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The ongoing quest for understanding nonequilibrium dynamics of complex quantum systems un-
derpins the foundation of statistical physics as well as the development of quantum technology.
Quantum many-body scarring has recently opened a window into novel mechanisms for delaying
the onset of thermalization by preparing the system in special initial states, such as the Z2 state in a
Rydberg atom system. Here we realize many-body scarring in a Bose–Hubbard quantum simulator
from previously unknown initial conditions such as the unit-filling state. We develop a quantum-
interference protocol for measuring the entanglement entropy and demonstrate that scarring traps
the many-body system in a low-entropy subspace. Our work makes the resource of scarring accessi-
ble to a broad class of ultracold-atom experiments, and it allows to explore its relation to constrained
dynamics in lattice gauge theories, Hilbert space fragmentation, and disorder-free localization.

I. INTRODUCTION

Coherent manipulation of quantum many-body sys-
tems far from equilibrium is key to unlocking outstand-
ing problems in quantum sciences including strongly-
coupled quantum field theories, exotic phases of mat-
ter, and development of enhanced metrology and com-
putation schemes. These efforts, however, are frequently
plagued by the presence of interactions in such systems,
which lead to fast thermalization and information scram-
bling – the behavior known as quantum ergodicity [1–3].
A twist came with recent advances in synthetic quan-
tum matter, which enabled detailed experimental study
of thermalization dynamics in isolated quantum many-
body systems, leading to the observation of ergodicity-
violating phenomena in integrable [4] and many-body lo-
calized systems [5, 6].
More recently, quantum many-body scarring has

emerged as another remarkable ergodicity-breaking phe-
nomenon, where preparing the system in special initial
states effectively traps it in a “cold” subspace that does
not mix with the thermalizing bulk of the spectrum [7, 8].
Such behavior hinders the scrambling of information en-
coded in the initial state and suppresses the spreading
of quantum entanglement, allowing a many-body sys-
tem to display persistent quantum revivals. Many-body
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scarring was first observed in the Rydberg atom ex-
perimental platform [9, 10] and subsequent observations
of weak ergodicity breaking phenomena have attracted
much attention [11–13]. On the other hand, theoretical
works have unearthed universal scarring mechanisms [14–
17], pointing to the ubiquity of scarring phenomena in
periodically-driven systems [18–20] and in the presence
of disorder [21, 22]. Given that many-body scarring in
Rydberg atom systems has previously been reported in a
single initial state – the Z2-ordered state, many questions
remain about the overall fragility of this phenomenon and
its sensitivity to the initial condition. It is thus vital to
extend the realm of scarring to a greater variety of ex-
perimental platforms and more accessible initial condi-
tions, which would empower fundamental understanding
of nonergodic dynamics in various research areas ranging
from lattice gauge theories to constrained glassy systems.

In this work, we observe many-body scarring in a large-
scale Bose–Hubbard quantum simulator, where we em-
ploy a tilted optical lattice to emulate the PXP model,
a canonical model of many-body scarring [23–26]. We
demonstrate that many-body scarring can result from a
larger set of initial states, including the unit-filling state
at finite detuning, hitherto believed to undergo fast ther-
malization [9]. Furthermore, we demonstrate that pe-
riodic driving can be used to enhance scarring behav-
ior. Taking advantage of spin-dependent optical super-
lattices, we measure the system’s entanglement entropy
by interfering identical copies in the double wells. We
show the average entropy of single-site subsystems to be
a good approximation of half-chain bipartite entropy, re-
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vealing a key property of scarring: the “trapping” of the
quantum system in a low-entropy subspace, which pre-
vents its relaxation into the exponentially large Hilbert
space.
The remainder of this paper is organized as follows.

In Sec. II we introduce our experimental setup and show
how it can realize the PXP model. In Sec. III we bench-
mark our quantum simulation by observing many-body
scarring from the previously known Z2 initial state. We
also demonstrate the enhancement of scarring under pe-
riodic driving. In Sec. IV we present our measurements of
entanglement entropy, providing deeper insight into the
slow thermalization dynamics associated with scarred ini-
tial states. Finally, in Sec. V we observe a new scarring
regime at moderate detuning for the unit-filling initial
state. Our conclusions are presented in Sec. VI, while
Appendixes contain derivation of the PXP mapping, fur-
ther details on state preparation and measurement tech-
niques, and numerical study of other scarred initial con-
ditions.

II. MAPPING THE PXP MODEL ONTO THE
BOSE–HUBBARD MODEL

The PXP model [27, 28] describes a kinetically con-
strained chain of spin-1/2 degrees of freedom. Each spin
can exist in two possible states, |◦〉, |•〉 corresponding
to the ground state and excited state, respectively. An
array of N such spins is governed by the Hamiltonian

ĤPXP = Ω

N∑

j=1

P̂j−1X̂jP̂j+1, (1)

where X̂ = |◦〉〈•|+|•〉〈◦| is the Pauli x-matrix, describing
local spin precession with frequency Ω. The projectors
onto the ground state, P̂ = |◦〉 〈◦|, constrain the dynam-
ics by allowing a spin to flip only if both of its neighbors
are in the ground state.
A remarkable property of the PXP model is that it is

quantum chaotic, yet it exhibits persistent quantum re-
vivals from a highly out-of-equilibrium |Z2〉 ≡ |•◦•◦ . . .〉
initial state [23, 29–31]. The presence of revivals from
a special initial state in an overall chaotic system was
understood to be a many-body analog of the phenom-
ena associated with a single particle inside a stadium bil-
liard, where nonergodicity arises as a “scar” imprinted
by a particle’s classical periodic orbit [16, 32, 33]. In
many-body scarred systems, eigenstates were shown to
form tower structures [23]. These towers are revealed by
the anomalously high overlap of eigenstates with special
initial states, and their equal energy spacing is responsi-
ble for quantum revivals. While previous experiments on
Rydberg atoms [9, 10] have primarily focused on the |Z2〉
initial state, we will demonstrate that the PXP model can
effectively emerge in the Bose-Hubbard model, allowing
us to identify scarred revivals from a larger set of initial
conditions, including the polarized state |0〉 ≡ |◦◦◦ . . .〉.
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Figure 1. Realizing the PXP model in a Bose–
Hubbard quantum simulator. (a) A schematic of the
optical lattice. Deep lattice potential in the x-direction forms
isolated chains in the y-direction, where the linear tilting po-
tential is applied. Spin-dependent superlattices consisting of
two standing waves in each direction can be individually con-
trolled for state preparation and measurement. At the reso-
nance U≈∆≫J , the dominant hopping process is 11 ↔ 20.
The PXP excitations, •, live on the bonds between the lattice
sites. The doublon configuration 20 in the Bose–Hubbard
model maps to an excitation in the PXP model, while all
other configurations are mapped to an empty site, ◦. For
example, the given state |. . . ◦•◦•◦◦◦• . . .〉 maps to the Fock
state |. . . 120201120 . . .〉. (b) Emergence of the PXP subspace
in the Bose–Hubbard model at the resonance U≈∆≫J . Dots
represent Fock states of the tilted Bose–Hubbard model with
5 bosons on 5 sites (restricting to at most three bosons on any
site). Lines denote the allowed hopping processes. The color

scale shows the sum of interaction and tilt energies 〈Û + ∆̂〉
for each Fock state, and this value is conserved by resonant
processes. The PXP dynamical subspace and its Fock states
are explicitly labeled.

Our experiment begins with a 87Rb Bose-Einstein con-
densate, which is compressed in the z-direction and
loaded into a single layer of pancake-shaped trap. We
then perform superfluid to Mott insulator phase transi-
tion with optical lattices in the x−y plane. In both x
and y-direction, we have a superlattice that is formed
by super-imposing the “short” lattice, with as = 383.5
nm spacing, and the “long” lattice, with al = 767 nm
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spacing [34, 35], each can be individually controlled. We
realize independent 1D Bose-Hubbard systems in the y-
direction by ramping up short lattice depth in the x-
direction over 40Er, with Er=h

2/8ma2s the short-lattice
recoil energy, where h is the Planck constant andm is the
87Rb atomic mass. The short lattice in the y-direction
makes an approximately 4◦ angle with gravity, which re-
sults in a static linear tilt per site of ∆g=816 Hz, see
Fig. 1a. An external magnetic field gradient ∆B may be
further added to create a tunable linear tilting potential
∆=∆g+∆B. The effective Hamiltonian describing our
simulator is

Ĥ = −J
L−1∑

i=1

(

b̂†i b̂i+1 + b̂†i+1b̂i

)

+ Û + ∆̂, (2)

where J is the hopping amplitude, b̂, b̂† are the standard
Bose annihilation and creation operators, the interaction

energy is Û = (U/2)
∑L

i=1 n̂i (n̂i − 1), and tilt potential

is ∆̂ = ∆
∑L

i=1 in̂i. L denotes the number of sites in the
chain with open boundary conditions and we restrict to
the total filling equal to 1, i.e., with the same number of
bosons as lattice sites.
In order to realize the PXP model in the Bose–

Hubbard quantum simulator, we tune the parameters
to the resonant regime U≈∆≫J [36, 37], which has
been studied extensively in the context of quantum Ising
chains [38–40]. In this regime, three-boson occupancy
of any site is strongly suppressed, and doublons can
only be created by moving a particle to the left, e.g.,
. . . 11 . . . → . . . 20 . . ., or destroyed by moving a particle
to the right. The states of the PXP model are under-
stood to live on the bonds of the Bose–Hubbard model.
An excitation in the PXP model •j,j+1, living on the
bond (j, j + 1), corresponds to the creation of a doublon
2j0j+1 on site j in the Bose–Hubbard chain. We iden-
tify the unit-filling state |111 . . .〉 with the PXP polarized
state, |0〉. Any other configuration of the PXP model
can be mapped to a Fock state in the Bose–Hubbard
model by starting from the unit-filling, identifying the
bonds that carry PXP excitations and replacing the cor-
responding sites in the Mott state with 11→20. Applying
this rule across the chain allows to map any basis state
of the PXP model to a corresponding Fock state in the
Bose–Hubbard model, e.g., the |Z2〉 state maps to the
Fock state |. . . 2020 . . .〉. Fig. 1b illustrates the profound
change in the connectivity of the Fock space near the res-
onance U≈∆≫J , with en emergent dynamical subspace
isomorphic to the PXP model in the sector containing
the |Z2〉 state. For a detailed derivation of the mapping,
see Appendix A.

III. OBSERVATION OF Z2 QUANTUM
MANY-BODY SCARS

To prepare the initial states, we first employ a entropy
redistribution cooling method [34] with the superlattice

in the y-direction to prepare a n̄=2 Mott insulator in
the left (odd) sites, while removing all atoms on the
right (even) sites via site-dependent addressing [35]. This
gives us the initial state |ψ0〉= |Z2〉= |2020 . . .〉 (see Ap-
pendix B). In the region of interest, we have prepared 50
copies of the initial state |ψ0〉 isolated by the short lattice
along the x-direction. Each copy extends over 50 short
lattice sites along the y-direction.

