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ABSTRACT:  

   This thesis presents an implementation of a 2D non-Euclidean physics and graphics engine using 

spherical and hyperbolic trigonometry. The engine is capable of working with a 2D space of 

constant negative or positive curvature. It uses polar coordinates to record the parameters of the 

objects as well as an azimuthal equidistant projection to render the space onto the screen. A polar 

coordinate system works well with trigonometric calculations, due to the distance from the 

reference point (analogous to origin in Cartesian coordinates) being one of the coordinates by 

definition. Azimuthal equidistant projection is not a typical projection, used for neither spherical 

nor hyperbolic space, however one of the main features of the engine relies on it: changing the 

curvature of the world in real-time. 

   Any 2D shape can be created and used in the engine, not a pre-determined list of standard 

shapes. Shapes can be moved around the curved space via user input controls.  

   This thesis describes approaches to improve performance of the engine by analysing and 

subsequently attempting to reduce the time-complexity of the algorithm as well as parallelizing the 

calculations by performing them on a GPU in order to avoid a major bottleneck. Empirical tests 

were performed and it was found that different approaches have an impact on overall engine 

performance, but the improvement is negligible compared to that gained by parallelisation.  
   A method for texturing shapes in non-Euclidean 2D space in real-time using spherical and 

hyperbolic trigonometry is introduced. Stress test results show that the engine can render high load 

scenes in real-time. 

   This thesis presents survey results showing participants’ generally positive feedback upon 

playing through two different classic games modified to work within the non-Euclidean engine. 

   Overall, the project has been successful in developing a novel method of rendering non-

Euclidean geometry in real-time using Spherical and Hyperbolic trigonometry; implementing it 

within a framework which allows the creation of custom environment; and gauging the interest in 

non-Euclidean games. 
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1. Introduction  

The field of non-Euclidean geometry encompasses any geometry that arises from either 

changing the parallel postulate (Euclid's fifth postulate) or the metric requirement. This thesis 

will be focusing solely on traditional non-Euclidean 2D geometries: Spherical geometry and 

Hyperbolic geometry, illustrated on Figure 1.1 (a) and (c) respectively. 

 

Figure 1.1: Comparison of parallel lines in the 2D spaces of different curvature 

In spherical geometry all geodesics (straight lines in a non-planar space) intersect, so there are 

no parallel lines. Even if the lines start parallel, they don't preserve the same distance along 

their length and instead appear to ‘bend’ towards each other. In fact, any two great circles will 

intersect twice (unless they are one and the same). Spherical geometry is used in multiple 

fields: navigation, GPS, architecture and aerospace engineering among others.  

 

Figure 1.2: Orthographic projection of the sphere onto a tangent plane. Parallel rays are cast 

onto the surface (left) or from the surface (right) of a sphere; and the points are transferred 

onto the points of intersection of these rays with a tangent plane. 
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However, in most circumstances the calculations are done on a surface of a 3D sphere instead 

of the 2D spherical plane, and rendering, if any uses the orthographic projection of the sphere. 

Figure 1.2 (Furuti, 2012), for example, illustrates Earth's northern hemisphere. 

In cartography, multiple other projections are used and one of them has been chosen to be a 

focus of this study: Azimuthal equidistant projection. A detailed explanation of this projection 

and its advantages for this model is described in the Method section. 

 

Figure 1.3: Poincaré disc with hyperbolic equilateral triangle tiling. Straight lines in this 

projection are represented as arcs of circles perpendicular to the disc’s boundary. Triangles 

tiling the plane are identical on the hyperbolic plane, but appear exponentially smaller 

towards the boundary of the projection disc. 

In Hyperbolic geometry, any line can have an infinite number of parallel lines, as the lines 

appear to bend away from each other. Elliptic geometry is more tangible and intuitive than 

hyperbolic geometry, due to people interacting with it more and the possibility of a 2D elliptic 

plane to be embedded into a 3D space. Hyperbolic geometry is more abstract; however, it is 

used heavily in mathematics, astrophysics and theoretical physics, particularly for calculations 

involving general relativity (Einstein, 1921). One of the standard projections used to represent 

hyperbolic geometry is the Poincaré disc (Poincaré, 1881), illustrated in Figure 1.3 (Tamfang, 

2011). 
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1.1 Motivation 

Non-Euclidean geometry plays an important role in physics, especially within the context of 

general relativity (Wald, 2010), where Riemannian geometry is used to calculate the curvature 

of space-time (Hehl & Kerlick, 1978) and astronomy, where the question of whether the 

universe has flat curvature of space is still unanswered (Kragh, 2012). However, there are 

potential applications in other fields, such as games. Implementing non-Euclidean geometry 

elements within a video game could present interesting challenges to the player. This project 

aims to create an intuitive and user-friendly method for simulating and rendering curved space.  

Subsequently, this method is used to create software that can calculate and render arbitrary 

shapes in curved space in real-time, while remaining intuitive people using it to be able to 

create physical worlds with non-Euclidean space. This software is able to define the parameters 

of the objects, allow for object interactions, create physical environments in a curved space, 

render curved shapes on screen using a projection and be visually appealing. To make the idea 

of curved space more intuitive, an additional aspiration was to make it possible for the 

curvature to be modified in real-time during the execution of the engine. 

1.2 Aims & Objectives 

Techniques exist for visualising non-Euclidean geometry; however, the aim of this project is to 

create intuitive and efficient technology for rendering curved space: 

• Create a method for rendering shapes in non-Euclidean geometry: it should be 

intuitive for the users and developers. 

• Implement the method to create a rendering engine: the software should be capable of 

recording objects’ parameters, calculate object transformations and render them on 

screen. 

• Expand the engine for object movement: record additional parameters for the objects 

and simulate the movement of the objects along the geodesics of planar, spherical or 

hyperbolic space. 

• Optimize performance of the engine: the software should be able to render complex 

scenes in real-time to be a viable game engine. 

• Expand the engine to render textured shapes: create a method for texturing shapes in 

curved space and implement it within the engine. 
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• Evaluate people’s opinions towards non-Euclidean elements in games: use the engine 

to adapt well-known games to work in non-Euclidean space. Run a survey to learn 

whether participants like or dislike the idea. 

1.3 Contributions 

The research makes contributions in the following areas: 

• A method for rendering shapes using spherical and hyperbolic trigonometry is 

defined: a model for recording object’s parameters is created and used to calculate and 

render the objects in real-time. 

• The method is expanded to cover object movement: additional object parameters like 

speed and acceleration are recorded and the object’s movement following the forward 

vector geodesic is calculated. 

• A method to parallelise the calculations for rendering shapes in curved space is 

defined: OpenGL Shading Language (GLSL) is used to perform calculations on the 

GPU to improve the performance of the engine. 

• A method for texturing objects using spherical and hyperbolic trigonometry is defined: 

the model above is expanded to record and subsequently calculate object’s texture 

coordinates in real-time. 

• Software capable of rendering non-Euclidean 2D geometry is created based on the 

defined methods: The latest version of the software is available on GitHub (Osudin, 

GitHub.com, 2022). 

Experimentation is performed to:  

• Evaluate the performance of the designed non-Euclidean engine as well as alternative 

tessellation approaches. Stress testing is used see whether the engine is fit to perform 

in real-time. 

• Evaluate the fitness of the engine to perform in real-time simulations. 

• Compare the CPU and GPU based versions of the engine. 

• Create games in non-Euclidean environment. Two classical games are adapted to work 

in curved space using the created software. 

A survey is conducted to research: 
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• The intuitiveness of games in non-Euclidean environment. 

• The enthusiasm of participants towards playing games in curved space. 

1.4 Structure 

Chapter 2 details the background for the field of non-Euclidean geometry, from roots and early 

developments to the current applications and developments in its visualisation.  

Chapter 3 describes the structure of the developed engine, including the overall framework and 

the non-Euclidean specific sections; this chapter also covers initial developments and ideas for 

the ‘field of view’ approach, which has been ultimately rejected in favour of the trigonometry-

based method.  

Chapter 4 explains the method for rendering vector graphics using spherical and hyperbolic 

trigonometry. This approach is split into three subsections, finding the global coordinates of 

each vertex of an object; finding preliminaries for edge tessellation; and finding the 

intermediate points along each edge of the object.  

Chapter 5 expands the method to cover the object movement within curved space. Given the 

object’s current position as well as acceleration, velocity, rotation and torque information, its 

position in the next frame is calculated. 

Chapter 6 explores alternative line equation-based approaches for rendering shapes. The three 

methods explored include: Great Circle Navigation, Orthogonal Vectors and Poincaré disc 

approaches. 

Chapter 7 describes the method for improving the engine’s performance using parallelisation 

of the algorithm described in Chapter 4 using OpenGL Shading Language (GLSL). It details 

the implementation using pseudocode of each of the shaders. 

Chapter 8 describes the testing used to compare the performance of different approaches and 

provides the analysis of the results.  

Chapter 9 explains the method for texturing the shapes in curved space using spherical and 

hyperbolic trigonometry. This method splits a shape into sections, which are then subsequently 

subdivided into a series of parallel lines used to find the intermediate points throughout the 

shape. 

Chapter 10 describes testing performed to compare the line and texture rendering approaches; 

it also provides the analysis of the results of said testing.  

Chapter 11 discusses the survey designed to find out people’s experience playing classical 

games in non-Euclidean space.  
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Chapter 12 describes the achievements of the engine and potential future improvements. 

1.5 Publications 

Published: 

• “Rendering Non-Euclidean Geometry in Real-Time Using Spherical and Hyperbolic 

Trigonometry” (Osudin, Child, & He, Rendering non-euclidean space in real-time 

using spherical and hyperbolic trigonometry, 2019) 

o Presented at International Conference on Computational Science 2019 (ICCS 

2019) in Faro, Portugal.  

o Described in chapters 4 and 5. 

In preparation for publication: 

• “Parallelisation of the non-Euclidean Engine for Rendering Textures in Curved Space” 

o Described in chapters 7, 8, 9 and 10. 

o Part of this article has been submitted to Computer Graphics forum under the 

title of “Optimisation and Parallelisation of a non-Euclidean Geometry 

Rendering Engine”, which only focussed on improving the performance of the 

engine, covered in chapters 6, 7 and 8. The rejection cited the article not 

having enough new material. 

o It has been decided to restructure it to cover the texture rendering as a 

consequence of performance improvement achieved via parallelisation. 

o Preparation for resubmission to Computer Graphics Forum 

• “Impact of the non-Euclidean environment on game development and gameplay” 

o Described in chapter 11. Additional statistical analysis will be performed and 

described in the article. 

o Preparation for submission to the 18th AAAI Conference on Artificial 

Intelligence and Interactive Digital Entertainment (AIIDE-22). 
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1.6 Terminology 

• Gaussian curvature – Gaussian curvature, subsequently denoted as 𝑲, sometimes 

also called total curvature, is an intrinsic property of a space independent of the 

coordinate system used to describe it (Kreyszig, 1991). For a point 𝒑 on a 2D surface, 

𝑲 is found by multiplying the largest and smallest (principal) curvatures at point 𝒑. 

For example, both the largest and the smallest curvature at point 𝒑 on the surface of a 

sphere is 𝟏, so 𝑲 = 𝟏 × 𝟏 = 𝟏. However, for a cylinder the smallest curvature is 𝟎, 

while the largest curvature is 𝟏, so 𝑲 = 𝟎 × 𝟏 = 𝟎. 

• Conformal projection / conformal model – A map projection / model which is a 

conformal mapping, i.e., one for which local (infinitesimal) angles on a surface are 

mapped to the same angles in the projection. On maps of an entire sphere, however, 

there are usually singular points at which local angles are distorted (Weisstein, 2002). 

• Azimuthal projection – A map projection in which a globe, as of the Earth, is 

assumed to rest on a flat surface onto which its features are projected. An azimuthal 

projection produces a circular map with a chosen point – the  point on the globe that is 

tangent to the flat surface – at  its centre. When the central point is either of Earth's 

poles (as shown in Figure 1.5 and Figure 1.6), parallels appear as concentric circles on 

the map and meridians as straight lines radiating from the centre (The American 

Heritage Science Dictionary, 2016). 

• Azimuthal Equidistant Projection – An azimuthal map projection of the surface 

of the earth so cantered at any given point that a straight line radiating from the centre 

to any other point represents the shortest distance and can be measured to scale 

(Merriam-Webster.com Dictionary, 2009).  

 

Figure 1.4: Azimuthal equidistant projection used in the United Nations Emblem (United 

Nations, 2021). 
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• Stereographic projection – a map projection of a hemisphere showing the earth's 

lines of latitude and longitude projected onto a tangent plane by radials from a point on 

the surface of the sphere opposite to the point of tangency (Merriam-Webster.com 

Dictionary, 2015). Illustrated in Figure 1.5. 

 

Figure 1.5: Stereographic projection of a globe onto a tangent plane. The globe is tangent to 

the plain at the North Pole, 𝑵, so it is chosen as the central point of the projection,𝑵𝑺. The 

focal point of the projection, 𝑶, is located at the South Pole. 

• Gnomonic projection – an azimuthal projection of a part of a hemisphere showing 

the earth's grid as projected by radials from a point at the centre of the sphere onto a 
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tangent plane so that all straight lines represent arcs of great circles (Merriam-

Webster.com Dictionary, 2011). Illustrated in Figure 1.6. 

 

Figure 1.6: Gnomonic projection of a globe onto a tangent plane. The globe is tangent to the 

plain at the North Pole, 𝑵, so it is chosen as the central point of the projection,𝑵𝑮. The focal 

point of the projection, 𝑶, is located at the centre of the globe. 

• Projective geometry – projective geometry, branch of mathematics that deals with 

the relationships between geometric figures and the images, or mappings, that result 

from projecting them onto another surface. Common examples of projections are the 
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shadows cast by opaque objects and motion pictures displayed on a screen (Artmann, 

2018). 

• Manifold – A manifold is a topological space that is locally Euclidean (i.e., around 

every point, there is a neighbourhood that is topologically the same as the open unit 

ball in ℝ𝒏). To illustrate this idea, consider the ancient belief that the Earth was flat as 

contrasted with the modern evidence that it is round. The discrepancy arises essentially 

from the fact that on the small scales that we see, the Earth does indeed look flat. In 

general, any object that is nearly "flat" on small scales is a manifold, and so manifolds 

constitute a generalization of objects we could live on in which we would encounter 

the round/flat Earth problem. 

One of the goals of topology is to find ways of distinguishing manifolds. For instance, 

a circle is topologically the same as any closed loop, no matter how different these two 

manifolds may appear. Similarly, the surface of a coffee mug with a handle is 

topologically the same as the surface of the donut, and this type of surface is called a 

torus (Rowland, 2000). 

• Orientable manifold – A manifold is said to be orientable if it can be given an 

orientation. Note the distinction between an "orientable manifold" and an "oriented 

manifold," where the former implies the possibility of giving the manifold in question 

an orientation, while the latter implies that the manifold has already been given an 

orientation (Hedegaard, 2004). 

• Tessellation – Tessellation is a process that reads a patch primitive and generates 

new primitives used by subsequent pipeline stages. The generated primitives are 

formed by subdividing a single triangle or quad primitive according to fixed or shader-

computed levels of detail (i.e., Tessellation Variable) and transforming each of the 

vertices produced during this subdivision (Khronos group, 2010). 

• Barycentric coordinate system – Barycentric coordinates can be used to express 

the position of any point located on the triangle with three scalars. The location of this 

point includes any position inside the triangle, any position on any of the three edges 

of the triangles, or any one of the three triangle's vertices themselves. Let three real 

numbers 𝒖, 𝒗, and 𝒘 be the normalized barycentric coordinates of a point 𝒑, such that 

𝒖 + 𝒗 + 𝒘 = 𝟏. Then the vertices of the triangle are given by (𝟏, 𝟎, 𝟎), (𝟎, 𝟏, 𝟎), and 

(𝟎, 𝟎, 𝟏) (Scratchapixel, 2015). 
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2. Literature Review: History and Applications of non-

Euclidean Geometry 

This chapter contains a review of the existing research in the field of non-Euclidean geometry, 

from its roots to current developments in its applications and visualisation.  

2.1 Early Developments 

Non-Euclidean geometry takes its origin from Euclid's work Elements, where he defined his 

five postulates (translated by Thomas Heath) (Heath, 1956): 

“Let the following be postulated: 

1. To draw a straight line from any point to any point. 

2. To produce (extend) a finite straight line continuously in a straight line. 

3. To describe a circle with any centre and distance (radius). 

4. That all right angles are equal to one another. 

5. That, if a straight line falling on two straight lines make the interior angles on the same 

side less than two right angles, the two straight lines, if produced indefinitely, meet on 

that side on which the angles are less than two right angles.” 

Euclid has developed the axiomatic method and described Euclidean geometry as an axiomatic 

system, a set of fundamental statements (axioms) which can be used to derive all other 

propositions (theorems) in a consistent and relatively self-contained body of knowledge 

(theory) (Novikov, 2001). 

When compared to the other postulates, the 5th postulate is less intuitive and not immediately 

obvious. Euclid’s postulates 1 through 4 were thought to be more fundamental than the fifth 

postulate, so mathematicians have tried to prove the fifth postulate by contradiction or replace 

it with a more fundamental one. Proving the parallel postulate given the others would mean it 

is a theorem and not an axiom. These attempts are detailed by M. Eder (Eder, 2000) and M. J. 

Greenberg (Greenberg, 2008). Over the centuries many Mathematicians have attempted this: 

Proclus (A.D. 410 – 485), Nasir Eddin al-Tusi (1201 – 1274), John Wallis (1616 – 1703), 

Girolamo Saccheri (1667 – 1733), Johann Heinrich Lambert (1728 – 1777) among others.  

Every attempt to prove the parallel postulate had at least one unjustified statement, which made 

the proof flawed. Each proposed axiom to replace the parallel postulate can be shown to be 

equivalent to it. 

https://en.wikipedia.org/wiki/Right_angle
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For example, a Greek mathematician Proclus attempted to replace the parallel postulate with 

the following axiom: 

“If a line intersects one of two parallel lines, both of which are coplanar with the original line, 

then it must intersect the other also.” (Weisstein, Proclus' Axiom – MathWorld, 2000) 

M. Eder (Eder, 2000) describes this attempt by first re-phrasing the axiom given by Proclus: 

“Given 𝛼 + 𝛽 < 2𝑑, prove that the straight lines 𝑔′ and 𝑔′′ meet at a certain point 𝐶.” 

Where, 𝑑, is a magnitude of a right angle. An illustration of this proof is shown in Figure 2.1. 

 

Figure 2.1: Diagram from the article by M. Eder. Parallel lines 𝑔′and 𝑔′′; 𝛼 and 𝛽, interior 

angles between 𝑔′, 𝑔′′ and a line intersecting both lines. 𝑔′ ∥ 𝑔′′′; 𝐵 ∈ 𝑔′′; 𝐶 ∈ 𝑔′; 𝐴 ∈ 𝑔′′; 

𝐴 ∈ 𝑔′′′.  

Proclus begins the proof by drawing a straight line, 𝑔′′′ parallel to 𝑔′ through the intersection 

of 𝑔′′ and 𝑔′′′, point 𝐴. Then he marks a point, 𝐵, on 𝑔′′ and traces a line from point B to line 

𝑔′′′ perpendicular to it. From this, the proof shows that as distance between 𝐴 and 𝐵 increases, 

the distance from 𝐵 to 𝑔′′′ also grows without limit. And as the distance between 𝑔′ and 𝑔′′′ is 

constant, there must be a point 𝐶, where 𝑔′ and 𝑔′′ meet. 

This proof relies on a notion of straight parallel lines, which is not explicitly defined by the 

proof itself or the four other Euclid’s postulates. Ultimately, Proclus’ axiom is recognised to be 

identical to Euclid’s parallel postulate. 

2.2 Hyperbolic Geometry 

Although these pursuits were unsuccessful, they have paved the way for mathematicians of the 

19th century to develop non-Euclidean geometry (Bonola, 1912).  
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Janos Bolyai (1802 – 1860), Carl Friedrich Gauss (1777 – 1855) and Nikolai Ivanovich 

Lobachevsky (1792 – 1856) have independently discovered and developed Hyperbolic 

geometry by negating the fifth postulate. They found that a consistent geometry is described by 

assuming a negation of Euclid’s 5th postulate as an axiom. (Halsted, 1900) (Gray, 2006) (Gray, 

János Bolyai, non-Euclidean geometry, and the nature of space, 2004) (Rodin, 2015) (Petrunin, 

2019). 

Gauss wrote in his letter to F. A. Taurinus (Gauss, 1824):  

“...The assumption that the sum of the three angles is less than 180° leads to a curious 

geometry, quite different from ours [the Euclidean], but thoroughly consistent, which I have 

developed to my entire satisfaction, so that I can solve every problem in it with the exception 

of the determination of a constant, which cannot be designated a priori. The greater one takes 

this constant, the nearer one comes to Euclidean geometry, and when it is chosen infinitely 

large the two coincide. The theorems of this geometry appear to be paradoxical and, to the 

uninitiated, absurd; but calm, steady reflection reveals that they contain nothing at all 

impossible. For example, the three angles of a triangle become as small as one wishes, if only 

the sides are taken large enough; yet the area of the triangle can never exceed a definite limit, 

regardless of how great the sides are taken, nor indeed can it never reach it.  

All my efforts to discover a contradiction, an inconsistency, in this non-Euclidean geometry 

have been without success, and the one thing in it which is opposed to our conceptions is that, 

if it were true, there must exist in space a linear magnitude, determined for itself (but unknown 

to us)...” 

From this quote, it is clear that Gauss has developed non-Euclidean geometry in an attempt to 

discover a contradiction, which would prove Euclidean geometry as fundamental. However, 

instead he found that the geometry is self-consistent and simply alternative to the Euclidean. 

C. F. Gauss chose not to publish his works and urged J. Bolyai to do the same in private 

correspondence on the subject. In 1829 he wrote to F. W. Bessel that he was scared of the “the 

howl from the Boeotians” upon him publishing his works on non-Euclidean geometry. Such a 

discovery would contradict the established philosophical ideas at the time, in particular of I. 

Kant. Because of this the first to publish research in this area was N. I. Lobachevsky in 1829. 

The approaches Bolyai and Lobachevsky had were almost the same and both have developed 

the formulas for non-Euclidean trigonometry used later in this thesis. 
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2.3 Spherical Geometry 

The earliest works describing geometry on the surface of a sphere date to Greek 

mathematicians. In particular, Theodosius of Bithynia’s (c. 169 BC – c. 100 BC) work 

“Sphaerica”, which described the geometry of a sphere (Rosenfeld, 2012). Later Al-Jayyani 

(989 – 1079), Islamic mathematician, wrote “The Book of Unknown Arcs of a Sphere”, which 

described the formulas for spherical trigonometry (Hairetdinova, 1986). Another important 

work formalising the foundations of Spherical geometry were the memoirs of Leonhard Euler 

(Papadopoulos, 2014). 

While hyperbolic geometry emerges if Euclid’s fifth postulate is replaced with the following: 

“given line l and point p, there exists an infinite number of lines through p parallel to l” 

(Hoboken, 1994), spherical geometry can be derived by replacing this postulate with “given 

line l and point p, there exists no line through p parallel to l”.  In order to achieve a consistent 

model, other axioms need to be changed as well, depending on which system of axioms is 

used. 

2.4 Visualisation Techniques 

The first insights into visualising hyperbolic geometry came from proving the consistency of 

hyperbolic geometry. Eugenio Beltrami (1835 - 1900) worked on finding a Euclidean model of 

hyperbolic space, for if such a model was found, hyperbolic geometry could be proven to be 

consistent if Euclidean geometry is assumed to be consistent. This was later written in a form 

of a metamathematical theorem: 

“If Euclidean geometry is consistent, then so is hyperbolic geometry.” 

2.4.1 Beltrami-Klein Model 

Eugenio Beltrami and Felix Klein (1849 - 1925) independently created a model of hyperbolic 

geometry based on projective geometry ideas developed by Arthur Cayley (1821 - 1895) 

(Cayley, 1859). Although Beltrami’s memoirs (Beltrami, 1868a) (Beltrami, 1868b) on 

hyperbolic geometry were published earlier (in 1868), they were not as well recognised as 

Klein’s published method (Klein, 1871). 

Beltrami-Klein is a model in n-dimensions, but in two dimensions it is represented as a disk 𝜸 

on the Euclidean plane. The interior of the disk represents the entirety of the hyperbolic plane. 

The points on the circumference of 𝜸 are the ideal points and do not belong to the hyperbolic 

plane. 
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Segments joining points on the circumference of 𝜸 without their end points are open chords, 

which are the lines of the hyperbolic plane in this model. 

 

Figure 2.2: Hyperbolic plane in the Beltrami-Klein model. Disk 𝜸 with an origin 𝑶; 𝑨, 𝑩, 𝑪, 

𝑫, 𝑬, 𝑭, 𝑮, 𝑯, ideal points. Hyperbolic lines 𝑨𝑪, 𝑩𝑫, 𝑬𝑭, 𝑮𝑯 through point 𝑷 are 

 parallel to 𝑨𝑩 

 

Figure 2.3: Hyperbolic plane in the Beltrami-Klein model. Disk 𝜸 with an origin 𝑶; 𝑷, 𝑸, 

ideal points; 𝑷𝑸, hyperbolic line; 𝑨, 𝑩 ⊂ 𝑷𝑸.  

Two lines are said to be parallel in Beltrami-Klein model if they do not intersect in the interior 

of 𝜸, even if they meet at a point on the circumference of 𝜸 (Figure 2.2).  
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The model is not conformal, meaning that the angle magnitudes are not preserved, when 

translated to a different point on the Beltrami-Klein model. Trade-off when compared with the 

conformal models (e.g., Poincare disc model described in section 2.4.2), is that geodesics of 

the hyperbolic plane are represented by straight line segments inside 𝜸. 

The distances on the hyperbolic plane between two points 𝑨 and 𝑩 in this model are given by 

the Cayley-Klein metric. It requires the endpoints of the extended line joining 𝑨 and 𝑩. Let 𝑷 

and 𝑸 be ideal points on the circumference of 𝜸 (Figure 2.3), such that 𝑨𝑩 ⊂ 𝑷𝑸 and |𝑷𝑩| >

|𝑷𝑨|, |𝑨𝑸| > |𝑩𝑸| , then distance, d, is given by: 

 𝒅(𝑨, 𝑩) =
𝟏

𝟐
𝐥𝐨𝐠

|𝑷𝑩||𝑨𝑸|

|𝑷𝑨||𝑩𝑸|
 (2.1) 

 

Figure 2.4: Quasiregular 𝒓{𝟕, 𝟑} tiling of the hyperbolic plane in the Beltrami-Klein model. 

Heptagons and triangles are alternated to tile the plane. Rendered using KaleidoTile software 

(Weeks, KaleidoTile, 2020). 

A popular way to visualise non-Euclidean geometry models is to tile the hyperbolic plane with 

regular polygons. This produces an image with a pattern which gets increasingly smaller 

towards the circumference of the rendered disk. One such tiling is illustrated on Figure 2.4. 

KaleidoTile software has been used to render it by setting the symmetries to (3, 3, 7). It 

produces a quasiregular tiling, where heptagons and triangles are alternated to tile the 

hyperbolic plane. 
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2.4.2 Poincaré Disc Model 

A different model of hyperbolic geometry has also been developed by Eugenio Beltrami, 

however a later rediscovery by Henri Poincaré (1854 -1912) in 1881 has become more widely 

recognised, hence the model is named after Poincaré (Poincaré, 1881). 

In this model the interior of a disk is also used to represent the entirety of the hyperbolic plane. 

Likewise, the points on the circumference of the disk do not belong to the hyperbolic plane and 

are ideal points.  

The hyperbolic lines in this model are constructed differently from the Beltrami-Klein model. 

There are two types of lines in this model: open chords and open arcs. 

Open chords are only considered hyperbolic lines in this model if they are diameters of 𝜸. For 

example, in Figure 2.5 a line 𝑪𝑫 passes through the origin 𝑶 of the Poincaré Disk 𝜸, so it is a 

hyperbolic line. Like in the Beltrami-Klein model, the endpoints of the line (points 𝑪 and 𝑫) 

do not belong to the hyperbolic line. 

 

Figure 2.5: Hyperbolic plane in the Poincaré Disk model. Disk 𝜸 with an origin 𝑶; 𝑨, 𝑩, 𝑪, 𝑫, 

𝑬, 𝑭, 𝑮, 𝑯, ideal points; hyperbolic lines 𝑪𝑫, 𝑬𝑭, 𝑮𝑯 through point P are parallel to 𝑨𝑩. 

Open arcs are only considered hyperbolic lines in the Poincaré Disk model if they intersect the 

circumference of 𝜸 at a right angle. A circle 𝝈 is orthogonal to 𝜸 if the radii of these circles 

meet at a right angle at each point of intersection. The arc of 𝝈 within the interior of 𝜸 is a 

hyperbolic line in this model. For example, in Figure 2.5, open arcs 𝑨𝑩, 𝑬𝑭, 𝑮𝑯 are 
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hyperbolic lines due to intersecting circumference of 𝜸 at a right angle. Like with open chords, 

the endpoints of these arcs do not belong to the hyperbolic line. 

In the Poincaré Disk model, hyperbolic lines are considered to be parallel if they do not 

intersect in the interior of 𝜸. For example, in Figure 2.5, hyperbolic lines 𝑪𝑫, 𝑬𝑭, 𝑮𝑯 through 

point P are parallel to 𝑨𝑩. Note that hyperbolic lines which meet at an ideal point are also 

considered parallel.  

 

Figure 2.6: Hyperbolic plane in the Poincaré disk model. Disk 𝜸 with an origin 𝑶; 𝑷, 𝑸, ideal 

points; 𝑷𝑸, hyperbolic line; 𝑨, 𝑩 ⊂ 𝑷𝑸. 

The Poincaré Disk model is conformal, meaning that angle magnitudes are preserved, but this 

comes at a cost of hyperbolic lines not appearing straight in the model. 

Like in the Beltrami-Klein model, the distances on the hyperbolic plane between two points 𝑨 

and 𝑩 in Poincaré Disk model are given by the Cayley-Klein metric. It requires the endpoints 

of the extended arc joining 𝑨 and 𝑩. Let 𝑷 and 𝑸 be ideal points on the circumference of 𝜸 

(Figure 2.6), such that 𝑨𝑩 ⊂ 𝑷𝑸 and |𝑷𝑩| > |𝑷𝑨|, |𝑨𝑸| > |𝑩𝑸| , then distance, d, is given 

by: 

 𝒅(𝑨, 𝑩) = 𝐥𝐨𝐠
|𝑷𝑩||𝑨𝑸|

|𝑷𝑨||𝑩𝑸|
 (2.2) 

Each point on the Poincare disk can be mapped to a point on a disk in a Beltrami-Klein model. 

This isometry can be represented by the following relationships between coordinates in the 

respective models. 
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A point 𝑨 in the Poincaré disk model maps to a point 𝑨′ in the Beltrami-Klein model: 

 𝑨(𝒙, 𝒚) = 𝑨′ (
𝟐𝒙

𝟏 + 𝒙𝟐 + 𝒚𝟐
,

𝟐𝒚

𝟏 + 𝒙𝟐 + 𝒚𝟐
) (2.3) 

 

A point 𝑨 in the Beltrami-Klein model maps to a point 𝑨′ in the Poincaré disk model: 

 𝑨(𝒙, 𝒚) = 𝑨′ (
𝒙

𝟏 + √𝟏 − 𝒙𝟐 − 𝒚𝟐
,

𝒚

𝟏 + √𝟏 − 𝒙𝟐 − 𝒚𝟐
) (2.4) 

 

A Hyperbolic plane in the Poincaré disk can also be tiled with regular polygons. Like with 

Beltrami-Klein model, this produces an image with a pattern which gets increasingly smaller 

towards the circumference of the rendered disk. A quasiregular tiling of alternating heptagons 

and triangles is rendered on Figure 2.7. It is a rendering of the same tiling as in Figure 2.4. 

