less sensitive to changes in its number of iso-basins, than it is to changes in its number of TI classes. 
For the number of iso-basins, although both refinement and coarsening lead to performance degradation, but it 
was less so if finer iso-basins are used than when coarser ones are used. The reverse seems to be the case for the 
number TI of classes, where increasing the number leads to more performance degradation than is the case when 
fewer TI classes are used.

Finally, Figure 6 shows both the individual runtimes (solids circles + error bars) and the total (for the full 20,000 
simulations—solid squares) runtime of the model in each case in scenario (1). It shows a clear positive correlation 
between the number of HSUs and runtime as is expected. Mean simulation times range from 37.5 to 918.2 s, and 
the total runtimes for the 20,000 simulations range from under one day to over 1 week, using parallel computing 
with 12 CPUs in parallel.

Figure 4. Parameter distributions for the five cases in scenario (1): changing spatial resolution while allowing the model to choose its parameters via calibration. The 
top two rows, a1–a7, and b1–b7, represent the coarsening of TI and iso-basins, respectively, and relative to the base case, that is, c1–c7. In the same fashion, d1–d7, and 
e1–e7, represent the refining of iso-basins and TI classes, respectively, and relative to c1–c7 (the base case).
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7. Discussion
7.1. Performance Evaluation Framework

In relation to the modeling results and their interpretation, following Clark 
et  al.  (2011) we note that a RR model is a “hypothesis” about catchment 
function which encompasses a description of the dominant natural processes 
involved, and how they combine to produce a response to rainfall. Here, 
we test hypotheses about spatial discretization, rather than model structure 
(Renard et  al.,  2010), and instead assume that our chosen model structure 
mimics the catchment in question well (based on the catchment description 
in Section 4 and model assumptions in Section 2.1). But it does subject the 
findings to unknown degrees of model-related “epistemic” uncertainties 
(Beven, 2016) due to incomplete knowledge of the full set, or the dynamics, 
of catchment-specific processes and/or how to model them with sufficient 
accuracy or detail.

There are also model input parameter uncertainties that arise, partly from the 
general scarcity of field measurements of such parameters, but mainly due 
to scaling (commensurability) issues (Beven, 2016), where the time/spatial 
scale of model parameters are different from those measured in field. Param-
eter uncertainties are often accounted for by calibrating to observed discharge 

Figure 5. Tracking model performance with changing spatial resolution for both scenarios (1) and (2). Performance metrics are given in Table 4. “ch” denotes channel 
Hydrologically Similar Units and “hs” hillslope. Panel (a) shows the NSE values for high flows and for the different TI/iso-basin resolutions as denoted by the legend; 
similarly, panel (b) shows the NSE values for the low flows; panel (c) and (d) show the RMSE values for high and low flows, respectively.

Figure 6. Model runtime performance for scenario (1).
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data, but these data are not free of uncertainties themselves (see e.g., H. McMillan et al., 2012). In our case, for 
example, we define LOA (Beven, 2018) that represent the estimated precision with which we have been able to 
measure stage and convert it to discharge, meaning that our observed discharge record, Qo, could have been any 
other time-series within LOA, yet the difference is undetectable by the combination of our equipment (e.g., pres-
sure transducers) and methods (e.g., rating curve). Such imprecision makes it unlikely that Qo will be exactly the 
same as the “true” catchment discharge record.

Given uncertain model parameters and observations, when calibrating a numerical RR model, we essentially 
allow model parameters to vary within the uncertainty of the observations (LOA), equivalent to numerically 
producing all (or as many as) possible realizations of true catchment discharge within the LOA. In this context, 
insofar as our hypothesis about model structure is true, each behavioral model prediction is a representation of 
different realizations of true catchment discharge. Given the single observation at hand (i.e., Qo), it is not obvious 
how the relative performance of multiple behavioral predictions should be assessed.

One option is to compare all behavioral predictions to Qo and assign higher likelihood of being the true catchment 
discharge depending on their goodness-of-fit to Qo. This is equivalent to assuming that the single observation 
approximates the true catchment discharge with negligible error, and on this basis, worse predictions should be 
given less importance (likelihood). However, this runs the risk of punishing model predictions with worse fits to 
Qo, even when in reality Qo might be in error; the probability of which is not negligible according to the LOA.

