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Abstract

Background Pulmonary arterial hypertension (PAH) is a heterogeneous and complex pulmonary vascular

disease associated with substantial morbidity. Machine-learning algorithms (used in many PAH risk

calculators) can combine established parameters with thousands of circulating biomarkers to optimise PAH

prognostication, but these approaches do not offer the clinician insight into what parameters drove the

prognosis. The approach proposed in this study diverges from other contemporary phenotyping methods by

identifying patient-specific parameters driving clinical risk.

Methods We trained a random forest algorithm to predict 4-year survival risk in a cohort of 167 adult

PAH patients evaluated at Stanford University, with 20% withheld for (internal) validation. Another cohort

of 38 patients from Sheffield University were used as a secondary (external) validation. Shapley values,

borrowed from game theory, were computed to rank the input parameters based on their importance to the

predicted risk score for the entire trained random forest model (global importance) and for an individual

patient (local importance).

Results Between the internal and external validation cohorts, the random forest model predicted 4-year

risk of death/transplant with sensitivity and specificity of 71.0–100% and 81.0–89.0%, respectively.

The model reinforced the importance of established prognostic markers, but also identified novel

inflammatory biomarkers that predict risk in some PAH patients.

Conclusion These results stress the need for advancing individualised phenotyping strategies that integrate

clinical and biochemical data with outcome. The computational platform presented in this study offers a

critical step towards personalised medicine in which a clinician can interpret an algorithm’s assessment of

an individual patient.

Introduction

Pulmonary arterial hypertension (PAH) is a highly morbid disease characterised by complex pathobiology

and variable clinical presentation [1]. The availability of numerous approved [2] and emergent [3] PAH

medications has expanded treatment options used clinically to limit morbidity and prevent premature death.

However, pharmacotherapeutic initiation and dose escalation is guided by risk assessment [4], emphasising
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the importance of data and algorithms that clarify prognosis in individual patients. In turn, pathogenetic

and phenotypic heterogeneity across the PAH spectrum introduce unique challenges to precision-based risk

stratification methods.

Several validated risk estimation tools are now available for PAH and have transformed clinical

decision-making by allowing evidence-based prognostication at point-of-care [5, 6], but these algorithms

consider a relatively narrow range of variables that can’t account for disease heterogeneity [7–9]. Utilising

machine-learning algorithms allows contemporary calculators to compute risk estimates from robust

datasets that can include thousands of circulating biomarkers [10, 11] across diverse PAH populations,

thereby expanding the gamut of patient-specific measurements available for compiling risk estimates.

However, a clinician utilising these complex multivariate models on a patient would only be presented

with a numeric risk score without any explanation of how the model reached its calculation. Therefore,

these models require an analytic strategy to generate an intuitive readout that explains how each marker

contributed to the final prediction, which would mark a significant advance towards individualising clinical

decision-making in PAH.

The overall goal of this project was to showcase a computational platform that 1) integrates big data

inclusive of biological and clinical parameters to generate a composite risk profile and 2) ranks the

TABLE 1 Stanford cohort patient characteristics in high 4-year risk and low 4-year risk groups. Continuous data

are compared using a t-test and categorical variables by Chi-squared test

High 4-year risk Low 4-year risk Two-tailed p-value

Sample size 74 93
Age (years) 52.7±15.5 47.0±14.3 0.015
Female (%) 71.6 75.3
Race

White 42 53 0.992
Asian 10 24
Hispanic 11 11
Black 5 3
Other 6 2

PAH subtype

Connective tissue disease 25 27 0.997
Idiopathic PAH 19 27
Drug and toxins 13 15
Congenital heart disease 8 17
Portopulmonary hypertension 8 4
Hereditary PAH 1 3

NYHA functional class

Class I 4 5 0.942
Class II 11 42
Class III 46 37
Class IV 13 9

Haemodynamics

mPAP (mmHg) 50.8±16.2 50.9±16.6 0.969
PVR (dyn·s·cm−5) 11.2±7.14 11.3±6.59 0.925
Cardiac index (L·min−1·m−2) 2.27±0.82 2.24±0.67 0.795
Mean right atrial pressure (mmHg) 9.70±6.33 7.89±4.78 0.037
PCWP (mmHg) 12.2±5.72 10.5±4.09 0.027

