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We study the extended Stefan problem which includes constitutional supercooling for the

solidification of a binary alloy in a finite spherical domain. We perform an asymptotic

analysis in the limits of large Lewis number and small Stefan number which allows us to

identify a number of spatio-temporal regimes signifying distinct behaviours in the solidi-

fication process, resulting in an intricate boundary layer structure. Our results generalize

those present in the literature by considering all time regimes for the Stefan problem while

also accounting for impurities and constitutional supercooling. These results also gener-

alize recent work on the extended Stefan problem for finite planar domains to spherical

domains, and we shall highlight key differences in the asymptotic solutions and the un-

derlying boundary layer structure which result from this change in geometry. We compare

our asymptotic solutions with both numerical simulations and real experimental data aris-

ing from the casting of molten metallurgical grade silicon through the water granulation

process, with our analysis highlighting the role played by supercooling in the solidification

of binary alloys appearing in such applications.

Key Words: two-phase Stefan problem, solidification of binary alloys, matched asymptotic

analysis
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1 Introduction

The process of solidification arises in a variety of applications, both in the natural and in

industry. These processes can be modelled using Stefan problems (Lamé and Clapeyron,

1831; Rubinstein, 1971; Stefan, 1890) which, except in very particular cases, do not

admit closed-form analytical solutions. Therefore, a lot of different approaches have been

explored, both analytical and numerical.

We can distinguish between one-phase and two-phase Stefan problems, and in the lit-

erature the former has received a lot of attention. One of the usual analytical approaches
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is to use asymptotic techniques to determine approximate solutions to it. A common

asymptotic limit to consider is where the Stefan number is large, corresponding to the

situation where latent heat dominates, with a variety of geometries being studied (King

et al., 1999; McCue et al., 2003, 2005; Riley et al., 1974; Soward, 1980; Stewartson and

Waechter, 1976; Wallman et al., 1997). Asymptotics for the small-time behavior (Chadam

et al., 1987; Davis and Hill, 1982; Hill and Kucera, 1983a,b) and end-time behavior (Mc-

Cue et al., 2003, 2005; Riley et al., 1974; Soward, 1980; Stewartson and Waechter, 1976)

are well-studied for the one-phase problem. In addition to asymptotic analysis, vari-

ous numerical approaches for solving one-phase Stefan problems have been considered

(Allen and Severn, 1952; Crank and Gupta, 1975; Crowley, 1978; Lazaridis, 1970; Liu

and McElwain, 1997; Selim and Seagrave, 1973; Tao, 1967). The asymptotic analysis of

the solidification of spheres was first considered by Pedroso and Domoto (1973), with

asymptotic solutions of the one-phase Stefan problem in a sphere obtained in the small

Stefan number limit (latent heat dominated). This analysis was subsequently extended

and refined (Riley et al., 1974; Stewartson and Waechter, 1976; Soward, 1980), requiring

the consideration of several layers in the problem. A more general asymptotic analysis

for the one-phase Stefan problem in an arbitrary three-dimensional geometry near the

end of the solidification process was later considered (McCue et al., 2005).

Despite many applications, analysis of the corresponding two-phase Stefan problem

is more mathematically involved and as a result has received less attention. There are

some results for the two-phase Stefan problem in cylindrical or spherical domains (Jiji

and Weinbaum, 1978; Kucera and Hill, 1986; Howison, 1988). A comprehensive analysis

of the two-phase Stefan problem for a sphere was given by McCue et al. (2008), which

gave an exponentially small correction in the small time scale. The inward solidification

of a binary alloy in a sphere was considered by Yang et al. (2012), however, only the well-

mixed limit was considered, valid for when concentration and temperature profiles are

spatially uniform. As such, their model is equivalent to a one-phase Stefan problem with

a supercooling condition that depends on the position of the interface. The two-phase

Stefan problem with constitutional supercooling in a sphere was studied in Feltham

and Garside (2001), which includes an asymptotic analysis of the small time regime,

yet the late time dynamics were only discussed qualitatively with no formal analysis

was provided. Such results, while qualitatively useful in some regimes, neglect the full

boundary layer structure which naturally emerges from this problem. On the numerical

side, these problems have been addressed using many different techniques, such as the

enthalpy method (Crowley, 1978; Voller and Cross, 1981), interface tracking methods

(Gupta, 1990; Wang et al., 1997), phase-field methods (Wheeler et al., 1993a,b) and

level-set methods (Chen et al., 1997; Theillard et al., 2015) A detailed review of these

techniques can be found in Jaafar et al. (2017).

In the present paper, we perform an asymptotic analysis in order to study the extended

Stefan problem for a binary alloy with constitutional supercooling in a spherical domain,

in the limits of large Lewis number and small Stefan number. We assume that the dif-

fusivity of impurities in the solid, segregation coefficient, and initial concentration and

temperature are small while the supercooling coefficient is large, meaning that a large

concentration of impurities is required to cause a significant change in the solidification

temperature. Such assumptions are relevant to real world applications, such as the solid-
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ification of metallurgical grade silicon. Analysis of this problem shows the existence of a

complicated boundary layer structure, which we exploit for our asymptotic analysis. Our

results generalize various results in the literature (Feltham and Garside, 2001; McCue

et al., 2008; Soward, 1980) by considering all time regimes in the Stefan problem with

impurities and constitutional supercooling. Due to their definition of the Stefan number,

the analysis in those papers corresponds to the large Stefan number limit (i.e., the case

when the problem is dominated by latent heat). A similar physical problem was recently

studied in planar domains in which the solidification fronts remain flat (Brosa Planella

et al., 2019). However, many real-world solidification problems take place in domain ge-

ometries which involve curvature, and the present paper constitutes an extension of the

results of Brosa Planella et al. (2019) to curved domains. In particular, the choice of a

spherical domain corresponds well to the solidification of droplets under the water gran-

ulation process. While the early-time dynamics are similar between the flat and curved

domains, we find that there are fundamental differences between the late time dynamics

leading to extinction and hence the related boundary layer structure when curvature is

involved, necessitating a separate and more nuanced analysis from that of the planar

geometry (Brosa Planella et al., 2019).

The remainder of the paper is organised as follows. In Section 2, we present the model

for the solidification of a sphere. Our asymptotic analysis in the large Lewis number

limit reveals eight different layers which are studied in Sections 3 to 6 and then matched

together through the method of matched asymptotic expansions. All of these asymptotic

results are summarised and discussed in Section 7, where we also compare the asymptotic

solutions to direct numerical simulations of the full problem and also to experimental

data from the solidification of silicon under the water granulation process. We conclude

with a discussion of the results in Section 8.

2 Model for the solidification of a sphere

We study the solidification of a binary alloy in a three-dimensional spherically symmetric

geometry. Recall that, as we have assumed spherical symmetry, the problem can be

reduced to a one-dimensional model in the radial coordinate with the geometry shown

in Figure 1. Our application of interest is metallurgical grade silicon, which is composed

of over 99% silicon with the remaining being different types of impurities. In our model

we consider all the impurities together as a single phase, so we use a binary alloy model

to describe the system. However, keeping in mind our application of interest, for the rest

of the paper we refer to the base of the alloy as silicon and we refer to the solute as

impurities.

We take the general model for the solidification of a binary alloy in an arbitrary domain

presented in Brosa Planella et al. (2019) and derive from it the model for a solidification

of a spherically symmetric problem. This model is composed of four diffusion equations

(for heat and impurities in both the solid and liquid phases), and five boundary condi-

tions in the moving boundary which impose continuity of temperature, thermodynamic

equilibrium using a linear phase diagram, conservation of heat and conservation of mass

through the boundary. We take the independent variables r for the radial coordinate and

t for time. Then, we define the following unknowns which depend on r and t: concentra-
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rsolidliquid

r = S(t)r = 0 r = 1

cs, Tscl, Tl

∂cl
∂r

=
∂Tl
∂r

= 0
Ts = −1

∂cs
∂r

= 0

Figure 1. Sketch of the sphere solidification problem. As the problem is symmetric, we

can just consider a one-dimensional problem with a symmetry condition at r = 0.

tions of impurities cs and cl and the temperatures Ts and Tl, where the subscripts s and

l denote the solid and the liquid phase respectively. We also define the position of the

interface S(t), so we define fi = r − S(t) in the model in Brosa Planella et al. (2019).

Finally, we take the differential operator ∇ to be for a spherically symmetric geometry.

Then, the general model in Brosa Planella et al. (2019) reduces to the following. For

the solid phase, which is given by S(t) < r < 1, the dimensionless model reads

∂cs
∂t

=
D

Le

1

r2
∂

∂r

(
r2
∂cs
∂r

)
,

∂Ts
∂t

= κ
1

r2
∂

∂r

(
r2
∂Ts
∂r

)
. (2.1 a)

The liquid phase is given by 0 < r < S(t), and the equations in this region of the domain

are

∂cl
∂t

=
1

Le

1

r2
∂

∂r

(
r2
∂cl
∂r

)
,

∂Tl
∂t

=
1

r2
∂

∂r

(
r2
∂Tl
∂r

)
. (2.1 b)

The interface is given by r = S(t), and the interface conditions reduce to

Ts = Tl, cs = αcl, cl = −mlTl,
ρ

St

dS

dt
= k

∂Ts
∂r
− ∂Tl

∂r
,

and (1− α)cl
dS

dt
=
D

Le

∂cs
∂r
− 1

Le

∂cl
∂r

. (2.1 c)

The boundary and initial conditions are given by

∂Tl
∂r

= 0 and
∂cl
∂r

= 0, at r = 0, Ts = −1 and
∂cs
∂r

= 0, at r = 1, (2.1 d)

S = 1, Tl = T0, and cl = c0, at t = 0. (2.1 e)

Here, the dimensionless parameters are as defined in Brosa Planella et al. (2019), where

St is the Stefan number and Le is the Lewis number. The following dimensional values

are defined as the ratio between the value of the parameter in the solid phase over the

value in the liquid phase: D is the diffusivity of impurities, κ the thermal diffusivity, ρ is

the density, k is the thermal conductivity. Finally, ml is the dimensionless supercooling

coefficient and α the segregation coefficient and both come from the dimensionless phase

diagram. As discussed in the derivation of the model in Brosa Planella et al. (2019),

we consider different values of densities in each phase for their contribution to the heat

diffusivity, but assume that both the solid and liquid phase are stationary. Therefore, we

do not consider the advection introduced to the system by this variation in density.

Similarly to Brosa Planella et al. (2019), we are interested in the limit of very large
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Lewis number. However, as could be expected from the results in the literature (McCue

et al., 2008; Soward, 1980; Stewartson and Waechter, 1976), in order to find analytical

solutions we need to take the limit of small Stefan number as well. In our analysis, we

first take the large Lewis number limit. For convenience, as we did in the planar geometry

case, we write ε = Le−1 and consider the limit ε → 0. We then take the limit St → 0.

We will show later that this procedure is valid provided ε
2
3 � St, which is true in our

problem. The validity of this distinguished limit between the two small parameters is

discussed in Section 4.

The rest of the parameters are scaled as D = εD̂, ml = m̂l

ε , α = εα̂, c0 = εĉ0,

T0 = εT̂0, where D̂, m̂l, α̂, ĉ0, and T̂0 are all order one. By setting these scalings, we are

not implying that all the parameters above are related physically to Le. These scalings

are chosen from the typical parameter values for the cast of metallurgical grade silicon,

which can be found in Brosa Planella et al. (2018).