KaleidoTile software has been used to render it by setting the symmetries to (3, 3, 7), where 

the second and third parameters determine the number of sides of the alternating regular 

polehedra (in this case regular triangle and regular heptagon); and the first parameter 

determines the number of shapes of each type that touch at each vertex (in this case there are 3 

triangles and 3 heptagons meeting at each vertex). 

 

Figure 2.7: Quasiregular (𝟑, 𝟑, 𝟕) tiling of the hyperbolic plane in the Poincaré Disc model. 

Heptagons and triangles are alternated to tile the plane. Rendered using KaleidoTile software 

(Weeks, KaleidoTile, 2020). 
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2.4.3 Visualisation Mediums 

Visualisation of non-Euclidean geometry has been developed more extensively with the 

invention of personal computers; however creative visualisations of the hyperbolic plane have 

preceded it. The most famous examples of creative visualisation are wood engravings by 

Maurits Cornelis Escher (1898 - 1972). Circle limit series is a precise and creative tiling of the 

hyperbolic plane using Poincaré disk model. ‘Circle Limit III’, shown on Figure 2.8 has been 

said to be the most sophisticated of Escher’s mathematics inspired works (Coxeter H. S., 

1979).   

 

Figure 2.8: Circle Limit III, (Escher, 1959). 

There are visualisations of hyperbolic plane in other mediums, for example Daina Taimiņa 

invented a method of crocheting a model of hyperbolic plane as a teaching tool in 1997. She 

later described the method in her book on the subject (Taimina, 2018). The resulting crochets 

have the same structure as some coral reefs, shown on Figure 2.9. In 2005, project Crochet 

Coral Reef has been created by Christine Wertheim and Margaret Wertheim and the Institute 

for Figuring (Marzec, 2010). 

“The Crochet Coral Reef is an artwork responding to climate change, an exercise in applied 

mathematics, and a wooly experiment in evolutionary theory.” 
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Figure 2.9: Crochet of the hyperbolic plane by Daina Taimiņa. 

2.4.4 Visualisation Software 

With the increase in computational power of personal computers, it became possible to 

simulate a visualisation of non-Euclidean space. The Geometry Center was founded to research 

geometric visualisation by, among others, William Thurston (Mervis, 2002). In 1993, 

GeomView, software capable of rendering curved 3D spaces was created by the researchers at 

Geometry Center (Amenta, Levy, Munzer, & Phillips, 1995). GeomView was innovative in 

two areas: “interactive exploration of curved spaces, and of topological manifolds modelled on 

these spaces”.  

GeomView uses projective geometry (Coxeter H. S., 2003) and homogenous coordinates to 

render non-Euclidean geometry (Gunn, 1993). An example is given in two dimensions, but the 

method is generalized for higher dimensions. The method derives distance functions, with the 

same generalised structure for Euclidean, Spherical and Hyperbolic geometries. 

A more detailed discussion of the use of 4 × 4 matrices to render hyperbolic geometry is 

discussed in the 1992 study by the Geometry Center (Phillips & Gunn, 1992). In it the authors 

present formulas for computing reflections, translations, and rotations in hyperbolic space. 

The Geometry Center has also created videos of hyperbolic geometry rendering, the most 

renowned of them is called “Not Knot” (Gunn, Epstein, & Maxwell, 1991). One of the 

renderings in the video shows the tiling of a hyperbolic space by regular dodecahedra 

(illustrated on Figure 2.10). 
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Figure 2.10: 3D hyperbolic space tiling with regular dodecahedra. Frame taken from a video 

“Not Knot” by the Geometry Center (Gunn, Epstein, & Maxwell, 1991). 

A method for use of matrices to render non-Euclidean geometry has been detailed by Jeff 

Weeks in his article on real-time rendering in curved spaces (Weeks, 2002). In this article the 

rendering pipelines of Euclidean, Spherical and Hyperbolic spaces are compared; similarities 

and differences between them are explained and examples of non-Euclidean spaces are 

illustrated. Figure 2.11, Figure 2.12 and Figure 2.13, taken from the article by Jeff Weeks show 

the differences between rendering pipelines of 3D Euclidean, Spherical and Hyperbolic spaces.  

 

Figure 2.11: Four coordinate systems of standard rendering pipeline for 3D graphics, 

represented as a 3D hyperplane in 4D space and transformations connecting them represented 

as matrices (Weeks, 2002). 
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The four different coordinate systems of the standard rendering pipeline are illustrated in 

Figure 2.11, these are: Model Space, the local coordinate system for each of the objects (with 

the object usually centred on the origin of the local coordinate system); World space, the global 

coordinate system within the simulation’s environment; Camera space, global coordinate 

system with the camera as the origin; and Projection space, the view from the camera’s 

position ‘inside the simulation’. Representing each as a separate space is convenient for 

visualising the transformations between these coordinate systems. Model transformation 

includes translation, rotation and scaling of the model to fit the scene. The view transformation 

changes the global coordinate system such that the camera is in a standardised position. The 

camera transformation is an inverse of the view transformation. The projection transformation 

fits what the camera sees in the world onto the flat plane, ready to be rendered on the screen.  

 

Figure 2.12: The rendering pipeline for a hypersphere (Weeks, 2002). 

 

Figure 2.13: The rendering pipeline for a hyperbolic plane (Weeks, 2002). 
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The rendering pipeline of a positively curved space (illustrated in  Figure 2.12) and negatively 

curved space (illustrated in Figure 2.13) look similar to the standard Euclidean pipeline, but 

with a few key differences. For example, when rendering on a hypersphere, the model, view 

and camera transformations are rotations. When rendering on a hyperbolic plane, these are 

Lorentz transformations instead. 

Another example of software designed to render non-Euclidean geometry is jReality: 

“A Java library for creating real-time interactive audiovisual applications with three-

dimensional computer graphics and spatialized audio.” (Weißmann, Gunn, Brinkmann, 

Hoffmann, & Pinkall, 2009) 

The research into metric-neutral visualisation has begun using GeomView system, but jReality 

allowed researchers to explore these ideas further (Gunn, 2010). Metric-neutral is software 

which treats Euclidean and classical non-Euclidean spaces (i.e. elliptic and hyperbolic) equally. 

This is done via the projective geometry described above. This article describes methods for 

metric-neutral non-interactive issues, interactivity and immersive visualisation; it also explains 

innovative methods for metric-neutral tracking tubing and realtime shading. 

 

Figure 2.14: rendering of 3D hyperbolic space using jReality by Charles Gunn. It shows a 

tessellation of hyperbolic space by regular right-angled dodecahedra. Smaller dodecahedra 

are placed in the local centre of each larger dodecahedron (Gunn, 2010). 

This research focuses on “insider’s view” visualisation, representing the view that an observer 

embedded within the said geometry would see. Gunn states that it is a better way of visualising 

curved space as opposed to conformal models, like Poincaré disk, which visualise the space, 
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but from an outsider’s perspective. An example of such a visualisation is illustrated in Figure 

2.14. 

This research discusses ways to solve issues with immersive environments in non-Euclidean 

spaces. These issues include: metric-neutral tracking, unit lengths and scaling problem. 

Virtual reality technology can trace its roots to the research by Charles Wheatstone which first 

described binocular vision (Wheatstone, 1838). The first VR machine was created in 1957 by a 

cinematographer Morton Heilig (Brockwell, 2016). This technology has been used to create 

immersive training simulators and display 3D movies, but in the 1990s researchers attempted 

to create the first non-Euclidean immersive environments (Hudson, Gunn, Francis, Sandin, & 

DeFanti, 1995). An example of a VR environment they created is shown on Figure 2.15. It is a 

tessellation of a 3D spherical space with regular dodecahedrons. Later George K. Francis 

collaborated with enclosed virtual reality theatre researchers to visualize the three-dimensional 

curved geometries (Francis, Goudeseune, Kaczmarski, Schaeffer, & Sullivan, 2003).  

 

Figure 2.15: Dodecahedral tessellation of spherical 3-space. Rendering taken from an article 

by Hudson et al. (Hudson, Gunn, Francis, Sandin, & DeFanti, 1995). 

Research in this area is ongoing, for example Jeff Weeks has created a Non-Euclidean Billiards 

in VR (Weeks, 2020), a virtual reality video game which can be played in three-dimensional 

spherical, Euclidean and hyperbolic spaces.  

A video by David Madore gives a good overview of multiple projections of sphere and 

hyperbolic plane (Madore, Visualizing the sphere and the hyperbolic plane: five projections of 

each, 2013). It illustrates that Poincaré disk model is analogous to a stereographic projection.  
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Figure 2.16: Stereographic projection of a sphere (left) and hyperbolic plane (right); from a 

video by David Madore (Madore, Visualizing the sphere and the hyperbolic plane: five 

projections of each, 2013). 

 

Figure 2.17: Stereographic projection of a hyperboloid onto a unit Poincaré disc centred on 

the origin 𝑶(𝟎, 𝟎, 𝟎). 𝑶′(𝟎, 𝟏, 𝟎) is the lowest point of the hyperboloid. 𝑭(𝟎, −𝟏, 𝟎) is the focal 

point of the stereographic projection. Points 𝑿 and 𝒀 lying on a line on the surface of the 

hyperboloid are projected to points 𝑿𝒑 and 𝒀𝒑 on the Poincaré disc. 
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Figure 2.16 shows a comparison between a stereographic projection of a sphere and a 

stereographic projection of a hyperboloid (Poincaré disk model). Figure 2.17 shows a how the 

stereographic projection of a hyperboloid onto a Poincaré disk is performed. 

 

Figure 2.18: Gnomonic projection of a sphere (left) and hyperbolic plane (right); from a video 

by David Madore (Madore, Visualizing the sphere and the hyperbolic plane: five projections of 

each, 2013). 

 

Figure 2.19: Gnomonic projection of a hyperboloid onto a unit Klein disc centred on the point 

𝑶′(𝟎, 𝟏, 𝟎), which is also the lowest point of the hyperboloid. 𝑶(𝟎, 𝟎, 𝟎) is the origin as well as 

the focal point of the gnomonic projection. Points 𝑿 and 𝒀 lying on a line on the surface of the 

hyperboloid are projected to points 𝑿𝒌 and 𝒀𝒌 on the Klein disc. 

Similarly, it shows that Beltrami-Klein model is analogous to a gnomonic projection and a 

comparison between a gnomonic projection of a sphere and hyperbolic plane is illustrated on 
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Figure 2.18. Figure 2.19 shows a how the gnomonic projection of a hyperboloid onto a Klein 

disk is performed. 

Such online resources and articles are helpful to get a clearer picture of non-Euclidean spaces. 

David Madore has also created a puzzle game in non-Euclidean space (Madore, Hyperbolic 

maze, 2013). It makes a maze by tiling the plane with five regular quadrilaterals around each 

point. Then some edges are removed to make routes for the player to move through. It shows 

how vast a hyperbolic space is and how disorienting it is for humans, due to being used to flat 

space. Hyperbolic maze can be played using both Poincaré Disk (shown on Figure 2.20) and 

Beltrami-Klein (shown in Figure 2.20) models.  

  

Figure 2.20: Hyperbolic Maze by David Madore. Rendered in a Poincaré disk model (left) and 

Beltrami-Klein model (right). The maze consists of 88,110 cells and has 73,700 walls. 

(Madore, Hyperbolic maze, 2013) 

There is research in adapting existing games to non-Euclidean space, using both conformal 

(Guimarães, Mello, & Velho, 2015) and projective (László & Magdics, 2021). 

Guimarães, et al. focussed on adapting a 2D game to spherical and hyperbolic space, 

specifically the Asteroids game (shown in Figure 2.21). The results described have similarities 

to the games built for the survey covered by chapter 11. Both studies are researching a way to 

use non-Euclidean geometry in 2D game development, but the approach taken is different. The 

authors describe a way of encapsulating internal controls of the game to separate them from the 

on-screen representation. This project instead focusses on creating a unified coordinate system 

which would allow seamless transition between the different curvatures at runtime. 



 

47 

 

 

Figure 2.21: Space continuity in an Asteroids game for different types of geometries rendered 

by Guimarães, et al. (Guimarães, Mello, & Velho, 2015). 

Hyperrogue is a turn based exploration game created by Zeno Rogue in late 2011. The world is 

tessellated via a heptagonal honeycomb into spaces the objects can occupy. This means that the 

world is discrete with objects moving in specific increments throughout the world.  

 

Figure 2.22: Screenshot of the Hyperrogue playthrough on the crossroads II land using the 

Escher art style (Zeno Rogue, 2022). 
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The environment is being procedurally generated to create an infinite world around the player. 

By default the Poincaré disk model is used to display the game, but other projections are also 

available and player can switch to using them instead. The art style is inspired by the paintings 

by M. C. Escher, specifically the Circle Limit series (one of the paintings in this series is 

shown in Figure 2.8).  

Szirmay-Kalos László and Milán Magdics have considered and described the conversion of 

Euclidean objects, geometric calculations, transformation pipeline, lighting and physical 

simulation to non-Euclidean space. They have also demonstrated the results of the research by 

implementing three games, “Fight in space”, “Lego” and “Museum”, in non-Euclidean 

geometry. Only the space game (shown in Figure 2.23) has used dynamic simulation, while the 

other two games only focussed on converting the rendering, but not the object movement 

within the game world. 

 
Hyperbolic Euclidean Elliptic 

Figure 2.23: “Fight in space” game in hyperbolic (left) Euclidean (middle), and elliptic (right) 

spaces when looking forward (upper row) and backward (lower row). Rendered by Szirmay-

Kalos László and Milán Magdics (László & Magdics, 2021). 

Apart from applications in mathematics and physics research, video games and art, non-

Euclidean geometry has found uses in data visualisation. Researchers at Stanford University 

have created a visualisation tool that can visualise large graphs by converting them into 
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spanning trees and subsequently carrying out layout and drawing of the graph in 3D hyperbolic 

space (Munzner, 1998). Figure 2.24 shows a series of drawings of a large graph rendered using 

the visualisation tool called H3Viewer, developed by the article’s author. It shows (from left to 

right) translation of a node to the centre of the graph. Such a representation allows users to see 

high information density, while obscuring clutter. The author states that the visualisation tool 

can handle graphs two orders of magnitude larger than previously developed systems at the 

time.   

 

Figure 2.24: Hyperbolic motion over a 30,000-element Unix file system rendered with 

H3Viewer. Many nodes and edges project to subpixel areas and are not visible. Left to right, it 

shows translation of a node (cyan box in the figure) to the centre of the projection space 

(Munzner, 1998). 

 

Figure 2.25: A large graph rendered with Hyperbolic Browser. The image on the right shows a 

transition, where the focus has moved to a node that was to the left and slightly below the 

origin in the left image (Lamping & Rao, 1996). 

H3Viewer uses 3D projective model to render graphs, but other research has instead chosen to 

represent large hierarchies in a 2D conformal model (Lamping & Rao, 1996). Authors have 

developed a system called Hyperbolic Browser, which also works by representing a graph as a 
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tree, but the drawing is done on a Poincaré disk. The conformal model allows users to follow 

the transitions in the graph more easily, due to the absence of flattening near the edge of the 

disk, and because the nodes are closer to the origin than in the Klein disk model. Figure 2.25 

has a series of two renderings done with Hyperbolic Browser, which show the transition of 

focus to a different node. The authors describe the implementation of the tool as well as trade-

offs between density of the nodes displayed and space to display node’s information.  

2.5 Summary 

This chapter has covered the history of non-Euclidean geometry, its roots in the works of 

Euclid to the development of spherical and hyperbolic geometries. It also described the efforts 

in ways of visualising curved spaces, including conformal and projective models; research in 

creating immersive environments and potential applications of non-Euclidean visualisation. 
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3. Engine Structure and Planning 

This chapter describes the structure of the software developed as part of the original research 

during this research project. Additionally, it describes the function of the components of the 

software, the coordinate system and screen-limitation of the space used within the software. 

3.1 Engine Structure 

The aim of this project was to create software capable of calculating and rendering real-time 

visualisations in curved space. These goals are similar to capabilities of game engines. As 

such, layered architecture pattern has been chosen to organise the structure of the software.  

“Components within the layered architecture pattern are organized into horizontal layers, each 

layer performing a specific role within the application.” (Richards, 2015)  

  

Figure 3.1: The high-level overview of the non-Euclidean engine’s structure, following the 

layered architecture pattern. Supporting libraries used are described in section 3.1.1. 
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The layered architecture pattern is widely used in game architecture because it inherently 

allows multiple levels of abstraction and loose coupling of the code. First, a framework is 

developed with common functionality for any game, like rendering engine, asset importers, 

platform interfacing, etc. Engine code is separated from the logic developed for each individual 

game to ensure adaptability and reusability of the code. Both of these traits are important for 

the project described. The Cherno project has been chosen as a good starting point to develop 

the base functionality of the engine (Chernikov, 2012). The Cherno project is an open source 

game engine written in C++ language using OpenGL. It is built to be versatile and adaptable 

making it a good starting point for this project, as it needed to have a custom made rendering 

pipeline, coordinate system and game physics, so having low level access to these parts of a 

game engine was crucial. 

Figure 3.1 illustrates the structure of the engine developed during this project. It shows a clear 

separation of the engine functionality, external dependencies and the logic for the application 

(game or simulation) being developed. 

3.1.1 Supporting Libraries 

Functionality from the following external libraries have been used to develop the project: 

• GLFW (Graphics Library Framework): lightweight, open-source, multi-platform 

library, which provides a simple, platform-independent API for creating windows, 

contexts and surfaces, reading input, handling events, etc (The GLFW Development 

Team, 2002).  

• GLM (OpenGL Mathematics): header only mathematics library, providing classes 

and functions designed and implemented with the same naming conventions and 

functionality than GLSL so that anyone who knows GLSL, can use GLM as well in 

C++ (Riccio, 2005). 

• Glad: a version of the OpenGL Loading Library. It loads pointers to OpenGL 

functions at runtime, which is required to access functions from OpenGL versions 

above 1.1 on most platforms. Additionally, it acts as an extension loading library, so 

abstracts away the difference between the loading mechanisms on different platforms 

(Khronos Group, 1997). 

• freetype: open-source font rasterization engine used for rendering text onto bitmaps. It 

supports a number of font formats and font-related operations (Turner, Wilhelm, & 

Lemberg, 1996). 
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• assimp (Open Asset Import Library): an import library for a wide range of file 

formats. It aims to provide a common API for importing different formats. (Gessler, 

Schulze, & Kulling, 2006). 

3.1.2 Packages within the Engine Layer 

Within the engine’s framework, the code is organised into classes, which are grouped into a 

number of packages depending on the functionality they provide. 

The Core package (shown in Figure 3.2) contains the functionality to initialise the application, 

interfaces and layers, as well as configure an updating simulation loop. 

 

Figure 3.2: Classes contained within the Core package of the Engine 

The simulation loop consists of an update method, which is responsible for calculating the 

timestep (time elapsed since last update call), taking any user input, processing the event calls 

and stepping through the physical simulation; and render method, which is responsible for 

configuring the hardware for specific rendering tasks and drawing the simulation on screen. 

The functionality for individual tasks (rendering, handling events, handling simulation) is 

contained within each respective package or application layer logic. Core package is 

responsible for the overall framework of the application.  

Platform package (shown in Figure 3.3) contains platform specific functionality for 

communicating with the system software and connecting to the input and output APIs in order 

to use the underlying hardware. gl_renderer_api has been repeatedly modified during the 

project to contain the required methods for drawing lines, triangles and patches on the GPU. 
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Figure 3.3: Classes contained within the Platform package of the Engine 

 

Figure 3.4: Classes contained within the Utilities package of the Engine 

Utilities package (shown in Figure 3.4) contain various utility methods including additional 

mathematic functions, notably, a definition of a polar vector used throughout the project. This 

class has been created to contain all operations using the polar coordinate system (section 3.2). 
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Figure 3.5: Classes contained within the Events package of the Engine 

Events package (shown in Figure 3.5) contains classes and methods for listening to and 

handling input and application events. These include listening to the keyboard and mouse 

inputs, converting the input events received into game events and notifying the game event 

listeners. The classes in this package do not require specific modifications to work in non-

Euclidean environment. 

 

Figure 3.6: Classes contained within the Entities package of the Engine 



 

56 

 

 

 

The entities package (shown in Figure 3.6) contains the code for recording shape and object 

properties in the simulated environment. game_object contains methods for calculating 

object movement in curved space (chapter 5); polygon contains methods for tessellating 

shapes using spherical and hyperbolic trigonometry (chapter 4); polygon_equation contains 

methods for tessellating shapes using alternative tessellation approaches (chapter 6). 

 

Figure 3.7: Classes contained within the Rendering package of the Engine 

Rendering package (shown in Figure 3.7) has classes and functions for storing rendering 

information (meshes, textures, shaders, buffers and vertex arrays); initialising and updating 

camera views; setting up the scene for rendering and submitting commands to the OpenGL 

rendering pipeline. renderer class contains the functions to submit additional parameters for 

rendering shapes in curved space (e.g. curvature, tessellation parameters, etc.) 
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3.2 Polar Coordinate System 

A polar coordinate system of the form (𝒓, 𝜽) is used in this model for all of the object positions 

and calculations instead of Cartesian coordinates of the form (𝒙, 𝒚). 

The centre of the of the projection is taken as a reference point (analogous to the origin point in 

Cartesian coordinates) for the distance coordinate, 𝒓, while eastbound direction is set to be the 

reference direction for the bearing coordinate, 𝜽.  

 

Figure 3.8: Position of a point A in polar coordinates. It has distance 𝒓 and bearing 𝜽  from 

the reference point 𝑶. 

Cartesian coordinates need to be adapted in order to be used for constant negative and positive 

curvature spaces, as the parallel lines, which are essential to pinpoint the location in Cartesian 

space, are fundamentally different in non-Euclidean space. 

On the other hand, polar coordinates work just as well in any space of constant curvature, as 

the distance from a reference point and bearing from a reference direction still exist. This 

principle will help unify the coordinate system for any curvature of the space and ultimately 

allow the real-time change of curvature without any complications. 
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3.3 Screen-limited Space 

To make the space represented in the engine be more useable for testing and rendering 

interactive scenes, a cut-off distance has been implemented. This distance is set at a distance of 

𝒓 = 𝑵 from the reference point of the global polar coordinate system. 𝑵 is set to be half the 

screen size used in the application and 𝑵 = 𝟓𝟎𝟎 is used for all of the screenshots in this thesis. 

When the object’s centre point moves further away from the origin than the distance 𝑵, it is 

teleported to the antipodal point of the limiting circle. This happens in Euclidean and 

hyperbolic space, as well as spherical space when 𝑲 < 𝟏. When 𝑲 > 𝟏 the centre of the shape 

never goes past distance 𝑵, as the whole spherical space is contained within this radius. 

There are different ways to accomplish this limitation. In this engine, only the object’s position 

is changed, while orientation, rotation and velocity are unchanged, as illustrated in Figure 3.9. 

This has some advantages: it is easy to implement programmatically and is similar in 

appearance to what is done in classic 2D games, like Asteroids and Pacman. If the object 

moves further away from the origin than the distance 𝑵, it is teleported onto the screen from 

the antipodal point at the same distance. Because of the coordinate system used, it is easy to set 

or lift this limiting distance: the object's theta coordinate is increased by 𝝅 and then 

standardised to be in range 𝟎 to 𝟐𝝅. This makes it appear on the antipodal point of the limit 

circle with preserved velocity and orientation. This can be seen in the hyperbolic movement 

time-lapse images (Figure 5.4 and Figure 5.5). 

 

Figure 3.9: A quadrilateral object moves further than distance 𝑵 away from the reference 

point and teleports to the antipodal point maintaining the orientation, velocity and rotation 

values. 
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However, this way of imposing the distance limit is not fully mathematically coherent, as the 

world is not a closed manifold. As an example, Asteroids game is set in a torus topological 

space, which is a simple closed manifold space (illustrated in Figure 3.10). It is mathematically 

coherent, but also quite simple to represent programmatically. Due to the nature of the curved 

space within this engine torus topological space would not work, as the shapes get radially 

stretched or compressed on the screen as they move away from the centre of the projection. 

 

Figure 3.10: Folding of the torus topological space used for many 2D games. When an object 

moves off the bottom part of the screen, it moves on from the top and vice versa. When an 

object moves off the left part of the screen, it moves on from the right and vice versa. 

If a circular space is treated as a closed manifold, then when any part of the object passes the 

limit distance 𝑵, it reappears at the antipodal point of the limit circle. This results in the 

orientation and velocity vectors of the object being reflected with respect to the centre of the 

projection, as shown in Figure 3.11. This means that the world becomes non-oriented, which 

might confuse the players more than the approach used. Additionally, it would be more 

computationally intensive, because when part of the object is on the one side of the limit circle 

and the rest of the object is on the opposite side, the object would have to be rendered as two 

separate objects on the screen. 
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Figure 3.11: A quadrilateral object moves from one side of the projection to the other in a 

closed manifold space. The orientation and velocity vector of the object get reflected with 

respect to the centre of the projection. 

 

3.4 Summary 

This chapter has covered a high-level overview of the engine developed in this project. The 

chosen structure, in particular, the layered architecture pattern, has been explained. The 

function of each package within the engine as well as the polar coordinate system used 

throughout the engine have been described.  



 

61 

 

4. Method I: Rendering 2D Shapes using Spherical and 

Hyperbolic Trigonometry 

This chapter is original research, which introduces a method for finding intermediate points 

along an object’s edge used to tessellate and subsequently render the objects in curved space. It 

describes the trigonometric theorems used in this method and explains the method in three 

consecutive steps: determining global coordinates of the object’s vertex; calculating 

preliminaries for the object’s edge tessellation; and finding a number of intermediate points 

along the edge.  

Note: angle magnitudes in each diagram and equation within this section are normalised to be 

in the range [𝟎, 𝟐𝝅]. 

4.1 Law of Cosines in Spherical and Hyperbolic Trigonometry  

In order to render the shape, global coordinates have to be calculated for all of the vertices of 

the shape. This model is using spherical and hyperbolic trigonometry in order to calculate these 

values. Let 𝑲 ⊂ ℝ s.t. 

𝑲 = 0 → Euclidean Geometry 

𝑲 > 0 → Spherical Geometry, 𝒓 =
𝟏

√𝐊
, where 𝒓 is the radius of the sphere with Gaussian 

curvature 𝑲. 

𝑲 < 0 → Hyperbolic Geometry, 𝒌 =
𝟏

√𝐊
, where 𝒌 is a pseudo-radius of a pseudosphere 

with Gaussian curvature 𝑲. 

 

Figure 4.1: Spherical triangle with vertices 𝑼, 𝑽 and 𝑾 on the surface of a sphere; 𝑼𝑽 = 𝒂; 

𝑼𝑾 = 𝒃; 𝑽𝑾 = 𝒄; ∠𝑽𝑼𝑾 = 𝑪 
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For a sphere of radius 𝒓 and hence Gaussian curvature, 𝑲 =
𝟏

𝒓𝟐, as well as a spherical triangle 

on its surface described by points 𝑼, 𝑽 and 𝑾, connected by great circles that form the edges 

𝒂, 𝒃 and 𝒄 (interpreted as subtended angles) and an angle 𝑪 (See Figure 4.1), the spherical law 

of cosines states (Gellert, 1989):  

 𝐜𝐨𝐬
𝒄

𝒓
= 𝐜𝐨𝐬

𝒂

𝒓
𝐜𝐨𝐬

𝒃

𝒓
+ 𝐬𝐢𝐧

𝒂

𝒓
𝐬𝐢𝐧

𝒃

𝒓
𝐜𝐨𝐬 𝑪 (4.1) 

 

 

Figure 4.2: Hyperbolic triangle with vertices 𝑼, 𝑽 and 𝑾 on the surface of a hyperbolic plane; 

𝑼𝑽 = 𝒂; 𝑼𝑾 = 𝒃; 𝑽𝑾 = 𝒄; ∠𝑽𝑼𝑾 = 𝑪 

For a hyperbolic plane with Gaussian curvature, 𝑲 =
𝟏

𝒌𝟐, and a hyperbolic triangle on its 

surface described by points 𝑼, 𝑽 and 𝑾, connected by geodesics that form the edges 𝑎, 𝑏 and 

𝑐, as well as an angle 𝐶 (See Figure 4.2), the hyperbolic law of cosines states (Gray, 1979): 

 𝐜𝐨𝐬𝐡
𝒄

𝒌
= 𝐜𝐨𝐬𝐡

𝒂

𝒌
𝐜𝐨𝐬𝐡

𝒃

𝒌
+ 𝐬𝐢𝐧𝐡

𝒂

𝒌
𝐬𝐢𝐧𝐡

𝒃

𝒌
𝐜𝐨𝐬 𝑪 (4.2) 
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4.2 Global Vertex Coordinates 

The first objective is to determine the global vertex coordinates of each of the vertices of a 

shape being rendered. As described in section 3.2, shapes are described by the position of the 

centre, 𝑪(𝒓𝒄, 𝜽𝒄); rotation of the shape, 𝜶; and an array of 𝒏 vertex coordinates in local polar 

coordinates, 𝑽𝒏(𝒓𝒗, 𝜽𝒗).  

Using spherical and hyperbolic cosine rules, the global positions are found by considering the 

angle ⊿𝑶𝑪𝑽 for each of the vertices individually, as shown in Figure 4.3. 𝑶 is the reference 

point of the global polar coordinate system. 

Note: in order to simplify the equations below, all of the lengths will be divided by 𝒓 or 𝒌 

depending on the value of 𝑲. Then the lengths that we are searching for will be multiplied by 𝒓 

or 𝒌 to get the final answer, where 𝒓 =
𝟏

√𝐊
 when 𝑲 > 𝟎 and 𝒌 =

𝟏

√𝐊
 when 𝑲 < 𝟎. 

 

Figure 4.3: Finding the coordinates of an object's vertex 𝑽(𝒓𝒗, 𝜽𝒗)  from a triangle ⊿𝑶𝑪𝑽. 

 𝑶(𝟎, 𝟎), reference point of a polar coordinate system; 𝑪(𝒓𝒄, 𝜽𝒄), reference point of a local 

coordinate system; 𝑽(𝒓𝒍𝒐𝒄𝒂𝒍, 𝜽𝒍𝒐𝒄𝒂𝒍), local coordinates of the object's vertex; 𝑶𝑽 = 𝒓𝒗, 𝑶𝑪 =

𝒓𝒄, 𝑪𝑽 = 𝒓𝒍𝒐𝒄𝒂𝒍; ∠𝑽𝑶𝑶′ = 𝜽𝒗, ∠𝑽𝑶𝑪 = 𝜟𝜽𝒗, ∠𝑪𝑶𝑶′ = 𝜽𝒄, ∠𝑽𝑪𝑪′ = 𝜽𝒍𝒐𝒄𝒂𝒍,  ∠𝑶𝑪𝑪′ = 𝜶, 

object’s angle of rotation, ∠𝑶𝑪𝑽 = 𝜷, angle between 𝒓𝒍𝒐𝒄𝒂𝒍 and 𝒓𝒄; Case (a): 𝜽𝒍𝒐𝒄𝒂𝒍 + 𝜶 < 𝜋; 

case (b): 𝜽𝒍𝒐𝒄𝒂𝒍 + 𝜶 > 𝜋. 

