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Abstract Estimating the probability that a sum of random variables (RVs)
exceeds a given threshold is a well-known challenging problem. A naive Monte
Carlo (MC) simulation is the standard technique for the estimation of this type
of probability. However, this approach is computationally expensive, especially
when dealing with rare events. An alternative approach is represented by the
use of variance reduction techniques, known for their efficiency in requiring
less computations for achieving the same accuracy requirement. Most of these
methods have thus far been proposed to deal with specific settings under which
the RVs belong to particular classes of distributions. In this paper, we propose
a generalization of the well-known hazard rate twisting Importance Sampling
based approach that presents the advantage of being logarithmic efficient for
arbitrary sums of RVs. The wide scope of applicability of the proposed method
is mainly due to our particular way of selecting the twisting parameter. It is
worth observing that this interesting feature is rarely satisfied by variance
reduction algorithms whose performances were only proven under some re-
strictive assumptions. It comes along with a good efficiency, illustrated by
some selected simulation results comparing the performance of the proposed
method with some existing techniques.
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1 Introduction

The problem of estimating the probability that a sum of random variables
(RVs) exceeds a certain threshold is often encountered in various fields such
as in the performance analysis of wireless communication systems (Simon and
Alouini 2004), in queuing systems and insurance risk (Asmussen and Kroese
2006). For instance, a sum of RVs might represent the total co-channel inter-
ference power from all the transmissions in neighboring cells (Stüber 2001).
Evaluating the probability that this sum exceeds a sufficiently large threshold
is a question of major interest and can help in predicting the occurrence of out-
age events. A second application of our problem can be motivated by the field
of insurance risk and concerns the case of an insurance company aiming to eval-
uate the probability that the total number of claims, modeled by the sums of
independent RVs, exceed a large threshold (Asmussen and Glynn 2007). This
question is very important as measuring this probability tells about the risk of
undergoing a large loss. Unfortunately, closed-form expressions of most of the
challenging sum distributions are generally intractable and unknown. This is
for instance the case of the Log-normal and the Weibull RVs, which are fre-
quently encountered in various applications of digital communications (Stüber
2001; Ghavami et al. 2004; Navidpour et al. 2007; Sagias and Karagiannidis
2005; Babich and Lombardi 2000; Healey et al. 2000). In order to tackle this
issue, several analytical approaches, which consists in determining accurate
closed-form approximations, approaching the distribution of the sum of these
RVs were proposed (Fenton 1960; Schwartz and Yeh 1982; Beaulieu and Xie
2004; Beaulieu and Rajwani 2004; Filho and Yacoub 2006; Hu and Beaulieu
2005; Yilmaz and Alouini 2009). However, these analytical approaches present
the inconvenience of being specific to the problem under study, thereby lim-
iting their practical interest. An alternative to these analytical methods is
constituted by the class of Monte Carlo (MC) methods.

The naive MC simulation is the standard technique to estimate the proba-
bility that a sum of RVs exceeds a given threshold. However, this approach re-
quires substantial computational simulations, especially when extremely small
probabilities are considered. To fill these gaps, variance reduction techniques
constitute an alternative approach that helps improve the computational effi-
ciency of the naive MC simulation (Bucklew 2004). Many research efforts have
been carried out to propose efficient variance reduction algorithms to efficiently
estimate the probability of interest. The exponential twisting technique, de-
rived from the large deviation theory, is among the well-known Importance
Sampling (IS) approach that was shown to exhibit a good efficiency for prob-
lems involving a sum of light-tailed distributions (Sadowsky and Bucklew 1990;
Sadowsky 1993). For instance, it was applied to estimate the bit error rate of
direct-detection optical systems employing avalanche photodiode receivers in
Ben Letaief (1995).

However, the scope of applicability of the exponential twisting is limited
to that of distributions with finite moment generating function (MGF). Thus,
in the heavy-tailed setting where the MGF is infinite, this approach is not



3

applicable. A lot of research efforts have been devoted to develop efficient
algorithms, when the underlying distributions are heavy-tailed. Of valuable
interest are for instance the works developed in Asmussen and Kroese (2006);
Dupuis et al. (2007); Juneja (2007); Juneja and Shahabuddin (2002); Blanchet
and Liu (2008); Kroese and Rubinstein (2004); Rubinstein and Kroese (2004);
Asmussen and Kortschak (2015). In effect, the work of Asmussen and Kroese
(2006) was the first to propose an estimator with bounded relative error un-
der distributions with regularly varying tails. This method was based on the
use of the conditional MC technique and dealt with sums of independent and
identically distributed (i.i.d) RVs. The authors in Hartinger and Kortschak
(2009) have then extended the result that the estimator of Asmussen and
Kroese (2006) has bounded relative error (or even a stronger criterion, namely
the asymptotically vanishing relative error property) to a boarder class of
sums distributions such as the sum of standard Log-normal and the sum of
Weibull (with an assumption on the shape parameter) RVs. The work of As-
mussen and Kroese (2006) was also generalized in Chan and Kroese (2011)
to the independent and not identically distributed case but its efficiency was
only proven under the setting of Pareto-distributed RVs. An alternative exten-
sion of the work of Asmussen and Kroese (2006) to the independent and not
identically distributed setting was developed in Nandayapa (2008) where the
proposed estimator was shown to possess the bounded relative error property
for Log-normal and regularly varying distributions. In addition to methods
based on the artifice of conditional MC, we distinguish the dynamic IS scheme
of Dupuis et al. (2007) whose efficiency was proven only for regularly varying
distributions and that of Juneja (2007) which lies in the intersection of IS
and conditional MC techniques. While based on different approaches, all these
works present the common denominator of being specific to particular settings.
It is thus not clear whether these methods will keep the same performances
when applied to other scenarios which does not fall within their original scope
of applicability. This constitutes the major motivation behind our work. In
fact, we propose in this paper to generalize the hazard rate twisting IS-based
approach of Juneja and Shahabuddin (2002), which was originally developed
to estimate the probability that a sum of i.i.d RVs with subexponential decay
exceeds a certain threshold, to the problem of estimating the probability that
a sum of independent but not necessarily identically distributed arbitrary RVs
exceeds a given threshold. Unlike most of the variance reduction techniques,
we do not require any assumption on the RVs. To the best of our knowledge,
this is a major finding in the context of variance reduction techniques for the
following main reasons:

– As mentioned above, efficiency results of most the existing algorithms have
often been derived under the assumption that the underlying RVs are
drawn from a particular set of distributions. This lies behind the main
motivation of our work where we consider the problem of arbitrary sums
of RVs regardless their signs or the nature of their tails.
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– We establish a powerful result, in that the logarithmic efficiency of the
proposed method holds for any arbitrary RVs. This includes, for instance,
the interesting cases of summations containing a mixture of heavy and light
tailed distributions or also those involving light-tailed distributions whose
MGFs are not known to possess closed-forms.