We quench the system out of equilibrium by abruptly
dropping the y-lattice depth to 11.6Er, which corre-
sponds to switching J from 0 to 51(1) Hz. This is done
while simultaneously adjusting the lattice depth in the
x and z-directions accordingly, such that the interaction
strength matches the linear tilt with U=∆=∆g≈16J . Af-
ter evolution time t, we freeze the dynamics by ramping
up the y-lattice depth rapidly, and read out the atomic
density on the left (〈n̂Left〉) and right (〈n̂Right〉) sites
of the double-wells formed by the y-superlattice succes-
sively [35, 41]. This provides access to density imbalance,

〈M̂z〉 = (〈n̂Left〉−〈n̂Right〉)/(〈n̂Left〉+〈n̂Right〉), an observ-
able corresponding to the staggered magnetization in the
PXP model, see Fig. 2a. Another observable is the den-
sity of excitations in the PXP model, which is measured
by projecting out the even atomic number occupancy
on each site, then reading out the average odd parti-
cle density 〈P̂n̂∈odd〉(1) [41]. Due to highly suppressed

multi-boson occupancy, we have 〈P̂|•〉〉 = 〈n̂doublon〉(1) ≈
(1− 〈P̂n̂∈odd〉(1))/2.
Away from the resonance, the dynamics is ergodic and

the staggered magnetization present in the initial |Z2〉
state quickly decays with time, see Fig. 2b. In con-
trast, by tuning to the vicinity of the resonance, ∆=U ,
we observe distinct signatures of scarring: the system
approximately undergoes persistent oscillations between
the |Z2〉 ≡ |•◦•◦ . . .〉 configuration and its partner shifted
by one site, |Z̄2〉 ≡ |◦•◦• . . .〉, as can be seen in the stag-
gered magnetization profile and the density of excitations
in Fig. 2b. The density of excitations does not distinguish
between |Z2〉 and |Z̄2〉 states, hence there is a trivial fac-
tor of 2 difference between the oscillation frequencies of
〈P̂|•〉〉 and 〈M̂z〉.
The scarred oscillations in Fig. 2b are visibly damped

with a decay time τ = 49.6 ± 0.8 ms. Nevertheless,
as shown in Ref. [10], by periodically driving the sys-
tem it is possible to ‘refocus’ the spreading of the many-
body wavefunction in the Hilbert space and thereby en-
hance the scarring effect, as we demonstrate numerically
in Fig. 2c and experimentally in Fig. 2d. Our driving
protocol is based on modulating the laser intensity of
the z-lattice, which translates into periodic modulation
of the interaction energy, U(t) = ∆ + U0 + Um cos(ωt),
while ∆ is kept fixed. This results in a modulation of the
density of doublons in the chain, acting as the analog of
the chemical potential in the PXP model.

Numerical simulations of the PXP model with the
driven chemical potential, shown in Fig. 2c, demonstrate
the dynamical stabilization of the Hilbert space trajec-
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Figure 2. Observation of Z2 quantum many-body scars in a Bose–Hubbard quantum simulator. (a) Starting
from the state |ψ0〉= |. . . 2020 . . .〉 – the analog of |Z2〉 state in the PXP model – we utilize gravity to provide linear tilt ∆=∆g.
We characterize quench dynamics by measuring density imbalance and the number of doublons, corresponding to staggered
magnetization 〈M̂z〉 and density of excitations 〈P̂|•〉〉 in the PXP model. In the detuned regime ∆−U≈− 2J , the dynamics is
ergodic and the system has no memory of the initial state at late times. (b): Tuning to U≈∆, we observe persistent oscillations

in both 〈M̂z〉 and 〈P̂|•〉〉. This memory of the initial state is a signature of weak ergodicity breaking due to quantum many-body
scars. (c), (d): Periodic modulation of the interaction U(t) = ∆+U0 +Um cos(ωt) with U0=1.85J , Um=3.71J , ω=3.85J leads
to an enhancement of scarring. Panel (c) shows the numerically computed trajectory in the sublattice occupation plane for
the PXP model with N = 24 sites, with and without driving. The sublattice occupancies 〈n̂Left〉, 〈n̂Right〉 are normalized to
interval the [0,1]. The driving is seen to strongly suppress the spreading of the trajectory. d: Experimental measurements on
the driven Bose-Hubbard model show robust scarred oscillations at all accessible times. In both the static and driven case,
experimental data for 〈M̂z〉 and 〈P̂|•〉〉 are in excellent agreement with TEBD numerical simulations shown by gray and red
solid lines. Gray line in the lowest panel shows the modulation U(t).

tory. We visualize the trajectory by plotting the average
sublattice occupations, 〈n̂Left〉 and 〈n̂Right〉, normalized
to the interval [0,1]. The |Z2〉 and |Z̄2〉 states are located
at the coordinates (1,0) and (0,1), which are the lower
right and upper left corners of this diagram, respectively.
The polarized state |0〉 is at the origin (0,0).

In the undriven case [left panel of Fig. 2c], the trajec-
tory at first oscillates between |Z2〉 and |Z̄2〉 states, while
passing through a region with a lower number of excita-
tions. However, as the time passes, the trajectory drifts,
exploring progressively larger parts of the Hilbert space.
By contrast, when the driving is turned on [right panel
of Fig. 2c], the trajectory approximately repeats the first
revival period of the undriven case, even at late times.
Thus, the driving stabilized the scarred revivals without
significantly altering their period.

Experimental measurements on the driven Bose-
Hubbard model in Fig. 2d find a strong enhancement

of the amplitude of the oscillations in staggered magne-
tization with the decay time τ increasing to 208± 10 ms,
while the period remains nearly the same as in the static
case. Optimal driving parameters were determined nu-
merically using a combination of simulated annealing and
brute force search, see Supplementary Material [42].

We note that the experimental measurement of 〈M̂z〉
damps slightly faster than the theory prediction, shown
by a line in Fig. 2b, at late times (t>60 ms). We attribute
this to an inherent residual inhomogeneity across the lat-
tice, which results in dephasing between different parts
of the system, as well as possible decoherence induced
by scattering of the lattice lasers. To avoid the effect of
these undesired dephasing or decoherence effects, in the
following we limit our investigation up to 60 ms.
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IV. UNRAVELING THE DETAILS OF
SCARRED DYNAMICS VIA QUANTUM

INTERFERENCE

Entanglement entropy is key for characterizing scarring
behavior. Entropy provides a window into the evolution
of the system’s wave function and the spreading of quan-
tum entanglement. For a system trapped in a scarred
subspace, thermalization is inhibited and the system ex-
hibits suppressed entropy growth and periodic fidelity
revivals. Measuring these observables usually requires
brute-force state tomography, but for our 50-site Bose–
Hubbard system with a Hilbert space dimension exceed-
ing 1028, this approach is generally impossible.
However, the superlattice in the x-direction allows us

to probe entanglement entropy by interfering identical
copies in the double wells, analogous to the 50 : 50 beam
splitter (BS) interference employed in photonics experi-
ments [43]; see Fig. 3a. This is done by freezing the dy-
namics along the chains in the y-direction after evolution
time t, then we interfere copies of |ψ(t)〉 in the double
wells formed by the x-superlattice (see Appendix C). Af-
ter the interference, a parity projection helps read out
the average odd particle density 〈P̂BS

n̂∈odd〉(1), which gives
us access to the second-order Rényi entropy [44]. We
measure the entropy of single-site subsystems S(1)= −
ln(Tr(1)[ρ̂(t)

2]) = −ln(1 − 2〈P̂BS
n̂∈odd〉(1)), where ρ̂(t) =

|ψ(t)〉 〈ψ(t)| is the density matrix. Entanglement en-
tropy S(1), shown in Fig. 3b, grows much more slowly
than expected in a thermalizing system. The growth is
accompanied by oscillations with the same frequency as
〈P̂|•〉〉 in Fig. 2b, implying that the system returns to

the neighborhood of product states |Z2〉 and |Z̄2〉. Fur-
thermore, the entropy growth becomes almost fully sup-
pressed by periodic driving, indicating that the scarred
subspace disconnects from the thermalizing bulk of the
spectrum. Numerical TEBD simulations confirm that
this lack of thermalization at the single-site level pro-
vides a good approximation for the behavior of larger
subsystems, as demonstrated by the half-chain bipartite
entropy SL/2 plotted in Fig. 3b. This shows that scar-
ring traps the system in a vanishingly small corner of an
exponentially large Hilbert space.

V. EMERGENCE OF DETUNED SCARRING IN
THE POLARIZED STATE

Up to this point, we have provided extensive bench-
marks of our quantum simulator against the previously
known case of Z2 quantum many-body scars [9]. In this
section we demonstrate that our quantum simulator also
hosts distinct scarring regimes for initial states other than
|Z2〉, which are enabled by detuning and further stabi-
lized by periodic drive. We highlight this finding by ob-
servation of scarring behavior in the polarized state |0〉,
previously not associated with scars.
We first prepare the unit-filling state |1111 . . .〉 by
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Figure 3. Probing many-body scarred dynamics via
quantum interference. (a) After evolution time t, we
freeze the dynamics in the y-direction, then by interfering
two identical copies in the double wells along the x-direction,
we obtain the second order Rényi entropy. (b) The entropy
for a single site, S(1), is seen to have robust oscillations with
the same frequency as in Fig. 2b, indicating a lack of thermal-
ization. The slow growth of entropy in the absence of driving
(upper panel) is strongly suppressed when we drive the sys-
tem using the same parameters as in Fig. 2d (lower panel).
In both cases, the single-site entropy is a good approximation
to the half-chain entropy, SL/2, evaluated numerically using
TEBD (grey line).

transferring |2, 0〉 to |1, 1〉 states in the superlattice [34],
which maps to the polarized state in the PXP model (see
also Appendix B). In the absence of detuning or periodic
drive, we observe fast relaxation: the density of excita-
tions, single-site entropy, and fidelity all rapidly relax,
with no visible oscillations beyond the timescale ∼1/J ,
see Fig. 4a. Interestingly, when we bias the system by a
static detuning, U0=− 2.38J , we observe the emergence
of oscillations in all three observables, accompanied by a
slight decay, see Fig. 4b. Finally, if we also periodically
modulate the interaction with amplitude Um=1.54J and
frequency ω=4.9J×2π, we find a dramatic enhancement
of scarring, Fig. 4c. In particular, both entropy and fi-
delity now show pronounced oscillations, signaling robust
scar-induced coherence at all experimentally-accessible
times.

The intuitive picture behind our observations is sum-
marized as follows. In the absence of detuning or peri-
odic drive, the system initialized in the polarized state
undergoes chaotic dynamics and rapidly explores the en-
tire Hilbert space. By biasing the system via static de-
tuning, thermalization can be suppressed over moderate
timescales. Finally, by periodically driving the system it
is possible to ‘refocus’ the spreading of the many-body
wavefunction in the Hilbert space and thereby enhance
the scarring effect, similar to the findings of Ref. [10]
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Figure 4. Emergence of many-body scarring in the polarized state. a: Fast thermalization from the unit-filling state
in the Bose–Hubbard chain at U=∆ resonance. b: Emergence of scarred dynamics in the presence of static detuning. c:
Dynamical stabilization of scarred dynamics in the presence of both detuning and periodic driving. Top and bottom row show
the experimental measurements of the density of excitations and second Rényi entropy, respectively. The ergodic case shows
fast growth of the half-chain entropy compared to the single-site entropy, while for the scarred dynamics, the single-site entropy
approximates well the half-chain entropy, with or without periodic driving. Static detuning is U0=− 2.38J and the modulation
parameters are Um=1.54J , ω=4.9J×2π. Lines are the results of TEBD simulations.

for the |Z2〉 state. In the remainder of this section, we
present our theoretical analysis of the experiment that
supports this interpretation of the dynamics.