Therefore, in the absence of a better alternative, we assess model performance in terms of its ability to repro-
duce the single available observation, Qo. We examine goodness-of-fit of the best model prediction to Qo as an 
indication that the model might also be reproducing other realizations (for which we do not have measurements) 
with comparable accuracy. As an aside, this should only be the case when assessing performance against past 
(available) data. When/if applying the model to make future predictions, or predictions in ungauged basins, “all” 
behavioral predictions should be considered, since they all equally represent one possible realization of true 
catchment discharge (insofar as our model hypothesis is true).

7.2. Scale Dependence of Model Parameters

Regarding hypotheses testing, here we are testing sensitivity to spatial discretization in terms of TI classification 
and iso-basins. Our underlying hypothesis in both cases was that increasing resolution of discretization would 
result in improved “realism,” and lead to better model performance, or at least not worse. Degradation in model 
performance falsifies the hypothesis.

For iso-basins, we find that increasing their resolution, while allowing the model to adjust its parameters, 
improves model performance in both low-flows and high-flows, albeit not dramatically (around 2%–3% in NSE 
and 6%–7% in RMSE, see blue squares in Figure 5), confirming the hypothesis that finer iso-basins increases 
the “realism” of the model. Iso-basins have a well constrained functionality within the model: they limit the 
interference between storage dynamics for widely separated, but topographically similar, parts of the catchment 
(see Section 4.2). As such, a systematic behavior (i.e., refining iso-basins = better performance, and vice versa) 
can reasonably be expected. However, when the model parameters are fixed to the base case, both refining and 
coarsening of iso-basins slightly worsen performance (less so for refinement than coarsening; compare cyan and 
blue triangles). This suggests limited model sensitivity to changes in iso-basin resolution. However, parameter 
distributions (Figure 4) remain much more similar to the base case in response to iso-basin refinement than coars-
ening. Since Figure 5 only considers the best model prediction, but parameter distributions offer a wider view, we 
interpret these results as: if iso-basins are kept ≤ the size at which the model was calibrated, parameters are more 
likely to remain independent of the iso-basin size.

For TI classes, reducing their resolution worsens model performance across the board and relative to the base 
case (pink squares and triangles in Figure 5), consistent with our hypothesis. However, contrary to our hypoth-
esis, increasing the resolution of TI classes worsens model performance, whether the model is allowed to adjust 
its parameters or not (see red squares and triangles). We note that TI classification assigns a priori “saturation 
tendencies” to different parts of the catchment. Assuming that there exists a map of saturation tendencies that best 
conforms to the catchment-period pair in question, arbitrarily reducing or increasing the resolution of TI classifi-
cation, would both result in deviation from the true saturation tendencies. This would explain the non-systematic 
behavior, where both refining and coarsening TI classification worsens model performance. This underlines the 
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importance of better constraining the TI classification; as is also highlighted by the much higher sensitivity of 
model performance to changes in TI resolution than iso-basin resolution (compare red/pink triangles to cyan/
blue triangles).

One way to improve TI classification might be to define the number of classes, nc, as an additional calibrated 
parameter. The downside is increased dimensionality of the parameter space, and the necessity to redefine TI 
classes before each simulation. In particular, the CPU-time required to redefine TI classes is prohibitive espe-
cially within a Monte Carlo type calibration procedure. An alternative might be to manually tune the TI map 
such that the highest saturation tendency class roughly conforms to the river network (though this requires a 
catchment-specific definition of “river,” that is, also consistent across the scales of interest). This would introduce 
some physical constraint to an otherwise arbitrary TI classification, where a value for nc is subjectively assigned 
(as is the common-practice, and has been the case in our study).

Put together in more general terms, our results suggest that: (a) calibrating a model with an arbitrary TI classifi-
cation, would likely make its parameter distributions inapplicable under alternative TI classification scenarios, 
even for the same catchment; and (b) if TI classification is held constant, and as long as smaller/equal iso-basins 
are used, parameter distributions are likely to remain independent of discretization.

Of course, these results are obtained for a constant catchment topography. However, it is unlikely that the discre-
tization issues discussed here, which severely affect model parameters in the simplest case (constant topography), 
will be less important under changing topography; for example, when upscaling field-scale observations of land-
use change to catchment scale. There, the main concern would be whether parameters calibrated to a field-scale 
experimental catchment could be applied at a larger scale. Our results suggest that, at least a good starting point 
would be to use iso-basins of the size ≤ the experimental catchment where the land-use change parameters are 
obtained via calibration; and also to ensure continuity of TI classification across the two scales (field and catch-
ment scale).