– The wide scope of applicability of the proposed approach lies principally to
our particular way of selecting the twisting parameter. In fact, we propose
a minmax approach yielding a closed-form expression of this parameter
that guarantee the logarithmic efficiency for problems involving arbitrary
sums of variates. Moreover, a detailed study of the minmax formula is
also conducted for sums of positive distributions having eventually concave
hazard functions. A non exhaustive list of these distributions includes for
instance the Log-normal and the Weibull (with shape parameter less than
1) variates.

Note that a similar approach has been developed in Ben Rached et al. (2015b)
for a specific class of distributions. However, this does not affect the contri-
bution made in the present work as we tackle the most general framework
involving a sum of arbitrary RVs without any restriction on either their signs
or their tails.

The rest of the paper is organized as follows. In section 2, we state the
problem setting. In Section 3, the generalization of the hazard rate twisting
technique is presented and the main result proving the logarithmic efficiency
criterion is stated in Theorem 1. In the same section, a case study is analysed
with details. Finally, some selected simulation results are shown in Section 4
to assess the performance of the proposed IS scheme.

2 Problem Setting

Let X1, X2, ..., XN be a sequence of independent but not necessarily identi-
cally distributed continuous RVs. Let us denote the probability density func-
tion (PDF) of each Xi by fi(·), i = 1, 2, ..., N . Our objective is to efficiently
estimate:

α = P

(
N∑
i=1

Xi > γth

)
= P (SN > γth) , (1)

for a sufficiently large threshold γth. The standard technique to estimate α is
to use the naive MC estimator defined as:

α̂MC =
1

M

M∑
j=1

1(SN (ωj)>γth), (2)

where M is the number of simulation runs and 1(·) defines the indicator func-

tion. {SN (ωj)}Mj=1 represent independent realizations of the RV SN =
∑N
i=1Xi

where for each realization, j = 1, 2, ...,M , the sequence X1(ωj), ..., XN (ωj) are
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sampled independently according to the distributions fi(·), i = 1, 2, ..., N , re-
spectively. It is widely known that the naive MC simulation is expensive for
the estimation of rare events. In fact, from the Central Limit Theorem, it can
be shown that the naive MC estimation with 10% relative error requires more
than 100/α simulation runs. For instance, the number of samples to estimate a
probability of order 10−9 should be more than 1011, with an accuracy require-
ment of 90%. This has triggered the need for alternative methods to naive MC
simulations with improved computational efficiency.

IS is a variance reduction technique which aims to increase the compu-
tational efficiency of the naive MC simulation (Bucklew 2004). The general
concept of IS is to construct an unbiased estimator of the desired probability
with much smaller variance than the naive estimator. In fact, this technique is
based on performing a suitable change of the sampling distribution as follows

α =

∫
RN

1(SN>γth)

N∏
i=1

fi(xi)dx1dx2...dxN

=

∫
RN

1(SN>γth)L (x1, x2, ..., xN )

N∏
i=1

gi(xi)dx1dx2...dxN

= Ep∗
[
1(SN>γth)L (X1, X2, ..., XN )

]
, (3)

where the expectation is taken with respect to the new probability measure p∗

under which the PDF of each Xi is gi(·), i = 1, 2, ..., N , and L is the likelihood
ratio defined as

L (X1, X2, ..., XN ) =

N∏
i=1

fi(Xi)

gi(Xi)
. (4)

The rationale behind this change of measure is to enhance sampling of im-
portant values which have more impact on the desired probability. Hence,
emphasizing that important values are sampled frequently will result in a de-
crease of the variance of the IS estimator. The new IS estimator is defined
as

α̂IS =
1

M

M∑
j=1

1(SN (ωj)>γth)L(X1(ωj), ..., XN (ωj)). (5)

whereX1(ωj), X2(ωj), ..., XN (ωj) are sampled, for each realization j = 1, ...,M ,
independently according to the new sampling distributions whose PDFs are
gi(·), i = 1, 2, ..., N , respectively.

Generally, it is not obvious how to construct a new probability measure
which results in a decrease of the variance of the IS estimator and hence an
improvement of the computational efficiency. Besides, in order to evaluate
the efficiency of the proposed approach, a criterion is required to be defined.
Several criteria have been used in the literature, among which we distinguish
the bounded relative error property (Asmussen and Kroese 2006; Juneja 2007)
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and the logarithmic efficiency property (Asmussen and Kroese 2006; Juneja
and Shahabuddin 2002). In practice, it is difficult to achieve the bounded
relative error property. This has lead researchers to often settle for estimators
satisfying weaker properties such as the logarithmic efficiency criterion. Let us
consider the RV Tγth defined as

Tγth = 1(SN>γth)L (X1, ..., XN ) . (6)

From the non-negativity of the variance of Tγth , we get

Ep∗
[
T 2
γth

]
≥ (P(SN > γth))2 = α2. (7)

Applying the Logarithm on both side and using the fact that log (α) < 0, we
conclude that, for all p∗, we have

log
(
Ep∗

[
T 2
γth

])
log (α)

≤ 2. (8)

Hence, we say that α is logarithmically efficiently estimated under the proba-
bility measure p∗ if the above equation holds with equality as γth → +∞, that
is

lim
γth→∞

log
(
Ep∗

[
T 2
γth

])
log (α)

= 2. (9)

It is worth mentioning that the naive MC simulation is not logarithmically
efficient for the estimation of α since, in this case, the limit in (9) is equal to
1.

The exponential twisting technique, which is derived from the large devia-
tion theory, is the main IS framework dealing with light-tailed distributions (a
RV X is said to have a light-tailed distribution if its MGF MX(θ) is finite for
some θ > 0, see Kroese et al. (2011)). The exponential twisting by an amount
θ ≥ 0 is given by

gi (x) , fi,θ(x) =
fi(x) exp(θx)

MXi(θ)
, (10)

where MXi(θ) denotes the MGF of the RV Xi, i = 1, 2, ..., N . In most of the
cases, this technique achieves optimal efficiency results (Asmussen and Glynn
2007; Sadowsky and Bucklew 1990; Sadowsky 1993).