Fig. 5 shows the results of exact diagonalizations of the
PXP model in Eq. (1) in the presence of static detun-

ing, Ĥ(µ) = ĤPXP + µ0

∑

i n̂i, where n̂i takes the value
equal to 1 if site i contains an excitation and 0 otherwise.
The static chemical potential µ0 is proportional to the
Bose-Hubbard detuning parameter U0 in Fig. 4. Fig. 5a
plots the overlap of all energy eigenstates |E〉 of the pure
PXP model (µ0 = 0) with the polarized state |ψ0〉= |0〉.
As expected, we do not see any hallmarks of scars, such
as ergodicity-violating eigenstates with anomalously en-
hanced projection on |0〉. Moreover, the lowest entropy
eigenstates, denoted by squares in Fig. 5b, are the known
Z2 scarred eigenstates [31] which are hidden in the bulk
of spectrum when the overlap is taken with the |0〉 state.

On the other hand, when we add the static chemi-
cal potential µ0 = 1.68Ω, corresponding to the detuning
value in Fig. 4, a band of scarred eigenstates with anoma-
lously large overlap with |0〉 emerges; see Fig. 5c. The
band of scarred eigenstates, highlighted by star symbols
in Fig. 5c, spans the entire energy spectrum, but their
support on |0〉 is biased towards the ground state due
to the breaking of particle-hole symmetry by detuning.
The detuned scarred states also have anomalously low
entanglement entropy, as seen in Fig. 5d.

A few comments are in order. We note that exact
diagonalization confirms that the PXP model remains
chaotic for the value of detuning used in Fig. 5c, and
this detuning is not large enough to trivially fragment the
entire spectrum into disconnected sectors with the given
numbers of excitations [42]. Moreover, we confirmed that
the scarred eigenstates in Fig. 5c are distinct from the

ones associated with the |Z2〉 state in Fig. 5a. Thus,
it remains to be understood if these eigenstates can be
described within the su(2) spectrum-generating algebra
framework developed for the |Z2〉 state in Ref. [45].

Nevertheless, similar to the |Z2〉 case, the scarring
from the |0〉 state can be further enhanced by peri-
odic modulation of the PXP chemical potential, µ(t) =
µ0 + µm cos(ωt). By evaluating the corresponding Flo-
quet operator, we find that a single Floquet mode de-
velops a very large overlap with the |0〉 state [42]. The
existence of a single Floquet mode, whose mixing with
other modes is strongly suppressed, gives rise to robust
oscillations in the dynamics well beyond the experimen-
tally accessible timescales.

To probe the ergodicity of the dynamics from the po-
larized state, we compare the difference between the pre-
dictions of the diagonal and canonical ensembles for an
observable such as the average number of excitations, see
Fig. 6a. These two ensembles are expected to give the
same result if strong Eigenstate Thermalization Hypoth-
esis (ETH) holds [46] and all eigenstates at a similar en-
ergy density yield the same expectation value for local
observables. Fig. 6 (a) shows the discrepancy between
the two ensembles is the strongest around µ0 ≈ 1.68Ω,
where we observe strong scarring. For µ0/Ω close to 0,
the polarized state thermalizes quickly towards the ther-
mal value expected for a state whose expectation value of
the energy is near the middle of the many-body spectrum.
For very large µ0/Ω, we enter a trivial regime where the
polarized state is close to the ground state and only a few
eigenstates at low energies are relevant for the dynamics.
Hence, in this regime, quenching from the polarized state
is similar to quenching from a thermal state at a very low
temperature and the agreement between the two ensem-
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Figure 5. Eigenstate properties of the detuned PXP model. a: Overlaps of all eigenstates of the PXP model with the
polarized state |ψ0〉 = |0〉. b: Bipartite entanglement entropy of the eigenstates in panel a. The squares mark the previously
known Z2 scarred eigenstates. c, d: Same as panels a, b but for the PXP model with the static chemical potential µ0 = 1.68Ω,
approximately corresponding to the experimental value of detuning in Fig. 4. The stars denote the detuned scar eigenstates,
which have high overlap with |0〉 state as well as low entropy. All data is obtained by exact diagonalization of the PXP model
on a ring with N=32 sites in the zero-momentum and inversion-symmetric sector.

bles is again very good. However, in this regime, only
a very small part of the many-body Hilbert space is ex-
plored by the dynamics. This is not the case the scarred
regime that we investigate experimentally, and this can
be demonstrated by studying the relevant classical limit,
as shown next.

In the single-particle case, scarred quantum dynamics
originates from an unstable periodic orbit in the classical
limit ~ → 0 [47]. In a many-body system, one approach
to establishing a quantum-classical correspondence is to
project the Schrödinger dynamics into a variational man-
ifold, e.g., spanned by matrix product states [48] – a
method known as the “time-dependent variational prin-
ciple” (TDVP). It was shown that the scarred dynamics
of the |Z2〉 state in the PXP model is well-captured by
the TDVP approach, allowing to identify a classical or-
bit [16]. In Figs. 6b-c we utilize the TDVP approach to
gain semiclassical understanding of the detuned scarred
dynamics from the |0〉 state. We parametrize the TDVP
manifold using translation-invariant, spin-coherent states
compatible with the Rydberg blockade constraint [49].
The states are defined by the Bloch sphere angles θ and
φ, where sin(θ) is proportional to the density of excita-
tions, while φ describes the phase. In the thermodynamic
limit, we can obtain classical equations of motion for θ, φ
(see Ref. [50] for a detailed derivation). Fig. 6b demon-
strates that this classical dynamical system provides an
excellent approximation of the quantum trajectory for
sufficiently large values of µ0, including µ0=1.68Ω.

To quantify the accuracy of the TDVP approach in

capturing the quantum dynamics, we use “quantum
leakage” – the instantaneous norm of a component of
the state vector that lies outside the TDVP manifold,
γ2 ≡ (1/N)|| |ψ̇〉 − iĤ |ψ〉 ||2 [16]. For the initial state
|0〉, the leakage has a simple analytic expression γ2 =
Ω2 sin6 θ/(1+sin2 θ) [50]. The leakage is higher as θ is in-
creased, corresponding to a larger density of excitations.
In this regime, i.e., for small values of µ0/Ω, the PXP
constraint has a strong effect and the spin-coherent state
ansatz does not faithfully capture the dynamics. On the
other hand, for large values of µ0/Ω, the leakage is low
but θ is confined to values near zero, thus the trajectory
does not explore much of the Hilbert space. This corre-
sponds to the trivial case where the dynamics is confined
to very low densities of excitations, rendering the con-
straint unimportant. Finally, in the intermediate regime
of µ0/Ω where we observe the scarring, the TDVP dy-
namics is able to “avoid” the high-leakage area, as seen
in Fig. 6c, while at the same time θ is not pinned to zero
and the dynamics is not confined to one corner of the
Hilbert space.

VI. DISCUSSION AND OUTLOOK

We performed a quantum simulation of the paradig-
matic PXP model of many-body scarring using a tilted
Bose–Hubbard optical lattice. We demonstrated the ex-
istence of persistent quantum revivals from the |Z2〉 ini-
tial state and their dynamical stabilization, opening up
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Figure 6. Non-ergodic dynamics from the polarized
state in the detuned PXP model. a: Difference between
the expectation values of the diagonal and canonical ensem-
bles for the average number of excitations. The discrepancy
is maximized around µ0/Ω ≈ 1.68. b: Average number of
excitations at µ0/Ω = 1.68 following the quench from |0〉
state shows good agreement between exact quantum dynam-
ics and TDVP approximation. Exact dynamics is for system
size N = 32 spins. c: Trajectory in the TDVP manifold for
different values of µ0/Ω. Color scale denotes quantum leak-
age γ, defined in the text, which bounds the accuracy of the
TDVP approximation. The markers are spaced in time by
∆t = 0.15/Ω. For the optimal value µ0 = 1.68Ω, identified
in panel a and also used in experiment, the trajectory avoids
the high-leakage region and approximates well the quantum
dynamics, while it is not limited to a small corner of the many-
body Hilbert space.

a new route for the investigation of scarring beyond Ry-
dberg atom arrays. By harnessing the effect of detuning,
we observed a previously unknown scarring regime as-
sociated with the polarized initial state. As the latter
state is spatially homogeneous, its preparation does not
require a superlattice, which makes further investigations
of scarring phenomena accessible to a large class of ul-
tracold atom experiments.

Moreover, we have demonstrated that periodic driving
can lead to a striking decoupling of the scarred subspace
from the rest of the thermalizing bulk of the spectrum, as
revealed by the arrested growth of entanglement entropy.
The mechanism of this enhancement is a subject of on-

going investigations. On the one hand, Ref. [51] used a
kicked toy model to argue that the scarring enhancement
originates from a discrete time crystalline order. On the
other hand, Ref. [52] studied the cosine drive employed in
experiment, finding two distinct regimes with long-lived
scarred revivals. In the regime corresponding to the pa-
rameter values in Fig. 2 above, the driving parameters
need to be fine-tuned to match the intrinsic revival fre-
quency of the undriven scarred system. Moreover, the
stabilization was no longer possible when the system was
perturbed by terms which destroy scarring in the un-
driven case. This suggests that driving indeed acts as
an enhancement mechanism, preventing dynamics from
“leaking” into the thermalizing bulk.

Our demonstration of scarring in the |0〉 state high-
lights the importance of energy density. While the |Z2〉
state has predominant support on the eigenstates in the
middle of the spectrum, i.e., it constitutes an “infinite
temperature” ensemble, the support of the |0〉 state is bi-
ased towards one end of the spectrum as result of particle-
hole symmetry breaking via the detuning potential. This
suggests that, depending on the effective temperature,
one can realize scarring from a much larger class of ini-
tial states with a suitable choice of detuning and periodic
driving protocols. We illustrate this in Appendix D by
simulating the quench of the chemical potential in the
PXP model (see also Ref. [50]).

The versatility of optical lattice platforms allows to
directly probe the link between many-body scarring and
other forms of ergodicity-breaking phenomena, such as
Hilbert space fragmentation and disorder-free localiza-
tion, as the latter can be conveniently studied in our
setup by varying the tilt. In this context, we note
that Ref. [12] has recently used the tilt potential to
demonstrate Hilbert space fragmentation in the Fermi-
Hubbard optical lattice. By contrast, in this work we
explored ergodicity breaking due to many-body scars oc-
curring within a single fragment of the Hilbert space.
While many-body scarring can be induced in the Fermi-
Hubbard model by tuning to a similar resonance condi-
tion [53], the underlying mechanism is an approximate
dimerization of the chain, which is conceptually different
from the PXP-type scarring considered here.