Timing from

Diagnosis (years) 3.1±3.9 4.5±5.4 0.053
Symptom onset (years) 4.4±4.8 6.0±5.4 0.051

Therapy

Treatment-naïve 23 28 0.999
Monotherapy 21 28
Dual therapy 22 26
Triple therapy 8 11

Data are presented as n or mean±SD, unless otherwise stated. PAH: pulmonary arterial hypertension; NYHA:
New York Heart Association; mPAP: mean pulmonary artery pressure; PVR: pulmonary vascular resistance;
PCWP: pulmonary capillary wedge pressure.
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contribution of all patient parameters to the computed risk score for an individual patient (using game

theory). Combining these two mathematical principles for risk stratification is positioned to advance the

use of artificial intelligence for personalised clinical decision-making in PAH.

Methods

To demonstrate the aforementioned computational platform for doctor–machine interaction in PAH

prognostication, we utilised the dataset presented in SWEATT et al. [7] (referred to here as the case study

dataset) to train a random forest model that predicts the probability of death/transplant within 4 years. Once

a suitably accurate model was developed, we then applied game theory principles [12] to explain overall

model structure and showcase how a clinician could interpret the prediction for a specific patient.

Case study dataset: study population and design

The study analysed data from a prospective observational cohort of 281 PAH patients evaluated at Stanford

University (Stanford, CA, USA) who had banked peripheral blood samples between 2008 and 2014. This

dataset has been described extensively [7]. Within this cohort, 114 patients were known to be alive and

transplant-free before the 4-year follow-up, but not evaluated beyond this point. Therefore, this study

considers 167 patients (demographics shown in table 1) with a documented 4-year outcome (n=93

transplant-free survival versus n=74 death or lung transplantation), where the 4-year cut-off was chosen to

achieve a roughly 50% event rate, because machine-learning algorithms tend to produce erroneous

classifiers when trained on imbalanced datasets.

For each patient, the model was trained on 93 patient parameters (figure 1a; all variables defined in

table 2) which included 1) demographics; 2) PAH subgroup; 3) functional metrics and standard clinical

bloodwork; 4) invasive haemodynamic measurements; 5) lung function measurements; 6) selected

echocardiographic parameters; and 7) an exploratory proteomic immune panel of 48 cytokines, chemokines

and growth factors measured using a Bio-Plex multiplex immunoassay (Bio-Rad, Hercules, CA, USA)

(figure 1b).

Feature engineering

Of the 93 patient parameters, four categorical parameters (sex, ethnicity, PAH subgroup and presence of

pericardial effusion) were one-hot-encoded (i.e. coding categorical variables as binary vectors) [13] to

arrive at a dataset with 167 observations and 104 features.

The dataset had 863 (<5% of total data matrix) missing values. For continuous variables that were

distributed normally, each missing value was replaced with the feature mean. For categorical variables or

continuous variables that were not distributed normally, the missing values were replaced with the feature

mode.

To reduce the dimension of the original dataset, we performed recursive feature elimination (RFE) (10 000

trees trained at each iteration; each tree is allowed four decision splits; 3% of the least important features

are removed at each iteration), as described in [14] (using Matlab 2020b, Mathworks). The variable set

producing the lowest out-of-bag classification error [15] contained 23 features, which was too high for a

predictive model with 167 observations. Therefore, we allowed the RFE algorithm to run until <10 features

remained, thus producing a final data matrix with nine features.

Developing the final predictive model and validation

A final random forest model (with 10 000 trees based on plateaued out-of-bag classification error; each tree

was allowed to grow to a maximum depth of four generations) was trained on 80% of the observations,

with 20% withheld for (internal) validation (using “sklearn” library [13] in Python 3.9.6). An additional

external validation cohort of 38 PAH patients from the University of Sheffield, collected from the

Sheffield Pulmonary Vascular Disease Unit between 2008 and 2014, was also utilised to assess model

performance. Therefore, the results of this study reference the internal validation cohort (20% of the

Stanford cohort (table 1), withheld for testing) and the external validation cohort (the Sheffield cohort;

supplementary material O2, trained on 100% of the Stanford patients).