In the case when the sequence X1, X2, ..., XN contains some heavy-tailed
components, the exponential twisting change of measure is not feasible and
alternative techniques are needed, the MGFs being infinite for distributions
with heavy tails. In Juneja and Shahabuddin (2002), an efficient hazard rate
twisting IS-based approach was developed for the estimation of α in the case
of i.i.d sum of RVs with subexponential decay. We define the hazard rate λi(·)
associated to the RV Xi as:

λi(x) =
fi(x)

1− Fi(x)
, (11)
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where Fi(·) is the cumulative distribution function (CDF) of Xi , i = 1, ..., N .
Besides, we define also the hazard function as:

Λi(x) = − log (1− Fi(x)) . (12)

From (11) and (12), the PDF of Xi is related to the hazard rate and the hazard
function as:

fi(x) = λi(x) exp (−Λi(x)) . (13)

The change of probability measure is obtained by twisting the hazard rate of
the underlying distribution by a quantity 0 ≤ θ < 1 as follows:

gi(x) , fi,θ(x) = (1− θ)λi(x) exp (− (1− θ)Λi(x))

= (1− θ) fi(x) exp (θΛi (x)) . (14)

Consequently, the RV Tγth has the following expression:

Tγth =
1

(1− θ)N
exp

(
−θ

N∑
i=1

Λi(Xi)

)
1(SN>γth). (15)

The above hazard rate twisting change of measure was shown in Juneja and
Shahabuddin (2002) to achieve the logarithmic efficiency property with θ =
1−b/Λ(γth), where b is any positive constant, for problems involving i.i.d sums
of subexponential non-negative variates. In this work, we propose to extend
the result that the hazard rate twisting technique possess the logarithmic ef-
ficiency criterion to the general framework of sums involving independent but
not necessarily identically distributed arbitrary RVs. This generalized result is
mainly due to our particular choice of the twisting parameter θ via a minmax
approach which will be described in the next section. It is worth recalling that
our main objective is to propose a generic IS approach that could be applicable
to arbitrary sums of RVs. We do not claim that our approach would outper-
form any other existing method in the literature. For instance, the exponential
twisting technique is likely to outperform our method in the light-tail setting.
However this does not call into question the worthiness of our technique, as it
is capable to address a large scope of scenarios, not necessarily covered by the
exponential twisting technique.

Note that the expectation under the probability measure p∗, that is Ep∗ [·],
will be re-denoted by Eθ [·] in the rest of this work.

3 Proposed Hazard Rate Twisting Approach

3.1 Minmax Approach

In this subsection, we present the minmax procedure for the determination
of the twisting parameter. The minmax choice of θ is divided into two steps.
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In the first step, we construct an upper bound of the second moment of Tγth
which is achieved by solving the following maximization problem (P):

(P ) : max
X1,...,XN

L(X1, X2, ..., XN )

Subject to

N∑
i=1

Xi ≥ γth, (16)

where the likelihood ratio is given by (4) and (14) as follows

L(X1, X2, ..., XN ) =
1

(1− θ)N
exp

(
−θ

N∑
i=1

Λi(Xi)

)
. (17)

Hence, solving the problem (P ) is equivalent to solving the following mini-
mization problem (P ′):

(P ′) : min
X1,...,XN

N∑
i=1

Λi(Xi)

Subject to

N∑
i=1

Xi ≥ γth. (18)

Let us denote the optimal solution of (P ) by X∗1 (γth), X∗2 (γth), ..., X∗N (γth).
Then, we have:

Eθ
[
T 2
γth

]
= Eθ

[
L2 (X1, X2, ..., XN )1(SN>γth)

]
≤ 1

(1− θ)2N
exp

(
−2θ

N∑
i=1

Λi(X
∗
i (γth))

)
. (19)

The second step is to minimize (19) to get the optimal twisting parameter θ∗.
The resulting minimization problem is simple and leads to:

θ∗ = 1− N
N∑
i=1

Λi(X∗i (γth))

. (20)

Remark 1 Since the hazard functions Λi(·) are increasing functions, the
inequality constraint is actually satisfied with equality

N∑
i=1

X∗i (γth) = γth. (21)

The value of the twisting given in (20) represents the minmax optimal
choice among all values of θ, and for all threshold values. The newly derived
closed-form expression (20) will ensure, as we will see in the following sub-
section, that the logarithmic efficiency criterion holds for arbitrary sums of
independent and not necessarily identically distributed RVs.
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3.2 Logarithmic Efficiency Criterion

This section is devoted to the proof of our main result. In particular, we
prove that by using the twisting parameter θ∗ given in (20), the logarithmic
efficiency of the corresponding estimator holds for any arbitrary sums of RVs.
Our main result is based on a careful investigation of the behaviour of the
solution to the minimization problem (P

′
). Prior to stating the main theorem,

the following lemma is required:

Lemma 1 Let A(γth) =
N∑
i=1

Λi(X
∗
i (γth)). Then, we have

lim
γth→+∞

A(γth) = +∞. (22)

Proof From the inequality constraint of the minimization problem (P’), we
have

∩Ni=1 {Xi ≥ X∗i (γth)} ⊂

{
N∑
i=1

Xi ≥ γth

}
. (23)

Using the independence of X1, X2, ..., XN , we get

N∏
i=1

P (Xi ≥ X∗i (γth)) ≤ α.

Hence, upon applying the Logarithm function of both sides, it follows that

A (γth) ≥ − log (α) . (24)

Finally, since α→ 0 as γth → +∞, the proof is concluded.

The convergence result in Lemma 1 represents the key ingredient that
underlies the proof of our main result. With Lemma 1 at hand, we prove the
following theorem:

Theorem 1 For any arbitrary independent sum of RVs, the quantity of in-
terest α is logarithmically efficiently estimated using the hazard rate twisting
IS-based approach with the minmax optimal parameter θ∗ given in (20).

Proof By replacing the expression of the minmax optimal twisting parameter
(20) into (19), we get

Eθ∗
[
T 2
γth

]
≤
(
A(γth)

N

)2N

exp (2N − 2A(γth)) . (25)

Taking the Logarithm of both sides of the above inequality, we get:

log
(
Eθ∗

[
T 2
γth

])
≤ 2N

(
1 + log

(
A(γth)

N

))
− 2A(γth). (26)
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Now, combining (24) and (26) and using the fact that the right-hand side of
(26) is negative for a sufficiently large γth (this follows from Lemma 1), we get

log
(
Eθ∗

[
T 2
γth

])
log (α)

≥
2N
(

1 + log
(
A(γth)
N

))
− 2A(γth)

−A(γth)
. (27)

Finally, resorting again to the result of Lemma 1, we obtain:

lim
γth→+∞

log
(
Eθ∗

[
T 2
γth

])
log (α)

≥ 2. (28)

Hence, from (8), the logarithmic efficiency (9) holds thereby ending the proof.