In future work, it would be interesting to explore re-
alizations of new scarring models by tuning to other res-
onance conditions and other types of lattices, including
ladders and two-dimensional arrays. Indeed, it is known
that the U(1) quantum link model (QLM) [54, 55] can be
exactly mapped to the PXP model [56]. As such, recent
large-scale experiments realizing the U(1) QLM [57, 58]
can in principle also probe our results. A proposal has
recently been introduced to extend these setups to 2+1D
[59], where a mapping between the U(1) QLM and PXP
model does not hold, which would allow probing how the
scarring regimes discovered in this work would behave
in higher spatial dimensions. Finally, the observation of
long-lived quantum coherence due to scarring and its con-
trollable enhancement via periodic modulation, lays the
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foundation for applications such as quantum memories
and quantum sensing [60, 61].
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Appendix A: Mapping the tilted 1D Bose-Hubbard
onto the PXP model at ∆ ≈ U resonance

The Hamiltonian describing our 1D Bose-Hubbard
model is given in Eq. (2) of the main text, with J de-

noting the hopping amplitude, ĤU the corresponding in-
teraction term, Ĥ∆ the tilt potential. We denote by L
the number of lattice sites and assume open boundary
conditions (OBC). Unless specified otherwise, we fix the
filling factor to ν = 1, i.e., the number of bosons is equal
to the number of sites in the chain.
In the U,∆ ≫ J limit, the energy spectrum of the

Hamiltonian in Eq. (2) splits into bands with approxi-
mately constant expectation value of the diagonal terms,
〈ĤU + Ĥ∆〉 ≈ const, and the Hilbert space becomes frag-
mented. At the U ≈ ∆ ≫ J resonance, the only process
which conserves 〈ĤU + Ĥ∆〉 is 11 ↔ 20, i.e. doublons
can only be created by moving a particle to the left and
destroyed by moving a particle to the right. In the con-
nected component of the Fock state |111 . . . 111〉, the sys-
tem in the resonant regime is described by an effective
Hamiltonian

Ĥeff=−J
L−1∑

i=1

(

b̂†i b̂i+1n̂i(2−n̂i)n̂i+1(2−n̂i+1)+h.c.
)

,

(A1)
which results from the first-order Schrieffer-Wolff trans-
formation applied to Eq. (2) [62]. In Supplementary Ma-
terial [42] we discuss the effect of higher-order terms in
the Schrieffer-Wolff transformation.

In the remainder of this appendix, we show that the
Hamiltonian (A1) is equivalent to the PXP Hamiltonian
[27, 28] (see also Ref. [36] for the original derivation of the
mapping and a recent review [37]). The connected com-
ponent of the Hilbert space contains only certain types
of two-site configurations (20, 11, 12, 02, 01), while all
other two-site configurations are forbidden (22, 21, 10,
00). If we consider the configuration 20 to be an excita-
tion, all allowed configurations can be mapped to those
of the PXP model as follows:

. . . 20 . . .↔ ◦ • ◦

. . . 11 . . .↔ ◦ ◦ ◦

. . . 12 . . .↔ ◦ ◦ • (A2)

. . . 02 . . .↔ • ◦ •

. . . 01 . . .↔ • ◦ ◦

Note that excitations live on the bonds between sites and
this mapping also includes links to the two surrounding
sites. For example, the configuration . . . 2020 . . . maps
to ◦ • ◦ • ◦ and not to ◦ • ◦ ◦ •◦. On the other hand,
the configuration 2020 with OBCs on both sides maps to
• ◦ •, as there are no bonds across the boundaries.
The effective Hamiltonian (A1) can be rewritten as:

Ĥeff=−J
L−1∑

i=1






b̂†i b̂i+1δn̂i,1δn̂i+1,1
︸ ︷︷ ︸

√
2P̂j−1σ̂

+

j
P̂j+1

+ b̂†i+1b̂iδn̂i,2δn̂i+1,0
︸ ︷︷ ︸

√
2P̂j−1

ˆ̂σ−

j
P̂j+1






.

(A3)
In this equation, the index i labels the sites, while j labels
the bonds between sites. The Kronecker delta functions
have been expressed in terms of projectors, P̂j = |◦j〉〈◦j |,
and the bosonic hopping terms correspond to the spin
raising and lowering operators, σ̂±

j , on the bond j. We
can use delta functions because there are no configura-
tions with more than 2 particles per site in this connected
component and the only possible values of n̂i(2− n̂i) are
0 and 1. Moving a particle to the neighboring site on
the left corresponds to creating an excitation, moving
to the right to annihilating, while delta functions act as
constraints.
Finally, the effective Hamiltonian is equivalent to the

PXP Hamiltonian

ĤPXP = Ω

N∑

j=1

(

P̂j−1σ̂
+
j P̂j+1 + P̂j−1σ̂

−
j P̂j+1

)

= Ω

N∑

j=1

P̂j−1X̂jP̂j+1,

(A4)

when we set Ω = −
√
2J and N = L − 1, with X̂j ≡

|◦j〉〈•j | + |•j〉〈◦j | denoting the usual Pauli x matrix. In

case of OBCs, the two boundary terms become X̂1P̂2

and P̂N−1X̂N . Note that the effective bosonic model in
Eq. (A3) for a system size L is equivalent to the PXP
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model for size N = L − 1 since the number of bonds is
the number of sites minus one.
In the PXP model, the initial states which lead to

pronounced quantum revivals are the two states with
the maximal number of excitations – the Néel states,
|•◦•◦. . .•◦〉 and |◦•◦•. . .◦•〉 [23, 31]. The equivalent
states in the tilted Bose-Hubbard model are |2020 . . . 201〉
and |12020 . . . 20〉, for odd system sizes, and |2020 . . . 20〉
and |120 . . . 201〉 for even sizes. In our experimen-
tal setup, it is not possible to exactly prepare the
|2020 . . . 201〉 state due to the inability to independently
control single sites. Instead, our experiment realizes the
|2020 . . . 20〉 state, which corresponds to the Néel state
|•◦•◦. . .•◦•〉 in the PXP model with an odd number of
sites and OBCs.
Fig. 7 numerically demonstrates the mapping between

the tilted Bose-Hubbard model in Eq. (2) and the PXP
model in Eq. (1) in a lattice size L = 9. The fig-
ure shows the the overlap of eigenstates with the Néel
state as a function of energy, for the choice of param-
eters U=∆=12 and J = 1. The energy spectrum is
split into bands with approximately constant expectation
value of the sum of interaction and tilt terms 〈ĤU +Ĥ∆〉,
as indicated by different colors. The inset shows the
top part of the highest-overlap band, around the en-
ergy E = 〈202020201|Ĥ|202020201〉 = 432. This band is
described by the effective Hamiltonian (A1), which pre-

serves the expectation value 〈ĤU +Ĥ∆〉 and is equivalent
to the PXP Hamiltonian. A band of scarred eigenstates
is magnified in the inset, and indeed resembles similar
plots for the PXP model [31]. As the two Néel states
have the maximal number of doublons at filling factor
ν = 1, this type of dynamics also leads to oscillations in
doublon number, which was experimentally measured in
Fig. 2.

Appendix B: State preparation and detection

Our experiment starts out with a two-dimensional
Bose–Einstein condensate of 87Rb atoms prapared in the
hyperfine state |↓〉 = 5S1/2 |F=1,mF=− 1〉. By apply-
ing a microwave pulse, atoms can be adiabatically trans-
ferred to the state |↑〉 = 5S1/2 |F=2,mF=− 2〉, which
is resonant with the imaging laser and thus can be de-
tected. The atoms are initially confined to a single layer
of a pancake-shaped trap with 3 µm period. In both
x and y-directions, we have an optical superlattice that
can be controlled separately. Each superlattice potential
is generated by super-imposing two standing waves with
laser frequency λs=767 nm and λl=1534 nm, which can
be described by

V (x) = V x
s cos2(kx)− V x

l cos2(kx/2 + θx)

V (y) = V y
s cos

2(ky)− V y
l cos

2(ky/2 + θy), (B1)

where V
x(y)
s(l) is the depth of short (long) lattice in x(y)-

direction, k=2π/λs is the short lattice wave number, and
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Figure 7. Numerical demonstration of the mapping
between the PXP and tilted Bose-Hubbard mod-
els. Overlap of the state |202020201〉 with the eigenstates
of the tilted Bose-Hubbard model in Eq. (2) for J = 1 and
U = ∆ = 12 (in units ~ = 1). The color indicates the
expectation value of the diagonal part of the Hamiltonian,
〈ĤU + Ĥ∆〉, for each eigenstate. The black crosses corre-
spond to the effective model in Eq. (A3), shifted by the en-

ergy E = 〈202020201|Ĥ|202020201〉 = 432. The inset shows
the top part of band with the highest overlap, where a band
of scarred eigenstates analogous to that in the PXP model
can be seen.

θx(y) the relative phase between the short and long lat-
tices in x(y)-direction.

We first perform a cooling technique by loading the
atoms into a staggered superlattice in the y-direction at
θy=π/4, meanwhile ramping up only the short lattice in
the x-direction. We tune the y-superlattice potential to
create a Mott insulator with n̄=2 filling in odd sites, while
even sites form a n̄=1.5 superfluid, serving as a reservoir
for carrying away the thermal entropy [34].

Atoms in even sites are removed by performing site-
selective addressing. This is done by first setting θy=0
to form double wells, then tuning the polarization of the
short lattice laser along the y-direction to create an en-
ergy splitting between even and odd sites for the |↓〉 to
|↑〉 transition. We transfer the atoms in even sites to |↑〉
and remove them with the imaging laser [35]. This way
we have prepared the initial |Z2〉 state |2020 . . .〉. The
same site-selective addressing procedure is also utilized
to read out atomic density on even and odd sites sep-
arately in experiment. Inside each isolated double-well
unit, we can perform state engineering that transfers the
state |2, 0〉 to |1, 1〉 [34]. This results in the unit-filling
state |1111 . . .〉 which corresponds to the polarized state
|0〉 in the PXP model.
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Figure 8. Quantum interference. (a) Interfering |1, 1〉
product states in the double wells. (b) Interfering |2, 0〉 prod-
uct states in the double wells. Solid lines are TEBD simula-
tions. Experimental data is shifted forward at earliest times
due to the 50 µs ramping time of the lattice potential.

Appendix C: Quantum interference in the double
wells

The beam splitter (BS) interference is realized in the
balanced double wells formed by the superlattices in the
x-direction, expressed in Eq. (B1) by setting θx=0. In
the non-interacting limit, indistinguishable bosonic par-
ticles coming into the the interference at t=0 interfere ac-
cording to the bosonic bunching. Therefore, equal num-
ber of atoms coming into the two ports at t=0 results in
〈P̂BS

n̂∈odd〉=0 at tBS, while different number of atoms inter-

fering results in 〈P̂BS
n̂∈odd〉=0.5. Each copy of atoms com-

ing into the interference is prepared individually, hence
no global phase between them, resulting in the equiva-
lence between the two output ports [44].

To implement the quantum interference protocol, we
quench the x-lattice potentials to V x

s =6Er and V x
l =5Er,

resulting in the intra-double-well tunneling at J≈740 Hz
and inter-double-well tunneling J ′≈35 Hz. Simultane-
ously, we lower the lattice depth in the x-direction to
25Er and trapping frequency in the z-direction to 1.4
kHz, achieving an interaction of U≈360 Hz. Two exam-
ples are shown here in Fig. 8, where we interfere prod-
uct states |1, 1〉 (Fig. 8a) or |2, 0〉 (Fig. 8b) in the dou-
ble wells and read out the average odd particle density.
At tBS=0.14 ms we identify the beam splitter operation,
where |1, 1〉 gives 〈P̂BS

n̂∈odd〉(1)=0.01(3), while |2, 0〉 gives

〈P̂BS
n̂∈odd〉(1)=0.48(3). We simulate the interference dy-

namics with a 20-site chain consisting of 10 double-well
units. We find good agreement at later times, while the

earlier times are affected by the finite time in the lowering
and rising of lattice potentials, which takes 50 µs. The fi-
nite interaction strength and inter-double-well tunneling
results in about 1% error in the beam splitter operation
in the simulation, but this is beyond the precision of our
absorption imaging.