Given: 𝑶(𝟎, 𝟎), 𝑪(𝒓𝒄, 𝜽𝒄), 𝑽(𝒓𝒗, 𝜽𝒗), 𝑶𝑪 = 𝒓𝒄, 𝑪𝑽 = 𝒓𝒍𝒐𝒄𝒂𝒍, ∠𝑪𝑶𝑶′ = 𝜽𝒄,

∠𝑶𝑪𝑪′ = 𝜶, ∠𝑽𝑪𝑪′ = 𝜽𝒍𝒐𝒄𝒂𝒍 

Find: 𝒓𝒗, 𝜽𝒗 

 



 

64 

 

If  𝑲 > 0, then: 

 𝒓𝒗 = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝒄 𝐜𝐨𝐬 𝒓𝒍𝒐𝒄𝒂𝒍 + 𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒍𝒐𝒄𝒂𝒍 𝐜𝐨𝐬 𝜷) (4.3) 

 𝜟𝜽𝒗 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒓𝒍𝒐𝒄𝒂𝒍 −  𝐜𝐨𝐬 𝒓𝒄 𝐜𝐨𝐬 𝒓𝒗

𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒗
) (4.4) 

If  𝑲 < 0, then: 

 𝒓𝒗 = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝒄 𝐜𝐨𝐬𝐡 𝒓𝒍𝒐𝒄𝒂𝒍 + 𝐬𝐢𝐧𝐡 𝒓𝒄 𝐬𝐢𝐧𝐡 𝒓𝒍𝒐𝒄𝒂𝒍 𝐜𝐨𝐬 𝜷) (4.5) 

 𝜟𝜽𝒗 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝒄 𝐜𝐨𝐬𝐡 𝒓𝒗 − 𝐜𝐨𝐬𝐡 𝒓𝒍𝒐𝒄𝒂𝒍

𝐬𝐢𝐧𝐡 𝒓𝒄 𝐬𝐢𝐧𝐡 𝒓𝒗
) (4.6) 

 

To find 𝒓𝒗, first find ∠𝑶𝑪𝑽 = 𝜷. 𝜷 = 𝜶 + 𝜽𝒍𝒐𝒄𝒂𝒍; however, if 𝝅 < 𝛽 < 2𝝅, use the 

explementary angle of 𝜷 instead. This is done to determine to which side of 𝑶𝑪 the triangle 

lies, which will be used to find 𝜽𝒗. To find 𝜽𝒗, we calculate ∠𝑽𝑶𝑪 = 𝚫𝜽𝒗, the angular 

difference between 𝜽𝒗 and 𝜽𝒄, which is then added to or subtracted from 𝜽𝒄, depending on 

whether the explementary angle of 𝜷 was taken or not. This is illustrated on Figure 4.3. 

Note: Equations (4.3) and (4.4) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (4.3) and (4.4), use the following two 

equations respectively: 

 𝒓𝒗 = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝒄 − 𝒓𝒍𝒐𝒄𝒂𝒍) + 𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒍𝒐𝒄𝒂𝒍 𝐡𝐚𝐯 𝜷) (4.7) 

 𝜟𝜽𝒗 = 𝐡𝐚𝐯−𝟏 (
𝐡𝐚𝐯 𝒓𝒍𝒐𝒄𝒂𝒍 − 𝐡𝐚𝐯( 𝒓𝒄 − 𝒓𝒗)

𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒗
) (4.8) 

In the engine, these two formulae have been used within the vertex shader, described in section 

7.1.1, due to the calculations becoming less stable on the GPU than on the CPU when 𝜷 <
𝝅

𝟔𝟎
. 
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4.3 Intermediate Points Preliminaries 

The method described in section 0 has to be used repeatedly to find every vertex of an object. 

However, that is not enough information to draw curved lines onto a screen. After all of the 

global vertex coordinates have been found, to proceed with rendering, a geodesic between the 

two vertices should be tessellated into smaller straight lines, which could be rendered on the 

screen.  

Hence intermediate points should be found along the lines connecting the vertices of the shape. 

For that, some preliminaries have to be found first: the length of the edge between the two 

vertices as well as the total angle between the position vectors of the two vertices (illustrated in 

Figure 4.4). 

 

Figure 4.4: Finding preliminaries (𝒅, length of the edge 𝑽𝟏𝑽𝟐; 𝜟𝜽, angle between 𝑶𝑽𝟏 and  

𝑶𝑽𝟐) to calculate intermediate points on the edge 𝑽𝟏𝑽𝟐. Case (a): the angles 𝜟𝜽𝟏 and 𝜟𝜽𝟐 

are diverging; case (b): the angles 𝜟𝜽𝟏 and 𝜟𝜽𝟐 are converging. 𝑶(𝟎, 𝟎), reference point of 

the global coordinate system; 𝑪(𝒓𝒄, 𝜽𝒄), position of the object; 𝑽𝟏(𝒓𝟏, 𝜽𝟏), 𝑽𝟐(𝒓𝟐, 𝜽𝟐), 

vertices of the object; 𝑶𝑪 = 𝒓𝒄, 𝑶𝑽𝟏 = 𝒓𝟏, 𝑶𝑽𝟐 = 𝒓𝟐, 𝑪𝑽𝟏 = 𝒓𝟏𝒍𝒐𝒄𝒂𝒍, 𝑪𝑽𝟐 = 𝒓𝟐𝒍𝒐𝒄𝒂𝒍, 

∠𝑪𝑶𝑶′ = 𝜽𝒄, ∠𝑽𝟏𝑶𝑶′ = 𝜽𝟏, ∠𝑽𝟐𝑶𝑶′ = 𝜽𝟐, ∠𝑽𝟏𝑶𝑪 = 𝜟𝜽𝟏, ∠𝑽𝟐𝑶𝑪 = 𝜟𝜽𝟐, ∠𝑶𝑽𝟏𝑽𝟐 = 𝜶 

Given: 𝑶(𝟎, 𝟎), 𝑪(𝒓𝒄, 𝜽𝒄), 𝑽𝟏(𝒓𝟏, 𝜽𝟏), 𝑽𝟐(𝒓𝟐, 𝜽𝟐), 𝑶𝑪 = 𝒓𝒄, 𝑶𝑽𝟏 = 𝒓𝟏, 𝑶𝑽𝟐 = 𝒓𝟐,

𝑪𝑽𝟏 = 𝒓𝟏𝒍𝒐𝒄𝒂𝒍, 𝑪𝑽𝟐 = 𝒓𝟐𝒍𝒐𝒄𝒂𝒍, ∠𝑪𝑶𝑶′ = 𝜽𝒄, ∠𝑽𝟏𝑶𝑶′ = 𝜽𝟏, ∠𝑽𝟐𝑶𝑶′ = 𝜽𝟐 

Find: 𝒅, 𝚫𝜽 

 



 

66 

 

In order to find 𝚫𝜽, we first find 𝚫𝜽𝟏 and 𝚫𝜽𝟐: 

 𝜟𝜽𝟏 =  𝜽𝒄 − 𝜽𝟏 (4.9) 

 𝜟𝜽𝟐 =  𝜽𝒄 − 𝜽𝟐 (4.10) 

 

Here we could have 2 cases: diverging angles and converging angles (see Figure 4.4). 

Angles diverge if  𝚫𝜽𝟏 < 0, 𝚫𝜽𝟐 > 0 or 𝚫𝜽𝟏 > 0, 𝚫𝜽𝟐 < 0. Then: 

 𝜟𝜽 =  |𝜟𝜽𝟏| + |𝜟𝜽𝟐| (4.11) 

Angles converge if  𝜟𝜽𝟏 < 0, 𝜟𝜽𝟐 < 0 or 𝜟𝜽𝟏 > 0, 𝜟𝜽𝟐 > 0. Then: 

 𝜟𝜽 =  |𝜟𝜽𝟏 − 𝜟𝜽𝟐| (4.12) 

 

In order to find  𝒅, consider ⊿𝑶𝑽𝟏𝑽𝟐. 

If  𝑲 > 0, then: 

 𝒅 = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝟏 𝐜𝐨𝐬 𝒓𝟐 + 𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒓𝟐 𝐜𝐨𝐬 𝜟𝜽) (4.13) 

If  𝑲 < 0, then: 

 𝒅 = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝟏 𝐜𝐨𝐬𝐡 𝒓𝟐 + 𝐬𝐢𝐧𝐡 𝒓𝟏 𝐬𝐢𝐧𝐡 𝒓𝟐 𝐜𝐨𝐬 𝜟𝜽) (4.14) 

 

Note: We also need to record which of 𝚫𝜽𝟏 and 𝚫𝜽𝟐 is the greater angle, as that determines 

the direction of the edge 𝒅 used in the next step. 

Last preliminary needed is 𝜶, the angle between 𝒓𝟏, the position vector of 𝑽𝟏, and the edge 𝒅. 

If  𝑲 > 0, then: 

 𝜶 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒓𝟐 − 𝐜𝐨𝐬 𝒓𝟏 𝐜𝐨𝐬 𝒅

𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒅
) (4.15) 

If  𝑲 < 0, then: 

 𝜶 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝟏 𝐜𝐨𝐬𝐡 𝒅 − 𝐜𝐨𝐬𝐡 𝒓𝟐

𝐬𝐢𝐧𝐡 𝒓𝟏 𝐬𝐢𝐧𝐡 𝒅
) (4.16) 
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Note: Equations (4.13) and (4.15) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (4.13) and (4.15), use the following two 

equations respectively: 

 𝒅 = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝟏 − 𝒓𝟐) + 𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒓𝟐 𝐡𝐚𝐯 𝜟𝜽) (4.17) 

 𝜶 = 𝐡𝐚𝐯−𝟏 (
𝐜𝐨𝐬 𝒓𝟐 − 𝐡𝐚𝐯( 𝒓𝟏 − 𝒅)

𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒅
) (4.18) 

 

In the engine, these two formulae have been used within the tessellation control shader, 

described in section 7.1.2, due to the calculations becoming less stable on the GPU than on the 

CPU when 𝜷 <
𝝅

𝟏𝟎
. 
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4.4 Coordinates of the Intermediate Points 

The last step in rendering shapes in curved space is to find the global polar coordinates of the 

intermediate points. The number of intermediate points, 𝒅𝒊(𝒓𝒊, 𝜽𝒊) along each edge is 

determined by the tessellation parameter. The 𝒓 and 𝜽 coordinates of 𝒅𝒊 are found from the 

⊿𝑶𝑽𝟏𝑽𝒊 as illustrated in Figure 4.5. 

Angle 𝜶 was calculated as an in-between step to find the angle opposite 𝒓𝒊 to apply the rule of 

cosines. Then 𝒓𝒊 and subsequently 𝜟𝜽𝒊 can be found using the cosine rule. To calculate the 

distance 𝒓𝒊, the triangle 𝑽𝟏𝑽𝒊 is considered. Using the previously found angle 𝜶 as well as the 

known lengths 𝒓𝟏 and 𝑽𝟏𝑽𝒊 (𝒅𝒊) a hyperbolic/spherical cosine rule can be applied (illustrated 

on Figure 4.5). 

 

Figure 4.5: Finding intermediate points in order to render the edge 𝑽𝟏𝑽𝟐. 𝑶(𝟎, 𝟎), reference 

point of the global coordinate system; 𝑪(𝒓𝒄, 𝜽𝒄), position of the object; 𝑽𝟏(𝒓𝟏, 𝜽𝟏),

𝑽𝟐(𝒓𝟐, 𝜽𝟐), vertices of the object; 𝒅, the length of the edge 𝑽𝟏𝑽𝟐; 𝑽𝒊(𝒓𝒊, 𝜽𝒊), point on the edge 

𝑽𝟏𝑽𝟐; 𝜟𝜽𝒊, angle between 𝑶𝑽𝟏 and 𝑶𝑽𝒊; 𝜟𝜽, angle between 𝑶𝑽𝟏 and 𝑶𝑽𝟐. 

Note: distance 𝒅 is divided into a number of equal parts in order to find the distance 𝒅𝒊 for 

each of the points on the edge 𝑽𝟏𝑽𝟐. The number of segments depends on the object 

tessellation variable. Tessellation variable is a variable used to specify the number of segments 

the line has to be subdivided into. 
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Given:  𝑶(𝟎, 𝟎), 𝑪(𝒓𝒄, 𝜽𝒄), 𝑽𝟏(𝒓𝟏, 𝜽𝟏), 𝑽𝟐(𝒓𝟐, 𝜽𝟐), 𝑽𝒊(𝒓𝒊, 𝜽𝒊), 𝑶𝑪 = 𝒓𝒄, 𝑶𝑽𝟏 = 𝒓𝟏,

𝑶𝑽𝟐 = 𝒓𝟐, 𝑽𝟏𝑽𝟐 = 𝒅, 𝑽𝟏𝑽𝒊 = 𝒅𝒊, ∠𝑪𝑶𝑶′ = 𝜽𝒄, ∠𝑽𝟏𝑶𝑶′ = 𝜽𝟏, ∠𝑽𝟐𝑶𝑶′ =

𝜽𝟐, ∠𝑽𝟏𝑶𝑽𝟐 = 𝚫𝜽 

Find: 𝒓𝒊, 𝜽𝒊 

If  𝑲 > 0, then: 

 𝒓𝒊 = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝟏 𝐜𝐨𝐬 𝒅𝒊 + 𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒅𝒊 𝐜𝐨𝐬 𝜶) (4.19) 

 𝜟𝜽𝒊 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒅𝒊 − 𝐜𝐨𝐬 𝒓𝟏 𝐜𝐨𝐬 𝒓𝒊

𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒓𝒊
) (4.20) 

If 𝑲 < 0, then: 

 𝒓𝒊 = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝟏 𝐜𝐨𝐬𝐡 𝒅𝒊 − 𝐬𝐢𝐧𝐡 𝒓𝟏 𝐬𝐢𝐧𝐡 𝒅𝒊 𝐜𝐨𝐬 𝜶) (4.21) 

 𝜟𝜽𝒊 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝟏 𝐜𝐨𝐬𝐡 𝒓𝒊 − 𝐜𝐨𝐬𝐡 𝒅𝒊

𝐬𝐢𝐧𝐡 𝒓𝟏 𝐬𝐢𝐧𝐡 𝒓𝒊
) (4.22) 

 

Then to find actual coordinates of the point 𝑽𝒊, 𝒓𝒊 should be multiplied by 𝒓 or 𝒌 depending on 

the value of 𝑲; 𝜟𝜽𝒊 should be added to or subtracted from angle 𝜽𝟏, depending on the 

direction of the edge 𝒅, determined previously. 

Note: Equations (4.19) and (4.20) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (4.19) and (4.20), use the following two 

equations respectively: 

 𝒓𝒊 = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝟏 − 𝒅) + 𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒅 𝐡𝐚𝐯 𝜶) (4.23) 

 𝜟𝜽𝒊 = 𝐡𝐚𝐯−𝟏 (
𝐜𝐨𝐬 𝒅 − 𝐡𝐚𝐯( 𝒓𝟏 − 𝒓𝒊)

𝐬𝐢𝐧 𝒓𝟏 𝐬𝐢𝐧 𝒓𝒊
) (4.24) 

 

In the engine, these two formulae have been used within the tessellation evaluation shader, 

described in section 7.1.3, due to the calculations becoming less stable on the GPU than on the 

CPU when 𝜷 <
𝝅

𝟏𝟎
. 

 



 

70 

 

4.5 Results 

Using the method described in this chapter and OpenGL, software was created that has a 

capability to calculate and render the objects using the vector graphics in curved space. 

  

Figure 4.6: A regular quadrilateral with the centre at position (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) and rotation 

of 𝟎 𝒓𝒂𝒅. Rendered with spherical trigonometry (left) and hyperbolic trigonometry (right). The 

white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

  

Figure 4.7: A regular quadrilateral with the centre at position (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) and rotation 

of 𝝅
𝟒

 𝒓𝒂𝒅. Rendered with spherical trigonometry (left) and hyperbolic trigonometry (right). 

The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

Figure 4.6, Figure 4.7, Figure 4.8 and Figure 4.9 show a single regular quadrilateral rendered 

in a space with positive curvature on (𝑲 = 𝟏) the left and negative curvature (𝑲 = −𝟏) on the 
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right. Note that the grid-lines have been created and rendered as separate game objects, hence 

there is no need to recalculate them manually when the curvature changes.  

Figure 4.6 and Figure 4.7 show the quadrilateral positioned at a point (𝟐𝟎𝟎 𝐩𝐱, 𝟎 𝐫𝐚𝐝) in a 

polar coordinate system of a form (𝒓, 𝜽) and show the correct transformation of the shape in an 

Azimuthal equidistant projection in spherical and hyperbolic space. In Figure 4.6 the shape is 

not rotated, while in Figure 4.7 the shape is rotated by 45 degrees. 

  

Figure 4.8: A regular quadrilateral with the centre at position (𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) and rotation of 
𝝅

𝟒
 𝒓𝒂𝒅. Rendered with spherical trigonometry (left) and hyperbolic trigonometry (right). The 

white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

  

Figure 4.9: A regular quadrilateral with the centre at position (𝟐𝟓 𝒑𝒙, 𝟎 𝒓𝒂𝒅) and rotation of 

𝟎 𝒓𝒂𝒅. Rendered with spherical trigonometry (left) and hyperbolic trigonometry (right). The 

white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 
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Figure 4.8 show the quadrilateral positioned at the centre of projection, point (𝟎 𝐩𝐱, 𝟎 𝐫𝐚𝐝), 

rotated by 25 45 degrees. Figure 4.9, shows the shape not rotated, but horizontally displaced 

from the centre of projection to the point (𝟐𝟓 𝐩𝐱, 𝟎 𝐫𝐚𝐝).  

4.6 Summary 

This chapter has described a method for rendering shapes in curved space in three steps using 

spherical and hyperbolic trigonometry. First, the global vertex coordinates of a 2D shape are 

calculated given the shape’s position, rotation and its local vertex coordinates. Once the global 

vertex coordinates are found, the edges of the shape can be tessellated. For each edge, 

preliminaries for tessellation have to be calculated based on the global vertex coordinates of 

the endpoints of the respective edge. These preliminaries are the length of the edge as well as 

the angle between the edge and the position vector of vertex 1. Once these preliminaries are 

found, the intermediate points along the edge are calculated. The chapter also illustrates the 

renderings created using the software developed in this project. 
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5. Method II: Object Movement in a non-Euclidean 

Environment 

This chapter is original research, which introduces a method developed for calculating object 

movement in real time in non-Euclidean space using spherical (Gellert, 1989) and hyperbolic 

trigonometry (Gray, 1979). This method works by translating the object to its position at the 

next time instance (frame in the engine). The trajectory of movement in non-Euclidean space is 

a geodesic and the object has to keep the same orientation with respect to it when moving. 

Note: angle magnitudes in each diagram and equation within this section are normalised to be 

in the range [𝟎, 𝟐𝝅]. 

5.1 Method 

 

Figure 5.1: Movement of the object along a geodesic in Spherical (a) and Hyperbolic (b) 

space. Orientation with respect to the geodesic (angle 𝜶) is kept constant if the object is not 

rotating. 𝑶(𝟎, 𝟎), reference point of the global coordinate system with; 𝑪𝒕𝒙(𝒓𝒕𝒙, 𝜽𝒕𝒙), position 

of the object at time 𝒙; 𝜷𝒕𝒙, object's rotation angle at time 𝒙; 𝜸𝒕𝒙, object's velocity vector 

direction at time 𝒙. 

Note: In addition to updating the global position vector of an object, the velocity vector and 

rotation angle have to be updated accordingly in order to keep their orientation towards the 

geodesic consistent (for a non-rotating object; for a rotating object, extra rotation over time 

should be added after the position of the object was recalculated). 

Given: 𝐎(𝟎, 𝟎), 𝐂𝐭𝟎(𝐫𝐭𝟎, 𝛉𝐭𝟎), 𝐂𝐭𝟏(𝐫𝐭𝟏, 𝛉𝐭𝟏), 𝑶𝑪𝒕𝟎 = 𝒓𝒕𝟎, 𝑪𝒕𝟎𝑪
𝒕𝟏

= 𝐫𝐩, ∠𝑪𝒕𝟎𝑶𝑶′ = 𝜽𝒕𝟎, 

∠𝑶𝑪𝒕𝟎𝑶′′ = 𝜸𝒕𝟎, ∠𝑶𝑪𝒕𝟎𝑪′
𝒕𝟎 = 𝜷𝒕𝟎 
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Find: 𝐫𝐭𝟏, 𝛉𝐭𝟏, 𝛃𝐭𝟏, 𝛄𝐭𝟏 

𝜸𝒕𝟎 should be in the range 𝟎 to 𝛑, take explementary angle if 𝜸𝒕𝟎 > 𝜋. This will determine the 

direction of the movement with respect to the reference point (needed to calculate 𝛉𝐭𝟏). 

Let ∠𝑶𝑪𝒕𝟏𝑪𝒕𝟎 = 𝜸′𝒕𝟏 

If 𝑲 > 0, then: 

 𝒓𝒕𝟏 = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝒕𝟎 𝐜𝐨𝐬 𝒓𝒑 + 𝐬𝐢𝐧 𝒓𝒕𝟎 𝐬𝐢𝐧 𝒓𝒑 𝐜𝐨𝐬 𝜸𝒕𝟎) (5.1) 

 𝜟𝜽 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒓𝒑 − 𝐜𝐨𝐬 𝒓𝒕𝟎 𝐜𝐨𝐬 𝒓𝒕𝟏

𝐬𝐢𝐧 𝒓𝒕𝟎 𝐬𝐢𝐧 𝒓𝒕𝟏
) (5.2) 

 𝜸′𝒕𝟏 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒓𝒕𝟎 − 𝐜𝐨𝐬 𝒓𝒑 𝐜𝐨𝐬 𝒓𝒕𝟏

𝐬𝐢𝐧 𝒓𝒑 𝐬𝐢𝐧 𝒓𝒕𝟏
) (5.3) 

If 𝑲 < 0, then: 

 𝒓𝒕𝟏 = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝒕𝟎 𝐜𝐨𝐬𝐡 𝒓𝒑 − 𝐬𝐢𝐧𝐡 𝒓𝒕𝟎 𝐬𝐢𝐧𝐡 𝒓𝒑 𝐜𝐨𝐬 𝜸𝒕𝟎) (5.4) 

 𝜟𝜽 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝒕𝟎 𝐜𝐨𝐬𝐡 𝒓𝒕𝟏 − 𝐜𝐨𝐬𝐡 𝒓𝒑

𝐬𝐢𝐧𝐡 𝒓𝒕𝟎 𝐬𝐢𝐧𝐡 𝒓𝒕𝟏
) (5.5) 

 𝜸′𝒕𝟏 = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝒑 𝐜𝐨𝐬𝐡 𝒓𝒕𝟏 − 𝐜𝐨𝐬𝐡 𝒓𝒕𝟎

𝐬𝐢𝐧𝐡 𝒓𝒑 𝐬𝐢𝐧𝐡 𝒓𝒕𝟏
) (5.6) 

 

Angle 𝜶 is the difference between object’s local reference direction and its geodesic of 

movement (𝑪′′𝒕𝟎𝑪′′
𝒕𝟏

), which has to stay constant if the object is not rotating over time. The 

value is found using object’s parameters at time point 0: 

 𝜶 = 𝜷𝒕𝟎 − 𝜸𝒕𝟎 (5.7) 

 

Hence, at time point 1: 

 𝜷𝒕𝟏 = 𝜸𝒕𝟏 + 𝜶 (5.8) 

 

𝜸𝒕𝟏 and 𝜸′𝒕𝟏 are supplementary angles, so: 

 𝜸𝒕𝟏 = 𝝅 − 𝜸′𝒕𝟏 (5.9) 
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To find the 𝜽 coordinate, either subtract or add 𝜟𝜽 to the 𝜽𝒄 depending on whether the angle 𝜶 

or its explementary angle is used for the subsequent calculation. 

5.2 Results 

The movement of an object can be shown dynamically by creating several time-lapse images 

collated from multiple screenshots of the game screen one over the other. These are shown in 

the figures below. They show movement through different geodesics at different curvatures. 

The software can calculate the object flying in arbitrary direction with arbitrary speed as well 

as starting from arbitrary position in the space. A tessellation parameter of 30 has been used to 

render all shapes in this section.  

 

Figure 5.2: Object’s movement in spherical space along the geodesic passing through the 

point (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) at 𝝅
𝟐

 𝒓𝒂𝒅 angle. The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 
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Figure 5.2 and Figure 5.3 show object movement in spherical space (𝑲 = 𝟏). The object is a 

red arrow shape, it starts movement in the same position, but different direction of movement. 

In Figure 5.2 the object starts to move orthogonally to the horizontal axis, while in Figure 5.3, 

the object’s starting position is rotated 45 degrees towards the origin. 

 

Figure 5.3: Object’s movement in spherical space along the geodesic passing through the 

point (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) at 𝝅
𝟒

 𝒓𝒂𝒅 angle. The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

In Spherical Space, using azimuthal equidistant projection, objects can never fly off screen 

with continuous movement. This is because the geodesics of movement in this space are great 

circles and the space is finite as it folds in on itself. As such the geodesics are visible in their 

entirety in this projection. 
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Figure 5.4: Object’s movement in hyperbolic space along the geodesic passing through the 

point (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) at 𝝅
𝟐

 𝒓𝒂𝒅 angle. The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

In hyperbolic space the above does not hold, because the space is infinite, so the objects could 

fly off the screen.  Thus, to make the space more useable for testing and rendering interactive 

scenes, a feature has been added to aid demonstration of the space. A cut-off distance has been 

implemented, which wraps the world around at a distance 𝒓 = 𝑵 from the centre of the screen. 

If the object moves further away from the origin than the specified distance, it moves onto the 

screen from the antipodal point at the same distance. 𝑵 is set to be half the screen size used in 

the application; 𝑵 = 𝟓𝟎𝟎 is used for all of the screenshots in this thesis. Because of the 

coordinate system used, it is easy to set or lift this limiting distance: the object's theta 

coordinate is increased by 𝝅 and then standardised to be in range 𝟎 to 𝟐𝝅. This makes it appear 

on the antipodal point of the limit circle with preserved velocity and orientation. This can be 
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seen in the hyperbolic movement time-lapse images (Figure 5.4 and Figure 5.5). Visually, as 

the object crosses into the shaded area of the world, it is immediately reset on the antipodal 

point of the white limit circle. 

 

Figure 5.5: Object’s movement in hyperbolic space along the geodesic passing through the 

point (𝟐𝟎𝟎 𝒑𝒙, 𝟎 𝒓𝒂𝒅) at 𝝅
𝟒

 𝒓𝒂𝒅 angle. The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

Figure 5.4 and Figure 5.5 show object movement in spherical space (𝑲 = 𝟏). The object is a 

red arrow shape, it starts movement in the same position, but different direction of movement. 

In Figure 5.4 the object starts to move orthogonally to the horizontal axis. This is the same 

position and initial direction as the object illustrated on Figure 5.2 in Spherical Space. 

However, in Figure 5.5, the object’s starting position is rotated 45 degrees towards the origin. 

This is the same position and initial direction as the object illustrated on Figure 5.3 in Spherical 

Space. 
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Figure 5.6: Time-lapse of the object’s rotation around its centre point in spherical space (𝑲 =

𝟏). The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

In addition to movement through curved space a time-lapse images of rotation of a square is 

shown (in this case, a square is described as a quadrilateral that has 4 vertices equidistant from 

the centre of the object in local coordinates as well as being equally spaced out around the 

local reference point). Figure 5.6 shows a rotation of this object in spherical space. 
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Figure 5.7: Time-lapse of the object’s rotation around its centre point in hyperbolic space 

(𝑲 = −𝟏). The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 

Figure 5.7 shows a rotation of this object in hyperbolic space. The quadrilateral is described by 

the following local vertex coordinates: 

[(𝟗𝟎 𝐩𝐱,
𝝅

𝟒
 𝐫𝐚𝐝) , (𝟗𝟎 𝒑𝒙,

𝟑𝝅

𝟒
 𝐫𝐚𝐝) , (𝟗𝟎 𝒑𝒙,

𝟓𝝅

𝟒
 𝐫𝐚𝐝) , (𝟗𝟎 𝒑𝒙,

𝟕𝝅

𝟒
 𝐫𝐚𝐝)] 

Note that the object is described by the same position and local vertex coordinates in 

hyperbolic and spherical spaces. These time-lapses consist of 6 images with the square being 

rotated by 15 degrees between the successive images of the time-lapse. 

The inner contour that the square traces, tends towards a circle. Note that the circle that would 

fit this contour is elliptic and is stretched when the curvature of the world is positive (shown in 
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Figure 5.6) and is compressed when the curvature of the world is negative (shown in Figure 

5.7). 

 

Figure 5.8: Time-lapse showing movement of multiple objects in planar space (𝑲 = 𝟎). A 

regular rectangle (cyan), a regular pentagon (green), a regular hexagon (magenta) and an 

arrow shape (red). The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙.  

Figures below show the time-lapse results of the engine rendering multiple objects in planar 

(Figure 5.8), spherical (Figure 5.9) and hyperbolic (Figure 5.10) geometries. The resulting 

engine can be built upon for multiple purposes, such as creating video games or animations in 

non-Euclidean environment, help visualise the mathematics of non-Euclidean space or create 

tools for use in different areas of research. 



 

82 

 

As shown in Figure 5.8, these time-lapse images display the movement of four different 

shapes: a square (or regular quadrilateral), a regular pentagon, a regular hexagon and a concave 

quadrilateral (or spaceship).  

 

Figure 5.9: Time-lapse showing movement of multiple objects in spherical space (𝑲 = 𝟏). A 

regular quadrilateral (cyan), a regular pentagon (green), a regular hexagon (magenta) and an 

arrow shape (red). The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙.  

The regular polygons have different sizes set by the local r-coordinate of the respective 

object’s vertices. Square has this property set to 45, pentagon has it set to 50 and hexagon has 

it set to 40. The spaceship (or the concave quadrilateral) is described by the following local 

vertex coordinate values: 

[(𝟑𝟎 𝐩𝐱, 𝟎 𝐫𝐚𝐝), (𝟑𝟎 𝐩𝐱,
𝟓𝝅

𝟔
 𝐫𝐚𝐝) , (𝟏𝟓 𝐩𝐱, 𝝅 𝐫𝐚𝐝), (𝟑𝟎 𝐩𝐱,

𝟕𝝅

𝟔
 𝐫𝐚𝐝)] 
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The four shapes have the same starting azimuthal equidistant coordinates and the same 

velocities in each simulation irrespective of the curvature value. The objects have different 

velocities from each other: the square moves 10 units between the successive timelapse 

images, the pentagon moves 6 units, the hexagon moves 8 units and the spaceship moves 15 

units. 

 

Figure 5.10: Time-lapse showing movement of multiple objects in hyperbolic space (𝑲 = −𝟏). 

A regular quadrilateral (cyan), a regular pentagon (green), a regular hexagon (magenta) and 

an arrow shape (red). The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙.  

Even though the starting positions and velocities are the same, the trajectories vary depending 

on the curvature of the space, due to the objects following the geodesics through the respective 

curved space. These geodesics are straight lines in Euclidean space, but they appear to curve 

towards each other in spherical space and away from each other in hyperbolic space. After 14 
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images of the timelapse, the shapes end the simulation in vastly different positions in space. 

Such simulations can help visualise and explain the nature of curved space. 

Note: In Figure 5.8 and Figure 5.10 some shapes are drawn partially outside the boundary 

circle. This is because in Euclidean and Hyperbolic space the engine will only teleport the 

shapes to the antipodal point when the centre of the shape passes the boundary circle. If the 

world was a manifold that would wrap around, this would be incorrect behaviour. Instead this 

has been done by design to make the process of limiting the playable area easier 

programmatically. 

 

Figure 5.11: Time-lapse of a spaceship (concave quadrilateral) movement through a space 

with dynamically changing curvature. Curvature started at 𝑲 = −𝟏 when the first image of the 

time-lapse was taken and then it increased with time until its value reached 𝑲 = 𝟏, when the 

last image of the time-lapse was taken. The white circle has the radius of 𝟓𝟎𝟎 𝒑𝒙. 
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The software created in this project allows for the curvature of the world to be changed in real-

time using keyboard inputs in a similar manner to controlling the object's acceleration and 

orientation. The curvature can be switched between several pre-set values (i.e. 𝐊 = 𝟎, 𝐊 = 𝟏 

and 𝐊 = −𝟏) or changed continuously by adding or subtracting a small number from the 

current curvature variable every time the corresponding button is pressed. 

In the time-lapse image shown in Figure 5.11, this feature is demonstrated by starting the 

object's movement in hyperbolic space and then gradually increasing the value of 𝐊 in order to 

progress from a hyperbolic space through flat space into spherical space. This can be observed 

by not only the movement of the spaceship (concave red quadrilateral), but also the change in 

the way the grid lines are curved. 

This feature allows for flexibility in the use of the engine. The gradual change in curvature can 

be used to explain the concept of curvature much more easily than the standard methods of 

imagining the hyperbolic space or a flat projection of a sphere.  