3.3 Case Study

Theorem 1 establishes the logarithmic efficiency criterion of the proposed IS
estimator which uses θ∗ as the twisting parameter. While the logarithmic
efficiency holds for arbitrary sums of RVs, achieving this criterion requires
solving the optimization problem (P ′). This step strongly depends on the
nature of the underlying distribution and thus has to be studied on a case by
case basis. For instance, the case of distributions with convex hazard functions
including Weibull RVs with shape parameter greater than 1 can be handled
using convex optimization algorithms (Boyd and Vandenberghe 2004). If the
convexity of the hazard functions is not satisfied, one can opt for standard
numerical optimization methods which might produce local optimal solutions.
In order to avoid such situations, some additional results serving to approach
the solutions of problem (P ′) can be of fundamental practical interest. This
is the main objective of this section. In particular, we will consider positive
RVs with continuous PDFs belonging to the same family of distributions (for
instance a sum of Weibull RVs with different shape and scale parameters)
with hazard functions being eventually concave, i.e, satisfying the following
condition:

∃ηi such that Λi(·) is concave in [ηi,+∞), i ∈ {1, 2, ..., N}. (29)

Several commonly used distributions satisfy (29) including the Log-normal RV
(Jelenkovic and Momcilovic 2002). Moreover, through a simple computation,
we can show that the hazard functions of the Weibull (with shape parameter
less than 1) and the Pareto distributions are concave on the whole interval
[0,+∞) and hence (29) is in particular satisfied. A similar result is satisfied by
the Gamma RV with shape parameter less than 1 (Albert W. Marshall 2007).
Note in passing that in this case, problem (P

′
) turns out to be a concave

minimization problem. The minimum can be thus analytically characterized
as one of the extreme points of the domain of (P

′
). While a similar analytical

characterization seems to be out of reach when (29) is strictly satisfied (one
of the ηi is strictly positive), the eventually concavity behaviour of Λi(·) can
help find a close point to the optimal solution for large threshold values. This
is the objective of the following Lemma:
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Lemma 2 Under (29), there exists a fixed index i0 ∈ {1, 2, ..., N} such that
a global minimizer of (P ′) satisfies for a sufficiently large γth

γth−
∑
i 6=i0

ηi ≤ X∗i0(γth) ≤ γth, (30)

X∗i (γth) ≤ ηi, for all i 6= i0, (31)

and hence as γth → +∞, we have

X∗i0 ∼+∞ γth, as γth →∞, (32)

X∗i = O(1), for all i 6= i0. (33)

Proof Let us consider S(N, γth) the set of all feasible solutions:

S(N, γth) = {X = (X1, X2, ..., XN ) ∈ (R+)N ,

N∑
i=1

Xi = γth}. (34)

Through the use of (29), the objective function of (P ′) is concave on the subset:

S̃(N, γth) = {X = (X1, X2, ..., XN ) ∈ (R+)N ,

N∑
i=1

Xi = γth,

Xi ≥ ηi, for each i ∈ {1, 2, ..., N}}. (35)

Thus, the minimum of the objective function of (P ′) over S̃(N, γth) is achieved
in at least one of its extreme points. More precisely, the extreme points of
S̃(N, γth) are e1, ..., eN such that ei = (η1, ..., ηi−1, γth−

∑
j 6=i ηj , ηi+1, ..., ηN ).

Therefore the minimum of (P ′) over S(N, γth) is either achieved in one of the
extreme points ei, i = 1, 2, ..., N , or on the set

S̄(N, γth) = S(N, γth)\S̃(N, γth)

= {X = (X1, X2, ..., XN ) ∈ (R+)N ,

N∑
i=1

Xi = γth,

∃i such that Xi < ηi}. (36)

In both cases, there exists at least one index i ∈ {1, 2..., N} such thatX∗i (γth) ≤
ηi. In addition, in order to satisfy the equality constraint

∑N
i=1X

∗
i (γth) = γth

for a sufficiently large γth, there should exist an index j ∈ {1, 2, ..., N} such
that X∗j (γth) ≥ ηj . In order to prove the result in Lemma 2, we proceed iter-
atively by dimension reduction. In fact, without loss of generality, we assume
that X∗N (γth) ≤ ηN (through an index permutation). It follows that

min
S(N,γth)

N∑
i=1

Λi(Xi) = min
XN≤ηN

min
S(N−1,γth,N−1)

N∑
i=1

Λi(Xi), (37)
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where γth,N−1 = γth −XN . Hence, we get

min
S(N,γth)

N∑
i=1

Λi(Xi) = ΛN (X∗N (γth))

+ min
S(N−1,γ∗th,N−1)

N−1∑
i=1

Λi(Xi), (38)

Consequently, we can see that we have reduced the number of optimization
variables to beN−1, while we have kept the same structure of the minimization
problem (P ′) with γ∗th,N−1 = γth − X∗N (γth). Hence the previous procedure
could be repeated again. In fact, using the same argument as before, there
exists another index i ∈ {1, 2, ..., N − 1} such that X∗i (γth) ≤ ηi. Without loss
of generality, we assume that i = N − 1 which leads to

min
S(N,γth)

N∑
i=1

Λi(Xi) = ΛN (X∗N (γth)) + ΛN−1(X∗N−1(γth))

+ min
S(N−2,γ∗th,N−2)

N−2∑
i=1

Λi(Xi), (39)

where γ∗th,N−2 = γth −X∗N (γth)−X∗N−1(γth). After N − 2 steps, we get

min
S(N,γth)

N∑
i=1

Λi(Xi) =

N−2∑
i=1

ΛN+1−i(X
∗
N+1−i(γth))

+ min
S(2,γ∗th,2)

2∑
i=1

Λi(Xi), (40)

with X∗i (γth) ≤ ηi, for i = 3, 4, ..., N , and γ∗th,2 = γth −
∑N
i=3X

∗
i (γth). Thus,

we end up with a two dimensional minimization problem. Again, there should
exist an index i = 2 (through a possible permutation) such that X∗2 (γth) ≤ η2.

Therefore, using the equality constraint
∑N
i=1X

∗
i (γth) = γth, we get

X∗i (γth) ≤ ηi, i = 2, 3, ..., N, (41)

γ∗th,2 − η2 ≤ X∗1 (γth) ≤ γ∗th,2. (42)

The previous result follows also from the non-negativity of X1, X2, ..., XN .
Hence, it follows that

γth −
N∑
i=2

ηi ≤ X∗1 (γth) ≤ γth. (43)

Thus, as γth goes to infinity, and using the fact that ηi, i = 2, 3, ..., N are
independent of γth, we have

X∗1 (γth) ∼
+∞

γth (44)

X∗i (γth) = O(1), ∀i ∈ {2, 3, ..., N}. (45)
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It is important to note that in the particular i.i.d case, the index i0 could be
any index in {1, 2, ..., N}. A direct consequence of Lemma 2 is presented in
the following lemma.

Lemma 3 Under (29), the objective function of (P ′) has the following
asymptotic behaviour

N∑
i=1

Λi(X
∗
i (γth)) ∼

+∞
Λi0(γth), as γth → +∞. (46)

Proof Using Lemma 2 and the fact that Λi0(γth) tends to infinity as γth →
+∞, we have

Λi(X
∗
i (γth))

Λi0(γth)
→ 0 as γth → +∞, for all i 6= i0. (47)

The remaining work is to prove that

Λi0(X∗i0(γth))

Λi0(γth)
∼

+∞
1, as γth → +∞. (48)

Using the fact that Λi0(·) is a concave function in the interval [ηi0 ,+∞],
then its derivative which is the hazard rate λi0(·) is a decreasing function
in [ηi0 ,+∞]. Hence, λi0(x) is upper bounded by λi0(ηi0) for all x ≥ ηi0 . Note
that in the case where ηi0 = 0, λi0(ηi0) may be infinite. In this case, we use
the concavity of Λi0(·) in [a,+∞] for a fixed a > 0 so that λi0(x) is upper
bounded by λi0(a) for all x ≥ a. In both cases, there exists a > 0 such that
Λi0(·) is Lipschitz in the interval [a,+∞), that is for all x and y in the interval
[a,+∞), we have ∣∣Λi0(x)− Λi0(y)

∣∣ ≤ λi0(a)
∣∣x− y∣∣. (49)

By taking x = γth and y = X∗i0(γth), it follows that as γth → +∞:

Λi0(γth)− Λi0(X∗i0(γth)) = O(γth −X∗i0(γth)). (50)

Using Lemma 2, we have that γth −X∗i0(γth) = O(1). Thus, it follows that

Λi0(γth)− Λi0(X∗i0(γth)) = o(Λi0(γth)), (51)

which leads to (48) and then the proof is concluded.