Figure 9. Emergence of many-body scarring by
quenching the chemical potential in the PXP model
from µi = −0.76Ω to µf = 1.6Ω. Top panel: The dynamics
of quantum fidelity (blue solid line) is similar to that of the
polarized state for the same value of µf (red dashed line). The
overlap between the time-evolved state and |0〉 (black dash-
dotted line) shows a significant state transfer occurs between
them. Bottom panel: The overlap of the pre-quench ground
state with the eigenstates of Ĥ(µf) displays characteristic scar
tower structures. Red crosses denote the highest overlaps with
|0〉 state in each scarred tower. The overlap of the pre-quench
ground state with |0〉 and |Z2〉 states is quoted in the inset.
All data is for N = 32 spins in the zero-momentum, inversion-
symmetric sector of the Hilbert space.

Appendix D: Other scarred states

In addition to the |Z2〉 and |0〉 state, we find other
reviving states in the PXP model with static detun-
ing, Ĥ(µ), introduced in Sec. V. These initial states

are the ground states of Ĥ(µi) and they exhibit re-
vivals when the detuning is quenched to a different value,
Ĥ(µi) → Ĥ(µf). This setup generalizes the quench pro-
tocols studied in the main text. For example, setting
µi→−∞, the pre-quench ground state is simply the |Z2〉
state and then quenching to µf=0 (pure PXP model)
gives rise to scarred many-body revivals. Conversely, if
we set µi→∞, the ground state is |0〉 and quenching to
µf=1.68Ω also leads to scarring, as this value corresponds
to the Bose-Hubbard detuning value in Fig. 4.

We numerically identify similar scarring phenomenol-
ogy in a larger set of initial conditions by varying the pa-
rameters µi and µf . In Fig. 9 we present an illustrative
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example for µi=−0.76Ω and µf=1.6Ω. Unlike the |Z2〉
and |0〉 states, the ground state of Ĥ(µi), for general val-
ues of |µi| < 2, is not a product state. Nevertheless, such
ground states have low entanglement entropy and can be
prepared experimentally, while at the same time they are
nearly orthogonal to |Z2〉 and |0〉 states (the overlap with
the latter is on the order 10−5). We emphasize that this
does not require fine tuning – we find large regions of µi

and µf leading to scarring.
The dynamics in Fig. 9 is similar to that of the po-

larized state evolved with Ĥ(µ=1.68Ω). During the evo-
lution, the state periodically transfers to the polarized
state and then returns to itself. The frequency of re-

vivals is approximately the same as that for the polarized
state evolved with the same static detuning µf , but the
revivals are more prominent. The overlap of the Ĥ(µi)

ground state with all the eigenstates of Ĥ(µf) is shown
in the bottom panel of Fig. 9. These overlaps exhibit a
similar pattern with the overlap of eigenstates with the
polarized states (red crosses). Furthermore, the atypical
eigenstates appear to be the same in the two cases, up
to a difference in phase. This is similar to what we find
for the |Z2〉 and |Z̄2〉 state at µf=0: both states have
the same magnitude of the overlap with each eigenstate,
while the phases are different.
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and Z. Papić, “Weak ergodicity breaking from quantum
many-body scars,” Nature Physics 14, 745–749 (2018).



13

[24] Cheng-Ju Lin and Olexei I. Motrunich, “Exact quantum
many-body scar states in the Rydberg-blockaded atom
chain,” Phys. Rev. Lett. 122, 173401 (2019).

[25] Thomas Iadecola, Michael Schecter, and Shenglong
Xu, “Quantum many-body scars from magnon conden-
sation,” Phys. Rev. B 100, 184312 (2019).

[26] Vedika Khemani, Chris R. Laumann, and Anushya
Chandran, “Signatures of integrability in the dynamics
of Rydberg-blockaded chains,” Phys. Rev. B 99, 161101
(2019).

[27] Paul Fendley, K. Sengupta, and Subir Sachdev, “Com-
peting density-wave orders in a one-dimensional hard-
boson model,” Phys. Rev. B 69, 075106 (2004).

[28] Igor Lesanovsky and Hosho Katsura, “Interacting Fi-
bonacci anyons in a Rydberg gas,” Phys. Rev. A 86,
041601 (2012).

[29] B. Sun and F. Robicheaux, “Numerical study of two-
body correlation in a 1d lattice with perfect blockade,”
New Journal of Physics 10, 045032 (2008).

[30] B. Olmos, M. Müller, and I. Lesanovsky, “Thermaliza-
tion of a strongly interacting 1d Rydberg lattice gas,”
New Journal of Physics 12, 013024 (2010).

[31] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn,
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1Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
2Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg,

Im Neuenheimer Feld 226, 69120 Heidelberg, Germany
3CAS Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,

University of Science and Technology of China, Hefei, Anhui 230026, China
4School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
5Institute of Physics Belgrade, University of Belgrade, 11080 Belgrade, Serbia

6Department of Physics, Southern University of Science and Technology, Shenzhen, China
7INO-CNR BEC Center and Department of Physics,

University of Trento, Via Sommarive 14, I-38123 Trento, Italy

CONTENTS

I. Higher order terms in the mapping between
PXP and Bose-Hubbard models 1

II. Numerical demonstrations of the mapping
between PXP and tilted Bose-Hubbard model 2

III. Alternative mapping between PXP and tilted
1D Bose-Hubbard with staggered detuning 3

IV. Effect of periodic driving on Z2 scars 4

V. Quantum many-body scars in the polarized
state 6
A. Pure PXP model 6
B. Static detuning and periodic driving in the

PXP model 7
C. Polarized state in the tilted Bose-Hubbard

model 8

VI. Effect of detuning on the spectral statistics of
the PXP model 9

VII. System-size scaling of the revival fidelity 10

References 12

I. HIGHER ORDER TERMS IN THE MAPPING

BETWEEN PXP AND BOSE-HUBBARD

MODELS

The effective Hamiltonian at U ≈ ∆ resonance, derived
in the main text:

Ĥeff=−J

L−1∑

i=1

(

b̂
†
i b̂i+1n̂i(2−n̂i)n̂i+1(2−n̂i+1)+h.c.

)

.

(S1)
results from the first-order Schrieffer-Wolff transforma-
tion [1]. This effective Hamiltonian (S1) can be equiva-

lently written as:

Ĥeff=−J

L−1∑

i=1






b̂
†
i b̂i+1δn̂i,1δn̂i+1,1
︸ ︷︷ ︸√

2P̂j−1σ̂
+

j
P̂j+1

+ b̂
†
i+1b̂iδn̂i,2δn̂i+1,0
︸ ︷︷ ︸√

2P̂j−1
ˆ̂σ
−

j
P̂j+1







,

(S2)
which yields the PXP model at this order of the
Schrieffer-Wolff transformation. In this section we look
at the relevant terms that arise in the effective Hamil-
tonian at second order. To simplify the notation we
write these terms as sums of range-3 operators, where
|111〉 〈120|j denotes the operator changing sites j − 1, j
and j + 1 from 120 to 111 while leaving all other sites
unaffected.
First, we can identify the matrix elements that take

the system out of the PXP sector. This happens by the
appearance of sites with 3 bosons via the operator

Ĥout =

√
3J2

U

L−1∑

j=2

(

|300〉 〈201|j + |201〉 〈300|j

+2 |300〉 〈120|j + 2 |120〉 〈300|j
)

.

(S3)

There are also off-diagonal matrix elements connecting
states within the PXP sector, given by

ĤOD =
2J2

U

L−1∑

j=2

(

|120〉 〈201|j + |201〉 〈120|j
)

. (S4)

There are also additional off-diagonal matrix elements
connecting states outside of the PXP sector, but as they
do not directly influence the dynamics out of it we do not
describe them here.
Finally, the diagonal operator in this sector is given by

ĤDiag =
J2

U

L−1∑

j=2

(

4 |120〉 〈120|j − |111〉 〈111|j

+ |020〉 〈020|j − |112〉 〈112|j
)

+
J2

U

(

|01〉 〈01|L−1 − |11〉 〈11|1 − |12〉 〈12|1
)

,

(S5)



2

where the two-site operator |11〉 〈12|j acts on sites j and
j + 1. As bulk terms get added, the overall diagonal
factors are extensive in the system size in the Fock basis.
The state with the lowest on-site potential is |111 . . . 11〉

with a value of − (L−1)J2

U
. The maximum is ≈ 4J2L

3U for
the state |120120 . . . 120〉, which corresponds to the Z3

state in the PXP terminology.
In order to see how these second-order terms change

the effective model we can rewrite Eqs. (S4)-(S5) for
the PXP model with N = L − 1 sites. To do this we
introduce the single-site projector on the excited state
Q̂j = |•〉 〈•| = 1− P̂j . We then obtain

ĤPXP
OD =

2J2

U

N−2
∑

j=1

(

P̂j−1σ̂
+
j σ̂

−

j+1P̂j+2+P̂j−1σ̂
−

j σ̂
+
j+1P̂j+2

)

+
2J2

U

(

σ̂+
1 σ̂

−

2 P̂3 + σ̂−

1 σ̂
+
2 P̂3

)

+
2J2

U

(

P̂N−3σ̂
+
N−1σ̂

−

N + P̂N−2σ̂
−

N−1σ̂
+
N

)

(S6)
and

ĤPXP
Diag =

J2

U

N−2
∑

j=1

(

4P̂j−1P̂jQ̂j+1P̂j+2 − P̂j−1P̂jP̂j+1P̂j+2

+ Q̂j−1P̂jQ̂j+1P̂j+2 − P̂j−1P̂jP̂j+1Q̂j+2

)

+
J2

U

(

4P̂0Q̂1P̂2 − P̂0P̂1P̂2 − P̂0P̂1Q̂2

+ 4P̂N−2P̂N−1Q̂N − P̂N−2P̂N−1P̂N

+ Q̂N−2P̂N−1Q̂N

)

+
J2

U

(

Q̂N−1P̂N − P̂0P̂1 − P̂0Q̂1

)

,

(S7)
respectively. We notice that the off-diagonal correction
has the form of a constrained XY term.

II. NUMERICAL DEMONSTRATIONS OF THE

MAPPING BETWEEN PXP AND TILTED

BOSE-HUBBARD MODEL

In this Section, we numerically corroborate the map-
ping between PXP and Bose-Hubbard models. We use
exact diagonalization to demonstrate the consistency be-
tween dynamics and eigenstate properties in the PXP
model and the Bose-Hubbard model tuned to the reso-
nance U=∆. Unless specified otherwise, we restrict the
occupancy of any site to be at maximum 3 bosons, as
our results are found to be insensitive to allowing more
than 3 bosons on any site. For numerical simulations,
it is convenient to work in natural units ~=1. We adopt
this convention for presenting all numerical results in this
Supplementary Material.
In analogy with the PXP model, the Bose-Hubbard

system initialized in the state 2020 . . . 201 is expected to
oscillate between this state and the state 12020 . . . 20.