We can write the rescaled dimensionless model as

∂cs
∂t

= ε2D̂

(
∂2cs
∂r2

+
2

r

∂cs
∂r

)
,

∂Ts
∂t

= κ

(
∂2Ts
∂r2

+
2

r

∂Ts
∂r

)
, for S(t) < r < 1, (2.2 a)

∂cl
∂t

= ε

(
∂2cl
∂r2

+
2

r

∂cl
∂r

)
,

∂Tl
∂t

=
∂2Tl
∂r2

+
2

r

∂Tl
∂r

, for 0 < r < S(t), (2.2 b)

Ts = Tl, cs = εα̂cl, εcl = −m̂lTl,
ρ

St

dS

dt
= k

∂Ts
∂r
− ∂Tl

∂r
,

and (1− εα̂)cl
dS

dt
= ε2D̂

∂cs
∂r
− ε∂cl

∂r
, at s = S(t), (2.2 c)

∂cl
∂r

= 0 and
∂Tl
∂r

= 0 at r = 0,
∂cs
∂r

= 0 and Ts = −1 at r = 1, (2.2 d)

cl = εĉ0, Tl = εT̂0, and S = 1, at t = 0. (2.2 e)

In order to solve (2.2) we shall employ the method at matched asymptotics. When

we take the large Lewis number limit, we identify three different time regimes in the

problem, and within each regime there are different spatial layers. Overall we identify

the eight layers, as shown in Figure 2. When we then take the small Stefan number limit,

we need to consider five extra layers within regime i, which are studied in Section 4.

Once solutions are obtained in each layer, we then match them in order to obtain the

asymptotic solution for the whole problem. Notice that we use hats for the position of

the interface and the temperature and concentration profiles whenever they are rescaled

with powers of ε. On the other hand, we use tildes when a variable is rescaled with powers

of St, regardless of whether it has been previously rescaled with powers of ε or not. To

minimise confusion, we give a reminder of the rescalings at the beginning of the analysis

of each layer.

Similarly to the analysis in Brosa Planella et al. (2019), the scalings in Figure 2 are

primarily picked by the physics. At the start of the process, which is regime i, we expect

to see diffusion of both heat and impurities, but, given the difference in the size of the

diffusion coefficients, we need to introduce an inner layer of size O (ε) around the inter-

face (named layer B) to capture the rejection and transport of impurities, while heat

diffusion is observed in the outer layers (A and C). Contrary to what we observed in the

planar problem, now the interfacial concentration does not remain constant at leading
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i ii iii

r = 1

t = t∗

solid

liquid

A

B

C

D

E

E F

G

H

t

r

t r S cs cl Ts Tl

Regime i

A t r S εĉs - Ts -

B t S(t) + εR S εĉs cl εT̂s εT̂l

C t r S - εĉl - εT̂l

Regime ii

D t∗ + ε
2
3 τ r ε

1
3 Ŝ εĉs - Ts -

E t∗ + ε
2
3 τ ε

1
3 ξ ε

1
3 Ŝ cs εĉl Ts Tl

F t∗ + ε
2
3 τ ε

1
3

(
Ŝ(τ) + εR

)
ε

1
3 Ŝ cs ε−1ĉl Ts Tl

Regime iii
G t∗ + ε

1
3 θ r ε

2
3 Ŝ εĉs - Ts -

H t∗ + ε
1
3 θ ε

2
3R ε

2
3 Ŝ cs ε−1ĉl Ts Tl

Figure 2. Sketch of the regimes and layers in the process and table of scalings for the

variables in each layer of the problem. The sketch shows the evolution of the interface

S(t) in time, so the area above (in white) is the solid and the area below (in blue) is the

liquid. The three regimes, identified with lower case Roman numerals, are the behaviours

at different times. In each regime we consider various layers which are labelled with

letters. The variables τ and θ represent time at different scalings and the variables ξ and

R are the space variables in the intermediate and inner layers of each regime, respectively.

For the position of the interface, temperature and concentration, we use hats whenever

they are rescaled.
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order, therefore the solutions in regime i cease to hold when the interfacial concentration

increases to ci = O
(
ε−1
)
, which occurs when S = O

(
ε1/3

)
. This motivates the introduc-

tion of regime ii, in which we need to distinguish three layers: an outer layer D in the solid

phase where temperature and concentration remain constant, an intermediate layer E of

size O
(
ε1/3

)
near the origin in which we observe the motion of the solidification front

(and which, using the Stefan condition, provides the time scale of this regime), and an

inner layer F around the moving boundary where we observe rejection and transport of

impurities, similar to what we previously observed in layer B. At the end of this regime,

we have that the position of the interface becomes zero at leading order, and, therefore,

the liquid part of layer E vanishes so the inner layer F notices the symmetry condition

at r = 0. Hence, we need to introduce regime iii, in which the scalings are motivated by

the diffusion of impurities in the liquid phase. These scalings reveal two layers: an outer

layer G in the solid phase where temperature and concentration remain constant, and an

inner layer H near the origin where we observe diffusion of impurities in the liquid phase

and the motion of the solidification front.

We observe that in regimes ii and iii the interfacial concentration is of size ci = O
(
ε−1
)
,

which is not realistic. We notice as well that the model predicts that the solidification

process never finishes, contradicting the experimental observations. Therefore, similar

to what happened for the planar problem in Brosa Planella et al. (2019), we find that

in regimes ii and iii the model loses some physical relevance as some of the modelling

assumptions no longer hold, but it still has interest from the mathematical point of view

as it provides a full picture of (2.2).

In the following sections, we determine asymptotic solutions in each layer, and then

match them to construct solutions valid over the whole problem domain.

3 Asymptotic solutions in regime i

We start by considering the behaviour at the beginning of the process, described in regime

i. In this regime, the interface is far from the centre and we distinguish three space layers:

the outer layer, A, in the solid; the inner layer, B, around the moving interface which

comprises both phases; and the outer layer, C, in the liquid. We solve the equations for

each layer and then proceed to match the layers between them in order to fully determine

the solutions.

3.1 Layer A

The first layer in this regime is the outer layer in the solid phase: layer A. Rescaling the

problem using the scalings in Figure 2, which for this layer is only cs = εĉs, we find that

the problem is defined by

∂ĉs
∂t

= ε2D̂

(
∂2ĉs
∂r2

+
2

r

∂ĉs
∂r

)
,

∂Ts
∂t

= κ

(
∂2Ts
∂r2

+
2

r

∂Ts
∂r

)
, in S(t) < r < 1, (3.1 a)

∂ĉs
∂r

= 0, Ts = −1, at r = 1, (3.1 b)

and, as initially all the material is liquid, we have no additional initial conditions. The

problem is completed with the corresponding matching conditions which are discussed
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in Section 3.4. Expanding ĉs = ĉs0 + εĉs1 +O
(
ε2
)

and Ts = Ts0 + εTs1 +O
(
ε2
)
, we find

that at leading order

ĉs0 = α̂ci
(
S−10 (r)

)
= α̂

ĉ0
3

kSt

ρ

1− r3

(1− r)r3
, (3.2)

where ci is the concentration at the interface as defined in Section 3.4; while Ts0 is the

solution to the problem

∂Ts0
∂t

= κ

(
∂2Ts0
∂r2

+
2

r

∂Ts0
∂r

)
, for S0(t) < r < 1, (3.3 a)

Ts0 = 0 at r = S0(t), and Ts0 = −1 at r = 1, (3.3 b)

ρ

St

dS0

dt
= k

∂Ts0
∂r

at r = S0(t), and S0 = 1 at t = 0, (3.3 c)

with the latter condition derived from matching in Section 3.4.

Notice that this problem corresponds to the one phase Stefan problem, so, within this

regime, we need to distinguish different time scales, as discussed in McCue et al. (2008);

Soward (1980). We give the analysis of these different time scales in Section 4.

3.2 Layer B

Layer B is the inner layer of size ε around the moving interface. Therefore, defining the

inner variable R = r−S(t)
ε , and using the scalings cs = εĉs, Ts = εT̂s, Tl = εT̂l, we find

that the problem is defined as

ε
∂ ĉs
∂t

= S′(t)
∂ĉs
∂R

+ εD̂

(
∂2ĉs
∂R2

+ ε
2

S(t) + εR

∂ĉs
∂R

)
, (3.4 a)

ε2
∂T̂s
∂t

= εS′(t)
∂T̂s
∂R

+ κ

(
∂2T̂s
∂R2

+ ε
2

S(t) + εR

∂T̂s
∂R

)
, (3.4 b)

for R > 0, and

ε
∂cl
∂t

= S′(t)
∂cl
∂R

+
∂2cl
∂R2

+ ε
2

S(t) + εR

∂cl
∂R

, (3.4 c)

ε2
∂T̂l
∂t

= εS′(t)
∂T̂l
∂R

+
∂2T̂l
∂Z2

+ ε
2

S(t) + εR

∂T̂l
∂R

, (3.4 d)

for R < 0. At the interface, R = 0, we have

T̂s = T̂l, ĉs = α̂cl, cl = −m̂lT̂l,
ρ

St

dS

dt
= k

∂T̂s
∂R
− ∂T̂l
∂R

,

and (1− εα̂)cl
dS

dt
= ε2D̂

∂ ĉs
∂R
− ∂cl
∂R

. (3.4 e)
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The remaining conditions are given by the matching conditions with layers A and C. The

solutions are found to be

cs = εα̂ci(t) +O
(
ε2
)
, (3.5 a)

cl = ci(t)e
−S′

0(t)R + ε
(
A1(t) +A2(t, R)e−S

′
0(t)R

)
+O

(
ε2
)
, (3.5 b)

Ts = ε

(
A1(t)R− ci(t)

m̂l

)
+O

(
ε2
)
, (3.5 c)

Tl = ε

((
kA1(t)− ρ

St
S′0(t)

)
R− ci(t)

m̂l

)
+O

(
ε2
)
, (3.5 d)

where

A1(t) =
c′i(t)
S′0(t)2

+ ci(t)

(
α̂+

2

S0(t)S′0(t)
− S′′0 (t)

S′0(t)3

)
, (3.6 a)

A2(t, R) = − c′i(t)
S′0(t)2

(1 + S′0(t)R) +A2(t)

+ ci(t)

[
S′′0 (t)

S′0(t)3

(
1 + S′0(t)R+

1

2
S′0(t)2R2

)
− (1 + S′0(t)R) (2 + S0(t)S′1(t))

S′0(t)S0(t)

]
,

(3.6 b)

while ci(t), A1(t), and A2(t) are functions to be determined from the matching. Matching

cl from layers A to B, we obtain

c′i(t) + ci(t)

(
α̂S′0(t)2 + 2

S′0(t)

S0(t)
− S′′0 (t)

S′0(t)

)
= ĉ0S

′
0(t)2, (3.7)

which allows us to determine ci(t) once we know S0(t). We give the calculations for ci(t)

in Section 4.

3.3 Layer C

The last layer in regime i is layer C, the outer layer in the liquid. Rescaling the problem

with cl = εĉl and Tl = εT̂l, we find that the problem is defined in 0 < r < S(t) by

∂ĉl
∂t

= ε

(
∂2ĉl
∂r2

+
2

r

∂ĉl
∂r

)
,

∂ T̂l
∂t

=
∂2T̂l
∂r2

+
2

r

∂T̂l
∂r

, in 0 < r < S(t),

(3.8 a)

∂ĉl
∂r

= 0 and
∂T̂l
∂r

= 0, at r = 0, and ĉl = ĉ0 and T̂l = T̂0, at t = 0.