Because the overall objective of this study was to showcase model interpretability, and there is no point in

interpreting a model that is not sufficiently accurate, we compare the performance of the final trained

random forest model against the REVEAL 2.0 calculator [6] as a standard for sufficient model accuracy.

All sensitivity/specificity values reported in the manuscript were computed by generating a receiver

operating curve (ROC) for computed probability values (when evaluating the random forest model) or

REVEAL 2.0 risk score.
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Random forest model interpretability

In 1951, Lloyd Shapley built on the concept of game theory by deriving an equation for the marginal

contribution of a single player in a cooperative game [16], which won him the Nobel Prize in economics.

The Shapley value is computed for each player in a cooperative game to fairly determine the marginal

contribution of that player, which, through interaction between players, might be different from the player’s

individual score. This concept has been expanded to “explain” the marginal contribution of each feature in

multivariate tree-based machine-learning models [12], which allows for both global (how input features

rank and contribute to the overall model prediction) and local (how input features rank and contribute to an

individual model prediction) interpretability of feature contribution and interaction.

SHAP values and the reported plots that use them were computed using the TreeExplainer SHAP package

in Python [12]. Even though the direct computation of Shapley values would be too computationally

expensive, especially as the number of considered features would be increased, the computational pipeline

outlined [12] is fast for even high-dimensional problems, and guarantees “local accuracy” and

“consistency” [17]. Global model structure was explored using violin plots. Local model interpretability

(defined as the degree that a human can understand the cause of a model’s decision), used to understand

the model prediction for a specific patient, was assessed using violin plots and decision plots.

Results

Random forest model of risk (a case study)

After performing RFE, the final model consisted of nine features: 1) 6-min walk distance (6MWD);

2) diffusing capacity of the lung for carbon monoxide; 3) N-terminal pro-brain natriuretic peptide
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FIGURE 1 a) An outline of all biomarkers considered; b) volcano plot showing all circulating proteins considered with fold change (concentration in

high-risk patients/concentration in low-risk patients) in high 4-year risk, relative to low 4-year risk. Proteins in red and blue represent those that

were statistically higher or lower (p<0.05), respectively, and with a |foldchange| >1. PH: pulmonary hypertension; 6MWD: 6-min walk distance;

NYHA: New York Heart Association; NT-proBNP: N-terminal pro-brain natriuretic peptide; WBC: white blood cells; lymph: lymphocytes; abs:

absolute; mono: monocytes; neut: neutrophils; baso: basophils; eos: eosinophils; FVC: forced vital capacity; FEV1; forced expiratory volume in 1 s;

TLC: total lung capacity; DLCO: diffusing capacity of the lung for carbon monoxide; DLCO haemo: DLCO adjusted for haemoglobin during pulmonary

function testing; RVFAC: residual volume fractional area change at transthoracic echocardiogram (TTE); TAPSE: tricuspid annular plane systolic

excursion; RVPsys_fTR: right ventricle (RV) systolic pressure computed from tricuspid regurgitation; RVOT_VTI: RV outflow tract velocity time integral

at TTE; sPAP: systolic pulmonary arterial pressure; dPAP: diastolic pulmonary arterial pressure; mPAP: mean pulmonary arterial pressure; RAP: right

atrial pressure; PCWP: pulmonary capillary wedge pressure; RVEDP: RV end-diastolic pressure; HR: heart rate; CO: cardiac output; PVR: pulmonary

vascular resistance; BSA: body surface area; SVR: systemic vascular resistance.
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(NT-proBNP); 4) lymphocytes (%); 5) lymphocytes (absolute); 6) interleukin (IL)-9; 7) IL-2; 8) stem cell

factor; and 9) hepatocyte growth factor, which all had significantly different means between high-risk and

low-risk patients (figure 2; all variables defined in table 2). The area under the ROC curve (AUC) shown

in figure 2 revealed that all nine markers fairly discriminated high-risk versus low-risk patients, but the

discrimination accuracy is considerably improved by combining all nine into a multivariate model (figure 3).