One possible way to do so could be a top-down approach, that is, by first defining a global TI map at the larg-
est scale of interest, from which the field-scale TI map is then carved out and used to obtain land-use change 
parameters (although this would be more difficult, but not impossible, where the experimental site is not part of 
the larger catchment of interest). This would enforce some continuity into the TI map going from field scale to 
catchment scale (i.e., “saturation tendency” values assigned at field-scale will continue to mean the same when 
put back into the catchment wide TI map). However, whether this will alleviate some of the parameter transfer-
ability issues across scales requires more rigorous assessments using GMD-TOPMODEL, which is the focus of 
ongoing research.

7.3. GMD-TOPMODEL's Runtime

Finally, for comparison of GMD-TOPMODEL's runtime with that of Metcalfe et al.'s (2015) Dynamic-TOPMODEL, 
upon which our model is built, Astagneau et al. (2021) reports Dynamic-TOPMODEL to have average run-times 
of around 40 s, for a 10-year record at daily timesteps (i.e., 3,650 steps), but using only 3 HSUs. They used a 
PC with 1.80 GHz CPU speed. For the same number of HSUs and length of record, GMD-TOPMODEL runs 
in under 4s, but using a PC with 3.1 GHz CPU; this translates into a roughly five fold improvement in runtime 
due to adaptive timestepping. We acknowledge that we are comparing the two models under different setups 
(catchments/HSUs), but these models' runtimes are predominantly controlled by the record-length and the total 
number of HSUs, rather than the catchment to which they are being applied, and we give context on both of 
those quantities when we make our comparison. However, the five-fold improvement that we report should be 
considered a guide value.

Such runtime improvements allow the model to be run for considerably more HSUs (e.g., 69 HSUs 23 times 
that of Astagneau et al., 2021), and/or longer records (12,960 timesteps around three times that of Astagneau 
et al., 2021), but to retain comparable runtimes (37.5s for GMD-TOPMODEL vs. 40s for Dynamic-TOPMODEL 
Astagneau et al., 2021).
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8. Conclusions
Motivated by a current lack of adaptive timestep RR models, despite the known problems of fixed timestep 
schemes, we have shown how model equations can be reformulated in a constraint-handling form, which is neces-
sary in order to use the existing packaged adaptive solvers, such as MATLAB ODE Suite. The same approach can 
be taken for other RR models, and using other available ODE solver packages. Under such formulation, model 
state variables and fluxes, as well as the dependencies of other variables on them, are clearly defined, making 
it easier to add/remove variables/fluxes depending on the application. Not only that, but adaptive schemes tend 
to be much faster to run. Our results suggest at least a five-fold improvement in runtimes compared to a fixed 
timestep setup.

In developing GMD-TOPMODEL, from its predecessor Dynamic-TOPMODEL, we have applied a series of 
modifications, which based on first principles, will generalize our model making it applicable to a wider range 
of landscapes than before. In particular, relaxing water-table parallelism to the ground surface, better slope treat-
ment, and inclusion of diffusion, will make GMD-TOPMODEL applicable to deeper soils, and to both gentler 
and steeper catchments (relative to Dynamic-TOPMODEL). Also, the additional iso-basin discretization layer 
devised on top of the TI discretization, allows more flexibly constraining spatial information, which would be 
necessary in upscaling studies, or when modeling spatially distributed interventions, such as land-cover change. 
Note that in such cases it is important to tailor iso-basin discretization to the intended application (e.g., to capture 
different land cover types), rather than purely as limiting water movement in the catchment (as has been the case 
in this paper), because iso-basins can do both simultaneously.

For a 9 km 2 peatland catchment, we calibrated the model within a GLUE framework with LOA defined priori 
to running simulations. We then tested the sensitivity of GMD-TOPMODEL to TI discretization and iso-basins. 
Our results suggest that calibrated parameters are highly sensitive to discretization, in particular with respect to 
TI, even for the same catchment. Care is therefore required when porting calibrated parameters between sites, for 
example, upscaling studies; from our study we infer that, in such cases, parameters will be more readily transfer-
able between sites where (a) the continuity of TI classification is preserved across the intended scales (e.g., by 
taking a top-down approach to TI classification); and (b) iso-basin sizes are restricted to the size of the smallest 
catchment that is being upscaled.
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