This is not only the case for the effective model (S2)
which is exactly equivalent to PXP, but also for the full
tilted Bose-Hubbard model at the U = ∆ resonance, as
can be observed in Fig. S1.
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FIG. S1. Evolution of quantum fidelity F (t) =
|〈ψ0|e

−iHt|ψ0〉|
2 starting from the state |ψ0〉 = |2020 . . . 201〉

(red) and the amplitude of state transfer, O(t) =
|〈ψ|e−iHt|ψ0〉|

2, with the state |ψ〉 = |12020 . . . 2020〉 (blue).
The evolution is governed by the full Bose-Hubbard Hamilto-
nian with J=1, U=∆=12 and maximally 3 bosons per site.
The dashed and dotted black lines correspond to the effective
model in Eq. (S2). System size L=11, filling factor ν=1.
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FIG. S2. Evolution of the bipartite entanglement entropy for
the initial states |2020 . . . 201〉 (red) and |111 . . . 111〉 (blue).
The evolution is governed by the full tilted Bose-Hubbard
Hamiltonian with J = 1, U = ∆ = 12 and maximally 3 bosons
per site. The dashed and dotted black lines correspond to the
effective model from Eq. (S2). System size L = 11, subsystem
LA = 5, filling factor ν = 1.

In Fig. S2 we show the evolution of the bipar-
tite von Neumann entanglement entropy, SvN(t) =
−TrA(ρ̂A ln ρ̂A), where ρ̂A is the reduced density matrix
for subsystem A of length LA. The system is initially
prepared in the state 2020 . . . 201 or the completely ho-
mogeneous state 111 . . . 111. As in the PXP model, the
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entanglement entropy for the 2020 . . . 201 state exhibits
slow and approximately linear growth in time. In con-
trast, the entanglement entropy for the state 111 . . . 111
rapidly saturates, implying that the system quickly ther-
malizes.
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FIG. S3. Evolution of staggered magnetization 〈M̂z〉 =
(〈n̂odd〉 − 〈n̂even〉)/(〈n̂odd〉 + 〈n̂even〉), where n̂odd and n̂even

are the numbers of particles on odd and even sites. The evo-
lution is governed by the full Bose-Hubbard Hamiltonian with
J = 1 and U = ∆ = 12 (solid red line) and the effective model
from Eq. (S2) which is equivalent to the PXP model (dashed
black line). System size L = 11, filling factor ν = 1, initial
state |2020 . . . 201〉.

The evolution of density imbalance between the even
and odd sites 〈M̂z〉 = (〈n̂odd〉 − 〈n̂even〉)/(〈n̂odd〉 +
〈n̂even〉), which corresponds to staggered magnetization
in the PXP model, is shown in Fig. S3. This is one of
the quantities that was experimentally measured in the
main text. Here we again compare the evolution with
the full tilted Bose-Hubbard Hamiltonian and the effec-
tive Hamiltonian (S2), the latter being equivalent to the
PXP model, and we find excellent agreement between the
two.

As a side note, the system is also described by PXP-
like effective models at other integer filling factors. The
reviving initial states are of the form |(n+1)(n− 1)(n+
1)(n−1) . . . (n+1)(n−1)n〉 for ν = n, e.g. |3131 . . . 312〉
for ν = 2 and |4242 . . . 423〉 for ν = 3, as shown in Fig. S4.

Revival frequency increases with n as
√

n(n− 1), but the
revivals decay faster for larger n.

III. ALTERNATIVE MAPPING BETWEEN PXP

AND TILTED 1D BOSE-HUBBARD WITH

STAGGERED DETUNING

A different mapping between the tilted 1D Bose-
Hubbard and the PXP model is possible once the stag-
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FIG. S4. Evolution of quantum fidelity F (t) =
|〈ψ0|e

−iHt|ψ0〉|
2 starting from the Néel state |ψ0〉 (red) and

the amplitude of state transfer, O(t) = |〈ψ|e−iHt|ψ0〉|
2, for

the anti-Néel state |ψ〉 (blue). The evolution is governed by
the full tilted Bose-Hubbard Hamiltonian with J = 1 and
U = ∆ = 12. (a) Filling factor ν = 2. (b) ν = 3. The
Hilbert space size is reduced by removing the configurations
with more than 3 particles per site in (a) and more than 4
particles per site in (b).

gered potential term is added to the the model:

Ĥ=−J

L−1
∑

i=1

(

b̂†
i
b̂i+1 + b̂†

i+1b̂i

)

+
U

2

L
∑

i=1

n̂i (n̂i − 1)

+∆

L
∑

i=1

in̂i +
δ

2

L
∑

i=1

(−1)i−1n̂i.

(S8)

The parameter δ determines the energy offset between
even and odd lattice sites. The odd ones are now “plus”
sites where the δ term is positive, while the even one are
“minus” sites where it is negative. This means that for
an odd chain of length L there are N = L−1

2
minus sites

and N + 1 = L+1

2
plus sites.

The model in Eq. (S8) has been experimentally studied
(see [2] and references therein). Its mapping to the U(1)
quantum link model has been already established in the
literature, as is the mapping between the U(1) quantum
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link model and the PXP model [3]. However, the equiv-
alence of the tilted Bose-Hubbard model with staggered
detuning and the PXP model was to our knowledge never
explicitly stated, so we will briefly explain it here. This
mapping is valid in the regime U ≈ 2δ ≫ J and at filling
factor ν = 1/2.
When U ≈ 2δ ≫ J , the second-order process 101 ↔

020 becomes resonant. Nonzero tilt ∆ makes other rel-
evant second-order processes such as 100 ↔ 001 off-
resonant. In this regime and for odd system size L with
filling factor ν = L+1

2L , the effective Hamiltonian at sec-
ond order of the model in Eq. (S8) is fragmented. One
of these fragments can be mapped to the PXP model
up to some diagonal boundary terms. To find the cor-
responding state in PXP, one only needs to look at the
“minus” sites. Doublons on these sites are mapped to
PXP excitations, as the resonant processes cannot cre-
ate two doublons on two adjacent minus sites. Due to
the nature of the resonant process they can never be
singly-occupied, and empty minus sites are mapped to
non-excited atoms. This means that the corresponding
PXP model has length N = L−1

2 , which is just the num-
ber of minus sites.
The Néel states •◦•◦. . .•◦ and ◦•◦•. . .◦• are then

mapped to 02000200 . . . 02001 and 100200020 . . . 0020 re-
spectively, while 101010 . . . 101 corresponds to the fully
polarized state ◦◦◦. . .◦◦◦.

0.0 2.5 5.0 7.5 10.0 12.5 15.0
tκ

0.0

0.5

1.0

F
(t
)

0200 . . . 020001
101 · · · 101

PXP |Z2〉
PXP |0〉

FIG. S5. Time evolution of the fidelity for tilted Bose-
Hubbard model with staggered detuning with L = 13, U =
2δ = 120, J = 1 and ∆ = 43.3, and for the PXP model with
N = 6. The constant κ is the effective hopping strength in
each model (see text).

Fig. S5 shows the wave function fidelity over time for
the model in Eq. (S8) with U=2δ > ∆ ≫ J , and for
the PXP model it can be mapped to. To directly com-
pare the two models, we have rescaled the time axis
by the constant κ, which takes the value

√
2J (2) =√

2×4J2U/(U2−4∆2) in the Bose-Hubbard model and Ω
in the PXP model. The staggered Bose-Hubbard model
oscillates between two product states, 02000200 . . . 02001
and 100200020 . . . 0020, which are the analogs of the Néel
states in the PXP model. Overall, the dynamics is seen
to be very similar in the two models, with the slight dif-
ference between the two being likely due to the boundary
terms defined in Eq. (S9) below.
To derive the mapping to the PXP model rigorously,

we can separate the Hamiltonian in Eq. (S8) as Ĥ =

Ĥ0−JV̂ and perform the Schrieffer-Wolff transformation

[1]. Here Ĥ0 encompasses all the diagonal terms while
V simply corresponds to hopping, which assumes that
δ,∆, U ≫ J . Furthermore, we will only focus on the
regime U = 2δ, in which case there are no first order
terms. If U is close but not equal to 2δ, then the effective
Hamiltonian at first order will contain diagonal terms
proportional to |U − 2δ|. Finally, we only focus on the
connected component of the second order Hamiltonian
that can be mapped to the PXP model, meaning that
resonant processes like 02010 ↔ 11001 are ignored as
these configuration cannot appear in the Hilbert space
component of interest.
In the relevant part of the Hilbert space, the only off-

diagonal resonant process at second order is 101 ↔ 020,
which appears with a weight of

√
2J (2), where J (2) =

4J2U
U2

−4∆2 . There are also two allowed second-order di-
agonal processes in the bulk of the chain: 010 ↔ 010
and 020 ↔ 020. They have a respective weight of J (2)

and 2J (2). However, as creating a new doublon means
emptying two singly-occupied sites, the diagonal matrix
elements do not change under the off-diagonal process.
The only exception to this is hopping at the boundaries
of the chain. For the leftmost site, only hopping to the
right and then back is possible, leading to a contribution

of 2J2

U−2∆ instead of J (2). For the rightmost site only hop-

ping to the left is possible and the contribution is 2J2

U+2∆ .
This means that not all diagonal matrix elements are
the same but they vary between J (2)N = L−1

2 J (2) and

(N +1)J (2) = L+1
2 J (2). However the differences between

the diagonal elements are O(1) and do not scale with L,
so they become negligible for large system sizes. All to-
gether, the second order Hamiltonian can be mapped to
the following model.

Ĥeff,2 = J (2)N +
√
2J (2)

[

X̂1P̂2 + P̂N−1X̂N

+

N−1
∑

j=2

P̂j−1X̂jP̂j+1

]

+
2J2

U + 2∆
n̂1+

2J2

U − 2∆
n̂N ,

(S9)

with J (2) = 4J2U/(U2 − 4∆2), N = (L − 1)/2, n̂j =

(1 + Ẑj)/2, where Ẑ denotes the usual Pauli z ma-

trix. As defined in the main text, P̂j = |◦j〉〈◦j | and

X̂j = |◦j〉〈•j | + |•j〉〈◦j |. It is worth mentioning that for
U = 2δ, the third order effective Hamiltonian is identi-
cally zero due to the absence of diagonal elements in the
perturbation V (which is simply the hopping) and the
next correction only happens at fourth order.

IV. EFFECT OF PERIODIC DRIVING ON Z2

SCARS

In this section we numerically explore the effect of driv-
ing on the stabilization of many-body scars and revival
dynamics in the tilted Bose-Hubbard models. Periodic
driving was previously shown to enhance and stabilize
the revivals in the PXP model [4–6]. The optimal driving
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frequency was found to be close to twice that of revivals
in the pure PXP model without driving. Given that
the tilted Bose-Hubbard model in the resonant regime
is equivalent to the PXP model, we anticipate similar ef-
fects of periodic driving in this case. We will first review
some properties of the driven PXP model.
The following spatially-uniform cosine driving scheme

was experimentally implemented in Ref. [4]:

Ĥ(t) =
∑

i

(

ΩP̂i−1X̂iP̂i+1 + µ(t)n̂i

)

, (S10)

µ(t) = µ0 + µm cos(ωt). (S11)

Here, µ0 is the static detuning, µm modulation ampli-
tude and ω driving frequency. The same driving scheme
was numerically studied in detail in Ref. [6]. Periodic
boundary conditions (PBC) were imposed for simplicity.
By scanning the parameter space for the highest time-
averaged fidelity, it was determined that the optimal driv-
ing parameters for the Néel state |Z2〉 = |• ◦ • ◦ • ◦ . . .〉
are µ0/Ω = 1.15, µm/Ω = 2.67 and ω/Ω = 2.72. Driving
with these values leads to high revivals whose amplitude
remains close to 1 over very long times. Additionally, the
driving also strongly suppresses the growth of entangle-
ment entropy.
Ref. [6] has also studied the Floquet modes of the

driven PXP model. The Floquet modes are a general-
ization of eigenstates for periodic time-dependent Hamil-
tonians Ĥ(t + 2π

ω
) = Ĥ(t). Unlike the eigenstates, the

Floquet modes evolve in time, but they are time-periodic
with the same periodicity as the driven Hamltonian,
Φn(t+

2π

ω
) = Φn(t). All the Floquet modes Φn(t = 0) of

the driven system can be computed by numerically con-
structing the evolution operator Û(T ) over one driving
period T = 2π

ω
and diagonalizing it.