5.3 Summary 
This chapter described an approach for calculating object movement through curved space in 

real-time using spherical and hyperbolic trigonometry. The object’s position in the next frame 

is calculated based on the time difference between frames, object’s previous position, velocity 

and trajectory. Object is moved along the geodesic of its trajectory keeping a constant 

orientation with respect to it. Renderings of this movement have been illustrated in this chapter 

to give an example of the output produced by the described software.  
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6. Alternative Approaches for Line Tessellation  

This chapter is original research, which introduces alternative methods for tessellating shapes 

in non-Euclidean space. The main motivation for developing alternate tessellation approaches 

is to minimise the number of calculations involved in finding intermediate points along a 

geodesic, thus improving the performance of the application. Two different approaches have 

been developed for the spherical tessellation. The first one uses great circle navigation and the 

second uses orthogonal vectors; additionally, a single approach has been developed for 

hyperbolic tessellation, which uses Poincaré disc in order to find intermediate points. 

Note: angle magnitudes in each diagram and equation within this section are normalised to be 

in the range [𝟎, 𝟐𝝅]. 

6.1 Great Circle Path Approach 

 

Figure 6.1: Great Circle Navigation. Finding waypoints along a great circle path between 

points 𝑷𝟏(𝝓𝟏, 𝝀𝟏) and 𝑷𝟐(𝝓𝟐, 𝝀𝟐). 𝑵(
𝝅

𝟐
, 𝟎), North Pole of the latitude and longitude 

coordinate system; 𝑷𝟎(𝟎, 𝝀𝟎), point of intersection of the great circle with equator geodesic; 

𝜶𝟎, 𝜶𝟏, 𝜶𝟐, azimuths to the great circle path at points 𝑷𝟎, 𝑷𝟏, 𝑷𝟐 respectively; 𝝈𝟎𝟏 = 𝑷𝟎𝑷
𝟏
; 

𝝈𝟏𝟐 = 𝑷𝟏𝑷𝟐; 𝝀𝟎𝟏 = 𝝀𝟏 − 𝝀𝟎; 𝝀𝟏𝟐 = 𝝀𝟐 − 𝝀𝟏 

 

Finding waypoints on great circle geodesics has been used for naval and later aircraft 

navigation since XVII century (Cotter, 1976) (Weintrit & Neumann, 2011). Great circle 
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navigation uses a latitude and longitude coordinate system (𝝓, 𝝀) instead of a polar coordinate 

system (𝒓, 𝜽) for all calculations, so the coordinates of both points should be converted 

accordingly.  

The theta element of the polar coordinate is angular distance from a reference direction in the 

range of 𝟎 to 𝟐𝝅. Longitude is also angular distance from reference direction, but the range is 

−𝝅 to 𝝅. 𝜽-coordinate of the polar coordinate system is converted into longitude using: 

 𝝀 = 𝐦𝐨𝐝(𝜽 + 𝝅, 𝟐𝝅) − 𝝅 (6.1) 

 

The scaled to unit sphere 𝒓-coordinate of the polar coordinate system is analogous to colatitude 

(𝜹), which can be converted to latitude via: 

 𝝓 =
𝝅

𝟐
− 𝜹 (6.2) 

 

In order to find the points along the line 𝑷𝟏𝑷𝟐, the geodesic is to be extended until it crosses 

the equator geodesic (Figure 6.1), which has coordinates (𝟎, 𝝀). In particular, the coordinates 

of the point of intersection, 𝐏𝟎, should be found. This is done by first finding the azimuth 𝛂𝟏 at 

𝐏𝟏 from the triangle 𝐍𝐏𝟏𝐏𝟐. The tangent of the azimuth is given by: 

 𝐭𝐚𝐧 𝜶𝟏 =
𝐜𝐨𝐬 𝝓𝟐 𝐬𝐢𝐧 𝝀𝟏𝟐

𝐜𝐨𝐬 𝝓𝟏 𝐬𝐢𝐧 𝝓𝟐 − 𝐬𝐢𝐧 𝝓𝟏 𝐜𝐨𝐬 𝝓𝟐 𝐜𝐨𝐬 𝝀𝟏𝟐
 (6.3) 

 

Where 𝝀𝟏𝟐 is the angle between 𝐏𝟏 and 𝐏𝟐 at the origin of the spherical polar coordinate 

system (i.e. the North Pole, 𝐍). The arctangent of the resulting value is found. This is used to 

find the azimuth 𝜶𝟎 at the point of intersection with the equator geodesic, 𝐏𝟎. The value of its 

tangent is given by: 

 𝐭𝐚𝐧 𝜶𝟎 =
𝐬𝐢𝐧 𝜶𝟏 𝐜𝐨𝐬 𝝓𝟏

√𝐜𝐨𝐬𝟐 𝜶𝟏 + 𝐬𝐢𝐧𝟐 𝜶𝟏 𝐬𝐢𝐧𝟐 𝝓𝟏

 (6.4) 

 

As previously, the arctangent is taken. Azimuth at 𝐏𝟎 is one of the preliminaries, the other is 

the longitude coordinate of 𝐏𝟎. In order to find it, first 𝝈𝟎𝟏, the distance between 𝐏𝟎 and 𝐏𝟏 

should be found. 𝐭𝐚𝐧 𝝈𝟎𝟏 is found using: 
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 𝐭𝐚𝐧 𝝈𝟎𝟏 =
𝐭𝐚𝐧 𝝓𝟏

𝐜𝐨𝐬 𝜶𝟏
 (6.5) 

Arctangent is subsequently calculated. 

After that, the angular distance between 𝐏𝟎 and 𝐏𝟏 at the North Pole (𝝀𝟎𝟏) should be found. 

Tangent is given by: 

 𝐭𝐚𝐧 𝝀𝟎𝟏 =
𝐭𝐚𝐧 𝜶𝟎 𝐬𝐢𝐧 𝝈𝟎𝟏

𝐜𝐨𝐬 𝝈𝟎𝟏
 (6.6) 

 

Arctangent is calculated and 𝝀𝟎 is found by subtracting 𝝀𝟎𝟏 from 𝝀𝟏. 

Finally, the following parametric equation is used to calculate the latitude coordinate of a point 

on a great circle given the two preliminaries and the longitude coordinate of the desired point. 

In order to parameterise the longitude coordinate 𝝀𝒊, it is incremented starting at 𝝀𝟏 and 

finishing with 𝝀𝟏 + 𝝀𝟏𝟐. The increment depends on the tessellation parameter.  

 𝝀𝒊 = 𝝀𝟏 +
𝒊 𝝀𝟏𝟐

𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎
 (6.7) 

 𝐭𝐚𝐧 𝝓𝒊 = 𝐜𝐨𝐭 𝜶𝟎 𝐬𝐢𝐧(𝝀𝒊 − 𝝀𝟎) (6.8) 

 

Note: this formula can not be used if the geodesic passes through or close to the North Pole 𝐍,. 

This is avoided programmatically by drawing a straight line between the two vertices when the 

edge passes through 𝐍. 

This process produces a series of points along the given geodesic in a geographical coordinate 

system. The final step is to convert them to Polar Spherical coordinates which the engine uses 

via: 

 𝜽𝒊 = 𝐦𝐨𝐝(𝝀𝒊, 𝟐𝝅) (6.9) 

 𝒓𝒊 = 𝜹𝒊 = 𝝅 − 𝝓𝒊 (6.10) 
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6.2 Orthogonal Vectors Approach 

Any vector plane in vector space 𝐑𝟑 can be described in terms of two orthogonal vectors (Kriz, 

2010), which create a local 2D Cartesian coordinate system, illustrated on Figure 6.2. This 

local coordinate system is used to construct a parametric equation of the geodesic in question.  

 

Figure 6.2: Finding the orthogonal vectors lying on the plane of a great circle given points 

𝑷𝟏(𝒙𝟏, 𝒚𝟏, 𝒛𝟏) and 𝑷𝟐(𝒙𝟐, 𝒚𝟐, 𝒛𝟐)  which passes through. 𝑶(𝟎, 𝟎, 𝟎), origin of the Cartesian 

coordinate system; 𝒖𝟏 = 𝑶𝑷𝟏; 𝒖𝟐 = 𝑶𝑷𝟐; 𝒗, 𝒖𝟏, 𝒖𝟐 ∈ 𝑶𝑷𝟏𝑷𝟐; 𝒘 ⊥ 𝑶𝑷𝟏𝑷𝟐; 𝒗 ⊥ 𝒖𝟏; 

𝜟𝝎 = ∠𝑷𝟏𝑶𝑷𝟐 

First, in order to find the orthogonal vectors, for each of the two points comprising the line in 

question, known 2D polar coordinates have to be converted to Cartesian 3D coordinates with 

an origin at the centre of the sphere: 

 𝒙 = 𝐜𝐨𝐬 𝜽 𝐬𝐢𝐧 𝒓 (6.11) 

 𝒚 = 𝐬𝐢𝐧 𝜽 𝐬𝐢𝐧 𝒓 (6.12) 

 𝒛 = 𝐜𝐨𝐬 𝒓 (6.13) 

 

The equation of the circle can be determined by using two orthogonal vectors 𝒖𝟏 and 𝒗 which 

lie on the plane of the geodesic have to be determined. Let 𝒖𝟏 and 𝒖𝟐 be the Cartesian 

coordinates of points 𝑷𝟏 and 𝑷𝟐 respectively. The cross product can be taken to find 𝒘, a 

vector orthogonal to two known vectors, thus: 
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 𝒘 = 𝒖𝟏 × 𝒖𝟐 (6.14) 

 

This gives vector 𝒘, which has to be normalised by dividing it by its magnitude |𝒘|. 𝒘 does 

not lie on the plane 𝑶𝑷𝟏𝑷𝟐. It is in fact orthogonal to the plane, due to being orthogonal to 

both non parallel vectors that lie on the plane (𝒖𝟏 and 𝒖𝟐). Vector 𝒗 is found by taking a cross 

product of 𝒖𝟏 and 𝒘: 

 𝒗 = 𝒖𝟏 × 𝒘 (6.15) 

 

Vector �̅� is already normalised, because the vectors 𝒖𝟏 and 𝒘 are normalised and 

orthogonal, so their cross product is also normalised. Then, 𝚫𝝎 is found; it is the angle 

between 𝑷𝟏 and 𝑷𝟐 at the centre of the sphere. It is then divided into a number of parts to 

produce a number of angles 𝚫𝝎𝒊. They are angles between 𝑷𝟏 and a series of points 𝑷𝒊 along 

the line 𝑷𝟏𝑷𝟐 :  

 𝚫𝝎 = 𝐜𝐨𝐬−𝟏
𝒖𝟏 ⋅ 𝒖𝟐

|𝒖𝟏||𝒖𝟐|
 (6.16) 

 𝚫𝝎𝒊 =
𝒊 𝚫𝝎

𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎
 (6.17) 

 

Subsequently, using the vectors  𝒖𝟏 and 𝒘, as well as angle 𝚫𝝎𝒊, the parametric equation of 

the great circle on which the line lies is: 

 𝑷𝒊 = 𝒖𝟏 𝐜𝐨𝐬 𝚫𝝎𝒊 + 𝒗 𝐬𝐢𝐧 𝚫𝝎𝒊 (6.18) 

 

Finally, the coordinates of each point 𝑷𝒊 need to be converted back to 2D polar coordinate 

system: 

 𝜽𝒊 = 𝐭𝐚𝐧−𝟏 (
𝒚𝒊

𝒙𝒊
) (6.19) 

 𝒓𝒊 = 𝐜𝐨𝐬−𝟏 𝒛𝒊 (6.20) 
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6.3 Poincaré Disc Line Equation Approach 

To find the intermediate points in this approach, the known vertex coordinates have to be 

converted from azimuthal equidistant projection polar coordinate system to a Poincaré disc 

polar coordinate system (𝟎 to 𝟏 in 𝒓, with 𝟏 being an infinite distance away, and theta 

unchanged) (Anderson, 2006). This is achieved via: 

 𝒓𝒑 = 𝐭𝐚𝐧𝐡 (
𝐫𝐯

𝟐
) (6.21) 

 

The Poincaré disc has a crucial property in that geodesics in this projection lie on circles which 

cross the outer edge at a right angle, illustrated on Figure 6.3. This gives a parametric equation 

of the geodesic of the form: 

 𝒙𝟐 + 𝒚𝟐 + 𝒂𝒙 + 𝒃𝒚 + 𝟏 = 𝟎 (6.22) 

 

 

Figure 6.3: Using the Poincaré disc projection to find points between 𝑷𝒗(𝒙𝒗, 𝒚𝒗) and 

𝑷𝒖(𝒙𝒖, 𝒚𝒖) lying on a geodesic. 𝑶(𝟎, 𝟎), origin of the Cartesian Poincaré coordinate system; 

𝑶𝒍(𝒙𝒍, 𝒚𝒍), origin of the local polar coordinate system; 𝑷𝒗(𝒓𝒗_𝒍𝒐𝒄𝒂𝒍, 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍) and 

𝑷𝒖(𝒓𝒖_𝒍𝒐𝒄𝒂𝒍, 𝜽𝒖_𝒍𝒐𝒄𝒂𝒍). 𝜟𝜽𝒍𝒐𝒄𝒂𝒍 = 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍 − 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍 
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In equation (6.22), 𝒂 and 𝒃 are variables which can be calculated, given two points the 

geodesic passes through: 𝑷𝒗(𝒙𝒗, 𝒚𝒗) and 𝑷𝒖(𝒙𝒖, 𝒚𝒖). They can be found using: 

 𝒂 =
𝒚𝒖(𝒙𝒗

𝟐 + 𝒚𝒗
𝟐) − 𝒚𝒗(𝒙𝒖

𝟐 + 𝒚𝒖
𝟐) + 𝒚𝒖 − 𝒚𝒗

𝒙𝒖𝒚𝒗 − 𝒚𝒖𝒙𝒗
 (6.23) 

 𝒃 =
𝒙𝒗(𝒙𝒖

𝟐 + 𝒚𝒖
𝟐) − 𝒙𝒖(𝒙𝒗

𝟐 + 𝒚𝒗
𝟐) + 𝒙𝒗 − 𝒙𝒖

𝒙𝒖𝒚𝒗 − 𝒚𝒖𝒙𝒗
 (6.24) 

 

Once the equation of the geodesic is known, several other preliminaries have to be found. The 

centre of the circle tracing the geodesic, 𝐎𝐥(𝒙𝒍, 𝒚𝒍), in Cartesian Poincaré coordinates: 

 𝒙𝒍 =
𝟏

𝟐
𝒂 (6.25) 

 𝒚𝒍 =
𝟏

𝟐
𝒃 (6.26) 

 

The second preliminary is the radius of the circle, 𝒓𝒍: 

 𝒓𝒍 = √𝒙𝒍 (6.27) 

 

Intermediate points, 𝐏𝐢(𝒓𝒊_𝒍𝒐𝒄𝒂𝒍, 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍), can then be found. Let 𝐎𝐥 be the origin of the local 

polar coordinate system with local coordinates 𝐎𝐥(𝟎, 𝟎). Find the local coordinates for the 

points 𝑷𝒗(𝒓𝒗_𝒍𝒐𝒄𝒂𝒍, 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍) and 𝑷𝒖(𝒓𝒖_𝒍𝒐𝒄𝒂𝒍, 𝜽𝒖_𝒍𝒐𝒄𝒂𝒍) , using: 

 𝐭𝐚𝐧 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍 =
𝒚𝒗 − 𝒚𝒍

𝒙𝒗 − 𝒙𝒍
 (6.28) 

 𝐭𝐚𝐧 𝜽𝒖_𝒍𝒐𝒄𝒂𝒍 =
𝒚𝒖 − 𝒚𝒍

𝒙𝒖 − 𝒙𝒍
 (6.29) 

 

Local 𝒓-coordinate is equal to the radius of the circle, 𝒓𝒍, for any point lying on its 

circumference. The difference of the theta coordinates, 𝚫𝛉𝐥𝐨𝐜𝐚𝐥, gives the local angular distance 

between 𝑷𝒗 and 𝑷𝒖. 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍 can then be found by incrementing the value of the theta 

coordinate from 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍 to 𝜽𝒖_𝒍𝒐𝒄𝒂𝒍 depending on the value of tessellation parameter:  
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 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍 = 𝜽𝒗_𝒍𝒐𝒄𝒂𝒍 +
𝒊 𝚫𝜽𝒍𝒐𝒄𝒂𝒍

𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎
 (6.30) 

 

Note: Compared to the other methods of tessellating edges presented in this thesis, this method 

segments the edge using the angular distance between two vertices, rather than the actual 

distance along the edge. Because this is done for the circle on the Poincaré disc, this distance 

will not be uniform when converted to the azimuthal equidistant projection. 

In order to find the global coordinates of the point 𝐏𝐢, local polar coordinates of 𝐏𝐢 are added to 

global polar coordinates of the point 𝑶𝒍(𝒓𝒑, 𝜽𝒑), which are: 

 𝒓𝒑 = √𝒙𝟐 + 𝒚𝟐 (6.31) 

 𝐭𝐚𝐧 𝜽𝒑 =
𝒚

𝒙
 (6.32) 

 

An addition operation between two polar vectors is calculated as follows: 

 𝒓𝒊 = √𝒓𝒊_𝒍𝒐𝒄𝒂𝒍
𝟐 + 𝒓𝒑

𝟐 + 𝟐𝒓𝒊_𝒍𝒐𝒄𝒂𝒍𝒓𝒑 𝐜𝐨𝐬(𝜽𝒑 − 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍) (6.33) 

 𝜽𝒊 = 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍 + 𝐭𝐚𝐧−𝟏 (
𝒓𝒑 𝐬𝐢𝐧(𝜽𝒑 − 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍)

𝒓𝒊_𝒍𝒐𝒄𝒂𝒍 + 𝒓𝒑 𝐜𝐨𝐬(𝜽𝒑 − 𝜽𝒊_𝒍𝒐𝒄𝒂𝒍)
) (6.34) 

 

The result is the global coordinates of the intermediate point on a Poincaré disc. The last step is 

to convert these back to azimuthal equidistant projection by performing the reverse of the 

scaling applied in equation (6.21),  𝜽𝒗 = 𝜽𝒑, while 𝒓𝒗 is found using: 

 𝒓𝒗 = 𝟐 𝐭𝐚𝐧𝐡−𝟏 𝒓𝒊 (6.35) 

 

6.4 Summary 

This chapter has described three alternative approaches for tessellating edges of 2D shapes in 

non-Eulidean geometry. Two of these (i.e., Great Circle Path Approach and Orthogonal 

Vectors approach) were developed for spherical geometry and one (i.e. Poincare Disc Line 

Equation approach), has been developed for hyperbolic geometry. The performance of these 
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approaches is compared to performance of spherical and hyperbolic trigonometry approaches 

in chapter 8. 
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7. Method III: Parallelisation of the Line Rendering 

Approach 

This chapter is original research, which introduces a method of parallelisation of line rendering 

approaches described in chapters 4 and 6. To accomplish this, the methods have been modified 

to work within the GLSL shader pipeline to perform the shape rendering on a GPU. 

 

Figure 7.1: GLSL shader Pipeline. Allows for a direct control over 5 steps of the pipeline 

(shaded light grey). Vertex, Tessellation Control and Tessellation Evaluation shaders have 

been used for the project. Modifiable steps are shaded light grey, while non-modifiable are 

shaded dark grey. Optional steps in the pipeline are shaded light grey. 

In order to achieve a better performance rendering the non-Euclidean environment, approaches 

can be parallelised and certain sections can be calculated simultaneously on a GPU. GPU 

rendering pipeline takes a set of instructions and runs them on a GPU rather than the CPU. 

GPUs are designed for parallel execution of a single task, they run the given set of instructions 

on a large number of cores, which significantly speeds up rendering process. The program only 

communicates with the GPU at the beginning and at the end of the pipeline. 

Another use of the GPU is the GPGPU (general purpose computing on graphics processing 

units), which uses GPU to execute tasks outside the scope of computer graphics. However this 

research project will not be using GPGPU. 

For this research project, GLSL was used, a shading language that offers direct control over 5 

steps of the graphics pipeline (Kessenich, Baldwin, & Rost, 2017), shaded light grey in Figure 
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7.1. The other three steps, shaded dark grey, are set and cannot be modified. Only 3 steps will 

be used in order to improve the rendering time: Vertex, Tessellations Control and Tessellations 

Evaluation shaders.  

7.1 Shader Pseudocode 

Pseudocode will be used to show how the aforementioned approaches were split between the 

shaders. The following parameters are passed onto the shader when an object is being 

rendered: 𝐤, 𝐫𝐜, 𝛉𝐜, 𝛂, tessellation parameter and vertex array of 𝐫𝐥𝐨𝐜𝐚𝐥 and 𝛉𝐥𝐨𝐜𝐚𝐥 coordinates, 

described in section 4.2. 

7.1.1 Vertex Shader 

In the vertex shader, spherical or hyperbolic trigonometry is used to find the position of each of 

the shape’s vertices in the global polar coordinate system depending on the value of 𝐊. 

Because calculation of the global position of the vertex depends only on that vertex’s local 

coordinates and the global coordinates/rotation of the shape, each vertex can be computed 

simultaneously (depending on the capacity of the machine’s GPU).  

Note: Vertex shader does not change depending on which tessellation approach is used. Global 

vertex coordinates are found in the same way for trigonometry based approaches described in 

chapter 4 and alternative approaches described in chapter 6.  
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inputs: k, r_c, theta_c, alpha, vertex_array[r_local, theta_local] 

 

initialise r_v, theta_v, delta_theta, beta;  

initialise direction = 1 

r_c = r_c / k 

r_local = r_local / k 

beta = r_local + alpha 

if beta > pi 

direction = -1 

beta = 2 * pi - beta 

if K > 0 

 if beta > pi / 60 

use equation (4.3) to find r_v 

use equation (4.4) to find delta_theta 

 else 

use equation (4.7) to find r_v 

use equation (4.8) to find delta_theta 

else if K < 0 

use equation (4.5) to find r_v 

use equation (4.6) to find delta_theta 

delta_theta = delta_theta * direction 

theta_v = theta_c + delta_theta 

 

outputs: cos_r_v, sin_r_v, cosh_r_v, sinh_r_v, r_v, theta_v 
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7.1.2 Tessellation Control Shader (Trigonometry Approach) 

The shape is separated into patches of 2 vertices each, so that each edge of the shape is 

processed separately. For each edge, the tessellation shaders will produce a specified number 

of intermediate points which lie on the geodesic connecting the two vertices. 

Preliminaries for the calculation of intermediate points are found in the tessellation control 

shader, and the parameters are passed onwards to the tessellation evaluation shader. 

Using the trigonometry approach, the preliminaries (i.e., the length of the edge, 𝐝, and the 

angle between the edge and vertex 1, 𝛂 and the direction of the edge compared to the first 

vertex) are found following the method described in section 4.3. 
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inputs: r_c, theta_c, tessellation_parameter, array[cos_r_v], 

array[sin_r_v], array[cosh_r_v], array[sinh_r_v], 

vertex_array[r_v, theta_v] 

 

initialise alpha, d  

initialise direction = 1 

initialise delta_theta = |theta_1 - theta_2| 

if K > 0 

 if delta_theta > pi / 10 

use equation (4.13) to find d 

use equation (4.15) to find alpha 

 else 

use equation (4.17) to find d 

use equation (4.18) to find alpha 

else if K < 0 

use equation (4.14) to find d 

use equation (4.16) to find alpha 

if the triangles are converging 

direction = -1 

 

outputs: d, alpha, cos_alpha, delta_theta, direction, array[sin_r], 

array[cos_r], array[sinh_r], array[cosh_r],  

vertex_array[r_v, theta_v]  
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7.1.3 Tessellation Evaluation Shader (Trigonometry Approach) 

A number of intermediate point coordinates, equal to the tessellation parameter, is found 

following the method described in section 0. 

 

  

inputs: d, alpha, cos_alpha, delta_theta, direction, 

array[cos_r_v], array[sin_r_v], array[cosh_r_v], array[sinh_r_v],  

vertex_array[r_v, theta_v] 

 

initialise r_i, theta_i, delta_theta_i 

initialise d_i = tesselation_coordinate * d 

if K > 0 

 if alpha > pi / 10 

use equation (4.19) to find r_i 

use equation (4.20) to find delta_theta_i 

 else 

use equation (4.23) to find r_i 

use equation (4.24) to find delta_theta_i 

else if K < 0 

use equation (4.21) to find r_i 

use equation (4.22) to find delta_theta_i 

delta_theta_i = delta_theta_i * direction 

theta_i = theta_1 + delta_theta_i 

r_i = r_i * k 

x_i = r_i * cos(theta_i) 

y_i = r_i * sin(theta_i) 

 

outputs: x_i, y_i 
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7.1.4 Tessellation Control Shader (Great Circle Path Approach) 

Using the great circle path approach, the preliminaries (i.e., the angular distance between the 

vertices at the North Pole, 𝛌𝟏𝟐, longitude coordinate of the intersection of the edge with the 

equator, 𝛌𝟎, and cosine of the azimuth at the point of intersection, 𝐜𝐨𝐬 𝛂𝟎) are found following 

the method described in section 6.1. 

 

  

inputs: r_c, theta_c, tessellation_parameter, 

vertex_array[r_v, theta_v] 

 

initialise phi_1, lambda_1, phi_2, lambda_2 

use equation (6.1) to find lambda_1 and lambda_2 

use equation (6.2) to find phi_1 and phi_2 

initialise alpha_1, alpha_0, sigma_01, lambda_01, cot_alpha_0 

initialise lambda_12 = |lambda_1 - lambda_2| 

use equation (6.3) to find alpha_1 

use equation (6.4) to find alpha_0 

cot_alpha_0 = cot(alpha_0) 

use equation (6.5) to find sigma_01 

use equation (6.6) to find lambda_01 

lambda_0 = |lambda_1 - lambda_01| 

 

outputs: lambda_0, lambda_1, cot_alpha_0, lambda_12 
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7.1.5 Tessellation Evaluation Shader (Great Circle Path Approach) 

A number of intermediate point longitude and latitude coordinates, equal to the tessellation 

parameter, is found following the method described in section 6.1. These are subsequently 

converted into polar coordinates of the engine. 

 

  

inputs: k, lambda_0, lambda_1, cot_alpha_0, lambda_12 

 

initialise phi_i, r_i, theta_i 

increment = tessellation_coordinate * lambda_12 

initialise lambda_i = lambda_01 + increment 

use equation (6.8) to find phi_i 

use equation (6.9) to find theta_i 

use equation (6.10) to find r_i 

r_i = r_i * k 

x_i = r_i * cos(theta_i) 

y_i = r_i * sin(theta_i) 

 

outputs: x_i, y_i 
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7.1.6 Tessellation Control Shader (Orthogonal Vectors Approach) 

Using the orthogonal vectors approach, the preliminaries (i.e., 𝒖 and 𝒗, orthogonal vectors 

which lie on the plane of the geodesic between the vertices) are found via the approach 

described in section 6.2. 

 

 
Note: if 𝚫𝝎 is small, 𝐜𝐨𝐬−𝟏 function can be imprecise, instead, the following formula can be 

used: 

 𝚫𝝎 = 𝐭𝐚𝐧−𝟏 (
|𝑷𝟏 × 𝑷𝟐|

𝑷𝟏 ⋅ 𝑷𝟐
) (7.1) 

  

inputs: r_c, theta_c, tessellation_parameter, 

vertex_array[r_v, theta_v] 

 

initialise P_1(x_1, y_1, z_1) 

initialise P_2(x_2, y_2, z_2) 

use equation (6.11) to find x_1 and x_2 

use equation (6.12) to find y_1 and y_2 

use equation (6.13) to find z_1 and z_2 

initialise u, w, v 

u = P_1 / |P_1| 

w = cross(u, P_2) 

w = w / |w| 

v = cross(u, w) 

initialise delta_omega 

delta_omega = acos(dot(P_1, P_2) / (|P_1| * |P_2|)) 

 

outputs: v, u, delta_omega 
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7.1.7 Tessellation Evaluation Shader (Orthogonal Vectors Approach) 

A number of intermediate point 3D Cartesian coordinates, equal to the tessellation parameter, 

are found following the method described in section 6.2. These are subsequently converted into 

the polar coordinates of the engine. 

 

  

inputs: k, u, v, delta_omega 

 

initialise P_i(x_i, y_i, z_i) 

initialise r_i, theta_1 

initialise delta_omega_i = tesselation_coordinate * delta_omega 

use equation (6.18) to find P_i 

use equation (6.19) to find theta_i 

use equation (6.20) to find r_i 

r_i = r_i * k 

x_i = r_i * cos(theta_i) 

y_i = r_i * sin(theta_i) 

 

outputs: x_i, y_i 
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7.1.8 Tessellation Control Shader (Poincaré Disc Line Equation Approach) 

Using the Poincaré disc geodesic equation approach, the preliminaries (i.e. global coordinates 

of the centre of the circle, which traces the geodesic, 𝑶𝒍(𝒓𝒍, 𝜽𝒍); radius of this circle, 𝒓𝒍𝒐𝒄𝒂𝒍, 

and angular distance between the vertices at the centre of this circle, 𝚫𝜽𝒍𝒐𝒄𝒂𝒍) are found 

following the approach described in section 6.3. 

 

  

inputs: r_c, theta_c, tessellation_parameter, 

vertex_array[r_v, theta_v] 

 

initialise a, b, r_l, theta_u, theta_v 

use equation (6.23) to find a 

use equation (6.24) to find b 

initialise O_l (x_l, y_l) 

use equations (6.25) and (6.26) to find O_l 

use equation (6.27) to find r_l 

use equation (6.28) to find theta_v 

use equation (6.29) to find theta_u 

initialise delta_theta = |theta_v - theta_u| 

 

outputs: O_l, r_l, delta_theta 
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7.1.9 Tessellations Evaluation Shader (Poincaré Disc Line Equation Approach) 

A number of intermediate point global polar coordinates, equal to the tessellation parameter, 

are calculated via the method described in section 6.3. 

 

 

7.2 Summary 

This chapter has described a way to improve performance of the non-Euclidean engine by 

parallelising the calculations using the GPU. Approaches described in chapter 4 and 6 have 

been split and adapted to work as part of a GLSL shader pipeline. Global vertex coordinates 

are found in the vertex shader given the local coordinate of the respective vertex as well as 

object’s position and rotation parameters. Preliminaries for edge tessellation are subsequently 

found in the Tessellation Control Shader. Finally, the intermediate points along each of the 

object’s edges are found in the Tessellation Evaluation Shader. The performance comparison 

between GPU and non-GPU approaches is detailed in chapter 8. 

  

inputs: k, O_l, r_l, delta_theta 

 

initialise P_i(x_i, y_i) 

initialise theta_l = theta_v + tesselation_coordinate * delta_theta 

initialise P_l(r_l, theta_l) 

P_i = P_l + O_l 

initialise r_p, r_i, theta_p 

use equation (6.31) to find r_p 

use equation (6.32) to find theta_p 

use equation (6.35) to find r_i 

r_i = r_i * k 

x_i = r_i * cos(theta_i) 

y_i = r_i * sin(theta_i) 

 

outputs: x_i, y_i 
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8. Analysis I: Line Rendering Performance 

This chapter is original research, which describes the theoretical comparison of line 

rendering approach efficiency. It then presents an empirical test performed to further 

compare the approaches and analyses the data gathered from this test. 

8.1 Theoretical 

First, the number of calculations for each approach is calculated in order to compare their 

theoretical efficiency. The overall structure of each approach is the same. It is split into 3 parts: 

calculating global vertex coordinates, preliminaries for tessellation and intermediate point 

coordinates. Calculating the global vertex coordinates is done once per vertex, so the number 

of calculations at this step increases linearly as the total number of vertices increases (number 

of shapes multiplied by the number of vertices they have). Each approach uses trigonometry 

(spherical or hyperbolic, depending on value of 𝑲) to compute the vertex coordinates, so the 

number of per-vertex calculations is identical for these. Next, the calculation of preliminaries 

for tessellation is done once for every edge the shape has, which for 2D shapes is equal to once 

for every consecutive pair of vertices. For the objects that are a loop, this amount is equal to 

the number of vertices the shape has. Lastly, the tessellation parameter specifies the number of 

intermediate points, the coordinates of which will be calculated. Thus, this section of the code 

is executed once per intermediate point and is also repeated by the number of edges.  