Remark 2 Distributions satisfying (29) were considered in Juneja and Sha-
habuddin (2002) for the particular i.i.d case. In this particular i.i.d setting and
from the result of Lemma 3, we can observe that the minmax parameter θ∗ in
(20) tends to the same value of θ derived in Juneja and Shahabuddin (2002),
as γth increases. Hence, we deduce that our proposed approach recovers the
method of Juneja and Shahabuddin (2002) in the particular problems involv-
ing i.i.d sums of subexponential distributions with eventually concave hazard
functions.
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Remark 3 To fully characterize the solution of (P’) under (29), we need to
specify how to determine the index i0 appearing in Lemma 2 and Lemma 3.
In fact, this index satisfies, for a sufficiently large γth, the following

Λi0(γth) ≤ Λi(γth),∀i 6= i0. (52)

For instance, for the sum of Log-normal RVs with mean µi and standard de-
viation σi, i = 1, 2, ..., N , the index i0 satisfies

(log(γth)− µi0) /σi0 ≤ (log(γth)− µi) /σi,∀i 6= i0. (53)

Thus, for γth large enough, the index i0 is independent of γth and corresponds
to

i0 = arg maxi∈{1,2,...,N} σi. (54)

Moreover, if there exists another index with a maximum standard deviation,
i0 corresponds to the RV with a maximum mean.

Remark 4 The results of Lemma 2 and (52) can help provide an initial
guess of the solution to problem (P ′). This guess can be fed to numerical op-
timization methods used to solve (P ′) thereby ensuring their convergence to
close-to-optimal solutions.

Distributions with Concavity Property: As we mentioned earlier, for
distributions with concave hazard functions, an analytic characterization of
the optimum solution to (P ′) can be obtained. For sake of illustration, we
treat in particular, the case of Weibull distribution with shape parameter less
than 1. The PDF of Xi, i = 1, 2, ..., N is:

fi(x) =
ki
βi

(
x

βi

)ki−1

exp

(
−
(
x

βi

)ki)
, x > 0. (55)

where 0 < ki < 1 and βi > 0, i = 1, 2, ..., N , denote respectively the shape
and the scale parameters. The hazard rate and the hazard function for each
Xi, i = 1, 2, ..., N , are as follows

λi(x) =
ki
βi

(
x

βi

)ki−1

, x > 0. (56)

Λi(x) =

(
x

βi

)ki
, x ≥ 0.. (57)

We can prove through a simple computation that the objective function of (P ′)
is concave and hence (29) is satisfied. In fact, the Hessian H(X1, X2, ..., XN ),
which is the squared matrix composed of second-order partial derivative of the
objective function

∑N
i=1 Λi(Xi) at any point X = (X1, X2, ..., XN ) ∈ (R+)N ,

is a diagonal matrix with diagonal elements

[H(X1, X2, ..., XN )]ii =
ki(ki − 1)

β2
i

(
Xi

βi

)ki−2

, (58)
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which are strictly negative for ki < 1, i = 1, 2, ..., N . In particular, the objective
function is also concave on the convex set S(N, γth) = {X = (X1, X2, ..., XN ) ∈
(R+)N , such that

∑N
i=1Xi = γth}. Therefore, the solution of (P ′) is obtained

in one of the extreme points of S(N, γth). In other words, the minimum is
achieved when

X∗i0(γth) = γth, and X∗i (γth) = 0 ∀i 6= i0, (59)

where i0 satisfying (
γth
βi0

)ki0
≤
(
γth
βi

)ki
, ∀i 6= i0. (60)

It is worth mentioning that for large values of γth, the index i0 depends only
on the shape and scale parameters and is independent of γth. More precisely,
for γth large enough, it is characterized by

i0 = arg mini ki. (61)

Moreover, if there are more than one RV with minimum shape parameter, the
index i0 corresponds to the one with maximum scale parameter. Note that (59)
holds for any distribution with concavity property. For instance, an equivalent
result can be obtained for the Gamma distribution with shape parameter less
than 1 and for the Pareto distribution.

3.4 Algorithm

A pseudo-code describing all steps to estimate α by the proposed hazard rate
twisting approach is described in Algorithm 1.

Algorithm 1 Hazard rate twisting approach for the estimation of α
Inputs: M , γth.
Outputs: α̂IS .
Find the minmax value θ∗ as in (20) by solving the minimization problem (P ′).
for i = 1, ...,M do

Generate independent realizations of {Xj(ωi)}Nj=1 under the twisted PDF {fj,θ∗ (·)}Nj=1

Evaluate Tγth (ωi) as in (15).
end for
Compute the IS estimator as α̂IS = 1

M

∑M
i=1 Tγth (ωi).

In the implementation of Algorithm 1, we need to generate samples of
{Xi}Ni=1 according to the twisted PDFs {fi,θ∗(·)}Ni=1. To this end, several
methods can be used, among them, we distinguish the acceptance rejection
technique, the Markov Chain Monte Carlo algorithm (Kroese et al. 2011), or
the inverse CDF sampling method (Devroye 1986). The inverse CDF sampling
method is merely based on the observation that, for a given a CDF F (·), the
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RV F−1(U) where U is uniformly distributed RV over [0, 1] has a CDF given
by F (·). For this method to be applicable, an analytical expression for the
CDF inverse is required. In the sequel, we show that the CDF inverse of the
twisted RV is related to that of the non-twisted RV. If the inverse of the CDF
of the non-twisted RV F (·)−1 admits an analytical expression, so does Fθ(·)−1.
To see that, let us consider a RV X with an underlying PDF f(·) and CDF
F (·). From (14), the PDF fθ(·) associated to X with hazard rate λ(·) and
hazard function Λ(·) is

fθ(x) = (1− θ)λ(x) exp(−(1− θ)Λ(x))

= (1− θ)f(x) exp(θΛ(x)). (62)

Replacing λ(·) and Λ(·) by their definitions, we get

fθ(x) =
(1− θ)f(x)

(1− F (x))θ
. (63)

By a simple integration, the corresponding CDF is given by

Fθ(x) = − 1

(1− F (x))θ−1
+ 1. (64)

Finally, a simple computation leads to an exact expression of the CDF inverse
of the RV X under the hazard rate twisting technique

F−1
θ (y) = F−1(1− (1− y)−

1
θ−1 ), (65)

where F−1(·) is the CDF inverse of X under the original PDF f(·). It is worth
observing that many of the most frequently encountered distributions have an
inverse CDF that possesses an analytical expression. A non-comprehensive list
includes the Log-normal and the Weibull distribution, often used for modeling
random wireless channels. This argues in favor of the efficiency of the inverse
CDF method to handle many practical situations.