It is critical to note that we are not suggesting that these nine features be clinically utilised based on this

relatively small patient cohort. Although we are encouraged by the fact that our RFE algorithm identified

markers commonly accepted as prognostic, these metrics would need to be validated in larger prospective

studies. An expanded discussion of these results is available in supplementary material O1.

For the internal validation cohort (figure 3b), the random forest model accurately predicted 15 out of 17

patients as high risk. The model’s computed probability of 4-year all-cause mortality risk in the internal

TABLE 2 Table of variables used in this study

Description Units

Age years
6MWD 6-min walk distance m
MSWT Modified shuttle-walk test distance m
e6MWD Estimated 6MWD: 0.7225 × MSWT + 70.769 m
NT-proBNP Circulating N-terminal B-type natriuretic peptide pg·mL−1

Creatine Serum creatine concentration pg·mL−1

Glomerular Glomerular filtration rate mL·min−1·1.73m−2

WBC CBC white blood cell count ×103 cells·mm−3

Lymph (abs) CBC differential absolute lymphocytes count ×103 cells·mm−3

Lymph (%) CBC differential percent lymphocytes count among all WBCs %
Mono (abs) CBC differential absolute monocyte count ×103 cells·mm−3

Mono (%) CBC differential percent monocyte count among all WBCs %
Neut (abs) CBC differential absolute neutrophil count ×103 cells·mm−3

Neut (%) CBC differential percent neutrophil count among all WBCs %
Baso (abs) CBC differential absolute basophil count ×103 cells·mm−3

Baso (%) CBC differential percent basophil count among all WBCs %
Eos (abs) CBC differential absolute eosinophil count ×103 cells·mm−3

Eos (%) CBC differential percent eosinophil count among all WBCs %
FVC Forced vital capacity during PFT %
FEV1 Forced expiratory volume in 1 s during PFT %
TLC Total lung capacity during PFT within %
DLCO Diffusion capacity of the lung for carbon monoxide during PFT %
DLCO haemo DLCO adjusted for haemoglobin during PFT %
Effusion Pericardial effusion observed at TTE mm
RVFAC RV fractional area change at TTE %
TAPSE Tricuspid annular plane systolic excursion cm
RVPsys_fTR RV systolic pressure computed from tricuspid regurgitation mmHg
RVOT_VTI RV outflow tract velocity time integral at TTE cm·s−1

sPAP Systolic pulmonary arterial pressure mmHg
dPAP Diastolic pulmonary arterial pressure mmHg
mPAP Mean pulmonary arterial pressure mmHg
RAP Right atrial pressure mmHg
PCWP Pulmonary capillary wedge pressure mmHg
RVEDP RV end-diastolic pressure mmHg
HR Heart rate beats·min−1

CO Cardiac output mL·s−1

PVR Pulmonary vascular resistance Wood units
BSA Body surface area m2

SVR-index Systemic vascular resistance index (Wood units2)·m−2

Compliance (sPAP−dPAP)/stroke volume mmHg·mL−1

HGF Hepatocyte growth factor AU
SCF Stem cell factor AU
IL-2 Interleukin 2 AU
IL-9 Interleukin 9 AU

Abs: absolute value; CBC: complete blood count; PFT: pulmonary function test within 3 months; TTE:
transthoracic echocardiogram; RV: right ventricle; AU: arbitrary units.
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validation cohort produced an AUC of 0.94 (95% CI 0.79–1.00), with a sensitivity and specificity of the

random forest model of 1.00 and 0.89, respectively (figure 3c). Pointwise confidence intervals on the

sensitivity were computed using vertical averaging from 1000 sampled bootstrap replicas. For the external

validation cohort, which used an estimate of the 6MWD and serum NT-proBNP measurements

(supplementary material O2), the model revealed an AUC of 0.81 (95% CI 0.64–0.92) and sensitivity and

specificity of 0.71 and 0.81, respectively (figure 3c).