Thus, no matter the approach the general complexity of the calculations is: 

𝒏𝒔 × 𝒏𝒗 × 𝒏𝒊 

Where 𝒏𝒔 is the number of shapes in the world; 𝒏𝒗 is the number of vertices the shapes have; 

𝒏𝒊 is the number of intermediate points for the tessellated lines. In the worst case this is 

equivalent to cubic time complexity, 𝑶(𝑵𝟑) using the Big O notation (Bachmann, 1894), 

where 𝑵 = 𝒎𝒂𝒙(𝒏𝒔, 𝒏𝒗, 𝒏𝒊). The number of shapes, vertices and intermediate points will 

rarely be equally large, so the overall complexity will heavily depend on one of these three 

variables. 
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Number of per-vertex calculations for the first step: 

Spherical Trigonometry 
Trigonometric functions: 8 
Algebraic operations: 14 

 

Hyperbolic Trigonometry 
Trigonometric functions: 8 
Algebraic operations: 14 

 

These tables show how many mathematical operations each of the methods needs. They are 

split into more computationally expensive trigonometric functions and less costly algebraic 

operation. Comparing the trigonometric approaches and parametric equation approaches, both 

have the same number of calculations in the first step, as trigonometry is used to find the vertex 

coordinates. 

Number of per-edge calculations for the second step: 

Spherical Trigonometry 
Trigonometric functions: 3 
Algebraic operations: 17 

 

Hyperbolic Trigonometry 
Trigonometric functions: 3 
Algebraic operations: 16 

 

Great Circle Navigation 
Trigonometric functions: 16 
Algebraic operations: 33 

 

Orthogonal Vectors 
Trigonometric functions: 15 
Algebraic operations: 37 

 

Poincaré Disk Circle Equation 
Trigonometric functions: 9 
Algebraic operations: 55 
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Number of per-intermediate point calculations for the third step: 

Spherical Trigonometry 
Trigonometric functions: 5 
Algebraic operations: 12 

 

Hyperbolic Trigonometry 
Trigonometric functions: 5 
Algebraic operations: 12 

 

Great Circle Navigation 
Trigonometric functions: 2 
Algebraic operations: 10 

 

Orthogonal Vectors 
Trigonometric functions: 4 
Algebraic operations: 7 

 

Poincaré Disk Circle Equation 
Trigonometric functions: 4 
Algebraic operations: 17 

 

Parametric equation approaches have more calculations in the second step, but less expensive 

calculations in the third step. This would mean that if the number of times each step is 

executed was equal, the trigonometry approaches would be faster. The third step is executed 

multiple times per edge, while the second is only executed once, which means that the higher 

the tessellation parameter, the more efficient the parametric equation approaches are. 

Figure 8.2 and Figure 8.3 show the comparative speed of the tessellation approaches. To 

compare the approaches, benchmark tests (shown in Figure 8.1) have been run on the Personal 

Computer (with specifications described in the next subsection), which empirically determined 

the comparative cost of each mathematical operation. These have then be scaled to the least 

expensive operation, addition, which has been taken as an operation unit for this comparison. 

Then, the comparative cost of each approach (in op units) has been calculated as such: 

 𝑪𝒕 = ∑𝒏𝑪𝒐 (8.1) 



 

110 

 

operation ms for test op units 

plus 0.189 1.000 

minus 0.198 1.047 

mult 0.199 1.051 

div 0.435 2.302 

sqrt 0.446 2.361 

sin 1.780 9.416 

asin 1.805 9.546 

cos 1.834 9.699 

acos 1.813 9.589 

tan 2.333 12.343 

atan 2.409 12.741 

sinh 4.857 25.689 

asinh 3.324 17.585 

cosh 4.890 25.866 

acosh 11.875 62.813 

tanh 5.044 26.682 

atanh 2.734 14.460 

exp 1.195 6.322 

fmod 2.466 13.045 

abs 0.246 1.303 

Figure 8.1: benchmark tests results for a range of mathematical operations and trigonometric 

functions in ms per 100,000,000 operations and operation units (taking plus operation as a 

single unit) 

 

Figure 8.2: Theoretical number of operations for different approaches tessellating 1 shape 

with 4 vertices and a tessellation parameter of 30, based on CPU benchmarking of 

mathematical operations 



 

111 

 

 

Figure 8.3: Theoretical number of operations for different approaches tessellating 1 shape 

with 4 vertices and a tessellation parameter of 150, based on CPU benchmarking of 

mathematical operations 

Where 𝑪𝒐 is a cost of an operation, 𝒏 is the number of times this operation is used by the 

approach and 𝑪𝒕 is the total cost of the approach. Both figures calculate the cost for calculating 

a single shape with 4 vertices, but Figure 8.2 assumes 30 intermediate points along each edge, 

while Figure 8.3 assumes 150 points. 

This comparison illustrates that under low tessellation detail, spherical trigonometry 

outperforms both of the parametric equation approaches by a small amount, however the 

opposite is true when the number of intermediate points is high. Hyperbolic trigonometry looks 

to be disproportionately slow; this is due to hyperbolic arccosine function being more than 

twice the cost of other trigonometric functions in the results of our benchmark tests. The test 

has been run multiple times and the result is consistent. GPU implementation of this function 

could vary from the CPU implementation, which could explain the theoretical prediction 

differing from data gathered during testing described in the next section. 

8.2 Empirical 

Testing has been performed in order to collect the data required to analyse each described 

approach. The test was collecting the frames-per-second (FPS) performance of each approach 

with an increasing number of shapes. A regular quadrilateral has been used for all shapes and 

the tessellation parameter was chosen to be 30 for all of the edges of the shapes. These were 

chosen to be the same for all shapes to have a consistent increase of computing time with each 



 

112 

 

additional shape. Shape size, rotation and position on the screen were pre-determined before 

the testing was begun and the same values were used for all of the tests. These were chosen to 

provide a spread of possible values. An unchanging resolution of 1000x1000 pixels has been 

used for all tests.  

The number of shapes has been gradually increased from 1 to 1000 at an increasing rate (i.e. at 

first the increment in number of shapes is small, but the increment is gradually increased as the 

number of shapes grows). This was done in order to obtain a higher density of data points 

when the number of shapes is low, because each additional shape influences the performance a 

lot more when there are 5 shapes being rendered than when there are 100 shapes being 

rendered. This also has saved time during testing, because there is no need to have as high a 

density of the data points when the number of shapes is large, thus higher values for number of 

shapes could be tested by gradually increasing the increment between successive tests. The 

engine can operate with any Gaussian curvature (𝑲), however the testing has been performed 

at three different curvature values: 𝟎, 𝟏 and −𝟏. 

The test was conducted on a Personal Computer with the following technical specifications. 

CPU: Intel(R) Quad-Core(TM) i7-6700K @ 4.00GHz; RAM: 16GB; GPU: NVIDIA GeForce 

GTX 980; Operating System: 64-bit, Windows 10 Pro. 

 

Figure 8.4: Average FPS values of non-GPU approaches (and non-curved baseline) from a 

test with progressively increasing number of shapes. 

In order to eliminate any sudden spikes and drops in FPS, all background processes were 

disabled. In addition, the test was run multiple times in a loop. Each individual test was 
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conducted for 2 seconds and was progressed sequentially with an increasing number of shapes 

for each approach before the loop would start again, this would repeat 15 times. 

The data collected shows that on average, for non-GPU approaches, the parametric equation 

approaches performed better by 2-4% (shown in Figure 8.4). This is in line with the prediction 

made from theoretical analysis of the approaches. The tessellation parameter chosen for the test 

was 30, which means that step 3 was executed 30 times per edge, so despite the increased 

number of calculations at step 2, the overall number of expensive computations decreased, thus 

improving the performance of the program.  

The data also shows that spherical trigonometry is more efficient to calculate compared to 

hyperbolic trigonometry. Two baseline tests were conducted for Euclidean geometry: in the 

first baseline test, Euclidean No Tessellation, the shapes are not being tessellated, just 

rendered; in the second baseline test, non-GPU Euclidean Tessellation, the edges of each shape 

are tessellated into the same number of points as the non-Euclidean tests.  

The data from the second baseline test shows that the tessellation with no curvature 

calculations is more efficient, but the overall differences in performance between non-GPU 

tessellation tests are small compared to the Euclidean no tessellation rendering. 

 

Figure 8.5: Average FPS values of GPU approaches (and non-curved baseline) from a test 

with progressively increasing number of shapes 

Figure 8.5 compares the performance of GPU approaches against two baseline tests: in the first 

baseline test, Euclidean No Tessellation, the shapes are not being tessellated, just rendered; in 

the second baseline test, GPU Euclidean Tessellation, the edges of each shape are tessellated 
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into the same number of points as the non-Euclidean tests. The difference in performance 

between non-GPU and GPU approaches is on average a 5-fold increase. The comparison of 

GPU approaches reveals that some trends don’t change: Euclidean tessellation is still more 

efficient than non-Euclidean tessellation by a small margin; spherical trigonometry is on 

average faster to calculate than hyperbolic, however it does depend on the approach used. The 

difference between approaches is greater than for non-GPU approaches. The surprising find is 

that while the Orthogonal vectors approach is the most efficient for 𝑲 = 𝟏, the spherical 

trigonometry approach outperforms Great Circle Navigation; and for 𝑲 = −𝟏, the hyperbolic 

trigonometry outperforms Poincaré disc approach. Due to the parallelisation of calculations, 

the small decrease of trigonometric operations performed in Tessellation Evaluation shader 

does not compensate for the increased cost in the Tessellation Control shader. For example, 

this could happen when 𝒏𝒊 is small, then the tessellation evaluation shader completes the 

𝒏𝒔𝒏𝒗𝒏𝒊 operations and spends the rest of the time waiting for tessellation control shader to 

complete the 𝒏𝒔𝒏𝒗 operations. 

 

Figure 8.6: Line graph constructed from the data gathered in a test with a progressively 

increasing number of shapes from 1 to 1000. The graph only shows the best fitting lines for the 

most and the least efficient approaches for GPU and non-GPU rendering as well as three 

baseline tests: no tessellation, non-GPU Euclidean Tessellation and GPU Euclidean 

Tessellation. 
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Average FPS value is the measure of how many times an approach would render the specified 

number of shapes in one second, thus the more calculations needed for an approach to render a 

shape, the lower the FPS value is. This means that it would be expected for values on Figure 

8.4 and Figure 8.5 to be the inverse of the values in Figure 8.2 and Figure 8.3, as the testing 

was performed with a tessellation parameter of 30. Theoretical predictions are roughly 

confirmed for non-GPU approaches with the difference between spherical tessellation and 

parametric equation approaches being small; non-GPU hyperbolic trigonometry approach is 

also slower than the Poincaré disc approach, however the margin is not as large. For GPU 

approaches, Poincaré disc does not perform as well as hyperbolic trigonometry. This is likely 

due to parallelisation of the third step of calculations, so the increased number of calculations 

for the second step is not offset by the reduced number of calculations needed for the third. 

Figure 8.6 is a line graph showing the Frames-per-Second for each data point (number of 

shapes). Each line represents one approach. These lines overlap considerably, but the bottom- 

and middle-line groups consist of 2 approaches and a baseline test each: the bottom ones are 

non-GPU approaches and middle ones are GPU approaches. This graph illustrates the 

performance of each approach with increasing number of shapes being rendered.  

 

Figure 8.7: Number series of the general form 𝒇(𝒏) =
𝟏 

𝒏
 scaled to approximately fit the shapes 

of graphs from Figure 8.6. 

Figure 8.7 plots number series of the form 𝒇(𝒏) = 𝟖𝟎𝟎𝟎/(𝟏 +
𝒏

𝒊
), where 𝟖𝟎𝟎𝟎 is chosen to 

match the baseline of the data collected for the test with 𝟏 shape, 𝒊 is the number of shapes and 

𝒏 is a scaling required to approximate the trends in the collected data (the values of 𝒏 that fit 
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the scaling are 𝟑, 𝟔𝟒 and 𝟐𝟐𝟎). From this approximation it is clear that firstly, overall 

performance is inversely proportional to the number of shapes being rendered and the decrease 

is a scaled 𝟏 

𝒏
 trend; secondly, the GPU approaches are an order of magnitude faster than the 

non-GPU approaches. 

Overall, the implementation of the methods on the GPU has improved performance of the 

application several fold enabling the engine to render complex simulations with a large number 

of objects in a non-Euclidean environment in real-time. The improvement of the algorithm 

efficiency was less impactful however. The 2-4% increase in performance on the CPU is 

notable but is small in comparison with the increase from parallelisation. Furthermore, only 

one of the parametric equation approaches performed better than trigonometry approaches on 

the GPU. On the one hand any increase in application performance is worth pursuing, but 

keeping trigonometry approach for 𝑲 = −𝟏, while adopting orthogonal vectors approach for 

𝑲 = 𝟏 could be detrimental to further developments, because the approaches differ 

significantly, while spherical and hyperbolic trigonometry approaches follow the same 

structure. 

The FPS achieved with the GPU based approaches is well suited for real-time game 

applications, which should run at a stable 60 FPS minimum. In recent years, a lot of games 

have moved to higher frame rates due to most displays supporting 144Hz format. The GPU 

approaches exceed both of these limits even when a large number of objects are rendered on 

the screen. The improved performance of the application has created an opportunity for further 

developments. Specifically, this has made texturing of shapes in a non-Euclidean environment 

possible in real-time. Keeping the spherical and hyperbolic trigonometry approaches has been 

beneficial to implementing texturing, as it allowed for a more precise determination of each of 

the intermediate points along the edge, which has been useful for computing texture 

coordinates in non-Euclidean environment. This is further detailed in chapter 9. 

8.3 Summary 

This chapter has described the comparison between different approaches described in chapters 

4, 6 and 7. The approaches have been compared theoretically by looking at the number of 

calculations required to render a single shape at different values of the tessellation parameter. 

Subsequently the results of empirical testing have been detailed and analysed. The 

parallelisation of the approaches has proven to improve the performance several fold. On the 

other hand, line-equation based approaches have been shown to be comparable in performance 

to spherical and hyperbolic trigonometry approaches. Only one approach has yielded a 

marginal improvement over the trigonometry approaches, but in comparison with 
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parallelisation it was negligible. Furthermore, keeping the spherical and hyperbolic 

trigonometry approaches has been preferable for implementing texturing, as it allowed for a 

more precise determination of each of the intermediate points and their texture coordinates in 

non-Euclidean environment, further described in chapter 9.  
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9. Method for Texturing 2D Shapes using Spherical and 

Hyperbolic Trigonometry 

This chapter is original research, which introduces a method for finding intermediate points 

throughout a shape in order to render textured shapes; it also explains the modifications made 

in the shader pipeline to find texture coordinates for the curved shape. 

Note: angle magnitudes in each diagram and equation within this section are normalised to be 

in the range [𝟎, 𝟐𝝅]. 

9.1 Splitting Object into Patches 

 

Figure 9.1: Texturing a shape by subdividing it into patches, one patch per edge. Patch 𝑽𝟏𝑽𝟐𝑪 

is highlighted. 𝑶(𝟎, 𝟎), reference point of a polar coordinate system; 𝑽𝟏(𝒓𝟏, 𝜽𝟏), 𝑽𝟐(𝒓𝟐, 𝜽𝟐), 

vertices of the object; 𝑪(𝒓𝒄, 𝜽𝒄), object’s position; , area of the shape rendered by the patch  

𝑽𝟏𝑽𝟐𝑪; 𝑶𝑽𝟏 = 𝒓𝟏; 𝑶𝑽𝟐 = 𝒓𝟐; 𝑶𝑪 = 𝒓𝒄; ∠𝑽𝟏𝑶𝑶′ = 𝜽𝟏;    ∠𝑽𝟐𝑶𝑶′ = 𝜽𝟐; ∠𝑪𝑶𝑶′ = 𝜽𝒄 

Previously for the method described in chapter 4, GL_LINES rendering mode has been used to 

render shapes, it draws lines between the pairs of vertices. This has been changed to use 

GL_PATCHES instead to implement the GPU tessellation described in chapter 7. Pairs of 

vertices were passed in as a patch and intermediate points along the edge were found within the 

shader. However, to render textures in curved space, intermediate points would also need to be 

found throughout the surface of the shape. Thus, it was chosen to use the shape's position, 

𝐂(𝐫𝐜, 𝛉𝐜), as a third point for the patch, so a patch for the edge 𝐕𝟏𝐕𝟐 would be 𝐕𝟏𝐕𝟐𝐂 
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(illustrated on Figure 9.1). Using such subdivision, the entire area of the shape would be 

tessellated. 

9.2 Intermediate Vertex Coordinates 

Once the patches have been set up, a method for finding intermediate points' texture 

coordinates has been developed. It is split into two steps: finding intermediate vertices and 

finding intermediate points using these vertices.  

 

Figure 9.2: Position of the texture coordinates within a patch 𝑽𝟏𝑽𝟐𝑪 displayed in (a) 

spherical, (b) planar and (c) hyperbolic space. 𝑶, reference point of the global coordinate 

system; 𝑶𝑶′, reference direction of the global coordinate system; 𝑪, reference point of the 

local coordinate system; 𝑪𝑪′, reference direction of local coordinate system; 𝑽𝟏, 𝑽𝟏, object’s 

vertices;  , object’s texture coordinates 

To structure the calculation required to find intermediate points it was decided to use a number 

of smaller similar triangles sharing the vertex 𝑪 for each patch, dependant on the outer 

tessellation level. Figure 9.2 shows an overview of how this method works to render a shape in 

different curvatures. The diagram is overlaid onto the rendering produced by the developed 

software. 

Once the coordinates of each vertex within the edge are found using the method described in 

Chapter 0, instead of tessellating the edges as described in Chapters 4.3 and 0, intermediate 

vertices are found. 
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Figure 9.3: Finding an intermediate vertex 𝑽′(𝒓𝒗
′ , 𝜽𝒗

′ ) along the line 𝑽𝑪. 𝑶(𝟎, 𝟎), reference 

point of the global coordinate system; 𝑶𝑶′, reference direction of the global coordinate 

system; 𝑪(𝒓𝒄, 𝜽𝒄), object’s position and reference point of local coordinate system; 𝑪𝑪′, 

reference direction of local coordinate system; 𝑽(𝒓𝒗, 𝜽𝒗), object’s vertex with local 

coordinates 𝑽(𝒓𝒍𝒐𝒄𝒂𝒍, 𝜽𝒍𝒐𝒄𝒂𝒍); 𝑶𝑽 = 𝒓𝒗; 𝑶𝑽′ = 𝒓𝒗
′ ; 𝑪𝑽 = 𝒓𝒍𝒐𝒄𝒂𝒍; 𝑶𝑪 = 𝒓𝒄; ∠𝑽𝑶𝑶′ = 𝜽𝒗; 

∠𝑽′𝑶𝑶′ = 𝜽𝒗
′ ; ∠𝑪𝑶𝑶′ = 𝜽𝒄; ∠𝑽𝑪𝑪′ = 𝜽𝒍𝒐𝒄𝒂𝒍 

 

First the intermediate vertex 𝐕′ is found for each vertex in the patch (illustrated on Figure 9.3). 

Vertex 𝐕′ is located along the line 𝐕𝐂 and it can be found using the similar method as 

described in Chapter 0. Intermediate vertex 𝐕′ shares the local polar coordinates with vertex 𝐕, 

except the 𝐫𝐥𝐨𝐜𝐚𝐥 coordinate is scaled by the internal tessellation coordinate of the current point 

to find 𝐫𝐥𝐨𝐜𝐚𝐥
′ . Then using 𝛃 found as shown in Chapter 0 for vertex 𝐕, 𝐫𝐯

′ and 𝛉𝐯
′  coordinates are 

found via the following equations. These are different to equations : 

If 𝐊 > 0, then: 

 𝒓𝒗
′ = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝒄 𝐜𝐨𝐬 𝒓𝒍𝒐𝒄𝒂𝒍

′ + 𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒍𝒐𝒄𝒂𝒍
′ 𝐜𝐨𝐬 𝜷) (9.1) 

 𝚫𝜽𝒗
′ = 𝐜𝐨𝐬−𝟏 (

𝐜𝐨𝐬 𝒓𝒍𝒐𝒄𝒂𝒍
′ − 𝐜𝐨𝐬 𝒓𝒄 𝐜𝐨𝐬 𝒓𝒗

′

𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓𝒗
′ ) (9.2) 
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If 𝐊 > 0, then: 

 𝒓𝒗
′ = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝒄 𝐜𝐨𝐬𝐡 𝒓𝒍𝒐𝒄𝒂𝒍

′ − 𝐬𝐢𝐧𝐡 𝒓𝒄 𝐬𝐢𝐧𝐡 𝒓𝒍𝒐𝒄𝒂𝒍
′ 𝐜𝐨𝐬 𝜷) (9.3) 

 𝜟𝜽𝒗
′ = 𝐜𝐨𝐬−𝟏 (

𝐜𝐨𝐬𝐡 𝒓𝒗
′ 𝐜𝐨𝐬𝐡 𝒓𝒄 − 𝐜𝐨𝐬𝐡 𝒓𝒍𝒐𝒄𝒂𝒍

′

𝐬𝐢𝐧𝐡 𝒓𝒄 𝐬𝐢𝐧𝐡 𝒓𝒗
′ ) (9.4) 

 

The 𝚫𝜽′ is then added to or subtracted from 𝜽𝒄 to find 𝜽𝒗
′  depending on how the 𝜽𝒗 was found 

as in Chapter 0. 

Note: Equations (9.1) and (9.2) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (9.1) and (9.2), use the following two 

equations respectively: 

 𝒓′𝒗 = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝒄 − 𝒓′𝒍𝒐𝒄𝒂𝒍) + 𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓′𝒍𝒐𝒄𝒂𝒍 𝐡𝐚𝐯 𝜷) (9.5) 

 𝜟𝜽′𝒗 = 𝐡𝐚𝐯−𝟏 (
𝐡𝐚𝐯 𝒓′𝒍𝒐𝒄𝒂𝒍 − 𝐡𝐚𝐯( 𝒓𝒄 − 𝒓′𝒗)

𝐬𝐢𝐧 𝒓𝒄 𝐬𝐢𝐧 𝒓′𝒗
) (9.6) 

 

In the engine, these two formulae have been used within the vertex shader, described in section 

9.4.1, due to the calculations becoming less stable on the GPU than on the CPU when 𝜷 <
𝝅

𝟔𝟎
. 
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9.3 Intermediate Point Coordinates 

 

Figure 9.4: Finding a series of intermediate points 𝑽𝒊
′(𝒓𝒊

′, 𝜽𝒊
′) along the intermediate edge 

𝑽𝟏
′ 𝑽𝟐

′ . 𝑶(𝟎, 𝟎), reference point of the global coordinate system; 𝑶𝑶′, reference direction of the 

global coordinate system; 𝑪, object’s position; 𝑽𝟏, 𝑽𝟐, object’s vertices; 𝑽𝟏
′ (𝒓𝟏

′ , 𝜽𝟏
′ ), 

𝑽𝟐
′ (𝒓𝟐

′ , 𝜽𝟐
′ ), object’s intermediate vertices; 𝑶𝑽𝟏

′
= 𝒓𝟏

′ ; 𝑶𝑽𝟐

′
= 𝒓𝟐

′ ; 𝑶𝑽𝒊

′
= 𝒓𝒊

′; 𝑽𝟏
′ 𝑽𝟐

′ = 𝒅′; 

𝑽𝟏
′ 𝑽𝒊

′ = 𝒅𝒊
′; ∠𝑽𝟏

′ 𝑶𝑶′ = 𝜽𝟏
′ ; ∠𝑽𝟐

′ 𝑶𝑶′ = 𝜽𝟐
′ ; ∠𝑽𝒊

′𝑶𝑶′ = 𝜽𝒊
′; ∠𝑶𝑽𝟏

′ 𝑽𝟐
′ = 𝜶′ 

 

After finding the coordinates of both intermediate vertices 𝑽𝟏
′  and 𝑽𝟐

′ , the preliminaries for 

finding intermediate points need to be found. Firstly, 𝒅′, a geodesic distance between 𝑽𝟏
′ 𝑽𝟐

′  is 

found using the cosine law. In order to do that, the angle ∠𝑽𝟏
′ 𝑶𝑽𝟐

′  (𝚫𝜽′) must be determined. 

Like in Chapter 4.3 there are 2 cases depending on whether the angles converge or diverge.  

If the angles diverge, 𝚫𝜽′ = 𝜽𝟏
′ + 𝜽𝟐

′ ; if the angles converge, 𝜟𝜽′ = |𝜽𝟏
′ − 𝜽𝟐

′ |. Once 𝚫𝜽′ is 

found, 𝒅′ can be found using the following formulas (illustrated on Figure 9.4): 

If 𝐊 > 0, then: 

 𝒅′ = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝟏
′ 𝐜𝐨𝐬 𝒓𝟐

′ + 𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒓𝟐

′ 𝐜𝐨𝐬 𝜟𝜽′) (9.7) 

If 𝐊 < 0, then: 

 𝒅′ = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝟏
′ 𝐜𝐨𝐬𝐡 𝒓𝟐

′ − 𝐬𝐢𝐧𝐡 𝒓𝟏
′ 𝐬𝐢𝐧𝐡 𝒓𝟐

′ 𝐜𝐨𝐬 𝜟𝜽′) (9.8) 
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Knowing the lengths 𝒅′, 𝒓𝟏
′  and 𝒓𝟐

′ , the angle 𝜶′ can be found, which will be used to find a 

series of intermediate points, 𝑽𝒊
′, along the geodesic 𝑽𝟏

′ 𝑽𝟐
′ . This is illustrated on Figure 9.4. 

If 𝐊 > 0, then: 

 𝜶′ = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬 𝒓𝟐

′ − 𝐜𝐨𝐬 𝒓𝟏
′ 𝐜𝐨𝐬 𝒅′

𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒅′

) (9.9) 

If 𝐊 < 0, then: 

 𝜶′ = 𝐜𝐨𝐬−𝟏 (
𝐜𝐨𝐬𝐡 𝒓𝟏

′ 𝐜𝐨𝐬𝐡 𝒅′ − 𝐜𝐨𝐬𝐡 𝒓𝟐
′

𝐬𝐢𝐧𝐡 𝒓𝟏
′ 𝐬𝐢𝐧𝐡 𝒅′

) (9.10) 

 

Note: Equations (9.7) and (9.9) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (9.7) and (9.9), use the following two 

equations respectively: 

 𝒅′ = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝟏
′ − 𝒓𝟐

′ ) + 𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒓𝟐

′ 𝐡𝐚𝐯 𝜟𝜽′) (9.11) 

 𝜶′ = 𝐡𝐚𝐯−𝟏 (
𝐡𝐚𝐯 𝒓𝟐

′ − 𝐡𝐚𝐯( 𝒓𝟏
′ − 𝒅′)

𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒅′

) (9.12) 

 

In the engine, these two formulae have been used within the tessellation control shader, 

described in section 9.4.2, due to the calculations becoming less stable on the GPU than on the 

CPU when 𝜟𝜽′ <
𝝅

𝟏𝟎
. 

Like in section 2.1.3 distance 𝒅′ is divided into a number of equal parts, depending on the 

inner tessellation value, such that: 

 𝒅𝒊
′ =

𝒊 𝒅′

𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎
 (9.13) 

 

Note: 𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎 varies depending on the distance to 𝑪. The farther the intermediate 

coordinate is from 𝑪, the higher the 𝒕𝒆𝒔𝒔_𝒑𝒂𝒓𝒂𝒎. 

This gives the distance 𝑽𝟏
′ 𝑽𝒊

′ (𝒅𝒊
′) for each of the intermediate points along the geodesic 𝑽𝟏

′ 𝑽𝟐
′ . 

Then 𝒓𝒊
′ and subsequently 𝚫𝜽𝒊

′ is found using the following formulas:  
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If 𝐊 > 0, then: 

 𝒓𝒊
′ = 𝐜𝐨𝐬−𝟏(𝐜𝐨𝐬 𝒓𝟏

′ 𝐜𝐨𝐬 𝒅𝒊
′ + 𝐬𝐢𝐧 𝒓𝟏

′ 𝐬𝐢𝐧 𝒅𝒊
′ 𝐜𝐨𝐬 𝜶′) (9.14) 

 𝚫𝜽𝒊
′ = 𝐜𝐨𝐬−𝟏 (

𝐜𝐨𝐬 𝒅𝒊
′ − 𝐜𝐨𝐬 𝒓𝟏

′ 𝐜𝐨𝐬 𝒓𝒊
′

𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒓𝒊

′ ) (9.15) 

If 𝐊 < 0, then: 

 𝒓𝒊
′ = 𝐜𝐨𝐬𝐡−𝟏(𝐜𝐨𝐬𝐡 𝒓𝟏

′ 𝐜𝐨𝐬𝐡 𝒅𝒊
′ − 𝐬𝐢𝐧𝐡 𝒓𝟏

′ 𝐬𝐢𝐧𝐡 𝒅𝒊
′ 𝐜𝐨𝐬 𝜶′) (9.16) 

 𝚫𝜽𝒊
′ = 𝐜𝐨𝐬−𝟏 (

𝐜𝐨𝐬𝐡 𝒓𝟏
′ 𝐜𝐨𝐬𝐡 𝒓𝒊

′ − 𝐜𝐨𝐬𝐡 𝒅𝒊
′

𝐬𝐢𝐧𝐡 𝒓𝟏
′ 𝐬𝐢𝐧𝐡 𝒓𝒊

′ ) (9.17) 

 

Note: Equations (9.14) and (9.15) could become unstable when the angles are small. To make 

calculations more precise the haversine formula (Korn & Korn, 2000) could be used instead for 

spherical space. For small angles instead of equations (9.14) and (9.15), use the following two 

equations respectively: 

 𝒓𝒊
′ = 𝐡𝐚𝐯−𝟏(𝐡𝐚𝐯( 𝒓𝟏

′ − 𝒅𝒊
′) + 𝐬𝐢𝐧 𝒓𝟏

′ 𝐬𝐢𝐧 𝒅𝒊
′ 𝐡𝐚𝐯 𝜶′) (9.18) 

 𝚫𝜽𝒊
′ = 𝐡𝐚𝐯−𝟏 (

𝐡𝐚𝐯 𝒅𝒊
′ − 𝐡𝐚𝐯( 𝒓𝟏

′ − 𝒓𝒊
′)

𝐬𝐢𝐧 𝒓𝟏
′ 𝐬𝐢𝐧 𝒓𝒊

′ ) (9.19) 

 

In the engine, these two formulae have been used within the tessellation control shader, 

described in section 9.4.3, due to the calculations becoming less stable on the GPU than on the 

CPU when 𝜶 <
𝝅

𝟏𝟎
. 

Finally, to find the coordinates of the point 𝑽𝒊
′, 𝒓𝒊

′ should be multiplied by 𝒓 or 𝒌 depending on 

the value of 𝑲; 𝚫𝜽𝒊
′ should be added to or subtracted from angle 𝜽𝟏

′ , depending on the direction 

of the edge 𝑽𝟏
′ 𝑽𝟐

′ , determined previously. 
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9.4 Texture Shader Pseudocode 

Below, the texture shaders are summarised using pseudocode. The vertex shader has only one 

difference compared to section 7.1.1. In addition to 𝒌, 𝒓𝒄, 𝜽𝒄, 𝜶, the tessellation amount and 

vertex array of 𝒓𝒍𝒐𝒄𝒂𝒍 and 𝜽𝒍𝒐𝒄𝒂𝒍 coordinates, a vertex array of texture coordinates, tex_coord 

is passed in as an input. 