(3.8 b)
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The problem is completed by the matching conditions with layer B. The leading order

solutions are cl = εĉ0, Tl = εT̂l0(t, r), where the problem for T̂l0 is given by

∂T̂l0
∂t

=
∂2T̂l0
∂r2

+
2

r

∂T̂l0
∂r

, for 0 < r < S0(t),

(3.9 a)

∂T̂l0
∂r

= 0 at r = 0, T̂l0 = −ci(t)
m̂l

at r = S0(t), and T̂l0 = T̂0 at t = 0,

(3.9 b)

where the latter two conditions in (3.9b) are derived in Section 3.4. We solve (3.9) in

Section 4.

3.4 Matching of the solutions

We now can match the solutions between the different layers using Van Dyke’s rule (see

Van Dyke (1975) for details). The notation we use to denote the asymptotic expansions

is the following. By (mti)(nto) we mean taking n terms in the outer solution written in

terms of the inner variable and expanded to m-th order in the inner variable. Similarly,

by (nto)(mti) we mean taking m terms in the inner solution written in terms of the outer

variable and expanded to n-th order in the outer variable. Then, according to Van Dyke’s

rule, these two expansions have to be equal for any n and m.

We start matching cl between the outer layer C and the inner layer B. We take two

terms in the inner solution and two terms in the outer solution, and write them both in

terms of the inner variable, so εĉ0 = (2ti)(2to) = (2to)(2ti) = εA1(t), therefore we have

c′i(t)
S′0(t)2

+ ci(t)

(
α̂+

2

S0(t)S′0(t)
− S′′0 (t)

S′0(t)3

)
= ĉ0, (3.10)

which is the equation (3.7) we have used to determine ci(t) at leading order.

We next match cs between the outer layer A and the inner layer B though εĉs0(S0(t)) =

(2ti)(2to) = (2to)(2ti) = εα̂ci(t), giving ĉs0(S0(t)) = α̂ci(t), so we can conclude that

ĉs0(r) is ĉs0(r) = α̂ci
(
S−10 (r)

)
.

We now match the temperature in the solid phase, Ts, between layers A and B. Taking

two terms in the inner solution and two terms in the outer solution, and writing them in

terms of the inner variable, (2ti)(2to) = (2to)(2ti). We find

Ts0(t, S0(t)) + ε

(
Ts1(t, S0(t)) + (R+ S1(t))

∂Ts0
∂r

∣∣∣∣
r=S0(t)

)
= ε

(
A1(t)R− ci(t)

m̂l

)
,

(3.11)

from which we conclude

A1(t) =
∂Ts0
∂r

∣∣∣∣
r=S0(t)

and Ts0(t, S0(t)) = 0. (3.12)

We use the latter as a boundary condition to complete (3.3).

Finally, we match the temperature in the liquid phase between layers B and C. Taking

two terms in both the inner and outer solution, and writing them in terms of the inner
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variable, we find

εT̂l0(t, S0(t)) = (2ti)(2to) = (2to)(2ti) = ε

((
kA1(t)− ρ

St
S′0(t)

)
R− ci(t)

m̂l

)
, (3.13)

which give the boundary condition we need for (3.9)

T̂l0(t, S0(t)) = −ci(t)
m̂l

, (3.14)

and the condition for the moving boundary,

ρ

St
S′0(t) = k

∂Ts0
∂r

∣∣∣∣
r=S0(t)

. (3.15)

This completes the problem in this regime. In the next section we perform an asymp-

totic analysis in the limit St → 0 in order to find approximate solutions for regime

i.

4 Small St analysis of regime i

In this section, we perform the small Stefan number analysis of the thermal problem found

in the previous section. Taking the limit St→ 0, we can determine approximate analytical

solutions to the problem in regime i. Because the concentration problem has almost

decoupled from the thermal problem when taking the limit ε→ 0, the problem we have

to solve is very similar to the one studied in McCue et al. (2008). Still, there are three main

differences between the problem in McCue et al. (2008) and the problem studied here.

The first difference is the scalings we took for the non-dimensionalisation and thus where

the dimensionless parameters appear in the solutions. The second difference is that we

consider constitutional supercooling, therefore the temperature at the interface depends

on the concentration of impurities at the interface which is found from an ODE that

depends on the position of the interface, but not on the temperature. The last difference

is that in our problem we have assumed that the initial temperature of the melt is small

(which physically means that the initial temperature is close to the melting temperature),

and also the amount of supercooling. Therefore, we find that the temperature gradient in

the liquid will have no influence on the position of the interface at leading order, reducing

the free boundary problem to a one-phase Stefan problem.

This last assumption is crucial to decouple the thermal problem into the following

subproblems. The first subproblem is a one-phase Stefan problem, involving temperature

in the solid phase and the moving boundary given by (3.3). Once we have solved problem

(3.3), we can use S0(t) to calculate the concentration at the interface from (3.7). Finally,

knowing the concentration at the interface, we can solve the problem for the temperature

in the liquid given in (3.9).

To solve these problems, we follow the same method as in McCue et al. (2008), finding

asymptotic solutions in the limit St → 0. Therefore, within regime i, we need to dis-

tinguish five different sublayers which now scale with St. These new five sublayers are

showed in red in Figure 3. Notice that to avoid confusion with rescalings with ε, we use

tilde to denote the rescalings with St.
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i ii iii

i(1) i(2) i(3)

r = 1

t = t∗

solid

liquid

A

B

C

D

E

F

G

H

a

b

c

d

e

t

r

t r S0 Ts0 T̂l0 ci

Subregime i(a)
a t r 1 +

√
StS̃0 - T̂l0 Stc̃i

b t 1 +
√

StR 1 +
√

StS̃0 Ts0
√

StT̃l0 Stc̃i

Subregime i(2) c St−1t̃ r S0 Ts0 T̂l0 Stc̃i

Subregime i(3)
d t∗ + t̃ r

√
StS̃0 Ts0 - St−

1
2 c̃i

e t∗ + t̃
√

StR
√

StS̃0 Ts0 St−
1
2 T̃l0 St−

1
2 c̃i

Figure 3. Sketch of the layers in St in regime i and table of scalings for the variables in

each sublayer of regime i. The new layers are shown on top of the layers in ε discussed in

Figure 2, and they are identified with lower case letters. The subregimes within regime

i are identified as subregimes i(1), i(2) and i(3). The variable R is the space variable in

the inner layers. For temperature, concentration, and time, we use tildes whenever they

are rescaled with powers of St.
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4.1 Subregime i(1)

The first subregime we have to study is subregime i(1) which corresponds to early time.

In this layer t = O (1), which is small compared to the critical time t∗ = O
(
St−1

)
. This

critical time corresponds to the solidification time of the equivalent pure melt problem.

In this layer, the interface has not moved much, so it is near r = 1 and we can write it

as S0 = 1 +
√

StS̃0. Therefore, we need to consider an outer layer in the liquid phase and

an inner layer comprising both phases defined as r = 1 +
√

StR, where R is the inner

variable.

4.1.1 Layer a

We first focus on the outer solution in the liquid phase. The thermal problem in the

liquid is

∂T̂l0
∂t

=
∂2T̂l0
∂r2

+
2

r

∂T̂l0
∂r

, for 0 < r < 1, (4.1 a)

∂T̂l0
∂r

= 0 at r = 0, T̂l0 = 0 at r = 1, T̂l0 = T̂0 at t = 0, (4.1 b)

where the condition at r = 1 comes from the matching conditions with layer b. Using

separation of variables, we find that the solution at leading order is (McCue et al. (2008))

T̂l0 =
2T̂0
πr

∞∑
n=1

(−1)n+1

n
e−n

2π2t sin (nπr) +O
(√

St
)
. (4.2)

4.1.2 Layer b

We now solve the system in the inner layer b. This layer accounts for both the solid and

liquid phases, therefore we need to solve for both thermal fields and the concentration

at the interface. We start by solving the one-phase Stefan problem that determines the

temperature in the solid and the position of the interface. With the rescalings r =

1 +
√

StR, S0 = 1 +
√

StS̃0, T̂l0 =
√

StT̃l0, ci = εc̃i, the problem (3.3) becomes

St
∂Ts0
∂t

= κ

(
∂2Ts0
∂R2

+
2
√

St

1 +
√

StR

∂Ts0
∂R

)
, for S̃0(t) < R < 0, (4.3 a)

Ts0 = 0 at R = S̃0(t), (4.3 b)

Ts0 = −1 at R = 0, (4.3 c)

ρ
dS̃0

dt
= k

∂Ts0
∂R

at R = S̃0(t), (4.3 d)

S̃0 = 0, at t = 0. (4.3 e)
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Expanding Ts0 and S̃0 in powers of
√

St, we find

Ts0 =
R

S̃0,0(t)
− 1 +

√
St

(
− R2

S̃0,0(t)
+

(
1− S̃0,1(t)

S̃0,0(t)2

)
R

)
+O (St) , (4.4 a)

S̃0 = −

√
2k

ρ
t−
√

St
2k

3ρ
t+O (St) . (4.4 b)

We now need to determine c̃i using the calculated values of S̃0. With the rescaled con-

centration, (3.7) becomes

c̃′i(t) + c̃i(t)

(
Stα̂S̃′0(t)2 + 2

√
St

S̃′0(t)

1 +
√

StS̃0(t)
− S̃′′0 (t)

S̃′0(t)

)
= ĉ0S̃

′
0(t)2, (4.5)

and expanding c̃i(t) in powers of
√

St, we find

c̃i =
ĉ0k

ρ
+
√

Stĉ0

√(
2k

ρ

)3

t+O (St) , (4.6)

where we have used the fact that we require c̃i to remain bounded as t→ 0 as our initial

condition.

Finally, we can use the values of c̃i and S̃0 to determine the temperature in the liquid.

Rescaling (3.9), we have

St
∂T̃l0
∂t

=
∂2T̃l0
∂R2

+
2
√

St

1 +
√

StR

∂T̃l0
∂R

, in R < S̃0(t), (4.7 a)

T̃l0 = − c̃i(t)
m̂l

at R = S̃0(t), (4.7 b)

and the remaining condition is given by the matching with the outer layer. Then, in the

inner layer, the temperature is given by

T̃l0 = −2T̂0R

∞∑
n=1

e−n
2π2t

(
R− Ŝ0,0(t)

)√
St +O (St) . (4.8)

Notice that the supercooling effects are of O (St), therefore they are only seen at higher

order.