Global and local interpretability of the random forest model

Given that the random forest model has 10 000 trained decision trees, it’s not possible to intuitively

understand what parameters are driving model prediction and how they influence the overall computed

score, which is referred to as the “global model structure”. While there have been numerous methods

proposed for evaluating global model structure (e.g. ranking feature importance [18]), our approach can

also be applied to an individual patient (described in the next section).

Figure 4 shows a violin summary plot of SHAP values for the training (figure 4a) and internal validation

(figure 4b) datasets. The top three features are the same in both datasets, suggesting a consistent global

model structure between the training and validation cohorts. The features listed are those identified as

“most important” through RFE and ordered along the vertical axis based on global feature importance in

the random forest model. A single dot represents a patient, and the width of the violin is representative of

the number of patients that fall into that region. As an example, based on the limited case study presented

here, the violin plots shown in figure 4 allows us to conclude that a high 6MWD can reduce the
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probability of death in 4 years by up to 20%, but the long tail towards positive SHAP values seen for IL-2

and IL-9 would suggest that, even though they are at the bottom of the global importance plot, these

cytokine levels could be extremely important for certain individuals.

Local interpretability of the trained random forest model for a specific patient

When asking a trained random forest model to make a risk prediction for a new incoming patient, the

algorithm runs that new patient’s data through the 10 000 trees that were generated during the training

process. Each tree classifies the patient as high or low risk, and the algorithm then takes a majority vote to

make its prognosis. The numerical divide of how each tree voted also offers an estimate of probability,

although a calibration plot showed that, for the case study dataset considered here, the model probability

values were overly conservative and unresponsive to Platt’s scaling [19], probably due to a small

validation cohort. Therefore, if a clinician is interested in knowing how each patient measurement

contributed to the risk score, it is not possible for a human to make sense of this prediction from 10 000

decision trees.

Figure 5a shows decision plots for the internal validation cohort with dashed lines representing the two

patients who were incorrectly predicted to have a high 4-year risk of mortality (note that the feature order

is identical to figure 4b). The vertical axis lists the features in order of importance for that specific cohort

of patients, so the order might be different if some patients were removed or if only one patient was being

considered.

Decision plots are used to show how a model (for any individual patient or for combined patients) reaches

the predicted 4-year risk score. All decision tree lines start at the same point (at a risk score of 0.55 in

figure 5a) along the bottom horizontal axis, which represents the baseline predicted score before any of the

features were considered. The SHAP values (i.e. the change in the score in response to a specific feature)

accumulate from the base value to arrive at the random forest model’s final score on the top horizontal axis.
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Case example 1

In figure 5a, we focus on two random patients, indicated by arrows. Both patients had relatively normal

6MWD and NT-proBNP and, therefore, based on the current approach to risk stratification, might be

expected to harbour similar risk profiles. However, patient 1 had abnormally low IL-2 and IL-9 levels

based on comparisons in SWEATT et al. [7] (figure 2), which in spite of normal exercise tolerance and

markers of heart failure, put them firmly in the high-risk group. Alternatively, all nine metrics for patient 2

were in the normal range, thus resulting in assignment to the low-risk group.

Figure 5b shows a decision tree for the internal validation cohort that considers the cumulative effect of

first-order interactions between the features. Here we see that interactions can certainly drive the final risk

score for some patients, but are all ranked as the “least important” features for the model output when the

entire internal validation cohort is considered. For this reason, and because considering interactions

significantly complicate the interpretability of the final model, we omit them for single-patient analysis in

figure 6.

Case example 2

Figure 6a and b shows decision plots for two randomly selected patients from the internal validation

cohort. Here we see that both patients were assigned a New York Heart Association functional class

(NYHA-FC) of 1 with a similar REVEAL 2.0 risk score, but patient 1 had a mortality event within 4 years

of study enrolment. The random forest model trained in this case study accurately predicted patient 1 to be

in the high-risk group, driven primarily by circulating levels of IL-2 and IL-9, despite low-risk 6MWD and

NT-proBNP. The profile for patient 2 included all nine markers within the low-risk range, corresponding to

correct assignment to the low-risk group.