In GLSL texture coordinates are treated as one of the attributes of a vertex, similarly to 

normals. Thus, they are added to the vertex array object when a shape is set up and are 

subsequently passed to the shader when that model is being rendered. The code below shows 

the layout of a vertex array object for the meshes within the engine: 

 

// sending vertex data to gpu 
     ref<vertex_buffer> vb(vertex_buffer::create((float*) vertices.data(), 
(uint32_t)vertices.size() * sizeof(vertex))); 
 
     // sending index data to gpu 
     ref<index_buffer> ib(index_buffer::create((uint32_t*)indices.data(), 
(uint32_t)indices.size())); 
 
     const buffer_layout layout 
     { 
         {e_shader_data_type::float3, "a_position"}, 
         {e_shader_data_type::float3, "a_normal"}, 
         {e_shader_data_type::float2, "a_tex_coord"}, 
     }; 
     vb->layout(layout); 
 
     m_va = engine::vertex_array::create(); 
     m_va->add_buffer(vb); 
     m_va->add_buffer(ib); 

 

9.4.1 Vertex Shader 

Like in section 7.1.1, spherical or hyperbolic trigonometry is used to find global positions of 

each of the shape’s vertices. In addition, the tex_coord is not being modified and is just 

passed through to the tessellation shaders. 

In the vertex shader, the global polar coordinates for every vertex are found in parallel. This is 

possible, because each vertex only depends on: the global coordinates of the centre point of the 

shape, rotation angle of the shape and local polar coordinates of that vertex. Thus the vertex 

shader follows the same algorithm as described in section 7.1.1, but is executed on the GPU 

and subsequently passes the global vertex coordinates to the next shader in the rendering 

pipeline (tessellation control shader). 
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inputs: k, r_c, theta_c, alpha, vertex_array[r_local, theta_local], 

vertex_array[tex_coord_x, tex_coord_y] 

 

initialise r_v, theta_v, delta_theta, beta 

initialise direction_v = 1 

r_c = r_c / k 

r_local = r_local / k 

beta = r_local + alpha 

if beta > pi 

direction_v = -1 

beta = 2 * pi - beta 

if K > 0 

 if beta > pi / 60 

use equation (4.3) to find r_v 

use equation (4.4) to find delta_theta 

 else 

use equation (4.7) to find r_v 

use equation (4.8) to find delta_theta 

else if K < 0 

use equation (4.5) to find r_v 

use equation (4.6) to find delta_theta 

delta_theta = delta_theta * direction_v 

theta_v = theta_c + delta_theta 

 

output: cos_r_v, sin_r_v, cosh_r_v, sinh_r_v, r_v, theta_v, 

vertex_array[tex_coord_x, tex_coord_y], vertex_array[r_local, 

theta_local] 
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9.4.2 Tesselation Control Shader 

The shape is separated into patches of 2 vertices each, but to render textures, a third point is 

used: object position, with coordinates 𝒓𝒄, 𝜽𝒄. For each edge, the tessellation shaders will 

produce a specified number of intermediate points which lie on a series of geodesics lying 

within a sector of the shape, as described in section 9.1. 

Preliminaries for the calculation of intermediate points are found and tessellation parameters 

are set in the tessellation control shader. These are subsequently passed on to the tessellation 

evaluation shader. Using the trigonometry approach, the preliminaries (i.e., the length of the 

edge, 𝒅, and the angle between the edge and vertex 1, 𝜶) are found following the method 

described in section 0. 

Additionally, inner and outer tessellation levels are set up in the tessellation control shader. 

These affect how many intermediate points are generated by the Primitive Generator step of 

the pipeline. Three values of the outer tessellation level control the amount of subdivision of 

each of the edge of the patch triangle. The inner tessellation level controls the number of 

subdivisions inside this triangle. Figure 9.5 shows three different examples of different 

tessellation values. Figure 9.5 (a) and (b) illustrate the tessellation when all of the tessellation 

level values are the same, while (c) shows an example when all of the tessellation levels are set 

to different values. 

 
(a)  (b) (c) 

Figure 9.5: Tessellation of a triangle patch with different parameters of the inner and outer 

tessellation levels. (a) Inner tessellation levels 3, 3, 3 Outer tessellation level 3; (b) Inner 

tessellation levels 4, 4, 4 Outer tessellation level 4; (c) Inner tessellation levels 4, 1, 6 Outer 

tessellation level 5 (The Khronos Group, 2020). 

 

In the tessellation evaluation shader each tessellated point is given a tessellation coordinate. 

The tessellation coordinate contains three values and is defined by barycentric coordinates of a 
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triangle. Each of the three vertices of the patch triangle are associated with one of the three 

values of the tessellation coordinate and represents the proximity of the tessellated point to that 

vertex of the triangle (illustrated in Figure 9.6). 

 

Figure 9.6: Tessellation of a triangle patch and barycentric coordinates of a triangle. 

Intermediate point, 𝑽𝒊, position. 𝑪, position of the shape and reference point of local 

coordinate system, third vertex of this triangle patch; 𝑽𝟏, 𝑽𝟐 vertices of the triangle patch; 𝑽𝟏
′ , 

𝑽𝟐
′ , intermediate vertices found during tessellation; 𝑽𝟏𝑽𝟐 = 𝒅, 𝑪𝑽𝟏 = 𝒓𝒍𝒐𝒄𝒂𝒍𝟏, 𝑪𝑽𝟐 = 𝒓𝒍𝒐𝒄𝒂𝒍𝟐,  

𝑪𝑽𝟏

′
= 𝒓𝒍𝒐𝒄𝒂𝒍𝟏

′ , 𝑪𝑽𝟐

′
= 𝒓𝒍𝒐𝒄𝒂𝒍𝟐

′ , 𝑽𝟏
′ 𝑽𝟐

′̅̅ ̅̅ ̅̅ ̅ = 𝒅′, 𝑽𝟏
′ 𝑽𝒊

̅̅ ̅̅ ̅̅ = 𝒅𝒊.  

 

Using the tessellation coordinate, 𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅(𝒙𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅, 𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅, 𝒛𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅), of a point, 

the distances 𝐫𝐥𝐨𝐜𝐚𝐥𝟏
′  and 𝐫𝐥𝐨𝐜𝐚𝐥𝟐

′  can be found as proportions of 𝒓𝒍𝒐𝒄𝒂𝒍𝟏 and 𝒓𝒍𝒐𝒄𝒂𝒍𝟐 respectively: 

 𝐫𝐥𝐨𝐜𝐚𝐥𝟏
′ = 𝒓𝒍𝒐𝒄𝒂𝒍𝟏(𝟏 − 𝒛𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅) (9.20) 

 𝐫𝐥𝐨𝐜𝐚𝐥𝟐
′ = 𝒓𝒍𝒐𝒄𝒂𝒍𝟐(𝟏 − 𝒛𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅) (9.21) 

 

Subsequently, when the length of the intermediate edge 𝐕𝟏
′𝑽𝟐

′̅̅ ̅̅ ̅̅ ̅ is found (𝐝′), 𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 is 

used to calculate the distance 𝐝𝐢. It is a proportion of the 𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 in the sum of 𝒙𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 

and 𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 in the tessellation coordinate of point 𝑽𝒊: 

 𝐝𝐢 = 𝐝′
𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅

𝒙𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅+𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅
 (9.22) 
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Note: these equations (4.20), (4.21) and (4.22) are the same for spherical and hyperbolic space. 

 

Figure 9.7: Triangle patch overlayed onto the texture file.  𝑽𝒊𝒕𝒆𝒙, 𝑽𝟏𝒕𝒆𝒙, 𝑽𝟐𝒕𝒆𝒙, 𝑪𝒕𝒆𝒙 texture 

coordinates of points 𝑽𝒊, 𝑽𝟏, 𝑽𝟐, 𝑪 respectively. 

Finally, the tessellation coordinate of point 𝑽𝒊 is also used to calculate the corresponding 

texture coordinates for this point: 

 𝑽𝐢𝐭𝐞𝐱 = 𝑽𝟏𝐭𝐞𝐱𝒙𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 + 𝑽𝟐𝐭𝐞𝐱𝒚𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 + 𝐂𝐭𝐞𝐱𝒛𝒕𝒆𝒔𝒔_𝒄𝒐𝒐𝒓𝒅 (9.23) 

 

Note: 𝑽𝐢𝐭𝐞𝐱, 𝑽𝟏𝐭𝐞𝐱, 𝑽𝟐𝐭𝐞𝐱, 𝐂𝐭𝐞𝐱 are 2-dimensional vectors representing the cartesian coordinates 

of a point on a texture file. 
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inputs: r_c, theta_c, array[cos_r_v], array[sin_r_v], 

array[cosh_r_v], array[sinh_r_v], vertex_array[r_v, theta_v], 

vertex_array[tex_coord_x, tex_coord_y], vertex_array[r_local, 

theta_local], vertex_array[r_local, theta_local], 

tessellation_parameter_inner, tessellation_parameter_outer  

 

initialise alpha, d 

initialise direction = 1 

initialise delta_theta = |theta_1 - theta_2| 

if K > 0 

 if delta_theta > pi / 10 

use equation (4.13) to find d 

use equation (4.15) to find alpha 

 else 

use equation (4.17) to find d 

use equation (4.18) to find alpha 

else if K < 0 

use equation (4.14) to find d 

use equation (4.16) to find alpha 

if the triangles are converging 

direction = -1 

initialise tess_level_outer = tessellation_parameter_inner 

initialise tess_level_inner = tessellation_parameter_outer 

 

outputs: d, cos_alpha, delta_theta, direction, array[sin_r], 

array[cos_r], array[sinh_r], array[cosh_r],  

vertex_array[r_v, theta_v], vertex_array[tex_coord_x, tex_coord_y], 

vertex_array[r_local, theta_local]  
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9.4.3 Tessellation Evaluation Shader 

A number of intermediate vertices is generated depending on the values of the inner and outer 

tessellation levels, tess_level_outer and tess_level_inner. Then a series of point 

coordinates, joining each set of 2 intermediate vertices is generated. Outer tessellation level 

determines the number of intermediate points. 

 

inputs: k, r_c, theta_c, d, cos_alpha, delta_theta, direction, 

array[sin_r], array[cos_r], array[sinh_r], array[cosh_r],  

vertex_array[r_v, theta_v], vertex_array[tex_coord_x, tex_coord_y], 

vertex_array[r_local, theta_local], array[beta] 

 

initialise r_1_local', r_2_local', r_1', r_2', theta_1', theta_2', 

delta_theta_1', delta_theta_2', r_i, theta_i, delta_theta_i, d', 

alpha' 

r_1_local' = (1 – tess_coord.z) * r_1_local 

r_2_local' = (1 – tess_coord.z) * r_2_local 

if K > 0 

 if beta > pi / 60 

use equation (9.1) to find r_1' and r_2' 

use equation (9.2) to find delta_theta_1' and delta_theta_2' 

 else 

use equation (9.5) to find r_1' and r_2' 

use equation (9.6) to find delta_theta_1' and delta_theta_2' 

else if K < 0 

use equation (9.3) to find r_1' and r_2' 

use equation (9.4) to find delta_theta_1' and delta_theta_2' 

delta_theta_1' = delta_theta_1' * direction_v1 

delta_theta_2' = delta_theta_2' * direction_v2 

theta_1' = theta_c + delta_theta_1' 

theta_2' = theta_c + delta_theta_2' 
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if K > 0 

 if delta_theta' > pi / 10 

use equation (9.7) to find d' 

use equation (9.9) to find alpha' 

 else 

use equation (9.11) to find d' 

use equation (9.12) to find alpha' 

else if K < 0 

use equation (9.8) to find d' 

use equation (9.10) to find alpha' 

 

initialise d_i = d' * tess_coord.y / (tess_coord.x + tess_coord.y) 

if K > 0 

if alpha' > pi / 10 

use equation (9.14) to find r_i 

use equation (9.15) to find delta_theta_i 

else 

use equation (9.18) to find r_i 

use equation (9.19) to find delta_theta_i 

else if K < 0 

use equation (9.16) to find r_i 

use equation (9.17) to find delta_theta_i 

delta_theta_i = delta_theta_i * direction 

theta_i = theta_1' + delta_theta_i 

r_i = r_i * k 

x_i = r_i * cos(theta_i) 

y_i = r_i * sin(theta_i) 
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initialise tex_coord_c, tex_coord_i 

tex_coord_c = [0.5, 0.5] 

tex_coord_i = tex_coord_r1 * tess_coord.x + tex_coord_r2 * 

tess_coord.y + tex_coord_c * tess_coord.z 

outputs: x_i, y_i, tex_coord_i 
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9.5 Texture Rendering Results 

The method described in this chapter has been implemented in the non-Euclidean engine and 

an example of non-Euclidean rendering can be seen in Figure 9.2. 

The Asteroids game, implementation of which is explained in section 11.1, has been adapted to 

use texture-based rendering. Figure 9.8, Figure 9.9 and Figure 9.10 show a playthrough of the 

Asteroids game in Euclidean, spherical and hyperbolic space respectively.  

 

Figure 9.8: A screenshot of Asteroids game playthrough in planar space. One of the large 

asteroids has been hit and split into two shards. One of the shards has subsequently been hit 

and split. (𝑲 = 𝟎) 
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The game world includes 5 asteroid shapes and a player’s spaceship, which has an option to 

shoot lasers, which are rendered as short green dashes using the line-rendering described in 

chapter 7. 

These playthroughs have the player shooting the laser multiple times, one of the asteroids is hit 

and splits into two shards. Subsequently one of these shards is also hit and split into two 

smaller shards. So, the screenshots taken show the player’s spaceship, laser particles, four 

original asteroids, one medium asteroid shard and one small asteroid shard. 

 

Figure 9.9: A screenshot of Asteroids game playthrough in spherical space. One of the large 

asteroids has been hit and split into two shards. One of the shards has subsequently been hit 

and split. (𝑲 = 𝟏) 
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Figure 9.10: A screenshot of Asteroids game playthrough in hyperbolic space. One of the large 

asteroids has been hit and split into two shards. One of the shards has subsequently been hit 

and split. (𝑲 = −𝟏) 

The spaceship shape is a concave quadrilateral with the following local vertex coordinates: 

[(𝟑𝟎 𝐩𝐱, 𝟎 𝐫𝐚𝐝), (𝟑𝟎 𝐩𝐱,
𝟓𝝅

𝟔
 𝐫𝐚𝐝) , (𝟏𝟓 𝐩𝐱, 𝝅 𝐫𝐚𝐝), (𝟑𝟎 𝐩𝐱,

𝟕𝝅

𝟔
 𝐫𝐚𝐝)] 

A “simple spaceship” (Xevin, 2014) texture has been applied to the spaceship object. The 

textures with shape outlines are shown in Figure 9.11. 

Asteroids are created as regular hexagons with the following local vertex coordinates: 

[(𝟔𝟎,
𝝅

𝟔
) , (𝟔𝟎,

𝝅

𝟐
) , (𝟔𝟎,

𝟓𝝅

𝟔
) , (𝟔𝟎,

𝟕𝝅

𝟔
) , (𝟔𝟎,

𝟑𝝅

𝟐
) , (𝟔𝟎,

𝟏𝟏𝝅

𝟔
)] 
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Each asteroid uses one of the randomly determined grey asteroids textures from the “asteroids” 

textures pack (Phaelax, 2014). Figure 11.1, Figure 11.2 and Figure 11.3 show the non-textured 

versions of asteroid and spaceship shapes in Euclidean, spherical and hyperbolic space 

respectively.  

 

 

 

  

 

   

   

 

   

 

 
 

 
 

 

Figure 9.11: A spaceship as well as large, medium and small asteroids textures with the shape 

outlines set by the texture coordinates. Centre of each shape is marked with a red dot. 

Some of the textures are cut off as shown on Figure 9.11. For the spaceship this is done to keep 

the shape similar to the spaceship from the original Asteroids game, which is an arrowlike 

concave quadrilateral (for example, the concave spaceship shape can be seen in the Figure 

Figure 5.11). The coordinates set on the texture, shown in Figure 9.11, are that of a convex 

quadrilateral to include the engines of the spaceship. The texture is compressed down the 

middle of the spaceship, but stretched on the sides to maintain the original Asteroids spaceship 

shape. 

Some of the textures of the asteroids are cut off as well, which can be seen on the large 

asteroids in Figure 9.11 and within the game in Figure 11.1, where the leading corner of the 

asteroid closest to the origin has the texture cut off and an angle of the hexagon can be seen.  

The asteroid textures are not perfectly centred and have a random orientation within the texture 

pack, as they are used to create an in-game sprite animation of the asteroid spinning. This 

meant that if all orientations were accounted for when setting texture coordinates, there was 

too much empty space recorded around the asteroid within its texture, which would mean the 

collision detection would be less precise. For this reason it was decided to have a trade off 
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between the textures being slightly cut off and the collision detection being more 

accurate.Note: the position of the centre of the shape is important because the shape in 

hyperbolic and spherical space changes depending on the position of the centre. The bigger the 

shape, the more pronounced this change is. This happens because vertices of the shape are just 

a representation of an object in polar coordinates and the flat texture file is then stretched 

accordingly. If a curvature changes during the execution of the game, the internal distance 

between any two points, which do not lie on the same line passing through the origin, gets 

stretched or contracted. 

 

 

Figure 9.12: Time-lapse of multiple textured objects (5 asteroids and a spaceship) moving 

through planar space within the Asteroids game simulation (𝑲 = 𝟎). This simulation is not the 

same playthrough as the one in Figure 9.8. 
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To illustrate how textured objects move within the simulation dynamically time-lapses have 

been created. Figure 9.12, Figure 9.13 and Figure 9.14 show the time-lapses in Euclidean, 

spherical and hyperbolic space respectively. The same initial parameters have been set for the 

time-lapses as for the playthroughs shown in Figure 9.8, Figure 9.9 and Figure 9.10.  

Collision detection between the spaceship and asteroids has been switched off in order to have 

a continuous timelapse.  

The time-lapses consist of 6 separate screenshots of the game simulation. Each screenshot is 

taken 1 second after the previous one. 

 

Figure 9.13: Time-lapse of multiple textured objects’ (5 asteroids and a spaceship) movement 

through spherical space within the Asteroids game simulation (𝑲 = 𝟏) This simulation is not 

the same playthrough as the one in Figure 9.9. 
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The initial parameters (i.e., position and velocity) for the objects are identical irrespective of 

curvature. However, the trajectories the objects follow in the time-lapse are different. Because 

the object’s parameters are not modified during the execution of the simulation, the geodesic 

they follow is uniquely determined by the initial parameters and the projection used (i.e., 

Azimuthal Equidistant projection). 

In Figure 9.13 the objects follow the great circle paths through spherical space, but in 

hyperbolic space (shown in Figure 9.14) they follow the hyperbolic lines. The gridlines show 

some of the geodesics, which helps the player visualise the object’s trajectories through the 

curved space. 

 

Figure 9.14: Time-lapse of multiple textured objects’ (5 asteroids and a spaceship) movement 

through hyperbolic space within the Asteroids game simulation (𝑲 = −𝟏). This simulation is 

not the same playthrough as the one in Figure 9.10. 
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Some of the objects in Euclidean and hyperbolic space would move off screen, so they are 

wrapped around to the antipodal point of the circular projection defined as dark circle within 

the figures. 

It is possible to see how the textures get stretched laterally the further they are from the centre 

of projection in spherical space (shown in Figure 9.9 and Figure 9.13), while in hyperbolic 

space they get compressed instead (shown in Figure 9.10 and Figure 9.14). 

9.6 Summary 
This chapter has described a method for texturing shapes in non-Euclidean geometry by 

finding the correct texture coordinates throughout the shape. This is done by first subdividing 

the shape into segments for each of the edges. Segment are subsequently subdivided into 

multiple smaller similar triangles sharing the vertex C to find the intermediate texture 

coordinates. Segments are processed by the shader pipeline as patches. First, the vertex shader 

finds global vertex coordinates for each of the vertices within the patch using the method 

described in section 0. Subsequently tessellation shaders find intermediate vertices along the 

inner edges of the segment. These are then used to find texture coordinates along each of the 

intermediate edges throughout the segment. This method has been implemented within the 

engine and an Asteroids game has been adapted to use textured shapes. Time-lapses and 

playthrough screenshots of this game have been presented in this chapter. 
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10. Analysis II: Texture Rendering Performance  

This chapter is original research, which describes the empirical testing method used to compare 

the performance of line rendering and texture rendering. The analysis of the data gathered from 

this testing is then presented. Testing has been performed in order to collect the data required 

to compare texture rendering approaches and line rendering approaches. 

The test was conducted on a Personal Computer with the following technical specifications. 

CPU: Intel(R) Quad-Core(TM) i7-6700K Quad Core @ 4.00GHz; RAM: 16GB; GPU: 

NVIDIA GeForce GTX 980; Operating System: 64-bit, Windows 10 Pro. An unchanging 

resolution of 1000x1000 pixels has been used for all tests. In order to eliminate any sudden 

spikes and drops in FPS, all background processes were disabled. The engine can operate with 

any Gaussian curvature (𝑲), however the testing has been performed at three different 

curvature values: 𝟎, 𝟏 and −𝟏. 

The test was performed multiple times for a different number of objects rendered: 100, 200, 

400 and 800 objects. These values were chosen such that the number of objects is doubled for 

each subsequent test. This would help determine how the number objects affects the frame rate 

at different tessellation parameter values. A regular quadrilateral has been used for all shapes 

similarly to the testing performed in chapter 8. Size, rotation and position of all shapes on the 

screen were pre-determined before the testing started and the same values were used for all of 

the tests. These were chosen to provide a spread of possible values. All 800 objects are 

illustrated in Figure 10.1 rendered in hyperbolic (left), Euclidean (centre) and spherical (right) 

space. Note that the background image and the gridlines have not been rendered during the 

testing process. 

   

Figure 10.1: 800 regular quadrilateral objects used for testing rendered in hyperbolic (left), 

Euclidean (centre) and spherical (right) space. They are positioned and rotated randomly in 

the bounded area of the projection.  
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The test has been run multiple times in a loop. The test was first run for the line rendering 

approach with a tessellation parameter of 25. Each individual test was conducted for 5 seconds 

before the tessellation parameter was increased from 25 to 90 in increments of 5, then it 

progressed through the different numbers of objects (i.e., 100, 200, 400 and 800), again starting 

with tessellation parameter of 25. Once the test for the line rendering approach had completed, 

the test for texture rendering approach was run with the similar structure. After one such cycle 

was complete, the loop started again and was repeated 15 times. A constant increment of the 

tessellation parameter was chosen to gauge the effect it has on the frame rate. 

When all 15 cycles were completed, the averages were taken for each unique combination of 

approach, number of objects and tessellation parameter from across the 15 cycles to reduce the 

variance. Two baseline tests have been performed for No Tessellation and Euclidean texturing. 

Figure 10.2, Figure 10.3, Figure 10.4 and Figure 10.5 show the results of the test for 100, 200, 

400 and 800 shapes respectively. The graphs show the average FPS for increasing tessellation 

parameter values in 4 different approaches and two baselines. 

 

Figure 10.2: Performance test with 100 quadrilateral objects rendered with increasing 

tessellation parameter. 

Figure 10.2 shows the data from a test with 100 objects. The engine was rendering objects 

without tessellation at approximately 4,400 FPS. Hyperbolic and spherical line tessellation 

approaches were rendered at approximately 3,100 FPS regardless of the tessellation parameter 

value. The texture rendering approaches are performing at approximately 3,100 FPS when 
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tessellation parameter is 25, but the performance drops gradually as the tessellation parameter 

increases to a minimum value of approximately 1,200 FPS. 

Regardless of the number of shapes, the graphs show a similar pattern, non-Euclidean line 

tessellation and texture tessellation have roughly equal average FPS values when the 

tessellation parameter is low. As it increases, performance for the texture tessellation gradually 

drops until a tessellation parameter value of 𝒏 ≈ 𝟕𝟎. At that value, the performance plateaus 

and does not decrease with higher values of 𝒏. This is because a hardware dependent 

maximum tessellation level value (GL_MAX_TESS_GEN_LEVEL) is reached. For the personal 

computer used for this test, the value is between 𝒏 = 𝟔𝟔 and 𝒏 = 𝟕𝟎, which would create 

between 3,367 and 3,781 intermediate points per patch respectively (calculated using equation 

(10.1)). 

This is where the maximum number of output components per patch is reached; this value is 

hardware dependent.  

Figure 10.3 shows the data from a test with 200 objects. No tessellation baseline was rendered 

at approximately 3,400 FPS. Curved space line tessellation approaches were performing at 

approximately 2,100 FPS at all tessellation parameter values. The textured shapes were 

rendered at approximately 2,000 FPS for tessellation parameter of 25, but it decreased as the 

tessellation parameter increased to approximately a minimum value of 600 FPS. 

 

Figure 10.3: Performance test with 200 quadrilateral objects rendered with increasing 

tessellation parameter. 
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Figure 10.4 shows the data from a test with 400 objects. The engine was rendering objects 

without tessellation at approximately 2,500 FPS. Hyperbolic and spherical line tessellation was 

rendered at approximately 1,400 FPS regardless of the tessellation parameter value. textures 

were rendered at approximately 1,400 FPS in Euclidean and hyperbolic space for tessellation 

parameter of 25, but in spherical space they were rendered at approximately 1,300 FPS. As 

tessellation parameter increased, the performance decreased to a minimum value of 

approximately 400 FPS. 

 

 

Figure 10.4: Performance test with 400 quadrilateral objects rendered with increasing 

tessellation parameter. 
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Figure 10.5: Performance test with 800 quadrilateral objects rendered with increasing 

tessellation parameter. 

Figure 10.5 shows the data from a test with 800 objects. The engine was rendering objects 

without tessellation at approximately 1,500 FPS. Hyperbolic and spherical line tessellation was 

rendered at approximately 800 FPS regardless of the tessellation parameter value. Euclidean 

and hyperbolic texture rendering approaches are performing at approximately 800 FPS and 

spherical texture rendering approach at approximately 600 FPS when tessellation parameter is 

25. The performance drops gradually as the tessellation parameter increases to a minimum 

value of approximately 200 FPS for all texture rendering approaches. 

For the line rendering approaches, the tessellation parameter determines the number of 

segments on each line. For the texture rendering approaches, the tessellation parameter sets 

both the inner and outer tessellation values, so the number of texture coordinates does not 

increase linearly with the increased tessellation. If all inner and outer tessellation parameters 

are 𝒏, the number of texture coordinates throughout a patch is: 

If  𝒏 is even, then: 

  
𝟑𝒏𝟐

𝟒
+  

𝟑𝒏

𝟐
 +  𝟏 (10.1) 

If  𝒏 is odd, then: 

 𝟑𝒏𝟐

𝟒
+

𝟑𝒏

𝟐
+  

𝟑

𝟒
 (10.2) 
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The most significant term is of 𝑶(𝒏𝟐) complexity, so the number of texture coordinates 

increases with a square of the tessellation parameter. 

 

Figure 10.6: Average FPS values for the test with 100 shapes and tessellation parameter 25. 

Figure 10.6 shows the average FPS values per approach for tessellation parameter of 25 in the 

test with 100 shapes. 

 

Figure 10.7: Average FPS values for the test with 200 shapes and tessellation parameter 25. 

Figure 10.7 shows the average FPS values per approach for tessellation parameter of 25 in the 

test with 200 shapes. No tessellation baseline decreased approximately 23% compared to the 

test with 100 shapes, while all other approaches decreased approximately 32-35%. 
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Figure 10.8: Average FPS values for the test with 400 shapes and tessellation parameter 25. 

Figure 10.8 shows the average FPS values per approach for tessellation parameter of 25 in the 

test with 400 shapes. No tessellation baseline decreased approximately 26% compared to the 

test with 200 shapes, while all other approaches decreased approximately 36-40%. 

 

Figure 10.9: Average FPS values for the test with 800 shapes and tessellation parameter 25. 

Figure 10.9 shows the average FPS values per approach for tessellation parameter of 25 in the 

test with 800 shapes. No tessellation baseline decreased approximately 38% compared to the 

test with 200 shapes, while all other approaches decreased approximately 42-48%. 
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Figure 10.10: Average FPS values for the test with 100 shapes and tessellation parameter 70. 

Figure 10.10 shows average FPS values per approach for tessellation parameter value of 70 in 

the test with 100 shapes. 

 

Figure 10.11: Average FPS values for the test with 200 shapes and tessellation parameter 70. 

Figure 10.11 shows average FPS values per approach for tessellation parameter value of 70 in 

the test with 200 shapes. No tessellation baseline decreased approximately 22% compared to 

the test with 200 shapes, spherical and hyperbolic line rendering approaches decreased in FPS 

approximately 31-33%, which is similar to the decrease measured in the test for tessellation 

parameter value of 25. Texture rendering approaches decreased approximately 46%. 
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Figure 10.12: Average FPS values for the test with 400 shapes and tessellation parameter 70. 

Figure 10.12 shows average FPS values per approach for tessellation parameter value of 70 in 

the test with 400 shapes. No tessellation baseline decreased approximately 27% compared to 

the test with 200 shapes, spherical and hyperbolic line rendering approaches decreased in FPS 

by approximately 36-38%. Texture rendering approaches decreased approximately 44-47%. 

 

Figure 10.13: Average FPS values for the test with 800 shapes and tessellation parameter 70. 

Figure 10.13 shows average FPS values per approach for tessellation parameter value of 70 in 

the test with 800 shapes. No tessellation baseline decreased approximately 38% compared to 

the test with 200 shapes, spherical and hyperbolic line rendering approaches decreased in FPS 

by approximately 42-43%. Texture rendering approaches decreased approximately 45-48%. 

Euclidean tessellation for the baseline test was designed to calculate the same number of 

intermediate points as the non-Euclidean approaches described in chapter 9. As such, the shape 

was split into patches (one per edge), global vertex coordinates were found and subsequently 

the coordinates of intermediate points throughout the shape were calculated. The difference 
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between Euclidean and non-Euclidean texturing was only in the types the calculations 

performed. For non-Euclidean texturing spherical and hyperbolic trigonometry has been used 

as described in chapter 9. For Euclidean texturing baseline cartesian vector-based calculations 

have been used instead. The tests show that there is little difference in average FPS values 

between Euclidean and non-Euclidean texturing approaches, meaning that the overhead from 

trigonometric operations on the GPU is negligible. 

From the bar charts, it is clear that the values for all approaches stay proportionally the same 

with an increasing number of shapes. The engine still runs at 200 FPS with 800 textured 

shapes, which is more than enough for any 2D game or simulation. Furthermore, this could 

even be extended to 3D. While the 3D meshes consist of multiple triangles, they would not all 

need to be individually tessellated, because of being very small already. Only larger flat 

surfaces would need to be tessellated, while smaller triangles in the mesh could be transformed 

similarly to how texture coordinates in the method for 2D shapes are transformed (described in 

chapter 9). 

The FPS achieved when testing texture rendering approaches is well suited for real-time game 

applications, which should run at a stable 60 FPS minimum. In recent years, a lot of games 

have moved to higher frame rates due to most displays supporting 144Hz format. The GPU 

approaches exceed both of these limits even when a large number of objects are rendered on 

the screen and a high tessellation parameter is chosen for each line. The number of shapes in a 

2D game is likely to be much lower than 800. As shown on Figure 10.1, the screen gets 

cluttered and it becomes hard to distinguish individual shapes when there are that many 

rendered at once. Additionally, the tessellation parameter can be adjusted depending on the 

size of the shape and the position of the shape in the projection. Smaller shapes and shapes 

closer to the reference point of the projection require smaller tessellation parameter, because 

curvature does not affect them as strongly. 

10.1 Summary 

This chapter has described the testing performed to compare line and texture rendering 

approaches for non-Euclidean geometry. The data gathered from the test has been analysed and 

it shows that the overhead from the non-Euclidean texturing depends on the tessellation 

parameter. At low enough values the overhead is negligible when compared to the line 

rendering. At high values of the tessellation parameter the overhead is more noticeable, but the 

engine can still perform well in real-time even when a large number of shapes is being 

rendered at the same time.   
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11. Survey: Games in non-Euclidean Environment 

To research the interest in the features developed in the described software, it was decided to 

re-create well-known 2D games. These games would then be available for people to play and 

subsequently fill out the questionnaires about their experience. 