Then, the solution to the problem in this subregime is given, at leading order, by

Ts0 ≈ −1 +

√
ρ

2kSt

1− r√
t
, (4.9 a)

T̂l0 ≈
2T̂0
πr

∞∑
n=1

(−1)n+1

n
e−n

2π2t sin (nπr) , (4.9 b)

S0 ≈ 1−

√
2kSt

ρ
t, (4.9 c)

ci ≈ ĉ0
kSt

ρ
. (4.9 d)
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4.2 Subregime i(2) (layer c)

Now we need to consider the central subregime i(2), in which t = O
(
St−1

)
. For this

problem, we only need to consider one layer. We start solving the one-phase Stefan

problem (3.3) which, with the new time scaling t = St−1t̃, becomes

St
∂Ts0

∂t̃
= κ

(
∂2Ts0
∂r2

+
2

r

∂Ts0
∂r

)
, in S0(t̃) < r < 1,

(4.10 a)

Ts0 = 0, at r = S0(t̃), Ts0 = −1, at r = 1, ρ
dS0

dt̃
= k

∂Ts0
∂r

at r = S0(t̃),

(4.10 b)

and the initial conditions come from matching with subregime i(1). For convenience, as

done in McCue et al. (2008), we take r and S0 to be the independent variables, so then

the dependent variables are Ts0(S0, r) and t̃(S0). Then, we expand Ts0 and t̃ as

Ts0 =
1

1− S0

(
S0

r
− 1

)
+ St

k

κρ

1− r
6rS0(1− S0)

(
1−

(
1− r

1− S0

)2
)

+O
(
St2
)
, (4.11 a)

t̃ =
ρ

k

(
1

2
(1− S0)2 − 1

3
(1− S0)3

)
+ St

1

6κ
(1− S0)2 +O

(
St2
)
. (4.11 b)

Notice that when S2
0 = O (St), this solution breaks down, so this motivates the study

of subregime i(3). Now we need to determine the concentration at the interface from

(3.7), which, rescaling time and the concentration itself as ci = Stc̃i, becomes

c̃′i(t̃) = ĉ0S
′
0(t̃)2 − c̃i(t̃)

(
Stα̂S′0(t̃)2 + 2

S′0(t̃)

S0(t̃)
− S′′0 (t̃)

S′0(t̃)

)
. (4.12)

As we did before, we take S0 to be the time-like independent variable and t̂ the dependent

variable. Then, we rewrite (4.12) as

c̃′i(S0)t̃′(S0) = ĉ0 − c̃i(S0)

(
Stα̂+

2

S0
t̃′(S0) + t̃′′(S0)

)
. (4.13)

Expanding c̃i(t̃) and t̃ in powers of St, we find that, at leading order,

c̃′i,0(S0)t̃′,0(S0) = ĉ0 − c̃i,0(S0)

(
2

S0
t̃′,0(S0) + t̃′′,0(S0)

)
, (4.14)

therefore, using the definition of t̃,0(S0) from (4.11b), we find

c̃i,0(S0) =
3C1ρ− ĉ0kS3

0

3ρ(1− S0)S3
0

, (4.15)

where C1 is a constant to be determined. Matching with the solution in subregime i(1),

we find C1 = ĉ0k
3ρ , therefore we conclude that

c̃i,0 =
ĉ0
3

k

ρ

1− S3
0

(1− S0)S3
0

. (4.16)

Note that we could alternatively determine the value of C1 by imposing that c̃i is bounded

as S0 → 1, finding the same result.
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Finally, we need to determine the temperature in the liquid from the rescaled version

of (3.9), which is

St
∂T̂l0

∂t̂
=
∂2T̂l0
∂r2

+
2

r

∂T̂l0
∂r

, in 0 < r < S0(t̃), (4.17 a)

∂T̂l0
∂r

= 0 at r = 0, T̂l0 = −St
c̃i(t̂)

m̂l
at r = S0(t̃), (4.17 b)

and the initial conditions from the matching with regime i(1).

In order to solve this problem, we proceed as in McCue et al. (2008), however we need

to introduce introduce extra terms in powers of St to account for the non-homogeneous

boundary condition. We find that the solution to leading order is given by

T̂l0 =
2T̂0S0(t̃)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n

2π2

St

∫ t̃

0

ds̃

S0(s̃)2

)
sin

(
nπr

S0(t̃)

)
− St

c̃i0(t̃)

m̂l
. (4.18)

Notice that, as discussed in McCue et al. (2008), the inclusion of the exponentially

small terms allows us to match the initial conditions and thus it is not necessary to

consider subregime i(1).

Then, the solution to the problem in this subregime at leading order is given by

Ts0 ≈
1

1− S0(t)

(
S0(t)

r
− 1

)
, (4.19 a)

T̂l0 ≈ −
ci(t)

m̂l
+

2T̂0S0(t)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n2π2

∫ t

0

ds

S0(s)2

)
sin

(
nπr

S0(t)

)
, (4.19 b)

t ≈ ρ

kSt

(
1

2
(1− S0)2 − 1

3
(1− S0)3

)
, (4.19 c)

ci ≈
ĉ0
3

kSt

ρ

1− S0(t)3

(1− S0(t))S0(t)3
. (4.19 d)

The explicit form of S0(t) can be found inverting (4.19c), but for simplicity we do not

reproduce the result here.

4.3 Subregime i(3)

We finally consider the last subregime, which corresponds to the late time behaviour.

This late time is t∗ − t = O (1), where t∗ = O
(
St−1

)
is the critical time in which the

pure material would finish solidifying. Then, we define the time variable as t = t∗ + t̃,

where t̃ < 0 is the new time variable. In this subregime, the interface position is of

O
(√

St
)

, so we rescale S0 =
√

StS̃0 and ci = St−
1
2 c̃i. Therefore, we need to consider an

outer layer in the solid phase and an inner layer comprising both phases.
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4.3.1 Layer d

We start by considering the outer layer in the solid phase. With the rescalings t = t∗+ t̃,

S0 =
√

StS̃0, ci = St−
1
2 c̃i, the system (3.3) becomes

∂Ts0

∂t̃
= κ

(
∂2Ts0
∂r2

+
2

r

∂Ts0
∂r

)
for 0 < r < 1, Ts0 = −1 at r = 1, (4.20 a)

with the corresponding matching conditions with the inner layer and the previous sub-

regime. The latter matching gives that, at leading order, Ts0,0 = −1 +O
(√

St
)

, thus we

conclude that Ts0 ≈ −1.

4.3.2 Layer e

The last layer we need to study is the inner layer near the origin. The scalings in this

layer are t = t∗ + t̃, r =
√

StR, S0 =
√

StS̃0, T̂l0 = St−
1
2 T̃l0, ci = St−

1
2 c̃i. We consider

the one-phase Stefan problem (3.3), which once rescaled becomes

St
∂Ts0

∂t̃
= κ

(
∂2Ts0
∂R2

+
2

R

∂Ts0
∂R

)
, for R > S̃0(t̃), (4.21 a)

Ts0 = 0 at R = S̃0(t̃), ρ
dS̃0

dt̃
= k

∂Ts0
∂R

at R = S̃0(t̃), (4.21 b)

with matching conditions with the outer layer and the previous subregime. We find

Ts0 = −1 +
S̃0,0(t̃)

R
+O

(√
St
)
, S̃0 =

√
−2k

ρ
t̃+O

(√
St
)
. (4.22)

We use the value of S̃0 to calculate the concentration at the interface by solving

c̃′i(t̃) + c̃i(t̃)

(
Stα̂S̃′0(t̃)2 + 2

S̃′0(t̃)

S̃0(t̃)
− S̃′′0 (t̃)

S̃′0(t̃)

)
= St

3
2 ĉ0S̃

′
0(t̃)2. (4.23)

Expanding c̃i in powers of
√

St, we find that

c̃i,0 =
ĉ0
3

k

ρ

1

S̃0,0(t̃)3
+O

(√
St
)
. (4.24)

Finally, we determine the temperature in the liquid phase. Rescaling (3.9), we find

St
∂T̃l0

∂t̃
=
∂2T̃l0
∂R2

+
2

R

∂T̃l0
∂R

, for 0 < R < S̃0(t̃), (4.25 a)

∂T̃l0
∂R

= 0 at R = 0, T̃l0 = − c̃i(t̃)
m̂l

at R = S̃0(t̃), (4.25 b)

and the matching conditions with subregime i(2) act as initial conditions. Expanding the

temperature in powers of
√

St, we determine the leading order solution as

T̃l0 = − c̃i,0(t̃)

m̂l
+O

(√
St
)
. (4.26)
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Then, the solution to the problem in this subregime at leading order is given by

Ts0 ≈ −1 +
S0(t)

r
, (4.27 a)

T̂l0 ≈ −
ci(t)

m̂l
, (4.27 b)

S0 ≈

√
−2kSt

ρ
(t∗ − t), (4.27 c)

ci ≈
ĉ0
3

kSt

ρ

1

S0(t)3
, (4.27 d)

t∗ ≈ ρ

6kSt
. (4.27 e)

4.4 Discussion and summary of the solutions

In this section, we have considered the three subregimes that arise from taking the small

Stefan number limit to solve the problems found in regime i, after first taking the large

Lewis number limit. As we have mentioned, our analysis for this regime is similar to

that of McCue et al. (2008). However, we remark that, with their definition of the Stefan

number, this analysis corresponds to their large Stefan number limit. After calculating

the solutions, which are given in (4.9), (4.19), and (4.27), we notice that at leading order,

the solutions in subregimes i(1) and i(3) are linearisations of the solution in subregime

i(2). Therefore, to find the leading order behaviour when we expand in St, it is enough

to consider the solution in subregime i(2).

Finally, we need to discuss the validity of the analysis, given that we have taken first

the limit ε→ 0 and second the limit St→ 0. The physical meaning of the limit ε→ 0 is

that mass diffusion happens at a much slower time scale than heat diffusion does. The

limit St → 0 means that the time scale of the motion of the interface is much smaller

than the thermal diffusive time scale. We expect that the concentration profile to be

driven by the motion of the interface, which corresponds to the limit ε� St� 1, which

in terms of time scales means that the solute diffusion time scale is much smaller than

the interface motion time scale, which in turn is much smaller than the heat diffusion

time scale. Mathematically, this condition ensures that we can first take the small epsilon

limit, and second the small Stefan number limit. However, we shall in practice use the

more restrictive condition of ε2/3 � St, which arises from considering that subregime

i(3) happens before regime ii. We have that, when S = O
(
ε1/3

)
, the concentration at

the interface ci = O
(
ε−1
)

and thus we need to consider another regime. Knowing that

in subregime i(3) the interface position is S = O
(√

St
)

, in order for subregime i(3) to

happen before regime ii, we require
√

St� ε1/3. Notice that in McCue et al. (2008) the

authors consider a fourth time scale, which is exponentially small. However, regime ii

happens before this new subregime, as long as ε� exp
(
−3
√

2π
St

)
(which is satisfied for

our problem), as well.
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5 Asymptotic solutions in regime ii

We now consider the transition region, regime ii. In this regime, the interface is still far

away from the centre, so we need to distinguish three layers. The outer layer D in the

solid, the thermal inner layer E near the centre of the cast, and the concentration inner

layer F around the moving interface.

5.1 Layer D

We consider first the outer layer in the solid. Taking the scalings t = t∗ + ε
2
3 τ , S = ε

1
3 Ŝ,

cs = εĉs, we find that

∂ĉs
∂t

= ε
8
3 D̂

(
∂2ĉs
∂r2

+
2

r

∂ĉs
∂r

)
,

∂Ts
∂t

= ε
2
3κ

(
∂2Ts
∂r2

+
2

r

∂Ts
∂r

)
, for 0 < r < 1, (5.1 a)

∂ĉs
∂r

= 0 and Ts = −1, at r = 1, (5.1 b)

and with boundary conditions at r = 0 given by the matching with layer E. Initial

conditions are given by the matching with layer A. At leading order, we find that the

solutions are constant in time and using the matching conditions, which are detailed in

Section 5.4, we conclude that

cs = εα̂
ĉ0
3

kSt

ρ

1− r3

(1− r)r3
and Ts = −1. (5.2)

5.2 Layer E

Now we consider the inner layer of size O
(
ε

1
3

)
around the centre of the sphere. This

layer comprises both phases and it is in this layer where we see thermal diffusion. We

use the rescalings t = t∗ + ε
2
3 τ , r = ε

1
3 ξ, S = ε

1
3 Ŝ, cl = εĉl, so that we can write down

the problem for this layer:

∂cs
∂τ

= ε2D̂

(
∂2cs
∂ξ2

+
2

ξ

∂cs
∂ξ

)
,

∂Ts
∂τ

= κ

(
∂2Ts
∂ξ2

+
2

ξ

∂Ts
∂ξ

)
, for ξ > Ŝ(τ), (5.3 a)

∂ĉl
∂τ

= ε

(
∂2ĉl
∂ξ2

+
2

ξ

∂ ĉl
∂ξ

)
,

∂Tl
∂τ

=
∂2Tl
∂ξ2

+
2

ξ

∂Tl
∂ξ

, for 0 < ξ < Ŝ(τ), (5.3 b)

∂ĉl
∂ξ

= 0 and
∂Tl
∂ξ

= 0, at ξ = 0. (5.3 c)

In this layer we have no interface conditions, as they are imposed through the matching

with layer F in each phase. The remaining conditions are found by matching the solutions

with layer D. At O (1), the problem is

∂cs0
∂τ

= 0,
∂Ts0
∂τ

= κ

(
∂2Ts0
∂ξ2

+
2

ξ

∂Ts0
∂ξ

)
, for ξ > Ŝ(τ), (5.4 a)

∂ĉl0
∂τ

= 0,
∂Tl0
∂τ

=
∂2Tl0
∂ξ2

+
2

ξ

∂Tl0
∂ξ

, for 0 < ξ < Ŝ(τ), (5.4 b)

∂ĉl0
∂ξ

= 0 and
∂Tl0
∂ξ

= 0, at ξ = 0. (5.4 c)
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We can immediately determine the concentrations cs = α̂ci

(
Ŝ−10 (ξ)

)
, cl = εĉ0, where

for cs we have used the matching condition with layer F and for cl we have used the

matching condition with layer C.