Remark 5 We have described in the previous section a method based on the
inverse CDF sampling method F−1

θ (·) to generate samples of a RV X under
the twisted PDF fθ(·). For the particular Weibull distribution with parameters
k and β, the PDF fθ(·) remains a Weibull distribution with the same shape
parameter k but with a different scale parameter β′ as follows

fθ(x) = (1− θ)λ(x) exp (−(1− θ)Λ(x))

= (1− θ)k
β

(
x

β

)k−1

exp

(
−(1− θ)(x

β
)k
)

=
k

β′

(
x

β′

)k−1

exp

(
−(

x

β′
)k
)
. (66)

where β′ = β
(1−θ)1/k .
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4 Simulation Results

This section presents some selected simulations results in order to illustrate
the performance of the proposed IS scheme. First of all, we illustrate the wide
scope of applicability of the proposed estimator through various comparisons
with some existing methods. Then, we analyze in a second subsection the near-
optimality of the minmax twisting parameter (20) compared to the unknown
optimal twisting parameter (the one that minimizes the actual variance of
Tγth).

4.1 Efficiency of the Proposed IS Algorithm

The main objective of this part is to emphasize the wide scope of applicabil-
ity of our proposed approach. In fact, contrary to previous derived estimators
which were shown to be efficient only under some specific classes of distribu-
tions, our approach has the feature of being logarithmic efficient for problems
involving arbitrary sums of RVs. To illustrate the latter statement, we perform
two comparisons with first the approach of Chan and Kroese (2011) and second
with that of Nandayapa (2008) and we aim to identify interesting scenarios in
which our proposed approach exhibits better performances. Note that these
two algorithms are extensions of the conditional Monte Carlo approach pro-
posed in Asmussen and Kroese (2006), originally derived to deal with i.i.d sums
of RVs, to independent and not identically distributed sums of variates. In the
remaining part of the paper, we denote the approaches of Chan and Kroese
(2011) and Nandayapa (2008) by CMC1 and CMC2 respectively. Our choice is
mainly motivated by the good performances of these algorithms. In fact, when
all RVs are i.i.d, the algorithm of Asmussen and Kroese (2006) is known to
achieve a bounded relative error property in the case where the RVs are drawn
from regularly varying distributions and to satisfy the logarithmic efficiency
criterion when the RVs follow a Weibull-like distributions with shape parame-
ter k less than log(3/2)/ log(2). The authors in Hartinger and Kortschak (2009)
have extended the result of Asmussen and Kroese (2006) by showing that the
estimator achieves a stronger criterion, namely; the asymptotically vanishing
relative error property, for i.i.d sum of regularly varying distributions, the stan-
dard Log-normal variate, and the Weibull RV for k < log(3/2)/ log(3). The
work of Chan and Kroese (2011) has extended the estimator of Asmussen and
Kroese (2006) to sums involving independent but not identically distributed
RVs and show that the bounded relative error property holds under the Pareto
distribution. Moreover, it was proven numerically in Chan and Kroese (2011)
that for the Weibull distribution the proposed algorithm performs much better
when the shape parameters are small than when they are large. An alternative
extension of the estimator of Asmussen and Kroese (2006) to independent and
not identically distributed sums of variates has been proposed in Nandayapa
(2008) where it was shown that the proposed estimator achieves the bounded
relative error for Log-normal and regularly varying RVs.
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In our opinion, CMC1 and CMC2 might exhibit better performances than
the proposed IS approach for problems where their proposed estimators were
shown to be efficient. But, in the general case, there is no guarantee that
this always occurs. In particular, scenarios which do not fall within the scope
of efficiency of these two algorithms, constitute potential situations in which
our method might achieve better performances. This is the aim of this part
where we identified various interesting scenarios in which our approach exhibits
better performances. It is important to mention that the latter statement is
general and valid regardless of the algorithm we are comparing with. More
precisely, this statement is not restricted to CMC1 and CMC2 since we can
end up with the same conclusions if we perform the comparison with any exist-
ing method, i.e. we can always identify some scenarios in which our approach
outperforms the method we are comparing with. This is because, as it was
mentioned before, our proposed approach is logarithmic efficient for arbitrary
sums of variates whereas, to the best of our knowledge, all the existing estima-
tors share the common dominator of being only efficient under specific classes
of distributions.

4.1.1 Comparison with CMC1

In this subsection, we compare our proposed IS scheme to the algorithm of
Chan and Kroese (2011) . The proposed estimator in Chan and Kroese (2011)
writes as:

α̂CMC1 =
1

M

M∑
k=1

T
′

γth
(ωk), (67)

where T
′

γth
=
∑N
i=1 F̄i

(
max(γth −

∑
j 6=iXj ,M−i)

)
, F̄i(·) = 1 − Fi(·), and

M−i = max(X1, ..., Xi−1, Xi+1, ..., XN ), i = 1, 2, ..., N .
In order to perform the comparison, we need to define some performance

measures. First, the variance reduction metric of our proposed IS scheme com-
pared to naive MC simulations is defined as:

ξIS =
α(1− α)

varθ∗ [Tγth ]
. (68)

Similarly, the amount of variance reduction of CMC1 with respect to the naive
MC simulations is defined as

ξCMC1 =
α(1− α)

var
[
T ′γth

] . (69)

The amount of variance ξIS (respectively ξCMC1
) measures the gain achieved

by the proposed IS scheme (respectively the CMC1 technique) over naive MC
simulations in terms of necessary number of simulation runs to meet a fixed
accuracy requirement.
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In order to be able to include the computational time in our efficiency
study, we define another metric, which serves to compare the proposed IS
approach with the CMC1 algorithm, as follows (Asmussen et al. 2011):

eff =
varθ∗ [Tγth ]

var
[
T ′γth

] timeIS
timeCMC1

. (70)

This metric is a measure of efficiency that includes not only the computational
gain, i.e. the gain in terms of number of simulation runs for a fixed accuracy
requirement, but also the computational time needed to get the estimators.
Note that the smaller is eff the bigger is the efficiency of the proposed IS
approach compared to the CMC1 one. In the following simulation results, the
computational time is provided in seconds.