At the time of performing the survey, the non-Euclidean texturing has not been implemented 

within the engine, hence the games used for the survey were rendered using line rendering 

described in chapters 4, 5 and 7. 

This chapter contains original research in re-creating classic 2D games in non-Euclidean 

engine (described in chapters 4, 5 and 7); setting up a user study to study the player 

experience playing games in non-Euclidean environment; analysing and discussing the player 

experience data gathered by the user study. 

11.1 Games Developed – non-Euclidean Asteroids 

The first game developed using the non-Euclidean rendering engine was an implementation of 

the classic arcade game Asteroids. It fit well with the capabilities of the engine and major 

shapes (i.e., spaceship, lines and asteroids) have already been implemented in the software 

testing, as illustrated in Figure 5.8. Figure 11.1, Figure 11.2 and Figure 11.3 show time-lapses 

of the Asteroids game in Euclidean, Spherical and Hyperbolic space respectively. 

These timelapses have been created by collating multiple screenshots of the game. These 

screenshots have been taken and stored by the engine. One screenshot was taken every second 

of the game running. The spaceship character, controlled by the player, represented by a red 

quadrilateral, arrow-like shape does not move in these time-lapses for consistency in 

movement between planar, spherical and hyperbolic timelapses. The asteroids’ initial 

positions, movement speed and trajectories are randomised using a rand() function. 

However, for the purposes of time-lapses, the initial seed value has been set to a hard-coded 

value in order to get identical initial parameters. 

Grid lines are rendered as separate objects and trace the geodesics through the curved space. 

They help visualise the curvature of the space and choose the correct trajectory when playing 

the game. 
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Figure 11.1: Time-lapse of the Asteroids game in Euclidean space rendered with the engine. 5 

Asteroids move at different speed. The player’s spaceship (red) remains stationary. 

 

Figure 11.2: Time-lapse of the Asteroids game in Spherical space rendered with the engine. 5 

Asteroids move at different speed. The player’s spaceship (red) remains stationary. 
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Figure 11.3: Time-lapse of the Asteroids game in Hyperbolic space rendered with the engine. 

5 Asteroids move at different speed. The player’s spaceship (red) remains stationary. 

Some additional game logic had to be implemented to develop the Asteroids game. 

Proximity-based collision detection has been implemented using the bounding circle method. 

It is a ubiquitous, if simple, method of collision detection, explained well in an article by 

Jeffrey Thompson (Thompson, 2015). A bounding circle radius is assigned to each object, i.e. 

spaceship, asteroids and bullets.  

Circle-circle collision detection works by finding the distance between the centres of two 

bounding circles and comparing it to the sum these circles’ radiuses. Let 𝑃1(𝑥1, 𝑦1) and 

𝑃2(𝑥2, 𝑦2)  be centre points of two bounding circles with radiuses 𝑅1 and 𝑅2 respectively, the 

collision is found if: 

 √(𝑥2 − 𝑥1)2 + ( 𝑦2 − 𝑦1)2 < 𝑅1 + 𝑅2 (11.1) 

 

This is often optimised by squaring the sum of radiuses instead of taking the square root on 

the left-hand side of the inequality: 

 (𝑥2 − 𝑥1)2 + ( 𝑦2 −  𝑦1)2 < (𝑅1 + 𝑅2)2 (11.2) 
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However, due to the engine working with the polar coordinate system, the distance 

calculation had to be adapted to use the cosine rule. Let 𝑃1(𝑟1, 𝜃1) and 𝑃2(𝑟2, 𝜃2) be centre 

points of two bounding circles with radiuses 𝑅1 and 𝑅2 respectively, in Euclidean space the 

collision is found if: 

 𝑟1
2 + 𝑟2

2 − 2 𝑟1𝑟2 cos Δ𝜃 < (𝑅1 + 𝑅2)2 (11.3) 

 

Likewise, collision detection in spherical and hyperbolic spaces uses spherical and hyperbolic 

cosine rules. 

If 𝐊 > 0, then: 

 cos−1(cos 𝑟1 cos 𝑟2 + sin 𝑟1 sin 𝑟2 cos Δ𝜃) < 𝑅1 + 𝑅2 (11.4) 

If 𝐊 < 0, then: 

 cosh−1(cosh 𝑟1 cosh 𝑟2 − sinh 𝑟1 sinh 𝑟2 cos Δ𝜃) < 𝑅1 + 𝑅2 (11.5) 

Note: it is possible to speed up the calculations for collision detection in spherical and 

hyperbolic space, by pre-computing cos (𝑅1 + 𝑅2) or cosh (𝑅1 + 𝑅2) for equations (11.4) 

and (11.5) respectively. The equations would then change to: 

If 𝐊 > 0, then: 

 cos 𝑟1 cos 𝑟2 + sin 𝑟1 sin 𝑟2 cos Δ𝜃 < cos (𝑅1 + 𝑅2) (11.6) 

If 𝐊 < 0, then: 

 cosh 𝑟1 cosh 𝑟2 − sinh 𝑟1 sinh 𝑟2 cos Δ𝜃 < cosh (𝑅1 + 𝑅2) (11.7) 

However, this would require storing additional data, especially if there is a large number of 

shapes of different sizes, as each combination of radii would need to be precomputed and 

subsequently looked up from some type of a data structure. 
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Figure 11.4: Screenshot of the playthrough of the implemented Asteroids game in Euclidean 

space. Asteroids split into 2 smaller asteroids when hit by the player’s bullets (green dashes). 

 

Figure 11.5: Screenshot of the playthrough of the implemented Asteroids game in spherical 

space. Asteroids split into 2 smaller asteroids when hit by the player’s bullets (green dashes). 
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Figure 11.6: Screenshot of the playthrough of the implemented Asteroids game in hyperbolic 

space. Asteroids split into 2 smaller asteroids when hit by the player’s bullets (green dashes). 

In addition to collision detection, the logic for shooting with the player’s spaceship and 

splitting of the asteroids into smaller asteroid shards has been implemented. Figure 11.4, 

Figure 11.5 and Figure 11.6 illustrate the non-Euclidean Asteroids game being in planar, 

spherical and hyperbolic space respectively.  

Each screenshot is showing the player shooting bullets, displayed as green dashes, which 

follow the geodesic passing through the player’s position in the direction the player is facing. 

The asteroids split into two smaller asteroid shards when a collision is detected between the 

said asteroid and player’s bullets. There are two levels of smaller asteroids, as in the original 

Asteroids game. Also, each time a collision between an asteroid (or an asteroid shard) and 

bullets is detected, the score is incremented. 

If a player collides with the asteroid (or an asteroid shard), a game over screen is displayed. 

11.2 Games Developed – non-Euclidean Snake 

The second game implemented within the non-Euclidean engine, was chosen to be Snake. It is 

a popular 2D game with a top-down view, which is a good fit for the capabilities of the 

engine. 
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Some of the features implemented for the Asteroids game have been used to build Snake, 

including collision detection, object position randomisation and score functionality. 

However, Snake does not move in a continuous simulation, instead it moves in increments of 

the size equal to the single section of the Snake. This step-based simulation has been 

implemented to update the Snake’s head position following the same method as described in 

Chapter 5, passing in the distance travelled equal to snake’s section size, rather than 

calculating it from the object’s velocity. Instead of running the update every game loop 

iteration, it is run once the trigger timer runs out. This trigger time determines the difficulty of 

the game, making the snake move faster or slower depending on its value. The trigger timer is 

reset once the step update is run. 

Another design choice which needed to be made when implementing the snake’s movement 

was game controls. In the classic implementation of the Snake game, up, down, right and left 

keys are used to turn the Snake with respect to the screen. Thus, regardless whether the snake 

is moving up or down the screen, left key input turns the snake towards the left edge of the 

screen. There are only 4 directions the snake can move in and it makes it intuitive for the 

player to control the snake.  

 

Figure 11.7: Snake’s movement on a non-curved 2D plane. Forward movement trajectory 

followed by a turn to the left. 
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Figure 11.8: Snake’s movement on a positively curved 2D plane. Forward movement 

trajectory followed by a turn to the left. 

 

Figure 11.9: Snake’s movement on a positively curved 2D plane. Forward movement 

trajectory followed by a turn to the left. 
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However, in Spherical and Hyperbolic environments, due to the shape of the space, the snake 

could move in any direction on the screen. So, to keep the controls consistent between the 

different spaces in the game, it was decided to turn the snake with respect to itself, rather than 

the screen. Regardless of where the snake is on the screen, the left key input would turn the 

snake 90 degrees to the left. This is illustrated in Figure 11.7, Figure 11.8 and Figure 11.9 for 

Euclidean, spherical and hyperbolic spaces respectively. 

A snake is made up of multiple game objects, one for each section of the snake. To reduce the 

number of movement calculations, the position update function is run for the head section of 

the snake. After that, the previous positions are propagated through the snake’s sections. 

Meaning that the previous position of the head is assigned to the next snake’s section and so 

on until the tail section is updated. The snake grows in size by 1 section, when a collision 

between the snake’s head and the food is detected. The score is updated when the food is 

consumed and a new position is randomised for it. Figure 11.10 Figure 11.11 and Figure 

11.12 show the time-lapse of the non-Euclidean snake game’s execution in Euclidean, 

Spherical and Hyperbolic space respectively. Each image within a timelapse is generated 

every 3 position updates of the snake. After the 5th position update (2nd update after the second 

screenshot taken) the input has been generated to turn the snake to the right. 

 

Figure 11.10: Time-lapse of the snake game in Euclidean space rendered with the engine. The 

snake moves forward and makes a turn to the right, toward the food (red shape). 
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Figure 11.11: Time-lapse of the snake game in Spherical space rendered with the engine. The 

snake moves forward and makes a turn to the right, toward the food (red shape). 

 

Figure 11.12: Time-lapse of the snake game in Hyperbolic space rendered with the engine. 

The snake moves forward and makes a turn to the right, toward the food (red shape). 
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11.3 Qualtrics Survey 

Qualtrics has been chosen as a tool for building the survey (Qualtrics, 2021). It has good 

reviews (TrustRadius, 2014), is intuitive, but also allows for a range of powerful features, like 

survey flow discussed in section 11.3.2. 

11.3.1 Aims 

An engine has been developed which can calculate and render objects/shapes in a non-

Euclidean environment. The aim of this study was to find out how the non-Euclidean 

Environment impacts the gameplay. 

The main aspects that were explored in terms of gameplay: 

• How easy is it to understand and adjust to the non-Euclidean environment in a 

familiar game? 

• Does the extra complexity change the gameplay in a positive (more interesting, 

challenging, enjoyable) or negative (confusing, frustrating) direction? 

11.3.2 Structure of the Survey 

The survey was split into a number of sections: Demographics, Asteroids, Snake and end of 

survey sections.  

The demographics section contained questions about the participant’s age and gender (which 

they could skip if they were not comfortable answering those questions) as well as questions 

that gauged the participants familiarity with video games in general and Asteroids and Snake 

specifically. 

In the Asteroids and Snake sections the participants were tasked to play the respective game 

for 5 minutes before answering the questionnaire. This step was repeated three times for each 

game, asking the participants to play the game in Euclidean, Spherical and Hyperbolic space.  

To reduce participants’ bias, the order in which the participants were presented with the two 

games and subsequently the three curvatures of space was randomised. Figure 11.13 displays 

the flowchart showing the structure of the survey with a Randomizer determining the order in 

which participants received the Snake and Asteroids sections of the survey; and subsequently 

another Randomizer determining the order of the curvature-based subsections for each game. 

The screenshot of the survey flow tool taken from Qualtrics is included in Appendix A. 

After participants have played a game in all three curvatures of space, they were presented 

with a summary subsection for the game and asked to fill in a number of free-text questions. 
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After participants have played both games, they were presented with the end of survey section 

asking them to compare their experience playing the two games. 

 

Figure 11.13: Flowchart showing the structure of the survey. Randomizer blocks display the 

sections in a random order, which helps to reduce participants’ bias. 
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Game controls were explained in the task description before each part of the questionnaire. 

Figure 11.14 and Figure 11.15 illustrate the game controls provided for participants. 

 

Figure 11.14: Game controls for Non-Euclidean Snake 

 

Figure 11.15: Game controls for Non-Euclidean Asteroids. The thrust button adds 

acceleration in the direction the player controlled object is facing. 

11.3.3 Questionnaire 

The survey is structured with set a number of constraints on the questionnaire. Because the 

questionnaire had to be repeated six times (once for each subsection of two games), the 

number of questions had to be kept small to not make the survey too long. Overly long 

surveys tend to have a low participation and especially completion rate (Galesic & Bosnjak, 

2009).  

Three experience-based questionnaires were considered: IEQ, The Immersive Experience 

Questionnaire (Jennett, et al., 2008); GEQ, The Games Experience Questionnaire (Ijsselsteijn, 

de Kort, & Poels, 2013); PXI Bench, The Player Experience Inventory Bench (Haider, 

Gerling, & Vanden Abeele, 2020); and UPEQ, Ubisoft Perceived Experience Questionnaire 
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(Azadvar & Canossa, 2018). Several factors were considered when evaluating the potential of 

each questionnaire in this context. 

The issue with UPEQ questionnaire used by Ubisoft was that it did not focus on the 

experiences this survey was interested in, namely: player interest, immersion and how easy is 

the game to understand and control. 

IEQ would have measured the experiences this study was interested in; however, it only 

provides valid results if all 31 items are used in the questionnaire. This would have made the 

questionnaire part of the survey 186 questions in total, which is unreasonably long. 

GEQ and PXI are both modular, so only the most relevant experiences could be measured, 

thus reducing the length of the questionnaire. The problem with GEQ is that it is not validated 

and as such does not have the best rating amongst games researchers (Law, Brühlmann, & 

Mekler, 2018). 

Hence, PXI was the questionnaire used in this study. It is a broad enough questionnaire that it 

allowed the measurement of different facets of player experience but also it has several sub-

scales inside it, so the questionnaire could include only a number of items that were the most 

relevant, without losing the validity of the measurement. 

PXI Bench is designed with 10 constructs measuring different aspects of player experience. 

These are divided into two groups, functional experience (Ease of control, Progress feedback, 

Audio-visual appeal, Clarity of goals and rules and Challenge) and psychological experience 

(Mastery, Curiosity, Immersion, Autonomy and Meaning). Each of the constructs has three 

items associated with it, which ask similar questions in subtly different ways, ensuring 

reliability of the measurement. 

Not all of the constructs were relevant to the study, which helped reduce the total number of 

items in the questionnaire from 30 to 12. It was decided to focus on Controls, Challenge, 

Mastery and Immersion. Each construct is measured via a 7-point Likert (Likert, 1932):  

Strongly 

disagree 
Disagree 

Somewhat 

disagree 

Neither 

Agree nor 

Disagree 

Somewhat 

agree 
Agree 

Strongly 

Agree 
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11.4 User Study 

The aim of this research was to explore how players perceive the two non-Euclidean 

environments. To do this, a within-subject design user study was conducted with 22 players to 

assess player experience of mastery, controls, immersion and challenge when playing three 

versions of Snake and Asteroids. Qualitative responses were also collected from players to 

learn about their experiences of and preferences in terms these novel game environments. 

11.4.1 Materials 

To assess player experience (PX), four out of the ten dimensions of the Player Experience 

Inventory (PXI) were used (Abeele, Spiel, Nacke, Johnson, & Gerling, 2020). These were 

deemed most relevant in the context of our research: Ease of Control, Challenge, Immersion 

and Mastery. Each question in all sub-scales were assessed on a 7-point Likert scale with 1 

being anchored to “Strongly Disagree'' and 7 - to “Strongly Agree''. The PXI was chosen 

amongst other existing PX questionnaires as it has been validated and used in several recent 

studies and it allows for the measurement of different facets of PX in a broad sense. 

The two games used in the study were the aforementioned Snake and Asteroids. Each game 

had three versions: one Euclidean and two non-Euclidean versions (hyperbolic and spherical). 

The games used in the survey are available on GitHub (Osudin, GitHub.com, 2022). 

11.4.2 Hypotheses 

The following hypotheses were generated based on the review of related literature and the 

assumptions made about the curved spaces with regards to their effects on player experience 

of mastery, challenge, control and immersion: 

• H1: Mastery is more difficult to achieve when playing games with non-Euclidean 

curvature than games with Euclidean curvature. 

• H2: Games with non-Euclidean curvature are more difficult to control than games 

with Euclidean curvature. 

• H3: Games with non-Euclidean curvature are more immersive than games with 

Euclidean curvature. 

• H4: Games with non-Euclidean curvature are more challenging to play than games 

with Euclidean curvature. 
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11.4.3 Procedure 

To be able to compare the experiences between the different conditions (Euclidean, Spherical 

and Hyperbolic) in the two games, it was decided to do a within-participant study which 

would allow players to compare their experiences across games and conditions. It was also 

important to know whether players had any preferences towards specific conditions, so being 

able to compare across these conditions was essential. 

Hence, a Qualtrics survey was created and distributed that contained:  

1) Information sheet and consent form and a demographics section;  

2) Instructions for the study and the games that could be played on the participants' 

personal computers;  

3) Demographics questions;  

4) Six copies of the four dimensions of the PXI (controls, immersion, challenge and 

mastery) for each condition in each game;  

5) Questions about players' preferences for any of the versions in both games; 

6) Open-ended questions to collect comments from players about the games and their 

experiences with them. 

A repeated-measures ANOVA was performed to test for the effects of the manipulations on 

the four experiences as measured by the PXI. Bonferroni post hoc test was used for multiple 

comparisons at a significance level of 𝛼 =  0.05. 

11.4.4 Participants 

48 people took part in the study. The data has been reviewed and cleaned to remove: 

1) Incomplete responses; 

2) Insincere responses; 

3) Responses which were completed too quickly to be genuine. 

Overall 22 legitimate responses were included for the analysis. This sample included 16 men, 

5 women and a non-binary participant. The average age of the participants in the sample was 

30.35 (𝑆𝐷 =  6.80). 

Most participants (12) said that they played video games daily, 6 participants played games 

several times a week, 3 - several times a month and one several times a year. Five players said 
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that they had played Snake regularly, 12 had played is several times and 4 said that they had 

never seen this game before. As for Asteroids, players were somewhat less familiar with the 

game with 6 people saying that had never seen the game before, 2 played it regularly and 14 

had played the game several times. 

11.4.5 Results 

The SPSS Statistics tool (IBM Corp, 2020) has been used to perform inferential statistical 

tests to measure whether there was any statistically significant difference between the 

versions of the games within the data collected. 

  Snake Asteroids 
    𝐾 𝑀 𝑆𝐷 𝐹(2,19) 𝑝 𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙

2  𝑀 𝑆𝐷 𝐹(2,19) 𝑝 𝜂𝑝𝑎𝑟𝑡𝑖𝑎𝑙
2  

Mastery     0 5.47 1.51 
4.797 𝟎. 𝟎𝟏𝟑∗ 0.186 

5.31 1.27 
7.021 𝟎. 𝟎𝟎𝟐∗∗ 0.251     1 4.71 1.43 4.47 1.56 

−1 4.64 1.67 4.38 1.41 
            Controls    0 5.68 1.47 

4.243 𝟎. 𝟎𝟐𝟏∗ 0.168 
5.67 1.25 

8.808 < 𝟎. 𝟎𝟎𝟏∗∗∗ 0.295    1 5.03 1.41 4.76 1.38 
−1 4.76 1.79 4.85 1.22 

            Immersion    0 5.08 1.42 
1.066 0.353 0.048 

4.85 1.40 
0.463 0.633 0.022    1 5.38 1.09 5.05 1.45 

−1 5.06 1.51 5.06 1.31 
            Challenge    0 5.20 1.26 

0.818 0.448 0.038 
5.35 1.47 

2.506 0.094 0.107    1 4.80 1.26 4.64 1.56 
−1 4.91 1.54 4.77 1.71 

Table 11.1: Player experience (Mastery, Controls, Immersion, and Challenge) in each of the 

three versions (Euclidean, Spherical and Hyperbolic) of Snake and Asteroids. Significant 

results are shown in bold (* for < 0.05, ** for < 0.01 and *** for < 0.001). 

For both Snake and Asteroids, mastery and controls differed significantly between the three 

conditions: Euclidean, Spherical and Hyperbolic geometry (shown in Table 11.1).  

H1: Accepted – Participants felt more masterful when playing Snake with Euclidean physics 

than with Spherical (𝑝 =  0.041) but not with Hyperbolic (𝑝 =  0.072) physics. For 

Asteroids, players felt more masterful when playing the Euclidean version than the Spherical 

version (𝑝 =  0.043) as well as the Hyperbolic (𝑝 =  0.015).  

H2: Accepted – Overall, ease of control was significantly different between the three 

conditions in both Snake and Asteroids. There were no significant differences between the 

experiences of control in the three versions of Snake but in Asteroids, players felt more in 

control in the Euclidean version than in the Spherical (𝑝 =  0.009) and the Hyperbolic (𝑝 =

 0.012) version.  

H3 & H4: Rejected – The two non-Euclidean version of both Snake and Asteroids did not 

differ significantly in the experiences of mastery or controls. 
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Figure 11.16: Box plot comparing data for the Mastery dimension between Snake and 

Asteroids in Euclidean (left), spherical (centre) and hyperbolic (right) space. 

 
Figure 11.17: Box plot comparing data for the Controls dimension between Snake and 

Asteroids in Euclidean (left), spherical (centre) and hyperbolic (right) space. 
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Figure 11.18: Box plot comparing data for the Immersion dimension between Snake and 

Asteroids in Euclidean (left), spherical (centre) and hyperbolic (right) space. 

 
Figure 11.19: Box plot comparing data for the Challenge dimension between Snake and 

Asteroids in Euclidean (left), spherical (centre) and hyperbolic (right) space. 

With regards to the preferences for specific curvatures, 12 participants said they preferred 

spherical space in Snake, 7 said they preferred hyperbolic space, and 3 did not have a 



 

171 

 

preference. As for Asteroids, 9 players preferred spherical space, 5 preferred hyperbolic space 

and 8 had no preference. This difference was not statistically significant neither for Snake 

(𝜒2(2)  =  5.545;  𝑝 =  0.06) nor for Asteroids (𝜒2(2) =  1.182;  𝑝 =  0.56). 

11.5 Discussion 

From the data gathered, participants felt like they could play Snake better than Asteroids, 

which might be due to the fact that on average participants were more familiar with Snake. 

Asteroids game is more complex and dynamic than Snake, which likely influenced why 

players felt less masterful playing non-Euclidean Asteroids. When playing Snake, the player 

just needs to keep track of one object moving and it is a step-based simulation. When playing 

Asteroids, the player has to keep track of many objects flying along the geodesics as well as 

to plan where the to move the spaceship and which of the asteroids to shoot at. It is surprising 

that participants thought they were less masterful on average in hyperbolic space rather than 

spherical space. As can be seen in Figure 11.2 and Figure 11.5, it is more difficult to avoid 

colliding with the asteroids in spherical space, because radially there is less space when one 

moves away from the origin compared to flat space. This makes the difficulty level for 

Asteroids higher in spherical space. 

Additionally, the unfamiliarity of object movement through curved space creates the 

perception of a game being harder to master. This is supported by the responses to the free-

text questions regarding user experience when first seeing the curved space. Multiple 

participants mentioned that they did not immediately understand how to control the player 

character in curved space. One participant wrote: 

“[It was] difficult to predict how different curvatures would affect the snake’s movement” 

The results show that participants felt spherical Snake was harder to master than Euclidean 

and hyperbolic versions of the game. This could be due to the novelty of the snake’s 

movement. In spherical space the snake follows the great circle geodesics, so ends up going in 

a circle if not controlled, hence it is easier to collide with the tail of the snake. On the other 

hand, in hyperbolic space, the snake will go off screen (and be reflected to the antipodal 

point) following the geodesics. This point of view is summarised well in an answer to the 

same free-text question: 

“I noticed I was still trying to apply a Cartesian style of movement to reach the object.  I 

began using the geodesics on the Spherical surface to reach the object instead of turning so 

much, but I think the Hyperbolic surface really shines here – it forces you to think 
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hyperbolically since L/R turns onto different geodesics can have totally different effects, at 

least compared to what you expect in a Cartesian system.” 

This comment refers to the fact that when turning 90 degrees with a right or left turn, you 

switch the geodesic the snake is following, but this new geodesic will not continue 

orthogonally on the screen. The snake will also curve away from the origin due to 

exponentially expanding amount of space, so it is easier to play a much longer game of snake 

in hyperbolic space than in spherical space. This might have influenced the player’s 

perception of mastery playing spherical Snake. 

As for the game controls, the participants felt that the controls were significantly harder in 

curved space compared to Euclidean space. This difference is more pronounced in the 

Asteroids game than the Snake game. It could be due to controls and movement in the Snake 

game being more constrained than in Asteroids. Snake has step-based movement and turns in 

sharp 90-degree angles, thus is might be easier for participants to see get used to. On the other 

hand, the Spaceship in the Asteroids game has free range of movement, so the controls are 

more difficult. However, not all participants thought this, for example one response said: 

“The spherical and hyperbolic were very similar and did not feel as different as Snake did, it 

felt much easier to control.” 

This participant has encountered Asteroids after having played Snake, so could compare the 

experience.  

Overall, even though the ratings for functional dimensions (mastery and controls) have been 

lower for the non-Euclidean versions of both games, the non-functional dimensions did not 

show a significant difference between the curved and non-curved space games. This would 

suggest that the players did not feel the games to be negatively impacted by being set in 

curved space environment. This is supported by responses to summary part of the survey. One 

of the participant said the following: 

“I loved watching the spacecraft fire follow geodesics, and using that as a tool to hit the 

asteroids.  Further, loved watching the asteroids warp their shapes.  I would like to be able to 

fly through the geodesics unfettered to understand those dynamics a bit more, but otherwise, 

the controls (acceleration especially) were really well rendered and made it fun to move, and 

that ease of motion helped me focus on hitting targets.” 

This response would suggest that the more natural movement, using free range of motion as 

well as gradual acceleration is better suited for making the curved space more intuitive than 

the step-based movement. For the question of whether curved space improved their 
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experience, only two participants answered “no”, while other participants answered 

positively. One of the answers has said: 

“Improved the experience of playing the game and made it more fun.” 

While recreating existing games in 2D has been well received, another comment has 

suggested that the two chosen examples have been illustrative to help participants understand 

curved space, but they have not truly taken advantage of curved space in developing the game 

itself: 

“Improved!  It's nice to have multiple options here to balance challenge vs. comfort.  I'd 

certainly enjoy playing the games in all curvatures, but I see these more as pedagogical tools 

for the moment.  A truly immersive game that forced its concept on curved spaces would 

make adapting to the curved spaces more enjoyable – not that it's not enjoyable here, but the 

point of playing these two on those surfaces seems to force someone to understand how those 

surfaces work more so than shoot the asteroids or avoid a tail.  I'm totally fine with that :) but 

I wonder if players would want more of a ‘goal’.” 

Both Snake and Asteroids in curved space can help visualise the spherical and hyperbolic 

projections well and help understand the object movement in such environments. However, 

the properties of these environments are not taken into account when designing the challenges 

of the game. This comment ties into the next free-text question, which has asked participants 

if they would want to see other games adapted to curved space and which game genres would 

work best. There were suggestions of recreating other classic 2D games, like Breakout, 

Mario, Sonic, Pacman, Space Invaders, as well as more general racing games and ball games. 

Participants have also said: 

“Puzzle games and platformers could work. The mechanic would have to be introduced 

slowly.” 

“Absolutely – this is a vastly under-tapped dimension for gaming.  I would imagine re-

creating many 2D classics (space invaders, Pacman, etc) would be a lot of fun, but coming up 

something that truly exploits the surfaces for their own right would force new creative 

challenges.” 

These comments agree that it would be best to use the properties of the curved space when 

designing the game. Perhaps what would be a better use of this mechanic is a puzzle game 

that can only function in spherical or hyperbolic space because of the unique properties of the 

respective environment. Hyperrogue, an exploration game in hyperbolic space (described in 

section 2.4.4), has some mechanics, which are only possible due to the game being set in 
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hyperbolic geometry. For example, it is possible to escape from being cornered by enemies 

much easier than in Euclidean space. Additionally it is easier to run away from threats, as the 

distance increases exponentially if not exactly the same path is taken by the pursuer. These 

and other properties of hyperbolic and spherical space could be taken advantage of when 

designing innovative game mechanics.  

One participant pointed out that for Asteroids it would be a good idea to add adjustable 

difficulty, which would suggest that the set difficulty has not been appropriate: 

“The barebones rendering seemed fine – in a full game it would be nice to have difficulty 

options, but that's perhaps another discussion?” 

11.6 Summary 

This chapter has described the survey designed to research the interest in the features of the 

engine developed in this project. It covered the implementation of two classic games (i.e., 

Snake and Asteroids) in non-Euclidean environment and the challenges in adapting the game 

controls and collision detection to the curved space. 

This chapter has also detailed the structure of the survey including the aims, the structure and 

the questionnaire chosen to measure different aspects of participants’ interaction with the 

game. 

It has summarised and analysed the data gathered by the survey. The findings show that snake 

generally had better ratings, which could have been due to the participants greater prior 

familiarity with this game. The controls and collision detection worked seamlessly, but the 

difficulty of the game could have been better standardised to not change as much between 

different curvatures of space. Overall, the participants responded positively to adapting games 

to curved space and would be interested in playing other games implemented in non-

Euclidean environment or even novel games designed to be played in curved space. 
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12. Conclusions 

This thesis presented a range of approaches to rendering non-Euclidean geometry in real-time 

2D simulations. These approaches are varied and this chapter covers the extent to which the 

implemented engine achieves the original aims and objectives set out when the project started. 

The motivation for this project was to create an intuitive and approachable method of 

simulating and rendering curved space; and to create software that can calculate and render 

arbitrary shapes in curved space in real-time, while remaining intuitive for users to be able to 

create physical worlds with non-Euclidean space. This was to be accomplished by a set of 

aims and objectives, and the achievements with regards to each of these will be discussed. 

12.1 Evaluation of Aims & Objectives 

The first objective was to “Create a method for rendering shapes in non-Euclidean geometry: 

it should be intuitive for the users and developers.”. The method for calculating object’s 

vertices and subsequently tessellating the object’s vertices using spherical and hyperbolic 

trigonometry has been described in chapter 4. The approach uses azimuthal equidistant 

projection, which is intuitive for the users to understand the curvature of space, as the objects 

get stretched (in spherical space) and shrunk (in hyperbolic space) laterally the further they 

are from the centre of the projection; but the distance from the centre of projection does not 

change with different curvatures of space. Additionally, the ability to play the same game in 

different curvatures makes it more intuitive for players to understand how curvature affects 

the look of shapes and their movements within the game world. This is supported by the 

answers of survey participants in section 11.5. For example, one of the participants said: 

“I noticed I was still trying to apply a Cartesian style of movement to reach the object.  I 

began using the geodesics on the Spherical surface to reach the object instead of turning so 

much, but I think the Hyperbolic surface really shines here – it forces you to think 

hyperbolically since L/R turns onto different geodesics can have totally different effects, at 

least compared to what you expect in a Cartesian system.” 

The gridlines also help users visualise the geodesics through the curved space. On the other 

hand, the use of polar coordinate system makes it harder for developers to create the game 

world, because the object’s parameters have to be set up in (𝒓, 𝜽) form. This makes it difficult 

to accurately place objects in the game world. 

For example, the following is the code that creates a simple quadrilateral asteroid shape: 
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square_properties.shape = engine::shape::create(true, 
engine::polygon(30.f, 4).points(), 30.f); 

square_properties.position = engine::polar_vector2(200.f, -0.8f); 
square_properties.rotation = m_pi / 2.0f; 

  
This has been mitigated by developing conversion methods so that the world is created in 

cartesian coordinates and then converted to polar coordinates and recorded within the engine. 