For the temperature fields, we need the extra conditions given by the matching with

layers D and F. The details of the matching are shown in Section 5.4, but they give the

leading order boundary conditions

Ts0 = Tl0 = −ci0(τ)

m̂l
,

ρ

St

dŜ0

dτ
= k

∂Ts0
∂ξ
− ∂Tl0

∂ξ
, at ξ = Ŝ0(τ), (5.5 a)

∂Tl0
∂ξ

= 0, at ξ = 0, and Ts0 → −1, as ξ → +∞, (5.5 b)

where ci0(τ) is the solution of

c′i0(τ) + ci0(τ)

(
α̂Ŝ′0(τ)2 + 2

Ŝ′0(τ)

Ŝ0(τ)
− Ŝ′′0 (τ)

Ŝ′0(τ)

)
= 0. (5.6)

The initial conditions are provided by the matching with regime i.

We cannot obtain exact solutions to this problem, but we can find asymptotic approxi-

mations in the limit St→ 0. We introduce the scalings τ = St−
1
3 τ̃ , ξ = St

1
3 ξ̃, Ŝ0 = St

1
3 S̃0,

which transforms (5.5) to

St
∂Ts0
∂τ̃

= κ

(
∂2Ts0

∂ξ̃2
+

2

ξ̃

∂Ts0

∂ξ̃

)
, for ξ̃ > S̃0(τ̃), (5.7 a)

St
∂Tl0
∂τ̃

=
∂2Tl0

∂ξ̃2
+

2

ξ̃

∂Tl0

∂ξ̃
, for 0 < ξ̃ < S̃0(τ̃), (5.7 b)

Ts0 = Tl0 = −ci0(τ̃)

m̂l
, ρ

dS̃0

dτ̃
= k

∂Ts0

∂ξ̃
− ∂Tl0

∂ξ̃
, at ξ̃ = S̃0(τ̃), (5.7 c)

∂Tl0

∂ξ̃
= 0, at ξ̃ = 0, and Ts0 → −1, as ξ̃ → +∞, (5.7 d)

c′i0(τ̃) + ci0(τ̃)

(
Stα̂S̃′0(τ̃)2 + 2

S̃′0(τ̃)

S̃0(τ̃)
− S̃′′0 (τ̃)

S̃′0(τ̃)

)
= 0. (5.7 e)

The condition when ξ̃ → +∞ comes from considering the outer layer (within which we

have not rescaled ξ), which gives that at leading order the temperature is constant in

time. Matching shows that temperature is homogeneous in space and equal to −1.

We take ξ̃ and S̃0 as the independent variables, with Ts0, Tl0, ci0, and τ̃ as the

dependent variables, and we expand them in powers of St using the notation Ts0 =

Ts0,0 + StTs0,1 +O
(
St2
)
, Tl0 = Tl0,0 + StTl0,1 +O

(
St2
)
, ci0 = ci0,0 + Stci0,1 +O

(
St2
)
,

τ̃ = τ̃,0 + Stτ̃,1 + O
(
St2
)
. Using these expansions in (5.7), we find that at O (1) the
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problem is

∂2Ts0,0

∂ξ̃2
+

2

ξ̃

∂Ts0,0

∂ξ̃
= 0, for ξ̃ > S̃0,

∂2Tl0,0

∂ξ̃2
+

2

ξ̃

∂Tl0,0

∂ξ̃
= 0, for 0 < ξ̃ < S̃0,

(5.8 a)

Ts0,0 = Tl0,0 = −ci0,0(S̃0)

m̂l
, ρ =

dτ̃,0

dS̃0

(
k
∂Ts0,0

∂ξ̃
− ∂Tl0,0

∂ξ̃

)
, at ξ̃ = S̃0,

(5.8 b)

∂Tl0,0

∂ξ̃
= 0, at ξ̃ = 0, and Ts0,0 → −1, as ξ̃ → +∞,

(5.8 c)

c′i0,0(S̃0)τ̃ ′,0(S̃0) + ci0,0(S̃0)

(
2

S̃0

τ̃ ′,0(S̃0) + τ̃ ′′,0(S̃0)

)
= 0.

(5.8 d)

We solve (5.8), finding

Ts0,0 = −1 +

(
−ci0,0(S̃0)

m̂l
+ 1

)
S̃0

ξ̃
, Tl0,0 = −ci0,0(S̃0)

m̂l
, ci0,0 =

C2

S̃2
0 τ̃
′
,0(S̃0)

, (5.9)

where C2 is a constant yet to be determined.

We substitute these expressions into (5.8 d), to find

τ̃,0 = −C2

m̂l

1

S̃0

− ρ

2k
S̃2
0 + C3, ci0,0 =

C2km̂l

C2k − m̂lρS̃3
0

. (5.10)

where C3 is a constant. We can determine C2 by matching concentration at the interface

with regime i(3) and, as shown later in Section 5.4, C2 = − ĉ03 . Substituting this expression

back into (5.10) and (5.9), and rescaling using original variables,

τ ≈ ĉ0
3m̂l

1

Ŝ0

− ρ

2Stk
Ŝ2
0 + τ∗, ci0 ≈

ĉ0kStm̂l

ĉ0kSt + 3m̂lρŜ3
0

, (5.11)

where τ∗ = St−
1
3C3 is a time-shift (which we do not consider here).

5.3 Layer F

We finally study the layer F. This layer is of thickness O
(
ε

4
3

)
around the moving bound-

ary, and it is in this layer where we observe the diffusion and advection due to the moving

boundary of impurities in the liquid phase. The rescaling for this layer is t = t∗ + ε
2
3 τ ,

r = ε
1
3

(
Ŝ(τ) + εR

)
, S = ε

1
3 Ŝ, cl = ε−1ĉl. For R > 0, we have

ε
∂cs
∂τ

= Ŝ′(τ)
∂cs
∂R

+ εD̂

(
∂2cs
∂R2

+ ε
2

Ŝ(τ) + εR

∂cs
∂R

)
, (5.12 a)

ε2
∂Ts
∂τ

= εŜ′(τ)
∂Ts
∂R

+ κ

(
∂2Ts
∂R2

+ ε
2

Ŝ(τ) + εR

∂Ts
∂R

)
, (5.12 b)



22 F. Brosa Planella et al.

for R < 0, we have

ε
∂ ĉl
∂τ

= Ŝ′(τ)
∂ĉl
∂R

+
∂2ĉl
∂R2

+ ε
2

Ŝ(τ) + εR

∂ĉl
∂R

, (5.12 c)

ε2
∂Tl
∂τ

= εŜ′(τ)
∂Tl
∂R

+
∂2Tl
∂R2

+ ε
2

Ŝ(τ) + εR

∂Tl
∂R

, (5.12 d)

and at the interface, R = 0, we have

Ts = Tl, cs = α̂ĉl, ĉl = −m̂lTl, ε
ρ

St

dŜ

dτ
= k

∂Ts
∂R
− ∂Tl
∂R

,

and (1− εα̂)ĉl
dŜ

dτ
= ε2D̂

∂cs
∂R
− ∂ĉl
∂R

. (5.12 e)

Notice that this is almost the same problem as in layer B, therefore we do not detail

the solution procedure here. We expand in powers of ε
1
3 , due to the matching with layer

E, and find that the solutions are

cs = α̂ci0(τ) + ε
1
3 α̂ci 13 (τ) + ε

2
3 α̂ci 23 (τ) + ε

(
α̂ci0(τ)

Ŝ′0(τ)
R+ α̂ci1(τ)

)
, (5.13 a)

cl = ε−1ci0(τ)e−Ŝ
′
0(τ)R + ε−

2
3

(
ci 13 (τ)−Rci0(τ)Ŝ′1

3
(τ)
)
e−Ŝ

′
0(τ)R

+ ε−
1
3

(
ci 23 (τ)−R

(
ci 13 (τ)Ŝ′1

3
(τ) + ci0(τ)Ŝ′2

3
(τ)
)

+
R2

2
ci0(τ)Ŝ′1

3
(τ)

)
e−Ŝ

′
0(τ)R

+
(
A1(τ) + (ci1(τ)−A1(τ) +RA2(τ,R)) e−Ŝ

′
0(τ)R

)
, (5.13 b)

Ts = −ci0(τ)

m̂l
− ε 1

3

ci 13 (τ)

m̂l
− ε 2

3

ci 23 (τ)

m̂l
+ ε

(
A4(τ)R− ci1(τ)

m̂l

)
, (5.13 c)

Tl = −ci0(τ)

m̂l
− ε 1

3

ci 13 (τ)

m̂l
− ε 2

3

ci 23 (τ)

m̂l
+ ε

((
kA4(τ)− ρ

St
Ŝ′0(τ)

)
R− ci1(τ)

m̂l

)
, (5.13 d)

with

A1(τ) =
c′i0(τ)

Ŝ′0(τ)2
+ ci0(τ)

(
α̂+

2

Ŝ0(τ)Ŝ′0(τ)
− Ŝ′′0 (τ)

Ŝ′0(τ)3

)
, (5.14 a)

A2(τ,R) = −c
′
i0(τ)

Ŝ′0(τ)
− ci 23 Ŝ

′
1(τ) +

1

2
ci 13 (τ)

(
RŜ′1

3
(τ)2 − 2Ŝ′23(τ)

)
+ ci0(τ)

(
− 2

Ŝ0(τ)
− R2

6
Ŝ′1

3
(τ)3 +RŜ′1

3
Ŝ′2

3
− Ŝ′1(τ) +

(
1 +

R

2
Ŝ′0(τ)

)
Ŝ′′0 (τ)

Ŝ′0(τ)2

)
,

(5.14 b)

where ci0(τ) and A4(τ) are determined from matching. The values of ci 13 , ci 23 , and ci1
require matching of higher order solutions not presented here.

5.4 Matching of the solutions

In this section, we detail the matching between the solutions of the different layers that

we have used in the previous sections to fully determine the problem.
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We start matching layer D with layer A to obtain the initial conditions that determine

the leading order solutions in layer D. The matching for cs is trivial, as the solution is

independent of time in both layers. For Ts, we take one term in the inner solution and

one term in the outer solution, finding −1 = (1ti)(1to) = (1to)(1ti) = limτ→−∞ Ts0, so

we can fully determine the leading order solutions in layer D. Similarly, we can match cl
and Tl between layers C and E.