In the Weibull setting, the CMC1 approach might outperform our ap-
proach for small values of the shape parameters. However, there is no guarantee
that this will always happen. In fact, we identify in the following results three
different settings depending on the nature of the tail of the underlying RVs
and we show the outperformance of the proposed IS scheme over the CMC1

one. We consider in the first case the sum of N = 10 components drawn from
the Weibull distribution with shape parameter being given by either 0.8 or 0.9,
a setting which corresponds to the sum of heavy-tailed distributions. Table 1
provides the performance results for the CMC1 method and the proposed IS
scheme where the minmax twisting parameter (20) is used. We deduce from
this table that both techniques offer good performances compared to the naive
MC simulations. Moreover, the proposed IS technique achieves better perfor-
mances than that of the CMC1. The gain in efficiency becomes even higher as
the threshold increases, i.e. the efficiency metric eff decreases as we increase
the threshold. Moreover, in terms of number of simulation runs, our proposed
IS scheme offers a computational gain over the CMC1 approach. For instance,
for γth = 55, the amount of variance reduction achieved by our proposed IS
algorithm is approximately 26.8 times the amount of variance reduction given
by the CMC1 method.

Table 1 Sum of N = 10 independent Weibull Distribution with βi = 0.5 + i/10, ki = 0.8,
i = 1, 2, ..., 5, ki = 0.9, i = 6, 7, ..., 10, and M = 107.

Proposed Approach CMC1 Approach
γth α̂IS ξIS timeIS α̂CMC1

ξCMC1
timeCMC1

eff
35 1.34e-4 200.30 6.66 1.34e-4 113.56 22.69 0.1664
40 1.74e-5 1.05e3 6.62 1.74e-5 282.01 22.56 0.0788
45 2.18e-6 5.42e3 6.59 2.18e-6 694.27 22.66 0.0373
50 2.76e-7 2.44e4 6.68 2.76e-7 1.49e3 22.66 0.0180
55 3.44e-8 1.08e5 6.69 3.40e-8 4.03e3 22.62 0.0110

In a second experiment, we consider the case where the underlying sum
involves a mixture of heavy and light tailed RVs. Table 2 presents the obtained
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results when the sum of N = 10 independent Weibull distributions with shape
parameter being selected from {0.8, 1}.

Table 2 Sum of N = 10 independent Weibull Distribution with βi = 0.5 + i/10, ki = 0.8,
i = 1, 2, ki = 1, i = 3, 7, ..., 10, and M = 107.

Proposed Approach CMC1 Approach
γth α̂IS ξIS timeIS α̂CMC1

ξCMC1
timeCMC1

eff
30 8.26e-5 565.75 4.06 8.22e-5 99.52 19.62 0.0364
35 4.88e-6 5.67e3 4.03 4.91e-6 292.22 19.89 0.0104
40 2.64e-7 6.01e4 4.07 2.65e-7 956.52 19.46 0.0033
45 1.36e-8 6.21e5 4.08 1.40e-8 1.99e3 19.79 6.61e-4

From this table, it becomes clear that the proposed IS approach can achieve
better performances than that of the CMC1 algorithm. The gain in perfor-
mance is higher than the one shown by Table 1. For example, when γth = 45,
our IS approach is 1513 times more efficient than the CMC1 algorithm. This
result is quite expected, the efficiency of the CMC1 algorithm being shown in
Chan and Kroese (2011) for small shape parameters.

Finally, we compare the performance of the proposed scheme where the
sum includes only light-tailed RVs. While we are aware that the exponential
twisting approach is considered as more appropriate to handle light-tailed
settings, its use to the present context is not possible since it requires the
MGF to admit a closed form expression, a condition which is not satisfied for
Weibull distributed RVs.

Table 3 Sum of N = 10 independent Weibull Distribution with βi = 0.5 + i/10, ki = 2,
i = 1, 2, ..., 10, and M = 107.

Proposed Approach CMC1 Approach
γth α̂IS ξIS timeIS α̂CMC1 ξCMC1 timeCMC1 eff
15 5.65e-4 92.47 3.45 5.64e-4 17.12 18.61 0.0343
16 8.03e-5 429.41 3.45 8.05e-5 28.88 18.58 0.0125
17 9.17e-6 2.47e3 3.50 9.18e-6 53.01 18.67 0.0040
18 8.55e-7 1.76e4 3.51 8.74e-7 78.44 18.41 8.4972e-4
19 6.42e-8 1.55e5 3.42 6.94e-8 158.52 18.57 1.8835e-4

Table 3 represents the obtained result in the case where a sum of N = 10
light-tailed independent Rayleigh RVs is used (The Rayleigh RV is actually a
Weibull distribution with shape parameter equal to 2). Again in this setting,
as shown in Table 3, the gain of our method over the CMC1 method is ev-
idently clear. It is important to note that for the above three scenarios, the
computational time required by our method is less than that needed by the
CMC1 approach. This fact shows that in these three cases the resolution of
(P’) is not time-consuming.
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4.1.2 Comparison with CMC2

In this part, we aim to confirm the conclusions deduced from the previous
comparisons. In fact, we perform a second comparison of our proposed IS ap-
proach with that of Nandayapa (2008) and we show that we can again identify
scenarios wherein our proposed IS approach exhibits better performances. The
estimator of Nandayapa (2008) is as follows:

α̂CMC2 =
1

M

M∑
k=1

T
′′

γth
(ωk), (71)

where T
′′

γth
= 1

p(J) F̄
(

max
(
γth −

∑
i 6=J Xi,M−J

))
, and J is a discrete RV

with probability mass function P (J = j) =
F̄j(γth)∑N
i=1 F̄i(γth)

. It was shown in Nan-

dayapa (2008) that the previous estimator achieves the bounded relative error
property under Log-normal or regularly varying distributions. In these two set-
tings, we expect the CMC2 estimator to achieve better performances than our
proposed IS estimator (this is because the bounded relative error property is
stronger than the logarithmic efficiency criterion that our estimator possess).
However, given that our estimator is general, being logarithmic efficient for
arbitrary sums of variates, we can always identify interesting scenarios (other
than the sum of Log-normal or regularly varying distributions) wherein our
IS approach could achieve better performances than the CMC2 algorithm.
To illustrate the previous statement, we consider, as in the previous part, the
problem of evaluating the probability that a sum of Weibull RVs exceeds a
certain threshold. Numerical results shows, similarly to the previous compar-
ison, that for small values of shape parameters of the Weibull distributions,
the CMC2 might exhibit better performances than the proposed IS approach.
This results is expected since in the i.i.d setting for instance the CMC2 al-
gorithm, which coincides with that of Asmussen and Kroese (2006), has the
asymptotic vanishing relative error property for k < log(3/2)/ log(3). However,
as we increase these parameters, the outperformances of our method becomes
evidently clear. These statements will validated in the following tables.

For the comparison, we use the same metrics as in the previous part. In a
first experiment, we consider the sum of N = 5 Weibull variates with shape
parameters equals to either 0.7 or 0.75. Table 1 shows the computational gain
over naive MC simulation and the computational time given by the proposed
IS scheme as well as the CMC2 algorithm. The efficiency metric eff defined in
(70) is also provided in this table.
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Table 4 Sum of N = 5 independent Weibull Distribution with βi = 0.5+i/10, i = 1, 2, ..., 5,
ki = 0.7, i = 1, 2, ki = 0.75, i = 3, 4, 5, and M = 107.