The following two methods convert a vector from polar to Cartesian form and vice versa:  

glm::vec3 to_cartesian(float r, float theta) { 
  return glm::vec3(r * cos(theta), r * sin(theta), 0.0f); 
 } 
 

static polar_vector2 to_polar(float x, float y) { 
  return polar_vector2(sqrt(x*x + y*y), atan2f(y, x)); 

} 

Conversion methods are slow due to using expensive square root and trigonometry 

operations, so the application should use them rarely during runtime. However, when 

initialising the world their use is preferrable, as they allow for a more intuitive set up of the 

game world. 

The second objective was to “Implement the method to create a rendering engine: the 

software should be capable of recording objects’ parameters, calculate object 

transformations and render them on screen.”. The structure of the implemented engine has 

been described in section 3.1. It has a high degree of decoupling of the code: game logic and 

engine code are separated. This allows for reusability of the engine and makes it easier to 

introduce changes to the code. The polar coordinate system is curvature agnostic, which 

makes it possible to record the object’s parameters and use them regardless of the curvature 

value within the game world.  

Non-Euclidean line rendering was the first feature implemented in the engine. The method for 

line rendering is described in chapter 4 and it uses spherical and hyperbolic trigonometry to 

render objects in curved space. Functions were written which take object’s properties as 

parameters (position, rotation and shape recorded in local coordinate system) and return a 

transformed shape. The engine is capable of drawing objects in curved space as well as 

changing curvature dynamically when the simulation is running. For testing purposes this has 

been set to change to pre-set values when user presses the following keyboard inputs: key “I” 

set the curvature to 𝐊 = −𝟏, key “O” set the curvature to K = 0, key “P” set curvature to K =

1. Additionally, the curvature can change continuously, so when the user pressed the key “K” 

or “L”, the curvature would gradually decrease to a minimum of 𝐊 = −𝟏 or increase to a 
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maximum of K = 1 respectively. The rate of change of curvature has been set to be ±𝟎. 𝟐𝟓𝐊/

𝒔𝒆𝒄 and has been adjusted to be frame rate independent. 

Alternative approaches for line rendering described in chapter 6 have been implemented in 

the engine. Great Circle Path (described in section 6.1) and Orthogonal Vectors (described in 

section 6.2) approaches have been implemented as an alternative to spherical trigonometry 

approach; while Poincare Disc Line Equation approach (described in section 6.3) has been 

implemented as an alternative to the hyperbolic trigonometry approach. Line rendering 

capability has been modified to work on the GPU using OpenGL Shading Language (GLSL) 

as described in chapter 7. This is implemented directly in the rendering pipeline when an 

object is submitted for rendering within the scene. 

Additionally, texture rendering capability has been implemented within the engine following 

the method described in chapter 9. It uses spherical and hyperbolic trigonometry and is 

implemented in the shader, so works within the rendering pipeline. It is possible to specify 

whether each individual object is using line or texture rendering, which makes the engine 

more flexible. An example of this can be seen in Figure 9.8, Figure 9.9 and Figure 9.10, 

where the gridlines and spaceship’s lasers are drawn using line rendering, while spaceship and 

asteroids are drawn using texture rendering. 

The third objective was to “Expand the engine for object movement: record additional 

parameters for the objects and simulate the movement of the objects along the geodesics of 

planar, spherical or hyperbolic space.”. The method for calculating the movement of the 

object movement through curved space has been described in chapter 5. The engine calculates 

the coordinates of the position of the object in the next frame based on its position, velocity 

and trajectory in the previous frame. The method uses hyperbolic and spherical trigonometry 

to translate an object along its trajectory geodesic keeping the orientation with respect to the 

geodesic constant. This is illustrated in Figure 5.2, Figure 5.3, Figure 5.4 and Figure 5.5. 

Additionally, the engine is capable of performing proximity-based collision detection in 

curved space, which allows for object interaction. This is used in the implementation of 

Asteroid and Snake games described in sections 11.1 and 11.2 respectively.  

The engine has the capability to calculate object movement through curved space using the 

method described in chapter 5. This is implemented as part of the update() method in the  

game_object class. When called, it finds the position and rotation of the object in the next 

frame based on the properties of the object in the previous frame.  
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The fourth objective was to “Optimize performance of the engine: the software should be able 

to render complex scenes in real-time to be a viable game engine.”. Multiple approaches to 

improve performance of the described software have been covered in chapters 6 and 7. First, 

there were three approaches implemented designed to improve the performance of the shape 

tessellation in curved space. These were alternatives to spherical and hyperbolic trigonometry 

approaches and included two methods for spherical space (Great Circle Path approach 

covered in section 6.1 and Orthogonal Vectors approach covered in section 6.2) and one 

approach for hyperbolic space (Poincare Disc Line Equation approach covered in section 6.3). 

These as well as trigonometry approaches were adapted to work on a GPU, which has 

parallelised the computations. Chapter 8 described the theoretical and empirical analysis of 

the GPU and non-GPU approaches. While the parallelisation has greatly improved the 

performance of the engine and increased the frames per second the engine can render by an 

order of magnitude, the alternative tessellation approaches provided negligible benefit in 

comparison. Spherical and hyperbolic trigonometry subsequently were chosen to develop the 

texture rendering approach due to the similarity between the two approaches. The line 

equation approaches could have provided an approximately 2-4% improvement in 

performance, but two different approaches would need to be developed, which would make 

the engine less adaptable for potential future modifications. 

The fifth objective was to “Expand the engine to render textured shapes: create a method for 

texturing shapes in curved space and implement it within the engine.”. The method for 

rendering textures in curved space has been described in chapter 9. The engine is capable of 

drawing shapes in curved space using both line and texture rendering. The shape is 

subdivided into segments (one for each edge), which are then traced with lines parallel 

(number of which depends on inner tessellation coordinate) to the edge of that segment, 

forming multiple smaller similar triangles with a common vertex at the local coordinate 

system origin. The texture coordinates are found throughout the segment along these lines 

(the number of these intermediate points depends on the tessellation coordinates). As a proof 

of concept, an adaptation of the Asteroids game has been implemented in the engine using the 

texture rendering capabilities. Section 11.1 covers the implementation of the Asteroids game 

in non-Euclidean geometry, while section 0 covers the changes made to use textures for 

rendering the Asteroids game. Overall, the texture rendering works well and provides better 

visualisation of the curvature for the users, this is shown in Figure 9.12, Figure 9.13 and 

Figure 9.14. 
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The sixth objective was to “Evaluate people’s opinions towards non-Euclidean elements in 

games: use the engine to adapt well-known games to work in non-Euclidean space. Run a 

survey to learn whether participants like or dislike the idea.”. The survey designed to 

measure player’s enthusiasm towards games with the curved space mechanic as well as the 

intuitiveness of the games using it has been presented in chapter 11. Two classic games 

(Asteroids and Snake) have been adapted to work in curved space. Subsequently a Qualtrics 

survey has been developed to measure different aspects of participants’ interaction with the 

game. This survey has measured how easy to understand the participants found the curved 

space feature as well as the comparative enjoyment of the different versions of these games 

(Euclidean, spherical and hyperbolic). The results show that on average participants preferred 

non-Euclidean Asteroids to non-Euclidean Snake, which could have been due to Snake being 

better without texture rendering. The controls and collision detection worked well, however 

the difficulty was too varied between different curvatures of space. In general people 

responded well to classic games being adapted to work in non-Euclidean space. Further 

statistical analysis should be performed on the data gathered to determine whether the results 

were statistically significant. 

12.2 Related Work and Alternative Approaches 

There are different approaches to making games and simulations in non-Euclidean geometry. 

The closest approach to the methods described in this thesis is the work by Guimarães, et al. 

(Guimarães, Mello, & Velho, 2015). Both studies are researching a way to use non-Euclidean 

geometry in 2D game development.  

Guimarães, et al. have adapted the classic Asteroids game to work in a non-Euclidean 

environment, which is similar to the non-Euclidean Asteroids game built using the engine 

described in section 11.1. However, the approaches and results are different.  

Figure 12.1 shows a comparison between the renderings created by the engine described in 

this thesis (top row) and the software created by Guimarães, et al. (bottom row). Instead of 

using the trigonometric calculations and polar coordinate system for rendering and 

transforming shapes, the authors use spherical and hyperbolic metrics and isometry equations 

in a generalised (𝐱, 𝐲) coordinate system. They have also described a Lagrangian equation for 

calculating motion through curved space based on current and consecutive object positions.  

Guimarães, et al. specified a screen wrap around function works in a similar way to the 

implementation described in section 11.1, but because they use the (𝐱, 𝐲) coordinate system, 

the wrapping was represented differently for Euclidean, spherical and hyperbolic space. For 



 

180 

 

Euclidean it was kept the same as in the original Asteroids game; in spherical space the 

wrapping is a consequence of the great circle geodesics wrapping around the projection 

naturally; and for hyperbolic space, the boundary of the playable area was chosen to be 

represented as a connected sum of two tori, which created the boundary shape seen in Figure 

12.1 (bottom right). The engine described in this thesis can manage the wrapping independent 

of the curvature by moving the object to the antipodal point of its 𝛳-coordinate as well as 

adjusting the velocity and rotation accordingly. 

         

 

Figure 12.1: Comparison of adaptations of the Asteroids game rendered by this engine (top 

row) and Guimarães, et al. (bottom row) in Euclidean (left column), spherical (centre 

column) and hyperbolic (right column) space. 

David Madore has created two variants of the Hyperbolic Maze game (Madore, Hyperbolic 

maze, 2013)  (Madore, Hyperbolic Maze 2, 2013). Like the work described in this thesis, the 

game by D. Madore uses the conformal model. But, in his work the computations use matrix 

multiplication using Möbius transformations to preserving the unit circle (i.e., hyperbolic 

transformations under the Poincaré disk model). Another difference between the approaches 

is the coordinate system representation. D. Madore has said:  

“Main difficulty in representing hyperbolic space in a computer is that any real/continuous 

coordinate system (whether polar coordinates, Poincaré projection, Beltrami-Klein 

projection…) soon becomes unusable when you move away from its centre.” 
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This is true, due to the nature of negatively curved space, the further you move away from the 

centre of the projection, the faster the space is expanding in area. This can be solved in 

different ways: restricting the accessible area within the game world or split the coordinates 

into discrete sections. The former approach has been used when implementing non-Euclidean 

Asteroids and Snake games described in sections 11.1 and 11.2; this approach was natural due 

to original Asteroids and Snake games using wrapping world feature (i.e., when player moves 

off the screen, he reappears on the directly opposite side of the screen). D. Madore chose to 

split the world into discrete parts (quadrilateral tiles in hyperbolic tiling), which were then 

numerically encoded and handled exactly. The finite set of tiles is then wrapped around and 

repeated indefinitely if the player keeps moving in one direction through the maze. 

Another difference is that Hyperbolic Maze game, as the name suggests, only works in 

hyperbolic space, while the engine described by this thesis is capable of working in any 

arbitrary curvature of space in the range of −𝟏 ≤ 𝐊 ≤ 𝟏, where 𝐊 is the Gaussian curvature. 

Jeff Weeks has created software in non-Euclidean space. The most similar to the work done in 

this project is KaleidoTile, application which allows users to explore different polyhedral 

tilings of Euclidean, spherical and hyperbolic space (Weeks, KaleidoTile, 2020). All of the 

calculations use the projective model of non-Euclidean geometry which allows for the 

adaptation of traditional transformation matrices (i.e., translation, rotation and reflection) for 

curved space (Weeks, Real-time rendering in curved spaces, 2002). J. Weeks has also 

explored the adaptation of 3D games to non-Euclidean space using the projective model 

(Weeks, Non-euclidean billiards in vr, 2020). 

There are further features that could be added to the engine. Firstly, a more precise collision 

detection system could be developed. An adaptation of the axis aligned or even object aligned 

bounding box collision detection would be possible by calculating these as geodesics which 

bound the object rather than cartesian straight lines. This would allow for more precise 

interaction between the objects, due to additional techniques like subdivision of space being 

analogous in non-Euclidean geometry. 

Another feature that would improve the capabilities of the engine is non-Euclidean 

pathfinding. Pathfinding algorithms are widely used in games, especially for non-playable 

characters, but also for user-controlled characters in genres such as Real-Time Strategy games 

or Multiplayer Online Battle Arena games. The pathfinding could work by subdividing the 

space in a game world into a variable number of cells (dependent on curvature)  

Participants of the survey described in chapter 11 have suggested that a novel game which 

takes advantage of the feature of non-Euclidean space would be enjoyable and immersive for 
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players, because the challenge would come from understanding the curved space and object 

interactions within it. Thus, the one of the potential future developments is making a novel 

game with a focus of the gameplay being around the curved space mechanic. The best genre 

for such a game would be a 2D puzzle game. Once the game is complete, another survey to 

measure people’s enthusiasm towards such a game could be set up. This survey could 

compare the enjoyment to the non-Euclidean adaptations of Asteroids/Snake or be self-

contained and thus shorter survey, which could make the completion rate higher. 

Another potential feature that could be added to the engine is non-uniform curvature. Local 

areas of different curvature could be added to a uniformly curved space. These would be 

strongest at the centre of the local curvature area and would gradually be interpolated towards 

the global curvature away from the area’s centre. Variable curvature is illustrated in Figure 

12.2. 

 

Figure 12.2: Game world with global Euclidean curvature (𝑲 = 𝟎) and local areas with 

different curvature. Two areas with positive curvature (𝑲 = 𝟏) marked green and three areas 

with negative curvature (𝑲 = −𝟏) marked red. 

Finally, engine could be adapted to work in 3D non-Euclidean space. This would require a 

rework of the methods in chapter 4 to render lines in 3D space, followed by a rework to 

methods in chapter 5 for movement in 3D space and chapter 9 to render textures in 3D curved 

space. When implemented, it would be an alternative to using the projective model for 

rendering 3D objects in curved space. Empirical testing could be performed to measure the 

comparative performance of these approaches. 

12.3 Summary 

This chapter discussed the results of this project in the context of its initial aims and 

objectives, related work and future work. Overall, the objectives have been largely fulfilled 

and the engine created can be used to make games and simulations in non-Euclidean 
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environments. Some issues were described and subsequently addressed in the further work 

section, which described additional features that could be implemented in the engine as well 

as potential research into player interaction with games in non-Euclidean space. The research 

has been compared to other related work in this area in terms of rendering of games in 2D 

non-Euclidean space. 
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Appendix A  

Survey Flow diagram screenshot taken from the created Qualtrics survey. 

 

 

 



 

185 

 

13. References 

Abeele, V. V., Spiel, K., Nacke, L., Johnson, D., & Gerling, K. (2020). Development and 

Validation of the Player Experience Inventory: A Scale to Measure Player 

Experiences at the Level of Functional and Psychosocial Consequences. International 

Journal of Human-Computer Studies, 135, 102370. 

Amenta, N., Levy, S., Munzer, T., & Phillips, M. (1995). Geomview: A system for geometric 

visualization. In Proceedings of the eleventh annual symposium on Computational 

geometry, 412-413. 

Anderson, J. W. (2006). Hyperbolic Geometry. Springer Science & Business Media. 

Artmann, B. (2018, May 16). Projective geometry. Retrieved September 27, 2022, from 

Encyclopedia Britannica: https://www.britannica.com/science/projective-geometry 

Azadvar, A., & Canossa, A. (2018). Upeq: ubisoft perceived experience questionnaire: a self-

determination evaluation tool for video games. Proceedings of the 13th international 

conference on the foundations of digital games, 1-7. 

Bachmann, P. (1894). Die analytische zahlentheorie, vol. 2. Leipzig: Teubner. 

Beltrami, E. (1868a). Saggio di interpretazione della geometria non-euclidea. Giornale di 

Mathematiche, VI, 285–315. 

Beltrami, E. (1868b). Teoria fondamentale degli spazii di curvatura costante. Annali di 

Matematica Pura ed Applicata, series II, 232–255. 

Bonola, R. (1912). Non-Euclidean geometry; a critical and historical study of its 

development. Bulletin of the American Mathematical Society, 19(1), 22-23. 

Brockwell, H. (2016, April 3). Forgotten genius: the man who made a working VR machine 

in 1957. Retrieved November 23, 2021, from Tech Radar: 

https://www.techradar.com/news/wearables/forgotten-genius-the-man-who-made-a-

working-vr-machine-in-1957-1318253/2 

Carslaw, H. S. (1916). The Elements of Non-Euclidean Plane Geometry and Trigonometry. 

The Mathematical Gazette, 9(141), 374-374. 

Cayley, A. (1859). A sixth memoir upon quantics. Philosophical Transactions of the Royal 

Society of London, 149, 61–90. 

Chernikov, Y. (2012). The Cherno. Retrieved from Youtube: 

https://www.youtube.com/c/TheChernoProject/videos 



 

186 

 

Cotter, H. (1976). The Early History of Great Circle Sailing. Journal of Navigation, 29(3), 

254-262. 

Coxeter, H. S. (1979). The non-Euclidean symmetry of Escher's picture 'Circle Limit III'. 

Leonardo, 12(1), 19–25. 

Coxeter, H. S. (2003). Projective geometry. Springer Science & Business Media. 

Eder, M. (2000). Views of Euclid's Parallel Postulate in Ancient Greece and in Medieval 

Islam. History of mathematics. 

Einstein, A. (1921). Relativity: The special and general theory. New York: Holt. 

Escher, M. (1959). Circle Limit III.  

Francis, G. K., Goudeseune, C. M., Kaczmarski, H. J., Schaeffer, B. J., & Sullivan, J. M. 

(2003). ALICE on the eightfold way: exploring curved spaces in an enclosed virtual 

reality theater. Visualization and mathematics III, 305-315. 

Furuti, C. A. (2012). Visualizations of the Azimuthal Orthographic Geometry. Retrieved 

August 2, 2018, from Progonos: 

http://www.progonos.com/furuti/MapProj/Dither/CartHow/HowOrtho/Img/im\_ortho

Rays.png 

Galesic, M., & Bosnjak, M. (2009). Effects of questionnaire length on participation and 

indicators of response quality in a web survey. Public opinion quarterly, 73(2), 349-

360. 

Gauss, C. F. (1824, November 8). letter to Franz Adolph Taurinus. Retrieved from Friedrich 

Gauss Letters: https://gauss.adw-goe.de/handle/gauss/1688 

Gellert, W. (1989). Great circles, small circles and lunes. In S. Gottwald, M. Hellwich, H. 

Kästner, & H. Küstner, The VNR Concise Encyclopedia of Mathematics, 2nd ed (pp. 

261–282). New York: Van Nostrand Reinhold. 

Gessler, A., Schulze, T., & Kulling, K. (2006). Assimp. Retrieved from GitHub: 

https://github.com/assimp/assimp 

Gray, J. (1979). Non-euclidean geometry – A re-interpretation. Historia Mathematica, 6(3), 

236–258. 

Gray, J. (2004). János Bolyai, non-Euclidean geometry, and the nature of space. Cambridge, 

Mass.: Burndy Library MIT Press. 

Gray, J. (2006). Gauss and non-Euclidean geometry. In Non-Euclidean Geometries (pp. 61-

80). Boston, MA: Springer. 



 

187 

 

Greenberg, M. J. (2008). Euclidean and Non-Euclidean Geometries, 4th ed. New York: W.H. 

Freeman. 

Guimarães, F. D., Mello, V. M., & Velho, L. (2015). Geometry independent game 

encapsulation for non-euclidean geometries. In Proceedings of SIBGRAPI Workshop 

of Works in Progress, vol. 1. 

Gunn, C. (1993). Discrete groups and visualization of three-dimensional manifolds. 

Proceedings of the 20th annual conference on Computer graphics and interactive 

techniques, 255-262. 

Gunn, C. (2010). Advances in metric-neutral visualization. Computer Graphics, Computer 

Vision and Mathematics 2010 proceedings, 17-26. 

Gunn, C., Epstein, D. B., & Maxwell, D. (1991). “Not Knot” [videotape]. Jones and Bartlett 

Pub. 

Haider, A., Gerling, K., & Vanden Abeele, V. (2020). The Player Experience Inventory 

Bench: Providing Games User Researchers Actionable Insight into Player 

Experiences. Extended Abstracts of the 2020 Annual Symposium on Computer-

Human Interaction in Play, 248-252. 

Hairetdinova, N. G. (1986). On spherical trigonometry in the medieval Near East and in 

Europe. Historia mathematica, 13(2), 136-146. 

Halsted, G. B. (1900). Gauss and the non-Euclidean geometry. The American Mathematical 

Monthly, 7(11), 247-252. 

Heath, T. L. (1956). Euclid's Elements (translated). Dover. 

Hedegaard, R. (2004, April 14). Orientable Manifold. Retrieved September 26, 2022, from 

MathWorld--A Wolfram Web Resource: 

https://mathworld.wolfram.com/OrientableManifold.html 

Hehl, F. W., & Kerlick, G. D. (1978). Metric-affine variational principles in general relativity. 

I. Riemannian space-time. General Relativity and Gravitation, 9(8), 691-710. 

Hoboken, G. (1994, August 29). Hyperbolic Geometry. Retrieved February 11, 2018, from 

Non-Euclidean Geometry: https://noneuclidean.tripod.com/hyperbolic.html 

Hudson, R., Gunn, C., Francis, G. K., Sandin, D. J., & DeFanti, T. A. (1995). Mathenautics: 

using vr to visit 3-d manifolds. In Proceedings of the 1995 symposium on Interactive 

3D graphics, 167-170. 

IBM Corp. (2020). IBM SPSS Statistics for Windows, version 27.0. Armonk, NY. 



 

188 

 

Ijsselsteijn, W. A., de Kort, Y. A., & Poels, K. (2013). The Game Experience Questionnaire. 

Eindhoven: Technische Universiteit Eindhoven. 

Jennett, C., Cox, A. L., Cairns, P., Dhoparee, S., Epps, A., Tijs, T., & Walton, A. (2008). 

Measuring and defining the experience of immersion in games. International journal 

of human-computer studies, 66(9), 641-661. 

Kessenich, J., Baldwin, D., & Rost, R. (2017). GLSL 4.5 specification. Retrieved July 20, 

2020, from OpenGL: https://www.khronos.org/registry/OpenGL/ 

specs/gl/GLSLangSpec.4.50.pdf 

Khronos Group. (1997). Glad. Retrieved from GitHub: https://github.com/Dav1dde/glad 

Khronos group. (2010, March 11). OpenGL 4.0. Retrieved September 27, 2022, from 

Khronos.org: https://registry.khronos.org/OpenGL/specs/gl/glspec40.core.pdf 

Klein, F. (1871). Ueber die sogenannte Nicht-Euklidische Geometrie. Mathematische 

Annalen, 4(4), 573–625. 

Korn, G. A., & Korn, T. M. (2000). Appendix B: B9. Plane and Spherical Trigonometry: 

Formulas Expressed in Terms of the Haversine Function. In Mathematical handbook 

for scientists and engineers: Definitions, theorems, and formulas for reference and 

review, 3rd ed (pp. 892-893). Mineola, New York: Dover Publications. 

Kragh, H. (2012). Is space Flat? Nineteenth century astronomy and non-Euclidean geometry. 

Journal of Astronomical History and Heritage, 15(3), 149-158. 

Kreyszig, E. (1991). In Differential Geometry (p. 131). New York: Dover. 

Kriz, J. (2010). Great Circle on Spherical Earth. Retrieved May 13, 2020, from Nosco: 

https://www.nosco.ch/mathematics/en/great-circle.php 

Lamping, J., & Rao, R. (1996). The hyperbolic browser: A focus+ context technique for 

visualizing large hierarchies. Journal of Visual Languages & Computing, 7(1), 33-55. 

László, S.-K., & Magdics, M. (2021). Adapting Game Engines to Curved Spaces. The Visual 

Computer, 1-13. 

Law, E. L., Brühlmann, F., & Mekler, E. D. (2018). Systematic review and validation of the 

game experience questionnaire (geq)-implications for citation and reporting practice. 

In Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in 

Play, 257-270. 

Likert, R. (1932). A technique for the measurement of attitudes. Archives of Psychology, 140, 

1-55. 



 

189 

 

Madore, D. (2013). Hyperbolic maze. Retrieved November 25, 2017, from Madore.org: 

http://www.madore.org/~david/math/hyperbolic-maze.html 

Madore, D. (2013). Hyperbolic Maze 2. Retrieved from madore.org: 

http://www.madore.org/~david/math/hyperbolic-maze-2.html 

Madore, D. (2013, November 19). Visualizing the sphere and the hyperbolic plane: five 

projections of each. Retrieved Novemeber 25, 2017, from Youtube: 

https://www.youtube.com/watch?v=xHvAqDuWG2M 

Marzec, C. (2010, October). When Art Meets Science: The Hyberbolic Crochet Coral Reef. 

Retrieved October 26, 2021, from Smithsonian Ocean: https://ocean.si.edu/ocean-

life/invertebrates/when-art-meets-science-hyberbolic-crochet-coral-reef 

Merriam-. (n.d.). 

Merriam-Webster.com Dictionary. (2009, April 24). Azimuthal equidistant projection. 

Retrieved September 26, 2022, from Merriam-Webster: https://www.merriam-

webster.com/dictionary/azimuthal%20equidistant%20projection 

Merriam-Webster.com Dictionary. (2011, November 14). gnomonic projection. Retrieved 

September 26, 2022, from Merriam-Webster.com: https://www.merriam-

webster.com/dictionary/gnomonic%20projection 

Merriam-Webster.com Dictionary. (2015, September 21). stereographic projection. Retrieved 

September 26, 2022, from Merriam-Webster.com: https://www.merriam-

webster.com/dictionary/stereographic%20projection 

Mervis, J. (2002). The Geometry Center, 1991-1998. RIP. Science, 297, 508. 

Munzner, T. (1998). Exploring large graphs in 3D hyperbolic space. IEEE computer graphics 

and applications, 18(4), 18-23. 

Novikov, P. (2001). Axiomatic method. Retrieved from Encyclopedia of Mathematics: URL: 

http://encyclopediaofmath.org/index.php?title=Axiomatic_method&oldid=45531 

Osudin, D. (2022, November 8). GitHub.com. Retrieved from nonEuclidean_engine: 

https://github.com/danosudin1/nonEuclidean_engine 

Osudin, D. (2022, November 8). GitHub.com. Retrieved from survey_curved_games_exe: 

https://github.com/danosudin1/survey_curved_games_exe 

Osudin, D., Child, C., & He, Y.-H. (2019). Rendering non-euclidean space in real-time using 

spherical and hyperbolic trigonometry. International Conference on Computational 

Science, Springer, 543-550. 

Oxford University. (2021). OED Online. Oxford: Oxford University Press. 



 

190 

 

Papadopoulos, A. (2014). On the works of Euler and his followers on spherical geometry, 

Gan. ita Bharatı (Indian Mathematics). the Bulletin of the Indian Society for History 

of Mathematics, 36, 1-2. 

Petrunin, A. (2019). Euclidean Plane and Its Relatives: A Minimalist Introduction. 

Independently Published. 

Phaelax. (2014, February 1). Asteroids. Retrieved October 1, 2021, from OpenGameArt: 

https://opengameart.org/content/asteroids 

Phillips, M., & Gunn, C. (1992). Visualizing hyperbolic space: Unusual uses of 4x4 matrices. 

In Proceedings of the 1992 symposium on Interactive 3D graphics, 209-214. 

Poincaré, H. (1881). Sur les applications de la géométrie non-euclidienne à la théorie des 

formes quadratiques. Association Française Pour l'Avancement des Sciences, 10, 

132–138. 

Qualtrics. (2021). Qualtrics. Provo, Utah, USA. Retrieved from Qualtrics. 

Riccio, C. (2005). GLM. Retrieved from GitHub: https://github.com/g-truc/glm 

Richards, M. (2015). Software architecture patterns, vol. 4. Sebastopol: O'Reilly Media, 

Incorporated. 

Rodin, A. (2015). Did Lobachevsky Have A Model Of His "imaginary Geometry"? 

Philosophy of Science, 3, 34-63. 

Rosenfeld, B. A. (2012). A history of non-Euclidean geometry: Evolution of the concept of a 

geometric space. Springer Science & Business Media. 

Rowland, T. (2000, June 9). Manifold. Retrieved from MathWorld--A Wolfram Web 

Resource: https://mathworld.wolfram.com/Manifold.html 

Scratchapixel. (2015, May 14). Ray Tracing: Rendering a Triangle. Retrieved from 

Scratchapixel: https://www.scratchapixel.com/lessons/3d-basic-rendering/ray-tracing-

rendering-a-triangle/barycentric-coordinates 

Taimina, D. (2018). Crocheting Adventures with Hyperbolic Planes, 2nd ed. Boca Raton, FL: 

CRC Press. 

Tamfang. (2011). Equilateral triangles. Retrieved August 3, 2018, from 

https://pointatinfinityblog.files.wordpress.com/2018/02/triangle5.png?w=480\&h=48

0 

The American Heritage Science Dictionary. (2016, June 1). dictionary.com. Retrieved 

September 25, 2022, from azimuthal-projection: 

https://www.dictionary.com/browse/azimuthal-projection 



 

191 

 

The GLFW Development Team. (2002). Retrieved from GLFW: https://www.glfw.org/ 

The Khronos Group. (2020, October 11). Tessellation. Retrieved from OpenGL: 

https://www.khronos.org/opengl/wiki/Tessellation 

Thompson, J. (2015). jeffreythompson.org. Retrieved from Circle/Circle Collision Detection: 

http://www.jeffreythompson.org/collision-detection/circle-circle.php 

Todhunter, I. (1863). Spherical trigonometry, for the use of colleges and schools: with 

numerous examples. Macmillan. 

Traver, T. (2014). Trigonometry in the Hyperbolic Plane. Manuscript, May. 

TrustRadius. (2014). Qualtrics. Retrieved from TrustRadius: 

https://www.trustradius.com/products/qualtrics/reviews 

Turner, D., Wilhelm, R., & Lemberg, W. (1996). FreeType . Retrieved from GitLab: 

https://gitlab.freedesktop.org/freetype 

United Nations. (2021, April 4). United Nations Emblem and Flag. Retrieved September 26, 

2022, from un.org: https://www.un.org/en/about-us/un-emblem-and-flag 

Wald, R. M. (2010). General relativity. University of Chicago Press. 

Weeks, J. (2002). Real-time rendering in curved spaces. IEEE Computer Graphics and 

Applications, 22, 90-99. 

Weeks, J. (2020, September 7). KaleidoTile. Retrieved December 15, 2021, from Geometry 

Games: https://www.geometrygames.org/KaleidoTile/index.html 

Weeks, J. (2020). Non-euclidean billiards in vr. Bridges 2020 Conference Proceedings, 1-8. 

Weintrit, A., & Neumann, T. (2011). Methods and Algorithms in Navigation: Marine 

Navigation and Safety of Sea Transportation. Boca Raton, FL: CRC Press. 

Weißmann, S., Gunn, C., Brinkmann, P., Hoffmann, T., & Pinkall, U. (2009). jReality: a java 

library for real-time interactive 3D graphics and audio. In Proceedings of the 17th 

ACM international conference on Multimedia, 927-928. 

Weisstein, E. W. (2000, May 17). Proclus' Axiom – MathWorld. Retrieved from Wolfram 

MathWorld: https://mathworld.wolfram.com/ProclusAxiom.html 

Weisstein, E. W. (2002, January 8). Conformal Projection. Retrieved September 26, 2022, 

from MathWorld--A Wolfram Web Resource: 

https://mathworld.wolfram.com/ConformalProjection.html 



 

192 

 

Wheatstone, C. (1838). XVIII. Contributions to the physiology of vision.—Part the first. On 

some remarkable, and hitherto unobserved, phenomena of binocular vision. 

Philosophical transactions of the Royal Society of London, 128, 371-394. 

Wood, L. (2012). SaVi: satellite constellation visualization. Retrieved from arXiv: 

https://arxiv.org/abs/1204.3265 

Xevin. (2014, June 18). simple spaceship. Retrieved October 1, 2021, from OpenGameArt: 

https://opengameart.org/content/simple-spaceship 

Zeno Rogue. (2022, 09 04). Hyperrogue Gallery. Retrieved from roguetemple.com: 

https://www.roguetemple.com/z/hyper/ms-escher.png 

 