We now have to match the space layer D with layer E, which provides the boundary

condition needed for Ts (it is not necessary to match for cs, as at leading order the

condition is not required). Then, taking one term in both the inner and outer solutions,

we find −1 = (1ti)(1to) = (1to)(1ti) = limξ→+∞ Ts0.

The next layers we have to match are layers E and F. We start by matching the

temperature fields, both in the solid and the liquid, taking two terms in the inner and

the outer solutions. For the solid, we match

(2ti)(2to) = Ts0(τ, Ŝ0(τ)) + ε
1
3 (· · · ) + ε

2
3 (· · · ) + ε

(
(· · · ) +

(
R+ Ŝ1(τ)

) ∂Ts0
∂ξ

∣∣∣∣
ξ=Ŝ0

)
,

(5.15 a)

(2to)(2ti) = −ci0(τ)

m̂l
− ε 1

3

ci 13 (τ)

m̂l
− ε 2

3

ci 23 (τ)

m̂l
+ ε

(
RA4(τ)− ci1(τ)

m̂l

)
.

(5.15 b)

The (· · · ) here represent terms that are known, as shown in (5.13), but not necessary for

the matching, given the purpose of our analysis. Therefore, to simplify the notation, we

do not reproduce these terms here. We conclude

Ts0(τ, Ŝ0(τ)) = −ci0(τ)

m̂l
, A4(τ) =

∂Ts0
∂ξ

∣∣∣∣
ξ=Ŝ0

. (5.16 a)

In the liquid, we match

(2ti)(2to) = Tl0(τ, Ŝ0(τ)) + ε
1
3 (· · · ) + ε

2
3 (· · · ) + ε

(
(· · · ) +

(
R+ Ŝ1(τ)

) ∂Tl0
∂ξ

∣∣∣∣
ξ=Ŝ0

)
,

(5.17 a)

(2to)(2ti) = −ci0(τ)

m̂l
− ε 1

3

ci 13 (τ)

m̂l
− ε 2

3

ci 23 (τ)

m̂l
+ ε

((
kA4(τ)− ρ

St

dŜ0

dτ

)
R− ci1(τ)

m̂l

)
,

(5.17 b)

which gives

Tl0(τ, Ŝ0(τ)) = −ci0(τ)

m̂l
, kA4(τ)− ρ

St

dŜ0

dτ
=
∂Tl0
∂ξ

∣∣∣∣
ξ=Ŝ0

. (5.18)

We have the boundary conditions for both Ts0 and Tl0 in layer E, as well as the Stefan

condition

ρ

St

dŜ0

dτ
= k

∂Ts0
∂ξ

∣∣∣∣
ξ=Ŝ0

− ∂Tl0
∂ξ

∣∣∣∣
ξ=Ŝ0

, (5.19)

so we have fully determined the problem (5.5).
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Matching cs between layers E and F, we find cs0(Ŝ0(τ)) = (1ti)(1to) = (1to)(1ti) =

α̂ci(τ). In order to match cl between layers E and F, we proceed in the same way as we

did to match between layers B and C, finding A1(τ) = (1ti)(1to) = (1to)(1ti) = 0, which

gives

c′i0(τ)

Ŝ′0(τ)2
+ ci0(τ)

(
α̂+

2

Ŝ0(τ)Ŝ′0(τ)
− Ŝ′′0 (τ)

Ŝ′0(τ)3

)
= 0. (5.20)

Finally, we need to match ci between regimes i and ii, where regime i acts as the outer

layer and ii as the inner layer. This matching determines Ŝ0(τ) up to a time shift, which

requires higher order matching and is not studied here. For simplicity, we take ci as a

function of Ŝ0. Using Ŝ0 = St
1
3 S̃0, we rescale (5.9) like

ci0(Ŝ0) =
C2Stkm̂l

C2Stk − m̂lρŜ3
0

. (5.21)

Now, using that S0 = ε
1
3 Ŝ0, we can take the inner solution up to O

(
ε−1
)

and the outer

solution up to O (1), finding ĉ0
3
kSt
ρ

1
Ŝ3
0

ε−1 = (1ti)(1to) = (1to)(1ti) = −C2
kSt
ρ

1
Ŝ3
0

ε−1,

hence C2 = − ĉ03 .

This concludes the analysis of regime ii. In this regime, we have observed how the so-

lidification process is driven by a build-up of the interfacial concentration due to rejection

from the solid phase. This build-up causes a decrease in the interfacial temperature due

to constitutional supercooling and, therefore, a decrease in the thermal gradients at the

interface that slows down the motion of the solidification front. At the end of this regime,

when τ → +∞, we find that the position of the interface at leading order goes to zero.

That means that the liquid part of layer E vanishes and therefore we need to consider

another regime in which the impurity diffusion inner layer now notices the symmetry

boundary condition at r = 0.

6 Asymptotic solutions in regime iii

We finally consider regime iii. In this regime, the interface is at a distance O
(
ε2/3

)
from

the origin and we need to distinguish two different layers, namely the outer layer in the

solid, G, and the inner layer, H, that comprises both phases.

6.1 Layer G

We first consider the outer layer in the solid. Taking the scalings t = t∗ + ε
1
3 θ, S = ε

2
3 Ŝ,

cs = εĉs, we find

∂ĉs
∂θ

= ε
7
3 D̂

(
∂2ĉs
∂r2

+
2

r

∂ĉs
∂r

)
,

∂Ts
∂θ

= ε
1
3κ

(
∂2Ts
∂r2

+
2

r

∂Ts
∂r

)
, for 0 < r < 1, (6.1 a)

∂ĉs
∂r

= 0 and Ts = −1, at r = 1, (6.1 b)

and with the remaining conditions given by the matching with layers D and H. At leading

order the solutions are constant in time, and from the matching given in Section 6.3, we

conclude cs = εα̂ci
(
S−10 (r)

)
, Ts = −1.
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6.2 Layer H

Finally, we consider the inner layer H of thickness O
(
ε

2
3

)
around the origin. In this layer

the scalings are t = t∗ + ε
1
3 θ, r = ε

2
3R, S = ε

2
3 Ŝ, cl = ε−1ĉl. We find

∂cs
∂θ

= εD̂

(
∂2cs
∂R2

+
2

R

∂cs
∂R

)
, ε

∂Ts
∂θ

= κ

(
∂2Ts
∂R2

+
2

R

∂Ts
∂R

)
, for R > Ŝ(θ), (6.2 a)

∂ĉl
∂θ

=
∂2ĉl
∂R2

+
2

R

∂ĉl
∂R

, ε
∂Tl
∂θ

=
∂2Tl
∂R2

+
2

R

∂Tl
∂R

, for R < Ŝ(θ), (6.2 b)

Ts = Tl, cs = α̂ĉl, ĉl = −m̂lTl, ε
ρ

St

dŜ

dθ
= k

∂Ts
∂R
− ∂Tl
∂R

,

and (1− εα̂) ĉl
dŜ

dθ
= ε2D̂

∂cs
∂R
− ∂ĉl
∂R

, at R = Ŝ(θ), (6.2 c)

∂ĉl
∂R

= 0 and
∂Tl
∂R

= 0, at R = 0. (6.2 d)

The remaining conditions come from matching with other layers, and are detailed in

Section 6.3.

At O (1), the problem reads

∂cs0
∂θ

= 0,
∂2Ts0
∂R2

+
2

R

∂Ts0
∂R

= 0, for R > Ŝ0(θ), (6.3 a)

∂ĉl0
∂θ

=
∂2ĉl0
∂R2

+
2

R

∂ĉl0
∂R

,
∂2Tl0
∂R2

+
2

R

∂Tl0
∂R

= 0, for R < Ŝ0(θ), (6.3 b)

Ts0 = Tl0, cs0 = α̂ĉl0, ĉl0 = −m̂lTl0, k
∂Ts0
∂R

=
∂Tl0
∂R

,

and ĉl0
dŜ0

dθ
+
∂ĉl0
∂R

= 0, at R = Ŝ0(θ), (6.3 c)

∂ĉl0
∂R

= 0 and
∂Tl0
∂R

= 0, at R = 0. (6.3 d)

Matching with the Ts in layer G derived later in Section 6.3 gives Ts = Tl = −1. From

here, we conclude that ĉl0 = m̂l at the interface. We also determine that cs = α̂m̂l. To

determine ĉl0 and Ŝ0, it will be useful to introduce the scalings ĉl0 = m̂lc, Ŝ0 =
(
ĉ0
3m̂l

) 1
3

S,

R =
(
ĉ0
3m̂l

) 1
3

r, θ =
(
ĉ0
3m̂l

) 2
3

t, which results in the parameter-free problem

∂c

∂t
=
∂2c

∂r2
+

2

r

∂c

∂r
, in 0 < r < S(t), (6.4 a)

∂c

∂r
= 0, at r = 0, c = 1 and c

dS

dt
+
∂c

∂r
= 0, at r = S(t), (6.4 b)

c ∼ exp

(
−dS

dt
(r − S(t))

)
and S ∼ 1

t
, when t→ 0, (6.4 c)

which is a one-phase Stefan problem describing the impurity diffusion in a shrinking core.

We are unable to determine analytical solutions to this problem. However, as we have

eliminated all parameters of the problem, we can calculate the solution numerically. We

use a finite volume scheme similar to the one we shall describe in Appendix A, but

in this case it is simpler as we only need to solve the problem for the concentration
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Figure 4. Plots of the interface position S over time (top panel) and concentration profiles

c over space for various values of time (bottom panel) arising from (6.4). Numerical

solutions were obtained using a fixed boundary method and a finite volume scheme.

and the position of the interface. Because of the singularity in the initial condition as

t → 0, we have to impose the initial conditions of the numerical scheme at some initial

time t = t0 close to zero. As the problem (6.4) with an initial condition at t = t0,

with t0 arbitrarily small, is a classical one-phase Stefan problem with sufficiently smooth

data, from Theorem III.2 in Elliott and Ockendon (1982) we know that the solution on

t ∈ [t0,∞) is unique. The different numerical simulations for different values of t0 seem

to converge as t0 → 0, even though we do not have an analytical proof that in this limit

the solution to the problem is unique. Notice as well that the problem is a supercooled

Stefan problem, and therefore it could go unstable. These problems have been studied

in the literature (Fasano et al. (1989, 1990, 1981); Herrero and Velázquez (1996)), but

it remains an open question whether this particular problem is stable. The numerical

simulations, however, do not show instability. The plots for the position of the interface

and the concentration profiles are shown in Figure 4.

Even though we cannot find analytical solutions to the problem (6.4), we can cal-

culate the steady state. One can check that the total amount of impurities in prob-

lem (6.4) is conserved. Then, since we know that the steady state concentration profile
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is homogeneous in space, we have that the total concentration at the steady state is

ctot = 4
3πS

3
endcend, where Send and cend are the interface position and the concentration

at the steady state, respectively. Because the total concentration is conserved, ctot must

be equal to the initial amount, which is given by

ctot = lim
t→0

4π

∫ S(t)

0

r2 exp

(
−dS

dt
(r − S(t))

)
dr

= lim
t→0

4π
(

1− 2t3 + 2t6
(

1− e−
1
t3

))
= 4π.

(6.5)

We know that the steady state concentration is cend = 1, as given by the boundary

condition (6.4c), hence we conclude Send = 3
√

3 ≈ 1.4423, which agrees with the numerical

result shown in Figure 4(a).