Proposed Approach CMC2 Approach
γth α̂IS ξIS timeIS α̂CMC2

ξCMC2
timeCMC2

eff
25 2.42e-4 153.92 3.41 2.42e-4 282.54 6.30 0.9936
30 4.14e-5 539.67 3.40 4.16e-5 813.86 6.29 0.8152
35 7.59e-6 1.75e3 3.35 7.58e-6 2.32e3 6.28 0.7072
40 1.47e-6 5.47e3 3.42 1.47e-6 6.53e3 6.27 0.6512
45 2.99e-7 1.66e4 3.41 2.99e-7 1.86e4 6.28 0.6084

This table shows again that both techniques achieve a considerable gain
over naive MC simulations. Moreover, while the CMC2 algorithm exhibits
slightly better performances over our proposed IS approach in terms of required
number of simulation runs, i.e. ξCMC2

is bigger than ξIS , Table 4 shows that
our IS approach is slightly more efficient than the CMC2 method, i.e. the
efficiency metric eff is less than 1 for all values of γth presented in Table 4.
The latter statement is mainly due to the fact that the computational time
required by our estimator is less than that required by the CMC2 estimator.

In a second experiment, we aim to show that the efficiency of our approach
over the CMC2 algorithm can be made larger if we increase the shape pa-
rameters of the Weibull distributions. To this end, we consider in Table 5 the
problem involving the sum of N = 10 i.i.d Weibull RVs with shape parameter
k = 0.8.

Table 5 Sum of N = 10 independent Weibull Distribution with βi = 1, ki = 0.8, i =
1, 2, ..., 10 and M = 107.

Proposed Approach CMC2 Approach
γth α̂IS ξIS timeIS α̂CMC2 ξCMC2 timeCMC2 eff
40 4.22e-5 898.41 6.46 4.24e-5 133.54 8.86 0.1084
45 6.60e-6 4.26e3 6.56 6.60e-6 279.76 8.87 0.0486
50 1.02e-6 1.92e4 6.54 1.02e-6 609.22 8.85 0.0234
55 1.58e-7 8.51e4 6.51 1.57e-7 1.27e3 8.88 0.0109
60 2.47e-8 3.62e5 6.56 2.49e-8 2.82e3 8.92 0.0057

From this table, we see clearly the outperformance of our approach com-
pared to CMC2. Moreover, the efficiency is increasing as we increase the
threshold, i.e. the efficiency metric eff is decreasing as γth increases. For in-
stance, for γth = 60, our proposed IS scheme is approximately 175 times more
efficient than the CMC2 algorithm.

In a last experiment, we aim to study the impact of increasing N on our
approach as well as on the CMC2 one. To this end, we consider the problem
of the sum of N = 15 i.i.d Weibull variates with the same parameters as
the previous experiment. Table 6 shows the efficiency results given by our IS
approach and the CMC2 method.
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Table 6 Sum of N = 15 independent Weibull Distribution with βi = 1, ki = 0.8, i =
1, 2, ..., 15 and M = 107.

Proposed Approach CMC2 Approach
γth α̂IS ξIS timeIS α̂CMC2

ξCMC2
timeCMC2

eff
50 3.55e-5 432.62 9.76 3.57e-5 72.07 9.27 0.1754
55 6.16e-6 1.98e3 9.79 6.28e-6 135.12 9.19 0.0727
60 1.06e-6 9.03e3 9.80 1.05e-6 241.03 9.27 0.0282
65 1.78e-7 3.94e4 9.72 1.75e-7 457.20 9.20 0.0123
70 2.97e-8 1.70e5 9.76 2.96e-8 804.35 9.30 0.0050

This table reveals that as N increases, the amount of variance reduction
with respect to naive MC simulations, of our approach and the CMC2 method
decreases. For sake of illustration, for a probability of the order of 10−6, the
amount of variance reduction of the proposed IS scheme is approximately
1.92e3 when N = 10 and 9e3 when N = 15, showing that a greater N results
in less amount of variance reduction. Moreover, this table confirms again the
high gains of our proposed method compared to the CMC2 approach. As
a matter of fact, our approach is 200 times more efficient than the CMC2

method for a threshold value equal to 70. Furthermore, we observe from Table
5 and Table 6 that the efficiency of our method compared to the CMC2

algorithm remains unchanged as N increases, showing that the degradation in
performance of both techniques occurs with the same rate. Finally, from the
above three tables, it is important to mention that, similarly to the conclusion
made in the comparison with the CMC1 approach, the computational time
needed by our proposed algorithm is less or comparable to that needed by
the CMC2 method. This shows again that the computational complexity of
solving (P’) was not time-demanding.

4.2 Sensitivity Analysis of the Minmax Approach

Obviously, the optimal choice of the twisting parameter θ̂ corresponds to the
one minimizing the variance of Tγth or equivalently the quantity Eθ

[
T 2
γth

]
. This

optimal value is in general unknown. For this reason, we proposed to select
the twisting parameter θ∗ that minimizes an upper bound of Eθ

[
T 2
γth

]
. While

we have shown that working with θ∗ guarantees the logarithmic efficiency, it
is not clear how the performance of the proposed technique compares with the
optimal approach consisting in twisting the hazard rates by the quantity θ̂. We
aim in this subsection to analyze the closeness of Eθ∗

[
T 2
γth

]
to Eθ̂

[
T 2
γth

]
and

to investigate whether our minmax choice is efficient, in the sense that it does
not worsen the minimum variance considerably. To this end, we plot, in Fig. 1,
Eθ∗

[
T 2
γth

]
and Eθ̂

[
T 2
γth

]
with respect to the threshold γth in the cases where a

sum of N = 4, 6, and 8 Weibull distributed RVs are considered. Note that the
optimal twisting parameter θ̂ is approximated by successive dichotomy. The
results in this figure clearly show that both values θ̂ and θ∗ achieve almost the
same variance reduction. This argues in favor of the efficiency of the minmax
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Fig. 1 Second moment of Tγth with the minmax and the optimal twisting parameter for
the sum of N Weibull RVs with shape parameters ki = 0.8, scale parameters βi = 1,
i = 1, 2, ..., N , and M = 107.

parameter θ∗ in retrieving approximately the same performances obtained by
using the twisting parameter θ̂.

5 Conclusion

This paper provided additional results on the hazard rate twisting IS-based
approach. By a proper selection of the twisting parameter, we proved that
the logarithmic efficiency criterion holds for sums involving independent and
not necessarily identically distributed arbitrary RVs. This finding enlarges the
framework of hazard rate twisting techniques for the general case of sums in-
volving arbitrary independent RVs. Simulations results comparing our method
to two algorithms based on a conditional Monte Carlo technique were pre-
sented and illustrated the efficiency of our technique in handling a large range
of scenarios.
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