In the optimal driving regime, the plot of entangle-
ment entropies of all the Floquet modes as a function
of their quasienergies consists of two symmetric “arcs”
[6]. The two lowest entropy modes also have the highest
overlap with the Néel state |Z2〉. One of them is ap-

proximately Φ1(0) = (|Z2〉 + |Z′

2〉)/
√
2 and the other is

close to Φ2(0) = (|Z2〉− |Z′

2〉)/
√
2, while the quasienergy

separation between them is ∆ǫ = ǫ1 − ǫ2 ≈ ω/2. This
provides a simple explanation for the revival dynamics
starting from the Néel state, as will be outlined below.
Let us assume that the two idealized states Φ1(0) and

Φ2(0) are indeed exact Floquet modes. The initial state
|Z2〉 will then be a superposition of only these two modes

ψ(0) =
1√
2
Φ1(0) +

1√
2
Φ2(0) (S12)

and will evolve as

ψ(t) =
1√
2
e−iǫ1tΦ1(t) +

1√
2
e−iǫ2tΦ2(t) =

1√
2
e−iǫ1t

(

Φ1(t)) + ei∆ǫtΦ2(t)
)

. (S13)

After one driving period, the two Floquet modes will re-
turn to their initial states, but the relative phase will be
ei

ω

2

2π

ω = eiπ = −1. The wavefunction after one period
will therefore be in the anti-Néel state (with an unim-
portant phase prefactor), ψ(T ) = e−iǫ1T |Z′

2〉. It will take
two driving periods for the relative phase to again become
+1 and the wavefunction to return to the initial |Z2〉
state. This is the origin of the period doubling (subhar-
monic response to periodic driving) which was observed
in previous works [4, 6]. We note that the period doubling
disappears if the translation symmetry is resolved and
the calculations are restricted to the k = 0 momentum
subspace. In that case, the initial state (|Z2〉+ |Z′

2〉)/
√
2

has high overlap with only a single Floquet mode and
trivially oscillates with the same frequency as the peri-
odic drive.
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FIG. S6. Comparison of the dynamics in the tilted Bose-
Hubbard model without (red) and with periodic driving
(blue). System size L = 11, maximally 3 particles per site,
J = 1, ∆ = 16, driving parameters U0 = 1.85, Um = 3.71,
ω = 3.85. (a) Fidelity. (b) Entanglement entropy for subsys-
tem size LA = 5 sites.

As the tilted Bose-Hubbard model can be mapped to
the PXP model in the U ≈ ∆ ≫ J limit, we also expect
to be able to enhance many-body scarring via periodic
modulation of the term corresponding to the number of
excitations. In the Bose-Hubbard case, such a term is
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conveniently provided by the on-site interaction strength
U . However, we cannot use periodic boundary conditions
due to the linear tilt which would be discontinuous at
the boundary. We therefore consider the Bose-Hubbard
model with open boundary conditions and periodically
modulate the interaction strength U(t),

Ĥ(t)=−J

L−1
∑

i=1

(

b̂
†
i
b̂i+1 + b̂

†
i+1

b̂i

)

+
U(t)

2

L
∑

i=1

n̂i (n̂i − 1) + ∆

L
∑

i=1

in̂i,

(S14)

with the driving given by

U(t) = ∆ + U0 + Um cos(ωt). (S15)

The driving parameters U0, Um and ω, are the static de-
tuning and the modulation amplitude of the interaction
strength and the driving frequency, respectively.
The modulation of interaction strength indeed leads

to enhanced revivals in the Bose-Hubbard model, see
Fig. S6. In particular, the slope of entanglement growth
is significantly reduced, with scarred oscillations becom-
ing more pronounced. However, in local observables,
such as the density of doublons, the effects of driving are
less striking than in the pure PXP model. The reason
for more modest enhancement of revivals in the Bose-
Hubbard model is the competition between stabilization
of revivals within the PXP subspace and the processes
which destroy the mapping to PXP model, such as the
terms creating 3 or more bosons on a site. Addition-
ally, the optimal driving parameters are not the same as
those for the PXP model (up to the trivial rescaling by

Ω =
√
2J to match the normalization of off-diagonal ma-

trix elements). Increasing the tilt parameter ∆ brings the
tilted Bose-Hubbard model closer to the PXP model, but
it is still necessary to perform a separate optimization of
driving parameters.

V. QUANTUM MANY-BODY SCARS IN THE

POLARIZED STATE

In the main text we reported the observation of many-
body scarring associated with the state that contains
no doublons, |111 . . .〉, or equivalently the fully-polarized
state | ◦◦◦ . . .〉 in the PXP model. In this section we pro-
vide extensive theoretical evidence for many-body scar-
ring in the polarized state. While the polarized state
does not exhibit many-body scarring in the pure PXP
model, consistent with previous work [7], it does display
weak signatures of non-ergodicity in local observables for
sufficiently small systems. In this section, we show that
static detuning and its periodic modulation can be used
to stabilize the scarring from this initial state. As we will
demonstrate below, the many-body scarring in the polar-
ized state is distinct from the previously studied “dynam-

ical freezing” regime associated with | ◦ ◦ ◦ . . .〉 state in
the PXP model driven by a square pulse protocol [8].
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FIG. S7. Comparison of dynamics from the polarized state
in the pure PXP model (black), with static detuning only
(red), and with both static detuning and periodic driving
(blue). System size N = 24, driving parameters µ0/Ω = 1.68,
µm/Ω = −0.50, ω/Ω = 3.71. (a) Fidelity. (b) Expected total
number of excitations normalized by the maximal number of
excitations nmax = N/2.

A. Pure PXP model

The polarized state | ◦◦◦ . . .〉 is expected to thermalize
in the pure PXP model. Nevertheless, the state exhibits
some signatures of non-ergodic dynamics in smaller sys-
tem sizes, such as oscillations in the expectation values
of certain local observables. For example, as shown by
the black lines in Figs. S7(a) and (b), even though there
are no significant revivals in wave function fidelity, some
oscillations in the number of excitations are still visible.
A closer look at the eigenstates of the PXP Hamilto-

nian and their overlap with the polarized state reveals
the underlying reason for this behaviour, see Fig. S8. In
Fig. S8(a) we plot the overlap of all PXP eigenstates with
the Néel state, showing the well known band [9] of scarred
eigenstates marked by the red crosses and corresponding
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FIG. S8. PXP eigenstates, system size N = 32, symmetry sector {k = 0, p = 1}. Overlap with (a) Néel state. (b) polarized
state. (c) randomly chosen state. (d) Bipartite entanglement entropies of all eigenstates. The highest-overlap eigenstates in
their energy window are marked by red crosses for the Néel state and by black dots for the polarized state.

tower structures. In contrast, there is no such band of
high-overlap eigenstates for a randomly chosen state, see
Fig. S8(c).The polarized state is between these two cases,
as can be observed in Fig. S8(b). Although there is no
well defined band of scarred eigenstates as for the Néel
state, there is still a number of unusually high-overlap
eigenstates which are marked by the black dots. Finally,
in Fig. S8(d) we show the entanglement entropies of all
eigenstates. The lowest-entropy eigenstates are the Néel
state scars (red crosses), but the eigenstates with the
highest overlap with the polarized state (black dots) also
have lower then average entanglement entropies. Thus,
we conclude that the polarized state is poised to develop
many-body scarring by a suitable perturbation of the
PXP model. We next show that this can be achieved
by applying static detuning.

B. Static detuning and periodic driving in the

PXP model

The addition of a static detuning term

Ĥ(µ0) = ĤPXP + µ0

∑

j

n̂j (S16)

results in the appearance of a band of atypical eigenstates
with high overlap with the polarized state, as can be ob-
served in Fig. S9. The band is still not well separated
from the bulk at lower values of µ0/Ω, see Figs. S9(a) and
(b). At larger values of µ0/Ω, the energy spectrum starts
to split into disconnected bands, as shown in Fig. S9(d).
We are interested in the intermediate regime shown in
Fig. S9(c), µ0/Ω ≈ 1.68, where there is a clearly visi-
ble band of scarred states, but the bulk of the energy
spectrum is still continuous.
In addition to having the highest overlap with the po-

larized state, the special states are also approximately

FIG. S9. Overlap between the polarized state and the PXP
eigenstates in the symmetry sector {k = 0, p = 1} for N = 32.
Each subfigure corresponds to a different value of the static
detuning, and the color indicates the expectation value of the
number of excitations for each eigenstate.

equidistant in energy and have lower entanglement en-
tropy than most other eigenstates. These are all paradig-
matic properties of quantum many-body scars. However,
one striking difference compared to the Néel state scars
is that the highest-overlap states are not concentrated in
the middle of the spectrum. Instead, most of them are lo-
cated at one edge of the energy spectrum, but the band of
atypical states still continues well into the higher energy
densities, see Fig. S9(c). The fact that special eigenstates
are biased towards one end of the spectrum is expected
since the detuning potential breaks the particle-hole sym-
metry of the PXP Hamiltonian [10].
This emergence of scarred eigenstates significantly af-

fects the revival dynamics, as illustrated in Figs. S7 and
S10. For the Néel state in Fig. S10(a), the detuning
monotonically destroys the revival, until we reach the
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FIG. S10. Revival fidelity for the Néel and polarized states
in the symmetry sector {k = 0, p = 1} for N = 32. (a) Néel
state. (b) polarized state. At low detuning only the Néel
states revives, while for µ0/Ω ≫ 1 both states do. However,
in the intermediate regime µ0/Ω ≈ 1 only the polarized state
has revivals, while the Néel state thermalizes like the other
product states.
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FIG. S11. Difference of expectation value between the diag-
onal and canonical ensemble for the operator 1

N

∑
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n̂j in the

PXP model. (a) Néel state. (b) polarized state. (c) compari-
son of different states for N = 30. The color scale in (a) and
(b) corresponds to the system size N , while the insets show
the results for various N with µ0/Ω fixed to 1.68 (along the
grey dahsed line).

regime of very large detuning µ0 & 3 which places the
Néel state in its own fragment of the Hilbert space. By
contrast, for the polarized state in Fig. S10(b) we see the
revivals start to emerge at moderate detuning µ0/Ω ≈ 1.
The frequency of the revival is found to match the en-
ergy separation between the scarred states in Fig. S9(c).
The oscillations in the number of excitations are also en-
hanced and their frequency has changed to the frequency
of fidelity revivals. This is the regime that corresponds

to the many-body scarring observed in experiment. We
note that the revivals from the polarized state also per-
sist in the trivial large-detuning limit (µ0 & 3) where the
polarized state is effectively in its own fragment of the
Hilbert space, similar to the Néel state.