6.3 Matching of the solutions

In this section, we match the solutions of the different layers. We start by matching the

temperature and concentration in layer G with the solutions in layer D, limθ→0 Ts0 =

(1ti)(1to) = (1to)(1ti) = −1. For ĉs0, because the solutions in both layers do not depend

on time, the matching is trivial.

The next condition we need to derive is the matching of Ts between layers G and

H. Taking one term both in the inner and outer solutions, we find −1 = (1ti)(1to) =

(1to)(1ti) = limR→+∞ Ts0, which is used to determine Ts0.

Finally, we need to determine the initial conditions used in (6.4). We start with ĉl0
which we have to match with the solution found in layer F. Taking the solutions up to

O
(
ε−1
)
, we determine the matching condition

lim
θ→0

ε−1ĉl0 = (1ti)(1to) = (1to)(1ti) = lim
τ→+∞

ε−1ci(τ) exp

(
dŜ0

dτ

(
R− Ŝ0(τ)

))
, (6.6)

and we know from the solution in regime ii that ci → m̂l and Ŝ0 → ĉ0
3m̂lSt

1
τ as τ → +∞.

The last condition is the one for Ŝ0(θ). We match the solution in regime iii with the

solution in regime ii. Taking the solutions at leading order in each regime (so O
(
ε1/3

)
in

regime ii and O
(
ε2/3

)
in regime iii), we find

lim
θ→0

ε
2
3S0 = (1ti)(1to) = (1to)(1ti) = ε

2
3
ĉ0

3m̂l

1

θ
. (6.7)

We have now finished the analysis of regime iii and notice that the solutions given here

hold up to θ → +∞, therefore this is the last regime to consider. With the solutions

found in each regime, we can now describe the behaviour of the system (2.2) at leading

order for t ∈ [0,+∞).

7 Summary of the asymptotic solutions and results

After performing the asymptotic analysis of the extended Stefan problem in the spheri-

cally symmetric three-dimensional geometry, we have distinguished three different time
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regimes with significantly different behaviours of the solution. Similar to what was ob-

served in the finite planar geometry configuration (Brosa Planella et al., 2019), the con-

centration of impurities in the solid remains constant over time, while the concentration

at each point is only determined by the time when it solidified. In this section, we provide

the leading order solutions in each layer. The solutions are written in terms of the orig-

inal dimensionless parameters (i.e., before rescaling). Recall that we defined the small

parameter ε = Le−1.

7.1 Leading-order behavior of solutions

Regime i corresponds to the beginning of the process and has three different layers: two

outer layers, one in the solid phase and one in the liquid phase, and an inner layer around

the interface. Recall that, in order to determine the solutions for this layer, we required

a further expansion in the small Stefan number, as discussed in Section 4. In the outer

layer in the solid (r > S(t), layer A), we have

cs ≈ α
c0
3

kSt

ρ
Le

1− r3

(1− r)r3
, (7.1 a)

Ts ≈
1

1− S(t)

(
S(t)

r
− 1

)
, (7.1 b)

in the transition layer (r = S(t), layer B), we have

cs ≈ αci(t), (7.1 c)

Ts ≈ −
r − S(t)

(1− S(t))S(t)
− ci(t)

ml
, (7.1 d)

cl ≈ ci(t) exp

(
−dS

dt
Le (r − S(t))

)
, (7.1 e)

Tl ≈ −
ci(t)

ml
, (7.1 f )

and in the outer layer in the liquid (r < S(t), layer C), we have

cl ≈ c0, (7.1 g)

Tl ≈ −
ci(t)

ml
+

2T0S(t)

πr

∞∑
n=1

(−1)n+1

n
exp

(
−n2π2

∫ t

0

ds

S(s)2

)
sin

(
nπr

S(t)

)
, (7.1 h)

where

t ≈ ρ

kSt

(
1

2
(1− S(t))2 − 1

3
(1− S(t))3

)
+

1

6κ
(1− S(t))2 and (7.1 i)

ci(t) ≈
c0
3

kSt

ρ
Le

1− S(t)3

(1− S(t))S(t)3
. (7.1 j )

In this regime, the system is driven by the thermal problem since the supercooling is

small, and therefore we observe similar behaviour to that described in McCue et al.

(2008). The impurity build-up happens only in a small layer around the solidification

front. However, in this geometry, because the volume of liquid shrinks as the cube of the

position of the interface (as opposed to the linear relation we observed in the finite planar
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problem), the rejection of impurities is stronger and we observe that the concentration

of impurities at the interface is no longer constant but grows in time. This is the reason

why the next regime to consider is driven by supercooling while the solidification front

is still far away from the centre of the sphere.

Then, in this new regime, the front is still at a distance O
(
ε1/3

)
from the centre,

but the impurity build-up causes a significant change in the melting temperature that

affects the dynamics of the solidification front. This corresponds to a time of O
(
ε2/3

)
around the critical time t = t∗. We distinguish three layers: an outer layer in the solid,

an intermediate layer O
(
ε1/3

)
around the centre of the sphere, and an inner layer O (ε)

around the solidification front. To obtain analytical solutions we need to also take the

small Stefan number limit. In the outer layer D (r > 0), we have

cs ≈ α
c0
3

kSt

ρ
Le

1− r3

(1− r)r3
, (7.2 a)

Ts ≈ −1, (7.2 b)

in the intermediate layer E (r > 0), we have

cs ≈ αml

(
1 +

3ml

c0

ρ

kSt

r3

Le

)−1
, (7.2 c)

Ts ≈ −1 +

(
−ci(t)
ml

+ 1

)
S(t)

r
, (7.2 d)

cl ≈ c0, (7.2 e)

Tl ≈ −
ci(t)

ml
, (7.2 f )

and in the inner layer F around r = S(t), the solutions are

cs ≈ αci(t), (7.2 g)

Ts ≈ −
ci(t)

ml
, (7.2 h)

cl ≈ ci(t) exp

(
−dS

dt
Le (r − S(t))

)
, (7.2 i)

Tl ≈ −
ci(t)

ml
, (7.2 j )

where

t ≈ c0
3ml

Le
1

S(t)
+

ρ

2kSt
S(t)2 + t∗ + ε

2
3 τ∗, (7.2 k)

ci ≈ ml

(
1 +

3ml

c0

ρ

kSt

S(t)3

Le

)−1
, (7.2 l)

t∗ ≈ ρ

6kSt
+

1

6κ
. (7.2 m)

We observe that the dynamics in this regime are driven by the build-up of impurities

at the interface, which causes enough supercooling to decrease the temperature in the

whole domain down to the temperature of the boundary. This change in the interface

temperature results in a decrease in the thermal gradients, and thus the interface slows
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down. Because the liquid region is still reasonably large, the impurities can diffuse away

from the interface, so we still observe an exponential profile in the impurity concentration.

Finally, we consider regime iii, at a late time O
(
ε1/3

)
after the critical time t = t∗,

where the interface is within a distanceO
(
ε2/3

)
of the centre of the sphere. We distinguish

two layers: an outer layer in the solid, and an inner layer of O
(
ε2/3

)
around the centre.

In the outer layer (r > 0, layer G), the solutions are

cs ≈ αml

(
1 +

3ml

c0

ρ

kSt

r3

Le

)−1
, (7.3 a)

Ts ≈ −1, (7.3 b)

while in the inner layer around r = 0, we have

cs ≈ αml, (7.3 c)

Ts ≈ −1, (7.3 d)

Tl ≈ −1, (7.3 e)

while cl and S have to be determined numerically. In this layer, the temperature in both

phases is identical to the boundary temperature, therefore the thermal problem is in

steady state. This means that the concentration at the interface remains constant. The

concentration in the liquid and the position of the interface evolve following a classical

one-phase Stefan problem, which ensures that total mass is conserved. We plot the posi-

tion of the interface and the concentration of impurities on the liquid side of the interface

in Figure 5 for various parameter values, finding that an increase in St results in faster

motion of the interface, whereas an increase in Le results in an increase in the impurity

concentration.

7.2 Comparison with numerical simulations

We compare the asymptotic solutions to the results of numerical simulations, where the

numerical scheme is discussed in Appendix A. When performing our simulations, we set

St = 0.1, Le = 1000, ρ = 1, cp = 1, k = 0.36, ml = 1000, c0 = 0.01, and T0 = 0, which are

parameter values close to metallurgical grade silicon (Brosa Planella et al., 2019). The

reason for taking Le = 1000 and St = 0.1 is to make sure that the condition ε
2
3 � St� 1

is satisfied and thus the asymptotic solutions are valid. We take Ns = 2×103 grid points

in the solid phase, Nl = 2×104 grid points in the liquid phase, and an initial time step of

∆t = 10−3. At each step we use relaxation iterations to solve the nonlinear system and

we take a relaxation parameter ω = 0.1 and a tolerance of δ = 0.01. To help convergence,

if one time step takes more than 100 iterations before converging, and the time step is

larger than 10−5, we halve the time step. This algorithm is capable of solving the full

problem with a total mass variation smaller than 0.1%.

The comparison between our asymptotic solutions and numerical simulations is shown

in Figure 6. We find quite good qualitative agreement, and thus we believe that the

asymptotic solutions describe the dynamics of the solidification process for the entire

time domain. We observe some discrepancy between both results in regime ii, which is

more noticeable in ci due to the scale of the solution there. This agreement could possibly
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Figure 5. Asymptotic solutions for the interface position S as a function of Stefan number

St (top panel) and the concentration of impurities on the liquid side of the interface ci
as a function of Lewis number Le (bottom panel).

be improved by calculating higher order terms for the solution in that regime, given that

for the solution plotted here we only took the leading order terms in both St and ε

expansion. Figure 6(a) shows the position of the interface as a function of time, and we

can clearly observe the behaviour for t < t∗, which is similar to the pure material problem

(McCue et al., 2008; Soward, 1980). Near the critical time we observe a rapid transition

that slows down the interface, and at late times (t > t∗) we see a decay to the steady

state at a very small length scale. Figure 6(b) shows the concentration of impurities

at the interface as a function of time. At the beginning of the process, we notice that

concentration of impurities increases, but remaining of O (1), while around the critical
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Figure 6. Comparison of the asymptotic and numerical solutions for the interface position

S (top panel) and concentration of impurities on the liquid side of the interface ci (bottom

panel). The discontinuity near t = 5 is where the solutions are matched across regimes.

time there is a very quick build-up until they reach the maximum concentration cl = ml.

Finally, at late time, the concentration remains equal to this maximum value.

7.3 Comparison with experiments

One possible application of our results is to the solidification of metallurgical grade

silicon, as explained in previous work (Benham et al., 2016; Brosa Planella et al., 2019).

Amongst the various casting techniques used in the silicon industry, we focus here on

the water granulation process, in which liquid silicon is solidified into small spherical

particles by quenching the molten silicon in a pool of water (Nelson et al., 2005; Nygaard

et al., 1995). Such a process can be described by the model (2.2).

The experimental data presented here, which was provided by Elkem, is for two differ-
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ent particles (with diameters 7.5 mm and 6.0 mm respectively) of 97% pure silicon cast

using water granulation. To measure the distribution of impurities, each particle was

polished down to the central cross section and a scanning electron microscope (SEM)

was then used to take a picture of a 1.7 mm wide band around one of the diameters of

the particle. The measurements of the impurity fraction along the diameter were then

measured by averaging the values over the direction perpendicular to the diameter at

each point. The SEM image of the samples are shown in Figure 7.

The concentration profile in the particle can be described using the expression of cs
in layer E, see (7.3a), as it captures the leading order behaviour for the whole problem.