Discussion

Prior reports using trained machine learning models (e.g. random forest models) in PAH have been

effective for identifying biomarkers that contribute to risk estimation across patient cohorts [20–22].

However, these algorithms produce a single classification or score when asked to make a prediction for a

specific patient, so the clinician might be hesitant to make treatment decisions based on “black box”

predictions. Therefore, if the clinician can interact with the algorithm and ranking of the parameters in the

final decision is graphically presented (using decision plots), that clinician would be better suited to

generate a treatment strategy based on the algorithm’s assessment or possibly overrule the algorithm based

on their own clinical intuition.

In this paper, we use a case study to introduce a platform that generates a graphical explanation of the

random forest model’s prognosis for an individual PAH patient (a step towards personalised medicine).

Because the cohort available for our case study had a limited number of patients for model training, we

utilised RFE to reduce the 93 available patient measurements to nine. We then showed in two validation
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growth factor; SCF: stem cell factor; lymph: lymphocytes; abs: absolute; IL: interleukin; DLCO: diffusing capacity

of the lung for carbon monoxide.

https://doi.org/10.1183/23120541.00484-2022 9

ERJ OPEN RESEARCH ORIGINAL RESEARCH ARTICLE | V.O. KHEYFETS ET AL.



cohorts that our random forest model’s accuracy was comparable to the REVEAL 2.0 calculator (an

expanded discussion on comparing against the REVEAL 2.0 calculator is available in supplementary

material O3).

Global interpretability studies showed that the general structure of the trained random forest model heavily

skewed towards known prognostic markers of PAH (e.g. exercise tolerance and heart failure). However, the

violin plots for most of the circulating inflammatory markers in figure 4 had long tails, suggesting that

they could also be a major driver of the prognostic score for some patients. This is confirmed by decision

plots for the entire internal validation cohort (figure 5), which showed that, consistent with multiple prior

studies [10, 11, 23, 24], inflammatory markers and their occasional interaction with other metrics can

heavily influence the prognosis. This is also seen when looking at individual decision plots from randomly

selected patients in figure 6. As an example, patient 1 was placed in a low-risk category based on

NYHA-FC and REVEAL 2.0 score, which don’t consider biomarkers of inflammation. However, the

random forest model (trained with circulating markers of inflammation) correctly classified this patient as

high risk and the decision plot shows that it was the decreased levels of circulating cytokines that drove

that prognosis. Interestingly, both IL-2 and many other inflammatory cytokines are known to be

upregulated in PAH patients, relative to controls [7, 25–27], but are reduced in PAH patients with poor

survival. This would suggest that the presence of these markers could be protective and that the time

course of cytokine levels is itself prognostic, but this would need to be explored in future studies.

A major limitation of the current study was the relatively modest cohort available for model training and

(internal and external) validation. This also prevented us from evaluating whether our model was

sufficiently calibrated, because calibration curves require a large number of samples [28]. Future studies

will re-evaluate our results in a larger cohort, but here we focused on showcasing the computational

pipeline for doctor–algorithm interaction.

The external validation utilised in our study offers both a strength and a weakness. Even though 6MWD

was estimated from modified shuttle-walk test distance and NT-proBNP was measured in serum, we were

encouraged to find that the model still performed reasonably well. However, this inconsistency required us

to focus on an internal validation dataset within the main manuscript, which can suffer from the same

confounding biases as the training cohort and present an overinflated view of model performance.

Conclusion

In this study, we present a novel computational pipeline for clinician–algorithm interaction in PAH risk

assessment using a case study of prospectively analysed patients. This approach can be expanded to

consider hundreds and even thousands of patient measurements, thus introducing a critical step towards

implementing big data and artificial intelligence into clinical decision-making and entering the era of

personalised medicine.
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