The addition of detuning not only affects the short-
time dynamics, but also infinite-time expectation val-
ues. After a quench, the value of any observable will
reach the value predicted by the diagonal ensemble
Od =

∑

i,j Oi,jδi,jcjc
⋆
i , where Oi,j = 〈Ei|O|Ej〉 and

ci = 〈Ei|0〉. However we also expect the observable to
thermalize towards the value predicted by the canoni-

cal ensemble Oth = Tr
[

ρ̂thÔ
]

, where ρ̂th = 1

Z
e−βĤ with

Z = Tr
[

e−βĤ
]

and β the inverse temperature. Note that

we also restrict Ĥ to the symmetry sector invariant un-
der translation and spatial inversion as it is the only one
compatible with the |0〉 state. A large difference between
the predictions of these two ensembles for a given initial
state is an indicator of the violation of the Eigenstate
Thermalization Hypothesis [11, 12]. For the PXP model
we will use the operator n̂ = 1

N

∑

j n̂j , which counts the

average number of excitations in the system [13], and
denote the difference between the ensemble predictions
by δn. The Néel state is most athermal at zero detun-
ing, while the peak for the polarized state occurs around
µ0/Ω = 1.7, see Fig. S11. For larger values of the de-
tuning these two states become respectively the topmost
and ground states, meaning that the temperature is ±∞
and both ensembles agree exactly.

Finally, in order to stabilize revival and many-body
scarring in the polarized state at late times, we need
to modulate the detuning amplitude, in addition to the
static detuning. Using the same driving protocol as for
the Néel state in Eq. (S11), we can enhance and stabi-
lize the revivals from the polarized state at late times,
see Fig. S7 (blue lines). The optimal driving frequency
(ω/Ω = 3.71) was found to be close to the frequency
of revivals in the undriven case with static detuning,
while the other two driving parameters (µ0/Ω = 1.68,
µm/Ω = −0.50) had to be separately optimized for the
polarized state and are different from the values obtained
for the Néel state. This driving regime and the cor-
responding Floquet modes Φn(t = 0) were studied in
Ref. [6]. There is a single mode that has very high over-
lap with the polarized state, which explains the revival
dynamics in Figs. S7 and S10(b). Note that there is no
period doubling in this case.

C. Polarized state in the tilted Bose-Hubbard

model

Finally, we confirm that our conclusions about many-
body scarring associated with the polarized state also
hold in the full tilted Bose-Hubbard model in the regime
U ≈ ∆, where we expect the effective description to be
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FIG. S12. Comparison of dynamics in the tilted Bose-Hubbard model (black), with static detuning only (red), and with both
static detuning and periodic driving (blue). System size L = 11, maximally 3 particles per site, J = 1, ∆ = 16, driving
parameters U0 = −2.38, Um = 1.54, ω = 4.90. (a) Fidelity. (b) Expected total number of doublons Nn=2. (c) Entanglement
entropy for subsystem size LA = 5. (d) Expected total number of sites with three particles Nn=3 (indicates the leakage from
the PXP subspace).

close to the PXP model. We will show that the driving
leads to a strong suppression of entanglement growth and
makes off-resonant the processes that cause leakage out
of the PXP subspace.

In Fig. S12 we compare the dynamics at the reso-
nance U = ∆ (black lines, corresponding to the pure
PXP model), at U = ∆ + U0 (red lines, correspond-
ing to the PXP model with static detuning), and for
U(t) = ∆+U0+Um cos(ωt) (blue lines, corresponding to
the periodically driven PXP model). Due to the very fast
growth of the Hilbert space size, we restrict the maximal
number of bosons per site to 3. The results are consistent
with those for the PXP model shown in Fig. S7. Note
that the frequency of fidelity revivals in Fig. S12(a) is
the frequency of PXP revivals multiplied by a factor of√
2 which comes from the off-diagonal matrix elements in

the Bose-Hubbard model. The expected number of dou-
blons, which is related to the number of PXP excitations
is shown in Fig. S12(b).

The growth of entanglement entropy is suppressed by
the addition of static detuning and even more by peri-
odic driving, see Fig. S12(c). There are two factors that

contribute to this behaviour. One is the dynamics inside
the PXP subspace, where thermalization is suppressed by
scarring. The other is related to the leakage out of this
subspace, which is represented by the number of sites
with 3 particles in Fig. S12(d). The static detuning by
itself significantly decreases this quantity, while the pe-
riodic driving does not seem to result in a substantial
further improvement for the polarized state.

VI. EFFECT OF DETUNING ON THE

SPECTRAL STATISTICS OF THE PXP MODEL

In this section we show that the addition of finite de-
tuning to the PXP model does not make this model
integrable. We study the energy level spacings sn =
En+1 − En, which we normalize to have 〈sn〉 = 1. For
an integrable model, {sn} should follow the Poisson dis-
tribution, while for a chaotic model we expect to see the
Wigner-Dyson distribution. A convenient way to probe
level statistics is by computing the so-called 〈r〉 parame-
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ter [14], defined as the average of level spacing ratios:

rn =
min(sn, sn−1)

max(sn, sn−1)
. (S17)

For the Poisson statistics, we expect 〈r〉 ≈ 0.39, while
〈r〉 ≈ 0.53 for Wigner-Dyson. In Fig. S13 we show that
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µ

0.40
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〉
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〉
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FIG. S13. 〈r〉 for the PXP model with various system sizes N

and detuning µ. For all values of µ shown, the spectral statis-

tics flows towards Wigner-Dyson value, as the 〈r〉 parameter

increases with system size. However the convergence is slower

near µ = 0, µ = 1.68, and in general as µ becomes larger.

〈r〉 tends towards 0.53 as N increases, for all values of µ.
In general, as µ becomes larger, the convergence is slower
because the detuning approximately conserves the num-
ber of excitations. Beyond that, one can also notice two
dips in 〈r〉 at µ = 0 and µ ≈ 1.6, hinting that near these
values PXP is close to another integrable model. For
pure PXP this had been noted and previously investi-
gated with various other perturbations [15].
The full distribution of the sn is shown in Fig. S14 for

µ = 0, 1, and 1.6829 for N=32 spins. In all cases, we
see that the distribution resembles Wigner-Dyson, even
though in the last case it is skewed towards zero.
In conclusion, for any finite value of µ, the PXP

model is non-integrable and its level statistics follow the
Wigner-Dyson distribution in a large enough system size.
Interestingly, the level statistics suggests a proximity to
an integrable model at the points where we find good re-
vivals due to scars: at µ = 0 for the Néel state and near
µ = 1.68 for the polarized state. These results are in
accordance with the discrepancies observed between the
diagonal and canonical ensembles in Fig. S11.

VII. SYSTEM-SIZE SCALING OF THE

REVIVAL FIDELITY

An important question concerns the stability of re-
vivals in the thermodynamic limit. In particular, due to

0

1

P
(s
)

µ = 0, 〈r〉 = 0.526

0

1

P
(s
)

µ = 1, 〈r〉 = 0.532

0 1 2 3 4
s

0

1

P
(s
)

µ = 1.6829, 〈r〉 = 0.487

FIG. S14. Distribution of the level spacings after spectrum

unfolding for the PXP model with N=32. The solid black

line corresponds to the Wigner-Dyson distribution and the

dashed red line to Poisson. In all cases the distribution is close

to Wigner-Dyson, even though for µ = 1.6829 it is skewed

towards s = 0.

the cost of non-linear optimization, the driving param-
eters were obtained in relatively small systems, there-
fore it needs to be checked whether the same parameters
work as well in large systems. To access dynamics in
much larger systems, L . 50 sites, we use TEBD varia-
tional method [16] implemented in TenPy package [17].
We employ the second order Trotter decomposition with
time step 2.5 × 10−5/J and maximum bond dimension
χmax = 3000. Such a small time step was necessary be-
cause some of the quantities we are interested in, e.g.,
the fidelity density, are sensitive to otherwise negligible
fluctuations in the revival peak heights that appear for
longer time steps.

Figs. S15 and S16 show the system size scaling of
the first three revival peaks for different initial states,
both with and without driving. The results were ob-
tained from numerical simulations of the tilted Bose-
Hubbard model, Eq. (S14), with open boundary condi-
tions, ∆/J = 16, and maximally 3 particles per site.
This particle number limit is an reasonable assump-
tion since the periodically driven interaction strength
U(t) = ∆+U0+Um cos(ωt) is large compared to the hop-
ping amplitude J . In the case of global fidelity F (t), we
plot the so-called fidelity density − ln(F (nT ))/L, where
T is the revival period and n ∈ {1, 2, 3}. The single-site
fidelity F(1)(t) is a local quantity, so it does not need to
be rescaled by the system size L. We therefore simply
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FIG. S15. System size scaling of the first three revival peaks
for the Néel state |Z2〉 = |2020 . . . 20〉. Driving parameters
ω = 3.85, U0 = 1.85, Um = 3.71. Dashed lines correspond
to the bare case and the solid lines to the driven case. (a)
Fidelity density. (b) Single-site fidelity.

plot the peak heights F(1)(nT ).

For the Néel state 2020 . . . 20, the fidelity density is
expected to converge to a constant value in the limit of
large L. This is consistent with our results in Fig. S15(a),
where we plot the fidelity density after one, two and three
driving periods. The driving parameters are the same for
all system sizes, ω = 3.85, U0 = 1.85 and Um = 3.71. Due
to the minus sign in the definition, lower fidelity density
corresponds to higher revival peaks and vice versa. As
can be observed in Fig. S15(a), periodic driving leads to
increased revivals over a broad range of system sizes and
there is no indication that this will change for L > 50.
The revivals are decaying with time, but the decay is
significantly slower when the driving is turned on. We
can thus conclude that periodic driving with these pa-
rameters both enhances and stabilises the revivals, even
in relatively large systems.

The scaling of the single-site fidelity can be observed
in Fig. S15(b). This experimentally measurable quan-
tity represents a tight upper bound for the global fidelity
when the system is initialized in a product state, see Sec-
tion ??. The results are similar to those for the global

fidelity. In all cases, the revival heights are rapidly con-
verging towards a constant value. Again, the revivals in
driven systems are significantly higher than those with-
out driving and the difference between them increases
with time.
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FIG. S16. System size scaling of the first three revival peaks
for the polarized state |111 . . . 111〉. Driving parameters ω =
4.90, U0 = −2.38, Um = 1.54. Dashed lines correspond to the
bare case and the solid lines to the driven case. Data points
are missing in cases where there are no local maxima. (a)
Fidelity density. (b) Single-site fidelity.

The effects of periodic driving are even more striking
with the polarized state 111 . . . 111 as the initial state,
as shown in Fig. S16. There are no notable revivals
in global fidelity when the driving is turned off. The
dashed lines in Fig. S16(a) correspond to irregular minor
local maxima which are present in smaller systems. Even
these local maxima disappear with increasing system size,
which explains why some data points are missing. In
contrast, driving with parameters ω = 4.90, U0 = −2.38
and Um = 1.54 produces very high revivals which do not
decay, either with time or with system size. The single-
site fidelity tells a similar story, see Fig. S16(b), how-
ever in this case there are revivals even in the absence of
driving, consistent with dynamics of local observables in
Fig. S7(b).
Finally, we note that the Néel and polarized states are
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the only two initial product states for which we were able
to find optimal driving parameters that lead to robust
revivals at late times. This is true both for the tilted
Bose-Hubbard model, Eq. (S14) in the ∆ ≈ U regime,
and for the PXP model with a spatially uniform driv-
ing protocol. For other initial states, such as Z4 state

with an excitation on every fourth site or, equivalently,
20112011 . . . 2011 in the tilted Bose-Hubbard model, it is
possible to stabilize a small number of revivals at short
times. In contrast to the Néel and polarized states, these
revivals are found to decay quickly with time as well as
with system size.
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