Given that the experimental data is along the diameter but the model assumes symmetry,

the expression to fit to the experimental data can be constructed combining cs (1− 2x)

and cs (2x− 1) where x is the fraction of cast thickness and

cs(r) =
a

1 + br3
, where a = αml and b =

3mlρ

c0kStLe
. (7.4)

We find that the values a ≈ 0.03 and b ≈ 8 give reasonable agreements between the ex-

perimental data and the asymptotic results as shown in Figure 7; no additional parameter

fitting was employed. The noise in the data is inherent to the experimental measurements

and it is caused by the microstructure configurations. But despite the noise in the mea-

surements, we can still observe a certain trend in the concentration: increasing from the

boundaries to the interior, and then a region of roughly constant concentration at the

centre of the domain. This trend agrees with the behaviour predicted by (7.4), therefore

our simple model helps us to better understand the underlying trend in the noisy data.

8 Discussion

In this paper we have considered the solidification problem of a binary alloy in a spherical

domain. Since closed-form exact solutions cannot be found, we have performed an asymp-

totic expansion in large Lewis number limit and then in small Stefan number (which is

valid for Le−
2
3 � St). We also made the following assumptions: small diffusivity of im-

purities in the solid, segregation coefficient, initial concentration and initial temperature;

and large supercooling coefficient. We distinguished eight different layers over three time

regimes. The dynamics of the early stage of the problem are similar to the problem for the

pure material described in McCue et al. (2008), as the supercooling effects are small. The

impurities are rejected into the liquid phase and diffuse away over a very short length

scale. For this geometry we observed that the concentration at the interface does not

remain constant but grows in time. It is this growth which leads to the second regime,

around the critical time t∗ ≈ ρ
6kSt + 1

6κ . In this regime, the concentration of impurities

has become large enough to cause a significant change in the melting temperature, re-

sulting in a change in the thermal problem and a deceleration of the moving boundary.

At late times, the temperature of the whole system has reached the minimum tempera-

ture and thus the thermal problem remains in steady state, implying that the interfacial

concentration stays constant. Then, we need to solve the one-phase Stefan problem for

the diffusion of impurities in a shrinking core, in order to find the concentration in the

liquid and the position of the interface, which has to be solved numerically. The asymp-
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Figure 7. Comparison of asymptotic solutions and experimental data for the concentra-

tion of impurities (as a volume fraction) in a silicon granule for two distinct samples.

Both experimental data and images of the samples have been provided by Elkem. The

analytical solution corresponds to (7.4) with parameter values a = 0.03 and b = 8. The

same parameters are used in both samples as they come from the same cast. Notice

that, because the data is for the impurities volume fraction and the fraction of the cast

thickness, which are dimensionless quantities, we can use the dimensionless model.
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totic solutions show good agreement with the numerical simulations. We also compare

the asymptotic solutions with experimental data provided by Elkem for silicon granules.

By choosing a suitable parameter set we find good agreement between the experiments

and the asymptotic solution, therefore the results presented here can be used to better

understand the water granulation casting process.

The analysis highlights the crucial role of constitutional supercooling in the behaviour

of the system, even though its contribution was assumed to be small in the model. It

is constitutional supercooling which triggers regime ii, and thus we observe a different

behaviour to that described in previous works on the solidification of pure materials

(McCue et al., 2008; Soward, 1980; Stewartson and Waechter, 1976), or in Feltham and

Garside (2001), where supercooling was taken to be much smaller so that it fully decou-

pled from the thermal problem. Compared with the finite planar geometry studied in

Brosa Planella et al. (2019), we also observe a change of the order of the regimes, and

hence the boundary layer structure. For the sphere, we first see the supercooling effects

bring the temperature of the system down to the minimal temperature and slow the

motion of the interface, and later the diffusion of impurities in the liquid region to the

homogeneous steady state.

Even though the model is quite simple and the experimental data very noisy, we have

shown that the model is able to capture the underlying trend in the data. In terms

of practical application, the model provides insight in the time scale for solidification

(in the model the time scale until regime iii). The model also shows the effect of the

impurities in the process and how these impurities distribute along the particle radius.

This distribution can be useful for further analysis on the properties of the solidified

material and could, which may be linked to the microstructure at least in an empirical

way. From the immediate point of view, these results can be used to determined how long

need the particles to be cooled for until they have solidified and what is the influence of

each parameter in the final solidification time and impurity distribution.

One could extend this work considering other aspects of the symmetric problem. A

possible extension is to determine higher order asymptotic solutions, in order to increase

the accuracy of our approximations; however, we suspect that this will require one to

consider other layers and the problem complexity will increase, similarly to what was

shown in other work (McCue et al., 2008; Soward, 1980; Stewartson and Waechter, 1976).

Other extensions would be to consider a more general geometry and extend the analysis

of McCue et al. (2005) to binary alloys. One could perform a similar asymptotic analysis

for other special geometries, such as a cylinder, which should be conceptually similar to

the sphere. Finally, one might also consider a stability analysis for the spherical problem,

or other three-dimensional geometries, akin to what we did for infinite and semi-infinite

planar domain problems, in Brosa Planella et al. (2018).
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Appendix A Numerical scheme

In order to solve (2.2) numerically, we choose a fixed boundary scheme as it was done

in Brosa Planella et al. (2019) for the planar geometry. The key idea is the following:

rescale solid and liquid regions so that they have fixed boundaries. We ensure that the

algorithm conserves mass of impurities.

We introduce the variable x = r−S(t)
1−S(t) for the solid phase and y = r

S(t) for the liquid

phase, which are both defined in the domain [0, 1]. In order to write the system in

conservation form, we define the following quantities

φ1(t, x) =

(
x+

S(t)

1− S(t)

)2

(1− S(t))3cs(t, x), φ3(t, y) = S(t)3cl(t, y),

φ2(t, x) =

(
x+

S(t)

1− S(t)

)2

(1− S(t))3Ts(t, x), φ4(t, y) = S(t)3Tl(t, y),

(A 1)

so that we can rewrite the system (2.2) in the following way. In the solid phase x ∈ (0, 1),

we have

∂φ1
∂t

=
∂

∂x

 S′(t)
1− S(t)

(1− x)− 2DLe−1(
x+ S(t)

1−S(t)

)
(1− S(t))2

φ1 +
DLe−1

(1− S(t))2
∂φ1
∂x

 ,

(A 2 a)

∂φ2
∂t

=
∂

∂x

 S′(t)
1− S(t)

(1− x)− 2κ(
x+ S(t)

1−S(t)

)
(1− S(t))2

φ2 +
κ

1− S(t)2
∂φ2
∂x

 .

(A 2 b)

In the liquid phase y ∈ (0, 1), we have

∂φ3
∂t

+
1

y2
∂

∂y

[
y2
(
−S
′(t)
S(t)

yφ3 −
1

LeS(t)2
∂φ3
∂y

)]
= 0, (A 2 c)

∂φ4
∂t

+
1

y2
∂

∂y

[
y2
(
−S
′(t)
S(t)

yφ4 −
1

S(t)2
∂φ4
∂y

)]
= 0. (A 2 d)

At the interface, given by x = 0 and y = 1, we have

S(t)φ2 = (1− S(t))φ4, S(t)φ1 = α(1− S(t))φ3, φ3 = −mlφ4, (A 2 e)

ρ

St

dS

dt
=

k

(1− S(t))2S(t)2
∂φ2
∂x
− 2k

(1− S(t))S(t)3
φ2 −

1

S(t)4
∂φ4
∂y

, (A 2 f )

(
− S′(t)

(1− S(t))S(t)2
+

2D

Le(1− S(t))S(t)3

)
φ1 −

D

Le(1− S(t))2S(t)2
∂φ1
∂x

= −S
′(t)
S(t)

φ3 −
1

LeS(t)2
∂φ3
∂y

. (A 2 g)
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The boundary conditions are

∂φ3
∂y

=
∂φ4
∂y

= 0 at y = 0, (A 2 h)

∂φ1
∂x

= 2(1− S(t))φ1 and φ2 = −(1− S(t)) at x = 1, (A 2 i)

and we prescribe the corresponding initial conditions for φ1, φ2, φ3, φ4 and S. Notice

that if we start with a liquid phase only, this means S → 1 so x → ∞. In avoid this

singularity, we initialise the problem with a thin layer of solid near S = 1, and we use

the early-time solutions calculated as the initial conditions.

To avoid numerical instabilities, we use a TVD discretisation for the advection term,

and we implement the finite volume scheme in Matlab using FVToolbox (Eftekhari and

Schüller (2018)). Since α is very small, we take α = 0 and therefore we neglect the

impurities in the solid, considering only impurities in the liquid when performing our

simulations. This reduces the condition (A 2f) to a no-flux condition and removes the

equation (A 2a) and the middle condition in (A 2d) from the system. At each time step,

we iterate using a relaxation scheme until convergence as described in Brosa Planella

et al. (2019).
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Stefan, J. (1890). Über die Theorie der Eisbildung. Monatshefte für Mathematik, 1(1):1–

6.

Stewartson, K. and Waechter, R. T. (1976). On Stefan’s problem for spheres. Proceed-

ings of the Royal Society of London. Series A, Mathematical and Physical Sciences,

348(1655):415–426.

Tao, L. C. (1967). Generalized numerical solutions of freezing a saturated liquid in

cylinders and spheres. AIChE Journal, 13(1):165–169.

Theillard, M., Gibou, F., and Pollock, T. (2015). A sharp computational method for

the simulation of the solidification of binary alloys. Journal of Scientific Computing,

63(2):330–354.

Van Dyke, M. (1975). Perturbation Methods in Fluid Mechanics. Parabolic Press.

Voller, V. and Cross, M. (1981). Accurate solutions of moving boundary problems using

the enthalpy method. International Journal of Heat and Mass Transfer, 24(3):545–556.

Wallman, A. M., King, J. R., and Riley, D. S. (1997). Asymptotic and numerical so-

lutions for the two-dimensional solidification of a liquid half-space. Proceedings of

the Royal Society of London A: Mathematical, Physical and Engineering Sciences,

453(1962):1397–1410.

Wang, G.-X., Prasad, V., and Matthys, E. F. (1997). An interface-tracking numerical

method for rapid planar solidification of binary alloys with application to microsegre-

gation. Materials Science and Engineering: A, 225(1-2):47–58.



40 F. Brosa Planella et al.

Wheeler, A. A., Boettinger, W. J., and McFadden, G. B. (1993a). Phase-field model of

solute trapping during solidification. Physical Review E, 47(3):1893.

Wheeler, A. A., Murray, B. T., and Schaefer, R. J. (1993b). Computation of dendrites

using a phase field model. Physica D: Nonlinear Phenomena, 66(1-2):243–262.

Yang, J., Zhao, C.-Y., and Hutchins, D. (2012). Modelling the effect of binary phase

composition on inward solidification of a particle. International Journal of Heat and

Mass Transfer, 55(23):6766–6774.


	Extended Stefan problem for the solidification of binary alloys in a sphere
	maths-170323-wrap--sphere_ejam
	Introduction
	Model for the solidification of a sphere
	Asymptotic solutions in regime i
	Layer A
	Layer B
	Layer C
	Matching of the solutions

	Small St analysis of regime i
	Subregime i(1)
	Subregime i(2) (layer c)
	Subregime i(3)
	Discussion and summary of the solutions

	Asymptotic solutions in regime ii
	Layer D
	Layer E
	Layer F
	Matching of the solutions

	Asymptotic solutions in regime iii
	Layer G
	Layer H
	Matching of the solutions

	Summary of the asymptotic solutions and results
	Leading-order behavior of solutions
	Comparison with numerical simulations
	Comparison with experiments

	Discussion
	Appendix A


